
P
os
te
d
on

16
A
p
r
20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
71
32
26
01
.1
01
06
36
0/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

A robust method for selecting a high-quality interferogram subset

in InSAR surface deformation analysis

Molly S Zebker1 and Jingyi Chen2

1The University of Texas at Austin
2University of Texas at Austin

April 16, 2024

Abstract

The accuracy of surface deformation derived from Interferometric Synthetic Aperture Radar (InSAR) observations depends

on the quality of the chosen interferogram subset. We present a method to select interferogram subsets based on unwrapping

errors rather than temporal baseline thresholds. Using Sentinel-1 interferograms over the Tulare Basin (CA), we show that

tropospheric noise dominates short temporal baseline subset solutions (with up to 2.9 cm/yr residuals at co-located GPS sites),

while decorrelation leads to a systematic underestimation of true deformation rate in long temporal baseline subset solutions

(with up to 5.5 cm/yr residuals). Our new workflow better mitigates these two noise sources at the same time. In the Eagle

Ford (TX) region, our strategy revealed up to ˜11 cm of cumulative line-of-sight (LOS) deformation over a ˜900 km2 region.

This deformation feature is associated with ongoing oil and gas activities and is reported for the first time here.
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Abstract15

The accuracy of surface deformation derived from Interferometric Synthetic Aperture16

Radar (InSAR) observations depends on the quality of the chosen interferogram subset.17

We present a method to select interferogram subsets based on unwrapping errors rather18

than temporal baseline thresholds. Using Sentinel-1 interferograms over the Tulare Basin19

(CA), we show that tropospheric noise dominates short temporal baseline subset solu-20

tions (with up to 2.9 cm/yr residuals at co-located GPS sites), while decorrelation leads21

to a systematic underestimation of true deformation rate in long temporal baseline sub-22

set solutions (with up to 5.5 cm/yr residuals). Our new workflow better mitigates these23

two noise sources at the same time. In the Eagle Ford (TX) region, our strategy revealed24

up to ∼11 cm of cumulative line-of-sight (LOS) deformation over a ∼900 km2 region.25

This deformation feature is associated with ongoing oil and gas activities and is reported26

for the first time here.27

Plain Language Summary28

Deformation estimates are often impacted by noise related to weather conditions29

and surface vegetation changes. It is common to select an interferogram subset based30

on a temporal baseline threshold. However, InSAR phase quality may be influenced by31

other factors such as the weather conditions and surface vegetation rather than tempo-32

ral baselines. We designed an InSAR processing strategy and applied it to two vegetated33

regions that experience land subsidence due to agriculture groundwater pumping or oil34

and gas production. In the Tulare Basin, we showed that deformation estimates are im-35

pacted by weather and vegetation related noise and can vary substantially depending36

on which interferograms are chosen. With our strategy, we better mitigate both noise37

sources at the same time. In the Eagle Ford region, our workflow revealed up to ∼11 cm38

of surface deformation over a ∼900 km2 area for the first time. This is an oil and gas39

producing region where production activities have led to an increase in seismicity. Based40

on these findings, accurate surface deformation derived from InSAR data is now achiev-41

able in densely vegetated regions and can play an important role in future induced seis-42

micity studies.43

1 Introduction44

Interferometric Synthetic Aperture Radar (InSAR) is an imaging radar technique45

for measuring surface deformation associated with geophysical processes including, but46

not limited to, tectonics (e.g., Fialko et al., 2002; Wright et al., 2004; Shirzaei & Bürgmann,47

2013; Fielding et al., 2017; Xu et al., 2021), volcanism (e.g., Jónsson et al., 2000; Pritchard48

& Simons, 2002; Hooper et al., 2004; Lundgren et al., 2013), and groundwater hydrol-49

ogy (e.g., Amelung et al., 1999; Hoffmann et al., 2001; Schmidt & Burgmann, 2003; Bell50

et al., 2008; Chaussard et al., 2014). Achieving millimeter-to-centimeter level accuracy51

required by many of these studies, however, is challenging due to effects such as decor-52

relation and atmospheric artifacts. Physical changes in the surface properties between53

two radar image acquisitions (e.g., vegetation growth and surface disturbance) lead to54

phase decorrelation (H. A. Zebker & Villasenor, 1992). Phase measurements at completely55

decorrelated radar pixels do not contain spatially coherent phase information. Conversely,56

changes in temperature, pressure, and humidity (Bevis et al., 1992) often appear as spa-57

tially coherent tropospheric noise, similar to surface deformation signals. While weather58

models and topography data can be used to estimate and remove the stratified tropo-59

spheric noise component (e.g., Doin et al., 2009; Wadge et al., 2002; Jolivet et al., 2011;60

Li et al., 2009; Bekaert et al., 2015a, 2015b), these approaches often fail to capture the61

turbulent noise component that is approximately random at time scales greater than a62

day (Emardson et al., 2003). In many InSAR studies, decorrelation and tropospheric tur-63

bulence noise are the two major factors that limit InSAR measurement accuracy.64
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To mitigate tropospheric and decorrelation noise, Berardino et al. (2002) developed65

the Small BAseline Subset (SBAS) method to derive surface deformation solutions from66

a stack of interferograms. The algorithm assumes that interferograms with large tem-67

poral baselines (the time between two radar acquisitions used to form the interferogram)68

often suffer from more severe decorrelation artifacts. Therefore, the use of a temporal69

baseline threshold in the subset selection can reduce the number of decorrelated phase70

measurements used in surface deformation analysis. A problem arises in areas with dense71

vegetation where phase decorrelation occurs even in short baseline interferograms (e.g.,72

48 or 60 days), which limits the interferogram subset size and ability to reduce other noise73

terms. To better mitigate decorrelation noise, Persistent Scatterer (PS) algorithms were74

developed to select pixels that suffer from minimal decorrelation artifacts (e.g., roads,75

buildings, or bare rock) (e.g., Ferretti et al., 2000; Hooper et al., 2004; Agram, 2010; Huang76

& Zebker, 2022; Wang & Chen, 2022). In areas with severe decorrelation, only phase mea-77

surements at PS pixels are suitable for surface deformation analysis. To further advance78

the capability of PS interferometry, Ferretti et al. (2011) jointly analyzed nearby pix-79

els (Distributed Scatterers) with homogeneous amplitude distributions (referred to as80

statistically homogeneous pixels or SHP). The InSAR phase observations from each SHP81

group are averaged to improve the signal-to-noise-ratio (SNR) and a covariance matrix82

model (Guarnieri & Tebaldini, 2008) is employed to filter phase measurements for sur-83

face deformation analysis.84

While different selection criteria are adopted in existing PS/DS algorithms, they85

often require InSAR phase measurements to remain stable at the identified PS/DS over86

the entire InSAR observation period. However, even at relatively stable PS/DS pixels,87

phase measurements are often decorrelated in a portion of the interferograms. It is com-88

mon to assume interferograms with longer temporal baselines tend to decorrelate more89

than interferograms with shorter temporal baselines. However, other factors (e.g., weather90

and surface conditions) may cause decorrelation as well. Based on these observations,91

we design a processing strategy that selects an interferogram subset for surface defor-92

mation analysis based on decorrelation and the associated phase unwrapping errors, re-93

gardless of interferogram temporal baselines. This new workflow allows us to enhance94

phase coherence and reduce decorrelation noise through an optional step that integrates95

recent phase reconstruction algorithms (e.g., Guarnieri & Tebaldini, 2008; Fornaro et al.,96

2015; Ansari et al., 2018). This InSAR processing strategy is computationally efficient97

and easy to implement, and can be incorporated into existing workflows to extend the98

use of the Small BAseline Subset approaches over densely vegetated areas.99

2 Methodology100

Interferometric Synthetic Aperture Radar (InSAR) techniques compute the phase101

difference between two SAR images over the same area of interest. After removing the102

phase component related to surface topography, the observed InSAR phase at a pixel103

of interest, ∆ϕ, can be written as (Hanssen, 2001):104

∆ϕ =
4π

λ
∆dLOS +∆ϕorb +∆ϕdecor +∆ϕunwrap +∆ϕdem +∆ϕiono +∆ϕtropo +∆ϕn (1)

where λ is the radar wavelength and ∆dLOS is the surface deformation between105

two SAR acquisition dates along the radar line-of-sight (LOS) direction. The remain-106

ing phase terms on the right are InSAR measurement noise due to orbital errors, phase107

decorrelation and associated unwrapping errors, digital elevation model (DEM) errors,108

ionospheric and tropospheric artifacts, and other smaller residual noise terms such as ther-109

mal or soil moisture effects. Among these noise terms, orbital errors, DEM errors, and110

ionospheric delays can be corrected during the interferogram formation (e.g., Fattahi &111

Amelung, 2013; Fattahi et al., 2017). Additionally, stratified tropospheric noise can be112

–3–



manuscript submitted to Geophysical Research Letters

estimated and removed using a combination of global or local atmospheric weather mod-113

els along with zenith tropospheric delay measurements at GNSS sites (e.g., the GACOS114

correction as described in Yu et al. (2017)). Therefore, our algorithm design focuses on115

the reduction of decorrelation and the associated phase unwrapping errors (H. A. Zebker116

& Villasenor, 1992) as well as tropospheric turbulence noise errors (e.g., H. A. Zebker117

et al., 1997; Emardson et al., 2003).118

Given N high-quality interferograms derived from M SAR acquisitions, Berardino
et al. (2002) proposed a method to solve for the surface deformation time series at a pixel
of interest as:

Bv = ∆Φ (2)

where v = [v1, ..., vM−1]
T is the vector of unknown mean velocities between each con-119

secutive SAR acquisition, and ∆Φ = [∆ϕ1, ...,∆ϕN ]T is a N×1 vector of observed In-120

SAR phases at the given pixel. B is the N×(M−1) system matrix as defined in (Berardino121

et al., 2002), and we can solve for v as an inverse problem of Equation (2).122

Berardino et al. (2002) named this InSAR time series analysis algorithm the Small123

BAseline Subset (SBAS) method because a subset of N high-quality InSAR observations124

is chosen for the time series inversion based on user-defined temporal and spatial base-125

line thresholds (Fig. 1, left). The algorithm was designed based on the fact that inter-126

ferograms with large temporal or spatial baselines are more likely to suffer from more127

severe decorrelation noise. Thus, selecting a subset of interferograms with small base-128

lines allows users to limit the total number of decorrelated phase measurements in the129

InSAR phase vector Φ in Equation (2). By contrast, tropospheric turbulence noise is not130

correlated with temporal or spatial baselines (e.g., Tymofyeyeva & Fialko, 2015; M. S. Ze-131

bker et al., 2023). Because tropospheric turbulence noise can be considered spatially co-132

herent (similar to deformation signals) but random in time between SAR acquisitions133

(Emardson et al., 2003), it is desirable to include a large number of interferograms ac-134

quired on different dates (especially those with long temporal baselines and thus larger135

secular deformation signals) as input data for the SBAS inversion (Supporting Informa-136

tion S1).137

One limitation of the SBAS approach is that the InSAR decorrelation noise level138

cannot be measured using temporal and spatial baseline alone. In areas with dense veg-139

etation, a short temporal baseline threshold (e.g., 48 or 60 days) is often imposed to limit140

temporal decorrelation noise due to vegetation growth in the interferogram subset. How-141

ever, this leads to a substantial reduction in the total number of phase observations used142

in time series inversion, which limits our ability to mitigate tropospheric noise (e.g., H. A. Ze-143

bker et al., 1997; Zheng et al., 2021) and closure phase biases (e.g., Ansari et al., 2021;144

Zheng et al., 2022). A small portion of interferograms with longer temporal baselines (e.g.,145

a year) often maintain good phase coherence at certain stable pixels such as roads, man-146

made structures, and barren terrain. These phase observations can improve the accu-147

racy of the SBAS surface deformation estimates. Based on these facts, our new work-148

flow is designed to choose the interferogram subset based on the phase quality of the in-149

terferogram, rather than temporal and spatial baseline thresholds (Fig. 1, right). To do150

this, we first form all possible interferogram pairs. If severe decorrelation noise is present,151

we enhance InSAR phase quality through phase reconstruction methods such as coherence-152

based filtering (e.g., Guarnieri & Tebaldini, 2008; Ferretti et al., 2011; Fornaro et al., 2015;153

Mirzaee et al., 2023) or an interpolation between phase observations at stable PS pix-154

els (e.g., Ferretti et al., 2000; Hooper et al., 2004; Agram, 2010). This increases the to-155

tal number of interferograms suitable for the time series analysis. The reconstructed in-156

terferograms are then unwrapped. Finally, we compute the amount of unwrapping er-157

rors for each interferogram and choose a subset of interferograms with small total phase158

unwrapping errors as input for the time series inversion. For each unwrapped interfer-159

ogram, we define the phase unwrapping error at a pixel m as:160
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ϕerr
m =

4∑
k

∆ϕmn, if ∆ϕmn > π (3)

where ∆ϕmn is the unwrapped phase difference between pixel m and n in an interfer-161

ogram, and pixel n is one of four adjacent pixels to center pixel m. If ∆ϕmn < π, the162

unwrapping error contribution is 0, as defined in C. Chen and Zebker (2001). We com-163

pute the total phase unwrapping error of an interferogram as the sum of the phase un-164

wrapping error over all radar pixels (Wang & Chen, 2022).165

3 Test Sites and Data Processing166

Our first study site is the Tulare Basin in the southern portion of the Central Val-167

ley, California (Fig. S1, left), a large agricultural region that has relied on groundwa-168

ter since the early 1920s (Poland, 1975). The groundwater demand in combination with169

extended droughts throughout California has led to aquifer sediment compaction and170

subsequent land subsidence (e.g., Galloway et al., 1999; Faunt et al., 2016). As a result,171

InSAR techniques have been used to monitor pumping-induced land subsidence and es-172

timate permanent groundwater loss in the region (e.g., Farr & Liu, 2015; Smith et al.,173

2017; Ojha et al., 2018; Neely et al., 2021). Our second study site is in Central Texas174

and contains a portion of the Eagle Ford Shale, southeast of the San Antonio-Austin metro-175

plex (Fig. S1, right). The Eagle Ford Shale is a large oil-producing region. The recent176

ramp-up in shale fracking activities led to increased reliance on groundwater resources177

from the Carrizo-Wilcox aquifer that overlays the Eagle Ford Shale (Scanlon et al., 2020).178

This combination of groundwater withdrawal and oil and gas production can produce179

complex deformation signals. The growth of vegetation at both of these sites can lead180

to severe decorrelation in interferograms with relatively short temporal baselines (e.g.,181

∼ 2 months), a challenging scenario for InSAR time series analysis. Furthermore, be-182

cause both sites are located in the mid-latitude and are relatively flat regions, DEM and183

ionospheric noise terms are not substantial. Given that the primary noise terms are tro-184

pospheric turbulence noise and decorrelation, we chose these two sites to demonstrate185

the advantages of our time series analysis workflow.186

For the California case, we processed 122 C-Band Sentinel-1 SAR images (path 137,187

frame 114) acquired between 2017 and 2021 using a geocoded single-look-complex (SLC)188

algorithm (e.g., H. A. Zebker, 2017; Zheng & Zebker, 2017). Because Sentinel-1 satel-189

lites have precise orbit controls, the spatial baselines of all interferogram pairs are much190

smaller than the InSAR critical baseline (Rosen et al., 2000). As a result, we did not ob-191

serve any noticeable spatial decorrelation artifacts, and our analysis is mainly focused192

on the mitigation of temporal decorrelation noise. Following the new workflow, we gen-193

erated all 6498 interferogram pairs without any spatial or temporal thresholds. To en-194

hance the spatial coherence of InSAR phase measurements, we selected PS pixels based195

on the cosine similarity method (Wang & Chen, 2022), performed a phase interpolation196

among PS pixels (J. Chen et al., 2015), and unwrapped InSAR phase measurements us-197

ing the Statistical-Cost, Network-flow Algorithm for Phase Unwrapping (SNAPHU) (C. Chen198

& Zebker, 2001) algorithm. We solved for the long-term deformation trend over the study199

period based on a linear deformation (constant velocity) model from interferograms with200

the phase unwrapping error < 10,000 radians. In a control SBAS experiment, we formed201

interferogram subsets with various temporal baseline thresholds (e.g., 12, 48, 360, and202

1000 days). For example, a 48-day interferogram subset contains all interferograms with203

<= 48-day temporal baselines. For each small baseline subset, we unwrapped InSAR phase204

measurements using SNAPHU and solved for the cumulative LOS deformation over the205

study period based on the same linear deformation (constant velocity) model.206

For the Texas case, we followed a similar processing strategy and processed 123 C-207

band Sentinel-1 images (path 107, frame 92). Using the new workflow, we generated all208
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7503 interferogram pairs without any spatial or temporal thresholds and improved In-209

SAR phase quality through a PS-interpolation. We solved for the cumulative LOS de-210

formation over the study period based on a linear deformation model using a subset of211

interferograms with the total phase unwrapping error < 100,000 radians. In a control212

SBAS experiment, we chose temporal baseline thresholds of 12, 24, 48, 96, and 180 days213

to form small baseline interferogram subsets. For each small baseline subset, we unwrapped214

InSAR phase measurements and solved for the cumulative LOS deformation over the study215

period based on the same linear deformation model.216

There are 25 permanent GPS stations with continuous records between 2017 and217

2021 over the Tulare Basin (Fig. S1, left). Because InSAR techniques only measure rel-218

ative deformation with respect to a reference pixel, we chose the GPS station P544 as219

the reference point to calibrate and used the remaining 24 GPS stations as controls to220

validate InSAR results. We projected the GPS daily East, North, and Up (ENU) time221

series (independently processed by the Nevada Geodetic Laboratory) to the radar LOS222

direction and estimated the average surface deformation rate in mm/year from both GPS223

and InSAR observations. We used the InSAR and GPS rate misfit, ∆v to quantify the224

uncertainty in InSAR surface deformation solutions derived from different subsets. Sim-225

ilarly, we chose the GPS station TXFL as the reference point for the Texas case and used226

the remaining 5 stations as independent controls to validate InSAR results (Fig. S1, right).227

4 Results and Discussion228

4.1 The relationship between phase quality and temporal baselines229

The Tulare Basin and Eagle Ford sites are covered with dense vegetation and the230

vegetation growth between radar acquisitions causes severe decorrelation, which appears231

random in space (e.g., Fig. 2 columns a and c). The InSAR phase measurement at a severely232

decorrelated radar pixel can be considered a random wrapped phase value between 0 and233

2π, and no longer contains spatially coherent phase information such as surface defor-234

mation signals or tropospheric noise. Unwrapping interferograms with severe decorre-235

lation artifacts is time-consuming and unreliable, and often introduces large phase un-236

wrapping errors that dominate in the final InSAR time series solutions. We emphasize237

that not all radar pixels decorrelate at the same rate. For example, roads, buildings, and238

rock outcrops can remain coherent over a much longer period of time than agricultural239

field pixels. Therefore, we identified phase measurements at relatively stable PS pixels240

and interpolated between PS pixels to improve InSAR spatial phase coherence (e.g., Fig.241

2 columns b and d) and reduced unwrapping time (Table S1).242

An important finding of this study is that temporal baseline is not always a robust243

measure for selecting the interferogram subset (Fig. 2). For the Texas case, some recon-244

structed interferograms with longer temporal baselines (e.g., over 400 days) contain smaller245

phase unwrapping errors than those with shorter temporal baselines (e.g., 60 days). We246

found that interferograms formed from winter SAR scenes often have better phase co-247

herence than interferograms formed from summer SAR scenes. This is because after de-248

ciduous trees lose their leaves in the fall, radar signals reflected from tree trunks can main-249

tain coherence over a long period of time. Furthermore, some radar images contain large250

tropospheric noise anomalies due to heat waves or tropical storms (Staniewicz et al., 2020).251

Interferograms formed using these radar images tend to suffer from severe decorrelation252

noise regardless of temporal baselines. In summary, we identified a total of 2360 (out of253

7503) interferograms with phase unwrapping errors < 100,000 radians for the Texas case.254

Among these interferograms, there are 865 that span >200 days and 188 interferograms255

that span >1 year. For the California case, we identified a total of 527 (out of 6389) in-256

terferograms with phase unwrapping errors < 10,000 radians. Among those interfero-257

grams, 127 interferograms span >60 days and 7 span >90 days. We imposed a smaller258

total phase unwrapping error threshold for the California case because: (1) while dense259
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vegetation is only present over a portion of the Tulare Basin site covered with agricul-260

tural fields, it is present over the entire Eagle Ford site (Fig. S1). Therefore, the total261

phase unwrapping error is smaller in the Tulare Basin interferograms than in the Eagle262

Ford interferograms when similar decorrelation artifacts occur; and (2) the expected sub-263

sidence trend is much larger at the Tulare Basin site than the Eagle Ford site. Fewer in-264

terferograms are required to reduce tropospheric noise in order to reconstruct a larger265

deformation signal. In addition, interferograms with large deformation signals (e.g. Tu-266

lare Basin interferograms with long temporal baselines) may be prone to aliasing because267

the density of high-quality InSAR pixels is too low to capture the rapidly changing In-268

SAR fringes (Pepin & Zebker, 2024).269

4.2 The Tulare Basin results270

The Tulare Basin LOS deformation estimates derived from a subset of interfero-271

grams with small phase unwrapping errors show up to 150 mm/yr LOS deformation (Fig.272

3a) with a mean absolute error (MAE) of 3.4 mm/yr and a maximum absolute error of273

9.1 mm/yr based on independent GPS validation (Fig. 3g and Table S2). The observed274

deformation pattern is geographically consistent with recent InSAR studies (e.g., Farr,275

2018; Murray & Lohman, 2018; Ojha et al., 2019; Neely et al., 2021; Kang & Knight, 2023).276

For example, Neely et al. (2021) analyzed 263 Sentinel-1 interferograms (with tempo-277

ral baselines < 100 days) and observed up to ∼ 270 mm/yr subsidence between April278

2015 and October 2017. The average velocity residual was 2.9 mm/yr based on indepen-279

dent GPS validation. They found that the subsidence rate changes throughout the year280

in response to water demand. Up to 345 mm/yr vertical subsidence (with an average ve-281

locity residual of 6.4 mm/yr) was observed during the dry period of October 2015 - Septem-282

ber 2016, while up to 177 mm/yr vertical subsidence (with an average velocity residual283

of 11.1 mm/yr) was observed during the wet period of October 2016 - September 2017.284

Ojha et al. (2019) and Kang and Knight (2023) reported similar error residuals but dif-285

ferent rate magnitudes, likely due to differences in the study period and InSAR process-286

ing methodologies.287

To further illustrate how the InSAR processing strategy may influence SBAS so-288

lutions, Fig. 3b-f shows the LOS surface deformation rate estimates derived from dif-289

ferent small baseline subsets. The deformation solution derived from the 12-day inter-290

ferogram subset (denoted as ”SBAS-12’) shows an MAE of 13.9 mm/yr and a maximum291

absolute error of 29.2 mm/yr (Fig. 3g and Table S2). Given that we observed minimal292

decorrelation artifacts (thus minimal phase unwrapping errors) in 12-day interferograms,293

the errors in the SBAS-12 solution are primarily due to tropospheric noise. The SBAS-294

48 solution shows an MAE of 3.7 mm/yr and a maximum absolute error of 9.7 mm/yr,295

which is comparable to the deformation solution derived from the interferogram subset296

with small phase unwrapping errors. We again observed minimal decorrelation artifacts297

in the SBAS-48 interferogram subset, and tropospheric noise is the primary error source.298

In this case, interferograms with longer temporal baselines contain larger secular defor-299

mation signals than interferograms with shorter temporal baselines, while the tropospheric300

noise level among these interferograms is similar. As a result, the inclusion of interfer-301

ograms with longer temporal baselines can better reduce the residual tropospheric noise302

level in the SBAS deformation rate estimates (Supporting Information S1). However, the303

deformation solutions derived from a subset of interferograms with temporal baselines304

up to 180, 360, and 1000 days have an increasing MAE of 4.3, 5.2, and 11.5 mm/yr. This305

is because decorrelation artifacts are observed in interferograms with temporal baselines306

∼ 2 months and longer. As the temporal baseline threshold increases, more decorrelated307

InSAR phase observations are used in the SBAS inversion. In particular, most of the in-308

terferograms in the SBAS-1000 subset are completely decorrelated over the agricultural309

fields. As a result, fitting a linear deformation model to decorrelated InSAR observations310

may yield a near-zero deformation rate estimate when the number of decorrelated ob-311

servations is sufficiently large. A systematic underestimation (up to 55.2 mm/yr) was312
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observed in the SBAS-1000 solution at all GPS stations where a non-trivial deformation313

signal is present (Fig. 3g and Table S2). We emphasize it is important to evaluate the314

accuracy of InSAR deformation estimates at GPS stations where non-trivial deforma-315

tion is present. Because a large number of random decorrelated InSAR observations may316

yield near-zero deformation rate estimates, they often appear to be ”consistent” with GPS317

observations at relatively stable locations. However, this does not mean decorrelated In-318

SAR measurements contain any information about the true deformation signals, and they319

should be excluded in the SBAS inversion.320

4.3 The Eagle Ford region results321

The Eagle Ford LOS deformation estimates derived from a subset of interferograms322

with small phase unwrapping error reveals a ∼900 km2 region of up to 11 cm of cumu-323

lative LOS deformation between February 2017 and December 2021 (Fig. 4a). The MAE324

at 5 GPS permanent stations is 2.7 mm/year and a maximum absolute error is 4.8 mm/year325

at TXCU (Fig. 4a and Table S3). The observed subsidence signal (Fig. 4a) aligns well326

with oil and gas production wells (The Railroad Commission of Texas, 2023). This re-327

gion experienced a ramp-up in oil and gas production around 2010. Approximately 20-328

25 million barrels of oil (bbl) and 100-120 million one thousand cubic feet (mcf) of gas329

were produced every month since 2014 (The Railroad Commission of Texas, 2023). Sim-330

ilarly, comparable volumes of subsurface water are co-produced with oil and gas. Ap-331

proximately 1246 million bbl of water from unconventional wells was produced from 2009-332

2016 in the Eagle Ford with 337, 291, and 206 million bbl of produced water each year333

for 2014, 2015, and 2016 respectively (Scanlon et al., 2019). Here, it is likely that the334

production of water, oil, and gas all contribute to the observed land subsidence (Fig. S2).335

In contrast, the LOS surface deformation rate estimates derived from different small336

baseline subsets failed to detect this large deformation signal (Fig. 4b-f). The SBAS so-337

lution derived from the 12-day interferogram subset (Fig. 4b) has an MAE of 5.5 mm/yr338

and a maximum absolute error of 16 mm/yr. Given that we observed minimal decorre-339

lation artifacts in the 12-day interferograms (e.g., Fig. S3a and g), the residuals are mostly340

due to tropospheric noise. We note that there are only five GPS validation stations over341

the Eagle Ford region. As a result, the GPS-InSAR misfit only represents the InSAR mea-342

surement accuracy at these five locations (Table S3), and InSAR noise residuals can be343

much larger over regions with visible tropospheric noise artifacts. Because the study site344

is densely vegetated, we observed decorrelation artifacts and associated phase unwrap-345

ping errors even in some 24-day interferograms (Fig. S3h). As a result, both tropospheric346

noise and decorrelation artifacts are present in the SBAS-24 solution, and decorrelation-347

related artifacts dominate in the SBAS-48, SBAS-96, and SBAS-180 solutions. While348

unwrapping errors often lead to a systematic underestimation of the true deformation349

rate (e.g., in the Tulare Basin case Fig. 3f), decorrelation signatures can sometimes be350

unpredictable. In the Eagle Ford case, very large phase unwrapping errors are present351

in a subset of interferograms, which produced unrealistic artifacts in the SBAS-48, SBAS-352

96, and SBAS-180 solutions. We emphasize that it is important to employ a phase re-353

construction technique to enhance phase quality prior to the surface deformation anal-354

ysis over densely vegetated areas such as the Eagle Ford region. However, some long tem-355

poral baseline interferograms are reconstructed successfully, while some short temporal356

baseline interferograms fail to be reconstructed (Fig. 2). Therefore, selecting interfer-357

ograms based on an unwrapping error threshold is more robust than a temporal base-358

line threshold over regions with large tropospheric noise and severe decorrelation arti-359

facts.360

While there are numerous InSAR surface deformation studies over the less vege-361

tated Permian Basin in West Texas (Kim & Lu, 2018; Staniewicz et al., 2020; Zhai et362

al., 2021; Hennings et al., 2021; Pepin et al., 2022), our study is the first that observes363

a large subsidence feature with spatially dense information over the Eagle Ford region364
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in Central Texas. Surface deformation can be used to derive subsurface stress and pore365

pressure changes related to oil and gas injection and extraction (e.g., Yang et al., 2015;366

Vasco et al., 2016; Shirzaei et al., 2019; Deng et al., 2020). These changes in the sub-367

surface can eventually result in fault slip and trigger earthquakes (Segall, 1989). For ex-368

ample, Frohlich and Brunt (2013) reported 62 earthquakes in the Eagle Ford region from369

2009-2011, highlighted by a Mw 4.8 earthquake in October 2011 in Fashing, TX. They370

found that most of the seismicity followed fluid extraction, not injection. Recently, the371

Eagle Ford region has experienced a noticeable increase in seismic activity, and there were372

165, 341, 336, 349 earthquakes recorded in 2017-2018, 2019-2020, 2021-2022, 2023-March373

13, 2024, respectively (Fig. 4a) (TexNet, 2024). In particular, two earthquakes (ML 4.3374

and ML 4.7) occurred on February 17, 2024 near Falls City, which were felt by many San375

Antonio and Austin residents. The increase in magnitude and frequency of these large376

seismic events requires further scientific investigation, and InSAR data can play an im-377

portant role in these future induced seismicity studies.378

5 Conclusion379

In this study, we found that selecting an interferogram subset based on phase qual-380

ity rather than temporal baseline leads to better mitigation of decorrelation and tropo-381

spheric noise. In the Tulare Basin case, our InSAR processing strategy generated a de-382

formation solution comparable to the SBAS solution when the optimal temporal base-383

line threshold was employed. In the Eagle Ford case, our processing strategy revealed384

a large subsidence signature associated with oil and gas operations that is otherwise un-385

detectable due to the presence of large tropospheric noise and severe decorrelation ar-386

tifacts. Our workflow is easy to implement, which can extend the use of the SBAS al-387

gorithm over humid and densely vegetated terrain that is challenging for InSAR stud-388

ies.389

6 Open Research390

Sentinel-1 SAR imagery over the Tulare Basin, CA (path 137, frame 114) and Ea-391

gle Ford region, TX (path 107, frame 92) can be queried and downloaded from the Alaska392

Satellite Facility at https://search.asf.alaska.edu. Interferograms with comparable qual-393

ity can be produced using InSAR processing packages such as the InSAR Scientific Com-394

puting Environment 3 (ISCE3) (Rosen et al., 2018), GMTSAR (Sandwell et al., 2011),395

or GAMMA (Wegmüller et al., 2016). GPS data were processed by the Nevada Geode-396

tic Laboratory and downloaded at http://geodesy.unr.edu/NGLStationPages/GlobalStationList397

(Blewitt et al., 2018). A list of available GPS stations over the Tulare Basin and the Ea-398

gle Ford region can be found in the Supporting Information.399
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Time series analysis

Define the temporal and spatial 
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Enhance phase coherence if severe 
decorrelation is present

Choose a subset of interferograms 
with minimal unwrapping errors

Figure 1. (Left) SBAS InSAR time series analysis workflow. (Right) The new workflow that

first mitigates decorrelation noise through InSAR phase reconstruction, then selects the an inter-

ferogram subset based on the quality of InSAR phase measurements for time series analysis.
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Figure 2. Examples of original interferograms (columns a and c) and reconstructed interfer-

ograms (columns b and d) over the Eagle Ford region with varying temporal baselines. Columns

a and b use summer Sentinel-1 acquisitions, while columns c and d use Sentinel-1 winter acqui-

sitions. The reconstructed interferograms marked in green were included in the final subset for

time series analysis, and the interferograms marked in red were discarded due to relatively large

phase unwrapping errors.
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Figure 3. Cumulative line-of-sight (LOS) deformation over the Tulare Basin from 2017-2021

as derived from: (a) a subset of phase reconstructed interferograms with small phase unwrapping

errors; and (b-f) a subset of original interferograms with temporal baseline thresholds of 12, 48,

180, 360, and 1000 days. The mean absolute error (MAE) difference of the linear rate estimate

(mm/yr) between 24 InSAR and GPS stations over the time period is marked on each deforma-

tion solution. Subsidence causes positive LOS deformation (red). (g) Scatter plots of co-located

GPS and InSAR LOS deformation rate estimates (mm/yr) derived from different interferogram

subsets.
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Figure 4. Cumulative line-of-sight (LOS) deformation over the Eagle Frod region between

February 2017-December 2021 as derived from: (a) a subset of phase reconstructed interfero-

grams with small phase unwrapping errors. Subsidence leads to positive LOS deformation. The

locations and magnitudes of earthquakes since 2017 (circles), mapped faults are from McKeighan

et al. (2022), and GPS stations (triangles). A cluster of recent earthquakes (ML>4.0) occurred

near Falls City; and (b-f) original decorrelated interferograms with temporal baseline thresholds

of 12, 24, 48, 96, and 180 days.
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Abstract15

The accuracy of surface deformation derived from Interferometric Synthetic Aperture16

Radar (InSAR) observations depends on the quality of the chosen interferogram subset.17

We present a method to select interferogram subsets based on unwrapping errors rather18

than temporal baseline thresholds. Using Sentinel-1 interferograms over the Tulare Basin19

(CA), we show that tropospheric noise dominates short temporal baseline subset solu-20

tions (with up to 2.9 cm/yr residuals at co-located GPS sites), while decorrelation leads21

to a systematic underestimation of true deformation rate in long temporal baseline sub-22

set solutions (with up to 5.5 cm/yr residuals). Our new workflow better mitigates these23

two noise sources at the same time. In the Eagle Ford (TX) region, our strategy revealed24

up to ∼11 cm of cumulative line-of-sight (LOS) deformation over a ∼900 km2 region.25

This deformation feature is associated with ongoing oil and gas activities and is reported26

for the first time here.27

Plain Language Summary28

Deformation estimates are often impacted by noise related to weather conditions29

and surface vegetation changes. It is common to select an interferogram subset based30

on a temporal baseline threshold. However, InSAR phase quality may be influenced by31

other factors such as the weather conditions and surface vegetation rather than tempo-32

ral baselines. We designed an InSAR processing strategy and applied it to two vegetated33

regions that experience land subsidence due to agriculture groundwater pumping or oil34

and gas production. In the Tulare Basin, we showed that deformation estimates are im-35

pacted by weather and vegetation related noise and can vary substantially depending36

on which interferograms are chosen. With our strategy, we better mitigate both noise37

sources at the same time. In the Eagle Ford region, our workflow revealed up to ∼11 cm38

of surface deformation over a ∼900 km2 area for the first time. This is an oil and gas39

producing region where production activities have led to an increase in seismicity. Based40

on these findings, accurate surface deformation derived from InSAR data is now achiev-41

able in densely vegetated regions and can play an important role in future induced seis-42

micity studies.43

1 Introduction44

Interferometric Synthetic Aperture Radar (InSAR) is an imaging radar technique45

for measuring surface deformation associated with geophysical processes including, but46

not limited to, tectonics (e.g., Fialko et al., 2002; Wright et al., 2004; Shirzaei & Bürgmann,47

2013; Fielding et al., 2017; Xu et al., 2021), volcanism (e.g., Jónsson et al., 2000; Pritchard48

& Simons, 2002; Hooper et al., 2004; Lundgren et al., 2013), and groundwater hydrol-49

ogy (e.g., Amelung et al., 1999; Hoffmann et al., 2001; Schmidt & Burgmann, 2003; Bell50

et al., 2008; Chaussard et al., 2014). Achieving millimeter-to-centimeter level accuracy51

required by many of these studies, however, is challenging due to effects such as decor-52

relation and atmospheric artifacts. Physical changes in the surface properties between53

two radar image acquisitions (e.g., vegetation growth and surface disturbance) lead to54

phase decorrelation (H. A. Zebker & Villasenor, 1992). Phase measurements at completely55

decorrelated radar pixels do not contain spatially coherent phase information. Conversely,56

changes in temperature, pressure, and humidity (Bevis et al., 1992) often appear as spa-57

tially coherent tropospheric noise, similar to surface deformation signals. While weather58

models and topography data can be used to estimate and remove the stratified tropo-59

spheric noise component (e.g., Doin et al., 2009; Wadge et al., 2002; Jolivet et al., 2011;60

Li et al., 2009; Bekaert et al., 2015a, 2015b), these approaches often fail to capture the61

turbulent noise component that is approximately random at time scales greater than a62

day (Emardson et al., 2003). In many InSAR studies, decorrelation and tropospheric tur-63

bulence noise are the two major factors that limit InSAR measurement accuracy.64
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To mitigate tropospheric and decorrelation noise, Berardino et al. (2002) developed65

the Small BAseline Subset (SBAS) method to derive surface deformation solutions from66

a stack of interferograms. The algorithm assumes that interferograms with large tem-67

poral baselines (the time between two radar acquisitions used to form the interferogram)68

often suffer from more severe decorrelation artifacts. Therefore, the use of a temporal69

baseline threshold in the subset selection can reduce the number of decorrelated phase70

measurements used in surface deformation analysis. A problem arises in areas with dense71

vegetation where phase decorrelation occurs even in short baseline interferograms (e.g.,72

48 or 60 days), which limits the interferogram subset size and ability to reduce other noise73

terms. To better mitigate decorrelation noise, Persistent Scatterer (PS) algorithms were74

developed to select pixels that suffer from minimal decorrelation artifacts (e.g., roads,75

buildings, or bare rock) (e.g., Ferretti et al., 2000; Hooper et al., 2004; Agram, 2010; Huang76

& Zebker, 2022; Wang & Chen, 2022). In areas with severe decorrelation, only phase mea-77

surements at PS pixels are suitable for surface deformation analysis. To further advance78

the capability of PS interferometry, Ferretti et al. (2011) jointly analyzed nearby pix-79

els (Distributed Scatterers) with homogeneous amplitude distributions (referred to as80

statistically homogeneous pixels or SHP). The InSAR phase observations from each SHP81

group are averaged to improve the signal-to-noise-ratio (SNR) and a covariance matrix82

model (Guarnieri & Tebaldini, 2008) is employed to filter phase measurements for sur-83

face deformation analysis.84

While different selection criteria are adopted in existing PS/DS algorithms, they85

often require InSAR phase measurements to remain stable at the identified PS/DS over86

the entire InSAR observation period. However, even at relatively stable PS/DS pixels,87

phase measurements are often decorrelated in a portion of the interferograms. It is com-88

mon to assume interferograms with longer temporal baselines tend to decorrelate more89

than interferograms with shorter temporal baselines. However, other factors (e.g., weather90

and surface conditions) may cause decorrelation as well. Based on these observations,91

we design a processing strategy that selects an interferogram subset for surface defor-92

mation analysis based on decorrelation and the associated phase unwrapping errors, re-93

gardless of interferogram temporal baselines. This new workflow allows us to enhance94

phase coherence and reduce decorrelation noise through an optional step that integrates95

recent phase reconstruction algorithms (e.g., Guarnieri & Tebaldini, 2008; Fornaro et al.,96

2015; Ansari et al., 2018). This InSAR processing strategy is computationally efficient97

and easy to implement, and can be incorporated into existing workflows to extend the98

use of the Small BAseline Subset approaches over densely vegetated areas.99

2 Methodology100

Interferometric Synthetic Aperture Radar (InSAR) techniques compute the phase101

difference between two SAR images over the same area of interest. After removing the102

phase component related to surface topography, the observed InSAR phase at a pixel103

of interest, ∆ϕ, can be written as (Hanssen, 2001):104

∆ϕ =
4π

λ
∆dLOS +∆ϕorb +∆ϕdecor +∆ϕunwrap +∆ϕdem +∆ϕiono +∆ϕtropo +∆ϕn (1)

where λ is the radar wavelength and ∆dLOS is the surface deformation between105

two SAR acquisition dates along the radar line-of-sight (LOS) direction. The remain-106

ing phase terms on the right are InSAR measurement noise due to orbital errors, phase107

decorrelation and associated unwrapping errors, digital elevation model (DEM) errors,108

ionospheric and tropospheric artifacts, and other smaller residual noise terms such as ther-109

mal or soil moisture effects. Among these noise terms, orbital errors, DEM errors, and110

ionospheric delays can be corrected during the interferogram formation (e.g., Fattahi &111

Amelung, 2013; Fattahi et al., 2017). Additionally, stratified tropospheric noise can be112
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estimated and removed using a combination of global or local atmospheric weather mod-113

els along with zenith tropospheric delay measurements at GNSS sites (e.g., the GACOS114

correction as described in Yu et al. (2017)). Therefore, our algorithm design focuses on115

the reduction of decorrelation and the associated phase unwrapping errors (H. A. Zebker116

& Villasenor, 1992) as well as tropospheric turbulence noise errors (e.g., H. A. Zebker117

et al., 1997; Emardson et al., 2003).118

Given N high-quality interferograms derived from M SAR acquisitions, Berardino
et al. (2002) proposed a method to solve for the surface deformation time series at a pixel
of interest as:

Bv = ∆Φ (2)

where v = [v1, ..., vM−1]
T is the vector of unknown mean velocities between each con-119

secutive SAR acquisition, and ∆Φ = [∆ϕ1, ...,∆ϕN ]T is a N×1 vector of observed In-120

SAR phases at the given pixel. B is the N×(M−1) system matrix as defined in (Berardino121

et al., 2002), and we can solve for v as an inverse problem of Equation (2).122

Berardino et al. (2002) named this InSAR time series analysis algorithm the Small123

BAseline Subset (SBAS) method because a subset of N high-quality InSAR observations124

is chosen for the time series inversion based on user-defined temporal and spatial base-125

line thresholds (Fig. 1, left). The algorithm was designed based on the fact that inter-126

ferograms with large temporal or spatial baselines are more likely to suffer from more127

severe decorrelation noise. Thus, selecting a subset of interferograms with small base-128

lines allows users to limit the total number of decorrelated phase measurements in the129

InSAR phase vector Φ in Equation (2). By contrast, tropospheric turbulence noise is not130

correlated with temporal or spatial baselines (e.g., Tymofyeyeva & Fialko, 2015; M. S. Ze-131

bker et al., 2023). Because tropospheric turbulence noise can be considered spatially co-132

herent (similar to deformation signals) but random in time between SAR acquisitions133

(Emardson et al., 2003), it is desirable to include a large number of interferograms ac-134

quired on different dates (especially those with long temporal baselines and thus larger135

secular deformation signals) as input data for the SBAS inversion (Supporting Informa-136

tion S1).137

One limitation of the SBAS approach is that the InSAR decorrelation noise level138

cannot be measured using temporal and spatial baseline alone. In areas with dense veg-139

etation, a short temporal baseline threshold (e.g., 48 or 60 days) is often imposed to limit140

temporal decorrelation noise due to vegetation growth in the interferogram subset. How-141

ever, this leads to a substantial reduction in the total number of phase observations used142

in time series inversion, which limits our ability to mitigate tropospheric noise (e.g., H. A. Ze-143

bker et al., 1997; Zheng et al., 2021) and closure phase biases (e.g., Ansari et al., 2021;144

Zheng et al., 2022). A small portion of interferograms with longer temporal baselines (e.g.,145

a year) often maintain good phase coherence at certain stable pixels such as roads, man-146

made structures, and barren terrain. These phase observations can improve the accu-147

racy of the SBAS surface deformation estimates. Based on these facts, our new work-148

flow is designed to choose the interferogram subset based on the phase quality of the in-149

terferogram, rather than temporal and spatial baseline thresholds (Fig. 1, right). To do150

this, we first form all possible interferogram pairs. If severe decorrelation noise is present,151

we enhance InSAR phase quality through phase reconstruction methods such as coherence-152

based filtering (e.g., Guarnieri & Tebaldini, 2008; Ferretti et al., 2011; Fornaro et al., 2015;153

Mirzaee et al., 2023) or an interpolation between phase observations at stable PS pix-154

els (e.g., Ferretti et al., 2000; Hooper et al., 2004; Agram, 2010). This increases the to-155

tal number of interferograms suitable for the time series analysis. The reconstructed in-156

terferograms are then unwrapped. Finally, we compute the amount of unwrapping er-157

rors for each interferogram and choose a subset of interferograms with small total phase158

unwrapping errors as input for the time series inversion. For each unwrapped interfer-159

ogram, we define the phase unwrapping error at a pixel m as:160
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ϕerr
m =

4∑
k

∆ϕmn, if ∆ϕmn > π (3)

where ∆ϕmn is the unwrapped phase difference between pixel m and n in an interfer-161

ogram, and pixel n is one of four adjacent pixels to center pixel m. If ∆ϕmn < π, the162

unwrapping error contribution is 0, as defined in C. Chen and Zebker (2001). We com-163

pute the total phase unwrapping error of an interferogram as the sum of the phase un-164

wrapping error over all radar pixels (Wang & Chen, 2022).165

3 Test Sites and Data Processing166

Our first study site is the Tulare Basin in the southern portion of the Central Val-167

ley, California (Fig. S1, left), a large agricultural region that has relied on groundwa-168

ter since the early 1920s (Poland, 1975). The groundwater demand in combination with169

extended droughts throughout California has led to aquifer sediment compaction and170

subsequent land subsidence (e.g., Galloway et al., 1999; Faunt et al., 2016). As a result,171

InSAR techniques have been used to monitor pumping-induced land subsidence and es-172

timate permanent groundwater loss in the region (e.g., Farr & Liu, 2015; Smith et al.,173

2017; Ojha et al., 2018; Neely et al., 2021). Our second study site is in Central Texas174

and contains a portion of the Eagle Ford Shale, southeast of the San Antonio-Austin metro-175

plex (Fig. S1, right). The Eagle Ford Shale is a large oil-producing region. The recent176

ramp-up in shale fracking activities led to increased reliance on groundwater resources177

from the Carrizo-Wilcox aquifer that overlays the Eagle Ford Shale (Scanlon et al., 2020).178

This combination of groundwater withdrawal and oil and gas production can produce179

complex deformation signals. The growth of vegetation at both of these sites can lead180

to severe decorrelation in interferograms with relatively short temporal baselines (e.g.,181

∼ 2 months), a challenging scenario for InSAR time series analysis. Furthermore, be-182

cause both sites are located in the mid-latitude and are relatively flat regions, DEM and183

ionospheric noise terms are not substantial. Given that the primary noise terms are tro-184

pospheric turbulence noise and decorrelation, we chose these two sites to demonstrate185

the advantages of our time series analysis workflow.186

For the California case, we processed 122 C-Band Sentinel-1 SAR images (path 137,187

frame 114) acquired between 2017 and 2021 using a geocoded single-look-complex (SLC)188

algorithm (e.g., H. A. Zebker, 2017; Zheng & Zebker, 2017). Because Sentinel-1 satel-189

lites have precise orbit controls, the spatial baselines of all interferogram pairs are much190

smaller than the InSAR critical baseline (Rosen et al., 2000). As a result, we did not ob-191

serve any noticeable spatial decorrelation artifacts, and our analysis is mainly focused192

on the mitigation of temporal decorrelation noise. Following the new workflow, we gen-193

erated all 6498 interferogram pairs without any spatial or temporal thresholds. To en-194

hance the spatial coherence of InSAR phase measurements, we selected PS pixels based195

on the cosine similarity method (Wang & Chen, 2022), performed a phase interpolation196

among PS pixels (J. Chen et al., 2015), and unwrapped InSAR phase measurements us-197

ing the Statistical-Cost, Network-flow Algorithm for Phase Unwrapping (SNAPHU) (C. Chen198

& Zebker, 2001) algorithm. We solved for the long-term deformation trend over the study199

period based on a linear deformation (constant velocity) model from interferograms with200

the phase unwrapping error < 10,000 radians. In a control SBAS experiment, we formed201

interferogram subsets with various temporal baseline thresholds (e.g., 12, 48, 360, and202

1000 days). For example, a 48-day interferogram subset contains all interferograms with203

<= 48-day temporal baselines. For each small baseline subset, we unwrapped InSAR phase204

measurements using SNAPHU and solved for the cumulative LOS deformation over the205

study period based on the same linear deformation (constant velocity) model.206

For the Texas case, we followed a similar processing strategy and processed 123 C-207

band Sentinel-1 images (path 107, frame 92). Using the new workflow, we generated all208
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7503 interferogram pairs without any spatial or temporal thresholds and improved In-209

SAR phase quality through a PS-interpolation. We solved for the cumulative LOS de-210

formation over the study period based on a linear deformation model using a subset of211

interferograms with the total phase unwrapping error < 100,000 radians. In a control212

SBAS experiment, we chose temporal baseline thresholds of 12, 24, 48, 96, and 180 days213

to form small baseline interferogram subsets. For each small baseline subset, we unwrapped214

InSAR phase measurements and solved for the cumulative LOS deformation over the study215

period based on the same linear deformation model.216

There are 25 permanent GPS stations with continuous records between 2017 and217

2021 over the Tulare Basin (Fig. S1, left). Because InSAR techniques only measure rel-218

ative deformation with respect to a reference pixel, we chose the GPS station P544 as219

the reference point to calibrate and used the remaining 24 GPS stations as controls to220

validate InSAR results. We projected the GPS daily East, North, and Up (ENU) time221

series (independently processed by the Nevada Geodetic Laboratory) to the radar LOS222

direction and estimated the average surface deformation rate in mm/year from both GPS223

and InSAR observations. We used the InSAR and GPS rate misfit, ∆v to quantify the224

uncertainty in InSAR surface deformation solutions derived from different subsets. Sim-225

ilarly, we chose the GPS station TXFL as the reference point for the Texas case and used226

the remaining 5 stations as independent controls to validate InSAR results (Fig. S1, right).227

4 Results and Discussion228

4.1 The relationship between phase quality and temporal baselines229

The Tulare Basin and Eagle Ford sites are covered with dense vegetation and the230

vegetation growth between radar acquisitions causes severe decorrelation, which appears231

random in space (e.g., Fig. 2 columns a and c). The InSAR phase measurement at a severely232

decorrelated radar pixel can be considered a random wrapped phase value between 0 and233

2π, and no longer contains spatially coherent phase information such as surface defor-234

mation signals or tropospheric noise. Unwrapping interferograms with severe decorre-235

lation artifacts is time-consuming and unreliable, and often introduces large phase un-236

wrapping errors that dominate in the final InSAR time series solutions. We emphasize237

that not all radar pixels decorrelate at the same rate. For example, roads, buildings, and238

rock outcrops can remain coherent over a much longer period of time than agricultural239

field pixels. Therefore, we identified phase measurements at relatively stable PS pixels240

and interpolated between PS pixels to improve InSAR spatial phase coherence (e.g., Fig.241

2 columns b and d) and reduced unwrapping time (Table S1).242

An important finding of this study is that temporal baseline is not always a robust243

measure for selecting the interferogram subset (Fig. 2). For the Texas case, some recon-244

structed interferograms with longer temporal baselines (e.g., over 400 days) contain smaller245

phase unwrapping errors than those with shorter temporal baselines (e.g., 60 days). We246

found that interferograms formed from winter SAR scenes often have better phase co-247

herence than interferograms formed from summer SAR scenes. This is because after de-248

ciduous trees lose their leaves in the fall, radar signals reflected from tree trunks can main-249

tain coherence over a long period of time. Furthermore, some radar images contain large250

tropospheric noise anomalies due to heat waves or tropical storms (Staniewicz et al., 2020).251

Interferograms formed using these radar images tend to suffer from severe decorrelation252

noise regardless of temporal baselines. In summary, we identified a total of 2360 (out of253

7503) interferograms with phase unwrapping errors < 100,000 radians for the Texas case.254

Among these interferograms, there are 865 that span >200 days and 188 interferograms255

that span >1 year. For the California case, we identified a total of 527 (out of 6389) in-256

terferograms with phase unwrapping errors < 10,000 radians. Among those interfero-257

grams, 127 interferograms span >60 days and 7 span >90 days. We imposed a smaller258

total phase unwrapping error threshold for the California case because: (1) while dense259
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vegetation is only present over a portion of the Tulare Basin site covered with agricul-260

tural fields, it is present over the entire Eagle Ford site (Fig. S1). Therefore, the total261

phase unwrapping error is smaller in the Tulare Basin interferograms than in the Eagle262

Ford interferograms when similar decorrelation artifacts occur; and (2) the expected sub-263

sidence trend is much larger at the Tulare Basin site than the Eagle Ford site. Fewer in-264

terferograms are required to reduce tropospheric noise in order to reconstruct a larger265

deformation signal. In addition, interferograms with large deformation signals (e.g. Tu-266

lare Basin interferograms with long temporal baselines) may be prone to aliasing because267

the density of high-quality InSAR pixels is too low to capture the rapidly changing In-268

SAR fringes (Pepin & Zebker, 2024).269

4.2 The Tulare Basin results270

The Tulare Basin LOS deformation estimates derived from a subset of interfero-271

grams with small phase unwrapping errors show up to 150 mm/yr LOS deformation (Fig.272

3a) with a mean absolute error (MAE) of 3.4 mm/yr and a maximum absolute error of273

9.1 mm/yr based on independent GPS validation (Fig. 3g and Table S2). The observed274

deformation pattern is geographically consistent with recent InSAR studies (e.g., Farr,275

2018; Murray & Lohman, 2018; Ojha et al., 2019; Neely et al., 2021; Kang & Knight, 2023).276

For example, Neely et al. (2021) analyzed 263 Sentinel-1 interferograms (with tempo-277

ral baselines < 100 days) and observed up to ∼ 270 mm/yr subsidence between April278

2015 and October 2017. The average velocity residual was 2.9 mm/yr based on indepen-279

dent GPS validation. They found that the subsidence rate changes throughout the year280

in response to water demand. Up to 345 mm/yr vertical subsidence (with an average ve-281

locity residual of 6.4 mm/yr) was observed during the dry period of October 2015 - Septem-282

ber 2016, while up to 177 mm/yr vertical subsidence (with an average velocity residual283

of 11.1 mm/yr) was observed during the wet period of October 2016 - September 2017.284

Ojha et al. (2019) and Kang and Knight (2023) reported similar error residuals but dif-285

ferent rate magnitudes, likely due to differences in the study period and InSAR process-286

ing methodologies.287

To further illustrate how the InSAR processing strategy may influence SBAS so-288

lutions, Fig. 3b-f shows the LOS surface deformation rate estimates derived from dif-289

ferent small baseline subsets. The deformation solution derived from the 12-day inter-290

ferogram subset (denoted as ”SBAS-12’) shows an MAE of 13.9 mm/yr and a maximum291

absolute error of 29.2 mm/yr (Fig. 3g and Table S2). Given that we observed minimal292

decorrelation artifacts (thus minimal phase unwrapping errors) in 12-day interferograms,293

the errors in the SBAS-12 solution are primarily due to tropospheric noise. The SBAS-294

48 solution shows an MAE of 3.7 mm/yr and a maximum absolute error of 9.7 mm/yr,295

which is comparable to the deformation solution derived from the interferogram subset296

with small phase unwrapping errors. We again observed minimal decorrelation artifacts297

in the SBAS-48 interferogram subset, and tropospheric noise is the primary error source.298

In this case, interferograms with longer temporal baselines contain larger secular defor-299

mation signals than interferograms with shorter temporal baselines, while the tropospheric300

noise level among these interferograms is similar. As a result, the inclusion of interfer-301

ograms with longer temporal baselines can better reduce the residual tropospheric noise302

level in the SBAS deformation rate estimates (Supporting Information S1). However, the303

deformation solutions derived from a subset of interferograms with temporal baselines304

up to 180, 360, and 1000 days have an increasing MAE of 4.3, 5.2, and 11.5 mm/yr. This305

is because decorrelation artifacts are observed in interferograms with temporal baselines306

∼ 2 months and longer. As the temporal baseline threshold increases, more decorrelated307

InSAR phase observations are used in the SBAS inversion. In particular, most of the in-308

terferograms in the SBAS-1000 subset are completely decorrelated over the agricultural309

fields. As a result, fitting a linear deformation model to decorrelated InSAR observations310

may yield a near-zero deformation rate estimate when the number of decorrelated ob-311

servations is sufficiently large. A systematic underestimation (up to 55.2 mm/yr) was312
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observed in the SBAS-1000 solution at all GPS stations where a non-trivial deformation313

signal is present (Fig. 3g and Table S2). We emphasize it is important to evaluate the314

accuracy of InSAR deformation estimates at GPS stations where non-trivial deforma-315

tion is present. Because a large number of random decorrelated InSAR observations may316

yield near-zero deformation rate estimates, they often appear to be ”consistent” with GPS317

observations at relatively stable locations. However, this does not mean decorrelated In-318

SAR measurements contain any information about the true deformation signals, and they319

should be excluded in the SBAS inversion.320

4.3 The Eagle Ford region results321

The Eagle Ford LOS deformation estimates derived from a subset of interferograms322

with small phase unwrapping error reveals a ∼900 km2 region of up to 11 cm of cumu-323

lative LOS deformation between February 2017 and December 2021 (Fig. 4a). The MAE324

at 5 GPS permanent stations is 2.7 mm/year and a maximum absolute error is 4.8 mm/year325

at TXCU (Fig. 4a and Table S3). The observed subsidence signal (Fig. 4a) aligns well326

with oil and gas production wells (The Railroad Commission of Texas, 2023). This re-327

gion experienced a ramp-up in oil and gas production around 2010. Approximately 20-328

25 million barrels of oil (bbl) and 100-120 million one thousand cubic feet (mcf) of gas329

were produced every month since 2014 (The Railroad Commission of Texas, 2023). Sim-330

ilarly, comparable volumes of subsurface water are co-produced with oil and gas. Ap-331

proximately 1246 million bbl of water from unconventional wells was produced from 2009-332

2016 in the Eagle Ford with 337, 291, and 206 million bbl of produced water each year333

for 2014, 2015, and 2016 respectively (Scanlon et al., 2019). Here, it is likely that the334

production of water, oil, and gas all contribute to the observed land subsidence (Fig. S2).335

In contrast, the LOS surface deformation rate estimates derived from different small336

baseline subsets failed to detect this large deformation signal (Fig. 4b-f). The SBAS so-337

lution derived from the 12-day interferogram subset (Fig. 4b) has an MAE of 5.5 mm/yr338

and a maximum absolute error of 16 mm/yr. Given that we observed minimal decorre-339

lation artifacts in the 12-day interferograms (e.g., Fig. S3a and g), the residuals are mostly340

due to tropospheric noise. We note that there are only five GPS validation stations over341

the Eagle Ford region. As a result, the GPS-InSAR misfit only represents the InSAR mea-342

surement accuracy at these five locations (Table S3), and InSAR noise residuals can be343

much larger over regions with visible tropospheric noise artifacts. Because the study site344

is densely vegetated, we observed decorrelation artifacts and associated phase unwrap-345

ping errors even in some 24-day interferograms (Fig. S3h). As a result, both tropospheric346

noise and decorrelation artifacts are present in the SBAS-24 solution, and decorrelation-347

related artifacts dominate in the SBAS-48, SBAS-96, and SBAS-180 solutions. While348

unwrapping errors often lead to a systematic underestimation of the true deformation349

rate (e.g., in the Tulare Basin case Fig. 3f), decorrelation signatures can sometimes be350

unpredictable. In the Eagle Ford case, very large phase unwrapping errors are present351

in a subset of interferograms, which produced unrealistic artifacts in the SBAS-48, SBAS-352

96, and SBAS-180 solutions. We emphasize that it is important to employ a phase re-353

construction technique to enhance phase quality prior to the surface deformation anal-354

ysis over densely vegetated areas such as the Eagle Ford region. However, some long tem-355

poral baseline interferograms are reconstructed successfully, while some short temporal356

baseline interferograms fail to be reconstructed (Fig. 2). Therefore, selecting interfer-357

ograms based on an unwrapping error threshold is more robust than a temporal base-358

line threshold over regions with large tropospheric noise and severe decorrelation arti-359

facts.360

While there are numerous InSAR surface deformation studies over the less vege-361

tated Permian Basin in West Texas (Kim & Lu, 2018; Staniewicz et al., 2020; Zhai et362

al., 2021; Hennings et al., 2021; Pepin et al., 2022), our study is the first that observes363

a large subsidence feature with spatially dense information over the Eagle Ford region364

–8–



manuscript submitted to Geophysical Research Letters

in Central Texas. Surface deformation can be used to derive subsurface stress and pore365

pressure changes related to oil and gas injection and extraction (e.g., Yang et al., 2015;366

Vasco et al., 2016; Shirzaei et al., 2019; Deng et al., 2020). These changes in the sub-367

surface can eventually result in fault slip and trigger earthquakes (Segall, 1989). For ex-368

ample, Frohlich and Brunt (2013) reported 62 earthquakes in the Eagle Ford region from369

2009-2011, highlighted by a Mw 4.8 earthquake in October 2011 in Fashing, TX. They370

found that most of the seismicity followed fluid extraction, not injection. Recently, the371

Eagle Ford region has experienced a noticeable increase in seismic activity, and there were372

165, 341, 336, 349 earthquakes recorded in 2017-2018, 2019-2020, 2021-2022, 2023-March373

13, 2024, respectively (Fig. 4a) (TexNet, 2024). In particular, two earthquakes (ML 4.3374

and ML 4.7) occurred on February 17, 2024 near Falls City, which were felt by many San375

Antonio and Austin residents. The increase in magnitude and frequency of these large376

seismic events requires further scientific investigation, and InSAR data can play an im-377

portant role in these future induced seismicity studies.378

5 Conclusion379

In this study, we found that selecting an interferogram subset based on phase qual-380

ity rather than temporal baseline leads to better mitigation of decorrelation and tropo-381

spheric noise. In the Tulare Basin case, our InSAR processing strategy generated a de-382

formation solution comparable to the SBAS solution when the optimal temporal base-383

line threshold was employed. In the Eagle Ford case, our processing strategy revealed384

a large subsidence signature associated with oil and gas operations that is otherwise un-385

detectable due to the presence of large tropospheric noise and severe decorrelation ar-386

tifacts. Our workflow is easy to implement, which can extend the use of the SBAS al-387

gorithm over humid and densely vegetated terrain that is challenging for InSAR stud-388

ies.389

6 Open Research390

Sentinel-1 SAR imagery over the Tulare Basin, CA (path 137, frame 114) and Ea-391

gle Ford region, TX (path 107, frame 92) can be queried and downloaded from the Alaska392

Satellite Facility at https://search.asf.alaska.edu. Interferograms with comparable qual-393

ity can be produced using InSAR processing packages such as the InSAR Scientific Com-394

puting Environment 3 (ISCE3) (Rosen et al., 2018), GMTSAR (Sandwell et al., 2011),395

or GAMMA (Wegmüller et al., 2016). GPS data were processed by the Nevada Geode-396

tic Laboratory and downloaded at http://geodesy.unr.edu/NGLStationPages/GlobalStationList397

(Blewitt et al., 2018). A list of available GPS stations over the Tulare Basin and the Ea-398

gle Ford region can be found in the Supporting Information.399
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Figure 1. (Left) SBAS InSAR time series analysis workflow. (Right) The new workflow that

first mitigates decorrelation noise through InSAR phase reconstruction, then selects the an inter-

ferogram subset based on the quality of InSAR phase measurements for time series analysis.
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Figure 2. Examples of original interferograms (columns a and c) and reconstructed interfer-

ograms (columns b and d) over the Eagle Ford region with varying temporal baselines. Columns

a and b use summer Sentinel-1 acquisitions, while columns c and d use Sentinel-1 winter acqui-

sitions. The reconstructed interferograms marked in green were included in the final subset for

time series analysis, and the interferograms marked in red were discarded due to relatively large

phase unwrapping errors.
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Figure 3. Cumulative line-of-sight (LOS) deformation over the Tulare Basin from 2017-2021

as derived from: (a) a subset of phase reconstructed interferograms with small phase unwrapping

errors; and (b-f) a subset of original interferograms with temporal baseline thresholds of 12, 48,

180, 360, and 1000 days. The mean absolute error (MAE) difference of the linear rate estimate

(mm/yr) between 24 InSAR and GPS stations over the time period is marked on each deforma-

tion solution. Subsidence causes positive LOS deformation (red). (g) Scatter plots of co-located

GPS and InSAR LOS deformation rate estimates (mm/yr) derived from different interferogram

subsets.
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Figure 4. Cumulative line-of-sight (LOS) deformation over the Eagle Frod region between

February 2017-December 2021 as derived from: (a) a subset of phase reconstructed interfero-

grams with small phase unwrapping errors. Subsidence leads to positive LOS deformation. The

locations and magnitudes of earthquakes since 2017 (circles), mapped faults are from McKeighan

et al. (2022), and GPS stations (triangles). A cluster of recent earthquakes (ML>4.0) occurred

near Falls City; and (b-f) original decorrelated interferograms with temporal baseline thresholds

of 12, 24, 48, 96, and 180 days.
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S1. Residual tropospheric noise in Small BAseline Subset solutions

Under the assumption that tropospheric turbulence noise is the primary error source,

the observed InSAR phase, ∆ϕ, at a pixel of interest can be defined as:

∆ϕ =
4π

λ
(∆d+∆n) (1)

where λ is the radar wavelength, ∆d is the line-of-sight (LOS) deformation between the

two radar acquisition times, and ∆n is the tropospheric turbulence noise at this pixel

location.

Given M SAR acquisitions, we can form N high-quality interferograms. To compute

the average velocity, vc, over the study period, we define an SBAS system of N equations

as:

BPvc = ∆Φ (2)

where B is the N × (M − 1) system matrix as defined in Berardino, Fornaro, Lanari, and

Sansosti (2002). P is a (M − 1)× 1 vector of ones, and ∆Φ = [∆ϕ1, ...,∆ϕN ]
T is a N × 1

vector of observed phases at the pixel of interest. The least squares solution for vc is:

vc =
λ

4π
∑N

i ∆t2i

N∑
i

∆ti∆ϕi

=
λ

4π
∑N

i ∆t2i

N∑
i

∆ti∆di +
λ

4π
∑N

i ∆t2i

N∑
i

∆ti∆ni

(3)

where ∆ti is the temporal baseline of the interferogram i. The residual tropospheric noise,

rn, in the SBAS constant velocity solution is:

rn =
λ

4π
∑N

i ∆t2i

N∑
i

∆ti∆ni (4)
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A smaller noise residual leads to a more accurate velocity solution. Based on Eq. 4, the

residual tropospheric noise is smaller when interferograms with longer temporal baselines

are used as input in the SBAS inversion. For example, for the same N , the residual

tropospheric noise is four times smaller if all interferograms span 48 days instead of 12

days. Furthermore, the residual noise tends to decrease when N increases, given that

tropospheric turbulence noise can be considered random over time.
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Table S1. Time (in seconds) required for unwrapping original and reconstructed interferograms

(Fig. 2) over the Eagle Ford site.

Interferogram Original Reconstructed
20180805-20180910 1 1
20180817-20181016 227 9
20190520-20190812 178 5
20180525-20180910 83 1
20200526-20210602 147 2
20180618-20190929 181 3
20191023-20191222 <1 1
20191128-20200327 2 1
20170331-20171208 209 19
20201029-20211223 165 3
20191011-20201228 156 2
20200127-20210427 192 5
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Table S2. InSAR-GPS line-of-sight misfit (mm/yr) for different deformation solutions at 24

California GPS stations.
GPS Station New Workflow SBAS-12 SBAS-48 SBAS-180 SBAS-360 SBAS-1000

CACO 3.7 15.9 4.4 2.3 2.1 3.8
CAD1 -3.0 -17.8 -5.7 -1.0 1.4 3.3
CAFP -0.8 -5.8 -1.8 6.8 8.0 -16.4
CAHA -9.1 -18.6 -9.7 -14.0 -20.6 -49.6
CAKC 2.9 9.6 4.4 1.6 2.7 3.3
CAWO -4.5 1.2 -5.9 -5.6 -2.1 0.3
CRCN -1.9 -21.2 -0.2 0.6 -10.5 -55.2
DLNO -2.5 -14.2 -4.3 -1.2 0.2 1.7
GR8R -1.0 8.9 -1.3 0.6 0.6 2.4
LEMA -6.7 -15.6 -6.2 -9.2 -14.1 -41.9
MULN -2.1 -0.6 -1.0 -3.3 4.0 -5.5
P056 -6.4 -12.3 -2.6 -9.7 -17.3 -30.5
P300 1.6 3.6 -0.2 2.5 2.9 4.5
P302 4.1 23.5 1.0 3.6 3.5 6.0
P304 4.0 29.2 2.1 -4.7 3.9 5.9
P541 2.9 13.5 2.5 3.6 3.5 4.9
P547 1.1 25.5 -1.3 0.7 0.3 1.3
P564 2.3 -15.3 -2.0 -8.0 -5.3 -5.8
P565 -1.7 -18.8 -4.9 -1.6 0.4 2.5
P566 -3.9 -4.5 -7.0 -5.8 -3.7 -9.4
P809 -2.6 -19.6 -5.8 -2.5 -0.5 1.7
P810 -1.9 -19.0 -5.2 -1.8 0.2 2.3
RAPT -4.7 3.8 -6.7 -5.2 -1.3 5.2
TRAN 7.1 15.8 2.8 7.8 16.9 12.4
MAE 3.4 13.9 3.7 4.3 5.2 11.5

Table S3. InSAR-GPS line-of-sight misfit (mm/yr) for different deformation solutions at 5

Texas GPS stations.
GPS Station New Workflow SBAS-12 SBAS-24 SBAS-48 SBAS-96 SBAS-180

LCNX -2.4 -1.3 1.5 -8.6 -14.1 -13.9
TXCU 4.8 -16.0 12.5 28.1 35.3 34.7
TXKC 3.5 0.1 4.9 12.6 13.2 16.8
TXFV 0.7 2.8 -0.3 0.0 -1.1 -0.7
TXFI 2.1 -7.4 -4.3 -2.8 -1.0 0.5
MAE 2.7 5.5 4.7 10.4 12.9 13.3
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Figure S1. (Left) Tulare Basin and (Right) Eagle Ford study sites. The radar footprints are

outlined in red, the reference GPS stations are shown as green stars, and GPS validation stations

are shown as blue stars.
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Figure S2. Cumulative water, oil, and gas production over the Eagle Ford region from 1974-

2022, where over 90% of total production has occurred since 2010. The outline of the radar

footprint is in red. Produced water, oil, and gas data provided by Center for Injection and

Seismicity Research (CISR) at The University of Texas at Austin, Bureau of Economic Geology

(BEG).
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(c) 48 day: 20181109-20181227(a) 12 day: 20181109-20181121

(d) 60 day: 20181109-20190108 (e) 72 day: 20181109-20190120

(b) 24 day: 20181109-20181203

(f) 84 day: 20181109-20190201

(g) 12 day: 20200502_20200514 (i) 48 day: 20200502_20200619(h) 24 day: 20200502_20200526

(j) 60 day: 20200502_20200701 (k) 72 day: 20200502_20200713 (l) 84 day: 20200502_20200725

LOS (radians) 
-10 100

Figure S3. Eagle Ford interferograms that span the winter months (a-f) and summer months

(g-l) with varying temporal baselines. Over the winter months, unwrapping errors occur in

interferograms that span 48 days or longer, while over the summer months, unwrapping errors

occur in interferograms that span 24 days or longer.
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