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Abstract

Stochastic hydrology produces ensembles of time series that represent plausible future streamflow to simulate and test the

operation of water resource systems. A premise of stochastic hydrology is that ensembles should be statistically representative

of what may occur in the future. In the past, the application of this premise has involved producing ensembles that are

statistically equivalent to the observed or historical streamflow sequence. This requires a number of metrics or statistics that

can be used to test statistical similarity. However, with climate change, the past may no longer be representative of the

future. Ensembles to test future systems operations should recognize non-stationarity, and include time series representing

expected changes. This poses challenges for their testing and validation. In this paper, we suggest an evidence-based analysis

in which streamflow ensembles, whether statistically similar to and representative of the past or a changing future, should be

characterized and assessed using an extensive set of statistical metrics. We have assembled a broad set of metrics and applied

them to annual streamflow in the Colorado River at Lees Ferry to illustrate the approach. We have also developed a tree-based

classification approach to categorize both ensembles and metrics. This approach provides a way to visualize and interpret

differences between streamflow ensembles. The metrics presented and their classification provide an analytical framework for

characterizing and assessing the suitability of future streamflow ensembles, recognizing the presence of non-stationarity. This

contributes to better planning in large river basins, such as the Colorado, facing water supply shortages.
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Abstract 18 

Stochastic hydrology produces ensembles of time series that represent plausible future 19 

streamflow to simulate and test the operation of water resource systems. A premise of stochastic 20 

hydrology is that ensembles should be statistically representative of what may occur in the 21 

future. In the past, the application of this premise has involved producing ensembles that are 22 

statistically equivalent to the observed or historical streamflow sequence. This requires a number 23 

of metrics or statistics that can be used to test statistical similarity. However, with climate 24 

change, the past may no longer be representative of the future. Ensembles to test future systems 25 

operations should recognize non-stationarity, and include time series representing expected 26 

changes. This poses challenges for their testing and validation. In this paper, we suggest an 27 

evidence-based analysis in which streamflow ensembles, whether statistically similar to and 28 

representative of the past or a changing future, should be characterized and assessed using an 29 

extensive set of statistical metrics. We have assembled a broad set of metrics and applied them to 30 

annual streamflow in the Colorado River at Lees Ferry to illustrate the approach. We have also 31 

developed a tree-based classification approach to categorize both ensembles and metrics. This 32 

approach provides a way to visualize and interpret differences between streamflow ensembles. 33 

The metrics presented and their classification provide an analytical framework for characterizing 34 

and assessing the suitability of future streamflow ensembles, recognizing the presence of non-35 

stationarity. This contributes to better planning in large river basins, such as the Colorado, facing 36 

water supply shortages. 37 

Plain Language Summary 38 

Long-range water supply planning in many river basins requires an assessment of ensembles of 39 

plausible future streamflow time series used to simulate and test the operation of water resource 40 

systems. With climate change, and growing recognition that hydrologic processes are changing 41 

over time, the past may no longer be representative of the future. This poses challenges when 42 

using statistical metrics to test future streamflow ensembles. In this paper, we suggest an 43 

evidence-based approach in which streamflow ensembles, whether statistically similar to and 44 

representative of the past or a changing future, should be characterized using an extensive set of 45 

statistical metrics. We have assembled a broad set of metrics and applied them to annual 46 

streamflow in the Colorado River at Lees Ferry to illustrate the approach. We have also 47 

developed an approach to categorize both ensembles and metrics. The metrics presented and 48 

their classification provide an analytical framework for characterizing and assessing the 49 

suitability of future streamflow ensembles for water resources system planning. The metrics and 50 

classification developed advance and contribute to better planning in large river basins facing 51 

water supply shortages. 52 

1. Introduction 53 

In water resources planning in large river basins, such as the Colorado River in the 54 

southwestern U.S., ensembles of streamflow time series are commonly used to assess the 55 

performance of alternative policies and management strategies (Bonham et al., 2024; Wheeler et 56 

al., 2022). It is important that these ensembles have statistical properties representative of a wide 57 

range of plausible future streamflow conditions. Relying solely on historical flow records to 58 

generate data for water resource analyses limits the ability to test strategies and policies against 59 

the diverse range of sequences possible in the future. While the historical record holds valuable 60 

information for the future, given climate change (Milly et al., 2008; IPCC, 2021), we can 61 



manuscript submitted to Water Resources Research 

 

reasonably assume that future flow sequences will not precisely mirror historical patterns. There 62 

is thus a need to have statistical metrics that characterize the properties of potential future 63 

streamflow ensembles and to use these metrics to assess the suitability of ensembles for use in 64 

future planning. This paper provides a broad set of metrics that can be used to characterize and 65 

classify streamflow ensembles, to address this need. 66 

Stochastic streamflow models can generate a broad range of potential flow sequences for 67 

river basin planning and analyses. These models can use observed flow records, proxy data like 68 

tree-ring-reconstructed flows, and/or General Circulation Model (GCM) projections to generate 69 

ensembles of plausible future streamflow sequences. These ensembles serve as inputs to systems 70 

planning and operations models, allowing testing of their resilience against potential future 71 

scenarios. Most commonly, stochastic streamflow models generate ensembles of synthetic 72 

streamflow sequences primarily based on historical data, often assuming stationarity (Fiering, 73 

1967; Matalas et al., 1982; Valencia & Schaake, 1973; Vogel, 2017; Yevjevich, 1963), although 74 

efforts have been made to adapt them for nonstationary hydrologic processes to capture changes 75 

due to climate and anthropogenic impacts (Borgomeo et al., 2014; Salas et al., 2018). 76 

A suitable streamflow model should capture the fundamental characteristics expected 77 

during the planning period. For a particular river basin study, identifying which characteristics 78 

are essential is important, yet challenging. A premise of much prior stochastic hydrology is that 79 

the future will be different from, but statistically similar to, the past (Loucks et al., 2017). 80 

Statistical similarity is quantified using a number of statistics, or metrics, which ensemble 81 

sequences are expected to reproduce. The assumption of stationarity is not always plausible, 82 

especially in river basins where significant alterations in runoff characteristics have occurred due 83 

to changes in land cover, land use, climate, or groundwater utilization during the recorded flow 84 

period (Loucks et al., 2017). As a result, exact replication of past statistics is no longer directly 85 

applicable in such basins, especially in an era of climate change (Milly et al., 2008). 86 

Nevertheless, there remains a critical need to employ and further develop metrics that quantify 87 

attributes of stochastic ensembles as valuable evidence-based tools for interpreting streamflow 88 

model results. Furthermore, metrics provide objective and quantitative evidence to interpret and 89 

analyze representations of non-stationarity such as differences between past streamflows and 90 

ensembles that incorporate projected climate changes. Evidence-based analysis supports robust 91 

decision-making by offering clear, documented, and communicable information (Pezij et al., 92 

2019). It helps prevent the adoption of ensembles without full information on their characteristics 93 

and solely because they have been used previously. Using a broad range of metrics to describe 94 

hydrologic characteristics associated with streamflow ensembles used in water resources 95 

planning provides evidence on how sufficient the ensembles are for their intended purposes. 96 

Statistical attributes of the historical data provide quantitative context that plays a crucial 97 

role in analyzing streamflow ensembles and assessing their ability to replicate historical patterns 98 

or desired characteristics. Various common statistics, such as mean, standard deviation, 99 

skewness, minimum, maximum, probability distribution, and correlation are widely used in 100 

studies to either evaluate the model’s goodness-of-fit or compare different models (e.g. 101 

Koutsoyiannis et al., 2008; Lee & Ouarda, 2012, 2023; Lee et al., 2010; 2020; Prairie et al., 102 

2006; 2007; 2008; Salas et al., 2005; Sharma et al., 1997; Srinivas & Srinivasan, 2000, 2005, 103 

2006; Tarboton, 1994). In addition to these common statistics, a range of other metrics are 104 

available to capture various aspects of streamflow ensembles. The Hurst coefficient is used to 105 

quantify long-term memory or persistence beyond what is captured by correlation (Chaves & 106 
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Lorena, 2019; Hurst, 1951; Klemeš, 1974; Lee & Ouarda, 2023; Lee et al., 2020). Detecting 107 

trends is another useful approach to quantify non-stationarity in time series (Helsel et al., 2020; 108 

Kendall, 1955; Lee & Ouarda, 2023; Mann, 1945). Mutual information is a measure of 109 

dependence that, unlike correlation, accounts for both linear and nonlinear dependence present in 110 

the time series, offering a more comprehensive understanding of the relationships within the data 111 

(Gong et al., 2014; Harrold et al., 2001; Loritz et al., 2018; Pechlivanidis et al., 2016; 2018). 112 

Hydrological droughts and surpluses are additional metrics that frequently draw 113 

significant interest and attention in hydrological studies. These metrics provide crucial insights 114 

for water resource management, especially in regions prone to water scarcity or excess. 115 

Understanding the occurrence, duration, and severity of hydrological droughts, as well as the 116 

frequency and magnitude of surpluses, is essential for making informed decisions regarding 117 

water allocation, reservoir management, and drought preparedness. Previous studies have 118 

commonly explored these statistics using the run-sum approach (Lee & Ouarda, 2023; Lee et al., 119 

2020; Prairie et al., 2006; Salas et al., 2005; Srinivas & Srinivasan, 2006). However, a limitation 120 

of this method is that it defines a drought or surplus event as events when all consecutive years 121 

are above a below a threshold, without any breaking year during that period. Our earlier work 122 

offered duration-severity analysis as a more general approach to quantifying drought or surplus 123 

without this limitation (Salehabadi et al., 2022). 124 

In addition to the above metrics, storage-related metrics quantify characteristics 125 

associated with the practical evaluation of the storage capacity needed in reservoirs to meet 126 

specific yields or to manage reservoirs to sustain desired demands (see for example Lee & 127 

Ouarda, 2023; Srinivas & Srinivasan, 2006). Storage metrics are thus directly meaningful to 128 

water resource management. For a given streamflow sequence, the storage required to support a 129 

specified yield can be estimated using sequent peak analyses (Loucks et al., 2017).  130 

Overall, based on the literature, a diverse range of metrics are available to quantify and 131 

assess the characteristics of a streamflow ensemble. When there are multiple sources of 132 

streamflow ensembles, these metrics assist in informed decision-making regarding ensemble 133 

selection for various planning needs.  134 

To facilitate the comparison of multiple ensembles, simplify the extraction of information 135 

from an extensive set of metrics, and classify the ensembles based on their characteristics, 136 

agglomerative hierarchical clustering analysis can be used (Hastie et al., 2009; Murtagh & 137 

Contreras, 2012). Clustering techniques employ a similarity or distance criterion to determine 138 

how and to what extent the objects (streamflow models in our case) are close/similar or 139 

far/dissimilar. Once a similarity criterion is selected, the algorithm begins by assigning each 140 

object to its own cluster. Then, it iteratively merges the two most similar clusters until all objects 141 

belong to a single cluster. Previous studies such as Papacharalampous et al. (2019) have 142 

suggested a comprehensive set of forecast quality metrics and used a clustering approach to 143 

compare the performance of various methods for forecasting hydrological processes. Some 144 

aspects of their approach are similar to ours, but our focus here is on the annual scale and longer-145 

term storage and drought/surplus quantities important for watersheds such as the Colorado River 146 

Basin where there is reservoir capacity to support significant interannual storage. In another 147 

study, Ahmadalipour et al. (2015) employed a number of statistical metrics and a clustering 148 

approach to analyze, compare, and rank the performance of various global climate models from 149 

Climate Model Intercomparison Project 5 (CMIP5) dataset over the Columbia River Basin. 150 

Razavi et al. (2015) used a clustering analysis to cluster and assess the similarities or 151 



manuscript submitted to Water Resources Research 

 

dissimilarities among various tree-ring chronology sites in the Saskatchewan River Basin. This 152 

literature suggest that such clustering techniques can be used to classify multiple streamflow 153 

ensembles based on their characteristics. 154 

In this study, we employ an evidence-based approach to objectively analyze Colorado 155 

River Basin streamflow ensembles and quantify the differences between them. To do this, we 156 

identify and develop a comprehensive suite of metrics to quantitatively evaluate and describe 157 

streamflow ensembles, compare them with historical data, and explore their uncertainties. We 158 

use these metrics as evidence-based tools to assess whether an ensemble is sufficient for its 159 

intended purpose. The contribution is the comprehensive suite of metrics covering a broad class 160 

of statistical characteristics, with documented uncertainty and guidance on application and 161 

interpretation for the evaluation of a streamflow ensemble. Our metrics address limitations of 162 

drought statistics and also quantify the occurrence of high flows, which are important for filling 163 

reservoirs in some systems. We also developed a classification approach that groups similar 164 

ensembles based on the metrics and provides a classification of the metrics themselves. This 165 

classification offers opportunities for efficiency, since ensembles with like attributes may not 166 

need to be evaluated in full.  167 

The paper is structured as follows: First, we describe the study area and the data used, 168 

encompassing 21 ensembles of streamflow sequences within the Colorado River Basin. Next, we 169 

provide an overview of the metrics employed for quantifying the streamflow ensembles. The 170 

results section provides ensemble-specific metrics utilized for individual ensemble interpretation, 171 

followed by comparative results and ensemble classification based on their attributes. Finally, we 172 

draw conclusions on the utilization of a diverse range of metrics to identify ensembles that 173 

closely align with the desired attributes essential for various planning purposes. 174 

2. Study Area and Data Used 175 

The Colorado River (Schmidt et al., 2022), often referred to as "America's Nile (LaRue, 176 

1916)," is a vital water resource for the southwestern United States and northwestern Mexico 177 

(Figure 1). Originating in the Rocky Mountains, this river flows through arid landscapes, like the 178 

Colorado Plateau, before reaching northwestern Mexico. The river is managed by a set of 179 

agreements known as the Law of the River (MacDonnell, 2021) and provides water for millions 180 

of people, irrigated agriculture, and hydropower generation. It also holds cultural and ecological 181 

significance, with indigenous tribes relying on its waters and a set of protected areas, including 182 

National Wildlife Refuges, Recreation Areas, and National Parks, benefiting from its flow.  183 

However, the basin faces significant challenges due to increasing water demand and 184 

climate change, which is expected to reduce water runoff and exacerbate droughts (Milly & 185 

Dunne, 2020; Schmidt et al., 2023; Udall & Overpeck, 2017; Williams et al., 2020; Xiao et al., 186 

2018). These changes threaten the sustainability of water resources and call for innovative 187 

strategies to manage and adapt to evolving conditions in the basin (Rosenberg, 2022; Wheeler et 188 

al., 2021; 2022; Fleck & Castle, 2022). One of the primary inputs needed for addressing 189 

Colorado River management is projections of future streamflow, even though the precise 190 

characteristics of this future remain uncertain.  191 
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 192 
Figure 1. Study area, Colorado River Basin and Lees Ferry gage location 193 

The Colorado River Basin splits into the Upper Basin and Lower Basin near the Lees 194 

Ferry gage, through which 85 to 90% of the river's flow passes (Figure 1). This makes the natural 195 

flow at Lees Ferry the main metric for quantifying runoff within the basin. Natural flow 196 

represents an estimate of what the flow would have been in the absence of consumptive uses, 197 

reservoir evaporation and dam operations. The U.S. Bureau of Reclamation (hereafter 198 

Reclamation) maintains a historical natural flow dataset derived from measurements and 199 

estimates of consumptive use and diversions (Prairie & Callejo, 2005). Reclamation updates this 200 

monthly dataset regularly. The most recent update, as of November 2023, includes historical data 201 

from 1906 through 2020, with provisional estimates for 2021 and 2022 (USBR, 2022). 202 

Additionally, tree-ring-reconstructed (or paleo-reconstructed) natural flow at Lees Ferry extends 203 

historical data beyond the 1906-2022 observed record. Meko et al. (2017) provides a tree-ring 204 

reconstruction for 1416 to 2015 at an annual water year timescale. These historical and paleo-205 

reconstructed datasets were employed to compare their statistical attributes with future 206 

streamflow ensembles. 207 

In the Colorado River Basin, there are multiple long-term streamflow ensembles 208 

developed by previous studies using different approaches (Prairie et al., 2006; 2007; 2008; 209 

Salehabadi et al., 2020; 2022; Tarboton, 1994; Udall, 2020; USBR, 2011, 2012, 2014; Vano et 210 

al., 2020; Woodhouse et al., 2021). Certain previously developed streamflow ensembles are 211 

based on either historical, paleo-reconstructed, or climate-change-informed flows, and some 212 

others are a combination of these sources. Each ensemble has particular statistical attributes and 213 

represents a set of assumptions about uncertain future hydrology. These streamflow ensembles 214 
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have been developed to provide streamflow sequences as inputs to the Colorado River 215 

Simulation System (CRSS). CRSS, implemented in RiverWare (Zagona et al., 2001), is the 216 

major long-term water resources planning tool in the Colorado River Basin used by Reclamation 217 

to project future conditions in the basin for years and decades (Payton et al., 2020). The planning 218 

results are highly sensitive to the future streamflow used, and there is a need to characterize the 219 

ensembles to support scenario planning and robust decision-making under deep uncertainty 220 

(Smith et al., 2022). Additionlly, there is a planning effort ongoing in the basin called “Colorado 221 

River Post-2026 Operations” that will identify a range of water management alternatives for 222 

potentially decades into the future (USBR, 2023). The Post-2026 process will use specific 223 

streamflow ensembles and the findings of our study could help inform choices on adequate 224 

ensembles for various planning purposes.  225 

The Colorado River streamflow ensembles we assessed in this study are listed in Table 1. 226 

 227 
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Table 1  228 

Streamflow Ensembles in the Colorado River Basin. 229 

 Ensemble name Ensemble identifier Reference 
Flow data 

source 
Method 

Number 

of traces 

Length of 

planning 

period  

Explanation 

1 Full hydrology ISM_1906_2020 
USBR 

(2012) 

Observed natural 

flow, 1906-2020 

(data from 

USBR, 2022) 

Index Sequential 

Method (ISM)  
115 50 years 

ISM applied to the 1906 to 

2020 period of the observed 

natural flow with the first 50 

years of each ISM trace 

selected. 

2 
Pluvial-removed 

ISM  
ISM_1931_2020  

Observed natural 

flow, 1931-2020 

(data from 

USBR, 2022) 

Index Sequential 

Method (ISM) 
90 50 years 

ISM applied to the 1931 to 

2020 period of the observed 

natural flow with the first 50 

years of each ISM trace 

selected. 

3 Stress test ISM_1988_2020 
USBR 

(2012) 

Observed natural 

flow, 1988-2020  

(data from 

USBR, 2022) 

Index Sequential 

Method (ISM) 
33 33 years 

ISM applied to the 1988 to 

2020 period of the observed 

natural flow. 

4 Paleo ISM ISM_1416_2015 
USBR 

(2012) 

Tree-ring-

reconstructed 

flow, 1416-2015  

(from Meko et 

al., 2017) 

Index Sequential 

Method (ISM) 
600 50 years 

ISM applied to the 1416 to 

2015 period of the tree-ring-

reconstructed flow with the first 

50 years of each ISM trace 

selected. 

5 AR1 AR1 
Salehabadi 

et al. (2022) 

Observed natural 

flow, 1906-2020 

(data from 

USBR, 2022) 

Auto-Regressive 

order 1 
100 50 years 

Streamflow ensemble generated 

by Salehabadi et al. (2022)  

6 
Full record paleo 

conditioned 
NPC_1906_2020 

Prairie et al. 

(2008) 

Observed natural 

flow, 1906-2020 

(data from 

USBR, 2022); 

Tree-ring-

reconstructed 

Nonparametric 

Paleo-

Conditioned 

(NPC) 

100 50 years 

NPC method described by 

Prairie et al. (2008) applied to 

the full record (1906-2020) of 

the observed natural flow 
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 Ensemble name Ensemble identifier Reference 
Flow data 

source 
Method 

Number 

of traces 

Length of 

planning 

period  

Explanation 

flow, 1416-2015  

(data from Meko 

et al., 2017) 

7 
Stress test paleo 

conditioned 
NPC_1988_2020 

Prairie et al. 

(2008) 

Observed natural 

flow, 1988-2020 

(data from 

USBR, 2022); 

Tree-ring-

reconstructed 

flow, 1416-2015  

(data from Meko 

et al., 2017) 

Nonparametric 

Paleo-

Conditioned 

(NPC) 

100 50 years 

NPC method described by 

Prairie et al. (2008) applied to 

the stress test period (1988-

2020) of the observed natural 

flow 

8 

Millennium 

drought paleo 

conditioned 

NPC_2000_2020 
Prairie et al. 

(2008) 

Observed natural 

flow, 2000-2020 

(data from 

USBR, 2022); 

Tree-ring-

reconstructed 

flow, 1416-2015  

(data from Meko 

et al., 2017) 

Nonparametric 

Paleo-

Conditioned 

(NPC) 

100 50 years 

NPC method described by 

Prairie et al. (2008) applied to 

the millennium drought period 

(2000-2020) of the observed 

natural flow 

9 

Millennium 

drought 5-yr 

block resampling 

5YrBlockRes_2000_2018 
Salehabadi 

et al. (2022) 

Observed natural 

flow, 2000-2020 

(data from 

USBR, 2022) 

5-year Block 

Resampling 
100 42 years 

Streamflow ensemble generated 

by Salehabadi et al. (2022) 

10 

Millennium 

drought year 

resampling 

DroughtYrRes_2000_2020 
(Salehabadi 

et al., 2022) 

Observed natural 

flow, 2000-2020 

(data from 

USBR, 2022) 

Drought scenario 

resampling 

(uncorrelated) 

100 50 years 
Streamflow ensemble generated 

by Salehabadi et al. (2022) 

11 

Mid-20th Century 

drought year 

resampling  

DroughtYrRes_1953_1977 
(Salehabadi 

et al., 2022) 

Observed natural 

flow, 1953-1977 

Drought scenario 

resampling 

(uncorrelated) 

100 50 years 
Streamflow ensemble generated 

by Salehabadi et al. (2022) 
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 Ensemble name Ensemble identifier Reference 
Flow data 

source 
Method 

Number 

of traces 

Length of 

planning 

period  

Explanation 

(data from 

USBR, 2022) 

12 
Paleo drought 

year resampling 
DroughtYrRes_1576_1600 

(Salehabadi 

et al., 2022) 

Tree-ring-

reconstructed 

flow, 1576-1600 

(data from Meko 

et al., 2017) 

Drought scenario 

resampling 

(uncorrelated) 

100 50 years 
Streamflow ensemble generated 

by Salehabadi et al. (2022) 

13 

CMIP3-BCSD 

hydrology 

projections 

CMIP3_BCSD 
USBR 

(2011) 

Reclamation’s 

flow projections, 

1951-2099 

CMIP3, BCSD, 

VIC 
112 

50 years 

(2027-

2076) 

Downscaled BCSD CMIP3 

hydrology projections from 

USBR (2011) 

14 

CMIP5-BCSD 

hydrology 

projections 

CMIP5_BCSD 
USBR 

(2014) 

Reclamation’s 

flow projections, 

1951-2099 

CMIP5, BCSD, 

VIC 
97 

50 years 

(2027-

2076) 

Downscaled BCSD CMIP5 

hydrology projections from 

USBR (2014) 

15 

CMIP5-LOCA 

hydrology 

projections 

CMIP5_LOCA 
Vano et al. 

(2020) 

Reclamation’s 

flow projections, 

1951-2099 

CMIP5, LOCA, 

VIC 
64 

50 years 

(2027-

2076) 

Downscaled LOCA CMIP5 

hydrology projections from 

Vano et al. (2020) 

16 

Temperature-

adjusted flow, 

RCP45-030 

TempAdj_RCP4.5_3% Udall (2020) 

Observed natural 

flow, 1906-2017 

(data from 

USBR, 2022) 

Uniform 

proportional 

decreases in 

runoff. Future 

temperatures 

based on the 

RCP scenario 

and streamflow 

sensitivity to 

temperature set 

according to the 

percentage given 

112 

50 years 

(2027-

2076) 

Temperature-adjusted 

streamflow ensemble form 

Udall (2020). 

Emission scenario: RCP 4.5, 

Streamflow sensitivity to 

temperature: 3% per 1°C 
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 Ensemble name Ensemble identifier Reference 
Flow data 

source 
Method 

Number 

of traces 

Length of 

planning 

period  

Explanation 

17 

Temperature-

adjusted flow, 

RCP45-065 

TempAdj_RCP4.5_6.5% Udall (2020) 

Observed natural 

flow, 1906-2017 

(data from 

USBR, 2022) 

Uniform 

proportional 

decreases in 

runoff 

112 

50 years 

(2027-

2076) 

Emission scenario: RCP 4.5, 

Streamflow sensitivity to 

temperature: 6.5% per 1°C 

18 

Temperature-

adjusted flow, 

RCP45-100 

TempAdj_RCP4.5_10% Udall (2020) 

Observed natural 

flow, 1906-2017 

(data from 

USBR, 2022) 

Uniform 

proportional 

decreases in 

runoff 

112 

50 years 

(2027-

2076) 

Emission scenario: RCP 4.5, 

Streamflow sensitivity to 

temperature: 10% per 1°C 

19 

Temperature 

adjusted flow, 

RCP85-030 

TempAdj_RCP8.5_3% Udall (2020) 

Observed natural 

flow, 1906-2017 

(data from 

USBR, 2022) 

Uniform 

proportional 

decreases in 

runoff 

112 

50 years 

(2027-

2076) 

Emission scenario: RCP 8.5, 

Streamflow sensitivity to 

temperature: 3% per 1°C 

20 

Temperature-

adjusted flow, 

RCP85-065 

TempAdj_RCP8.5_6.5% Udall (2020) 

Observed natural 

flow, 1906-2017 

(data from 

USBR, 2022) 

Uniform 

proportional 

decreases in 

runoff 

112 

50 years 

(2027-

2076) 

Emission scenario: RCP 8.5, 

Streamflow sensitivity to 

temperature: 6.5% per 1°C 

21 

Temperature-

adjusted flow, 

RCP85-100 

TempAdj_RCP8.5_10% Udall (2020) 

Observed natural 

flow, 1906-2017 

(data from 

USBR, 2022) 

Uniform 

proportional 

decreases in 

runoff 

112 

50 years 

(2027-

2076) 

Emission scenario: RCP 8.5, 

Streamflow sensitivity to 

temperature: 10% per 1°C 

230 



manuscript submitted to Water Resources Research 

 

3. Methodology 231 

An extensive set of metrics was identified or developed to effectively describe hydrologic 232 

characteristics associated with streamflow ensembles. The metrics provide a framework to 233 

objectively test an ensembles ability to reproduce desired or historical attributes deemed 234 

important for the decision-making scenario being considered. Complete reproduction of all 235 

historical characteristics may not always be desired. For example, where the question involves 236 

managing for streamflow declining due to climate change, the historical mean is not expected to 237 

be reproduced. In this section, we provide an overview of these metrics, followed by a 238 

description of Ward’s Agglomerative Hierarchical Clustering method, which we employed for 239 

ensemble classification based on the calculated metrics. 240 

3.1. Common Metrics 241 

There are well-known metrics such as mean, median, minimum, maximum, standard 242 

deviation, skewness, Auto Correlation Function (ACF), and trend that are commonly used in 243 

studies to either evaluate the goodness-of-fit of a model or compare different models (e.g. 244 

Koutsoyiannis et al., 2008; Lee & Ouarda, 2012, 2023; Lee et al., 2010; 2020; Prairie et al., 245 

2006; 2007; 2008; Salas et al., 2005; Sharma et al., 1997; Srinivas & Srinivasan, 2000, 2005, 246 

2006; Tarboton, 1994). Here they were evaluated from their readily available formulae using 247 

standard functions or libraries in R (R Core Team, 2023). The Mann-Kendall test (Kendall, 248 

1955; Mann, 1945) was applied in this study to detect the occurrence of significant trend in 249 

streamflow ensembles. The full set of R scripts used in this paper have been published in 250 

HydroShare (Salehabadi & Tarboton, 2024). 251 

3.2. Partial Autocorrelation Function (PACF) 252 

The Partial Autocorrelation Function (PACF), like the Autocorrelation Function (ACF), 253 

provides information on the dependence structure of a time series (Bras & Rodriguez-Iturbe, 254 

1985; Hipel & McLeod, 1994). This dependence structure indicates how each observation in the 255 

series is correlated with its lagged values, revealing how past observations influence present or 256 

future values. It is based on considerations of stationarity so is most meaningful for stationary 257 

processes but may also be helpful as a comparative statistic for non-stationary processes. While 258 

the ACF quantifies correlation across time lags, PACF is essentially the ACF adjusted for the 259 

intervening correlation and quantifies direct additional correlation at higher lags beyond those 260 

due to intervening correlation already represented by lower lag correlations. PACF is used to 261 

guide the selection of the order of an autoregressive (AR) model used in autoregressive moving 262 

average (ARMA) model development and is calculated using the Yule-Walker equations and 263 

implemented in R (Venables & Ripley, 2010). For an AR model, the PACF is zero beyond the 264 

order of AR model. In other words, the number of non-zero PACF values gives the number of 265 

lags that should be used in an AR model to capture historical dependence.  266 

As a metric for quantifying and classifying streamflow ensembles, PACF provides 267 

information about dependence. Ensembles that intend to be representative of historical flows 268 

should have a similar dependence structure, and deviation from the historical dependence 269 

structure should be noted. 270 
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3.3. Drought Event Statistics: Length, Deficit, Intensity, Interarrival Time 271 

Hydrologic drought is described as a deficiency in the water supply, which may include 272 

streamflow and reservoir storage (Wilhite & Buchanan-Smith, 2005). One way to quantify a 273 

hydrologic drought event is as a sequence of consecutive years during which the annual 274 

streamflow remains below a specified threshold level, which is typically taken to be the long-275 

term average streamflow (Salas et al., 2005; Tarboton, 1994; Yevjevich, 1967). Alternatively, 276 

another definition of a hydrologic drought is consecutive years with streamflow below the long-277 

term mean exceeded by no more than one above-average flow year (Woodhouse et al., 2021). In 278 

this framework, droughts may be quantified using metrics such as: (1) the duration of flow below 279 

a threshold, (2) magnitude, defined as the cumulative difference between actual flows and a 280 

defined threshold, (3) intensity, defined as the average of the below threshold deficit, and (4) the 281 

interarrival time. It should be noted that these drought characteristics depend on a specified 282 

threshold value and so it is important to consider an appropriate value as the threshold. 283 

Additionally, the number of acceptable above-threshold years within the drought duration should 284 

be specified. For instance, Woodhouse et al. (2021) allowed one above-average flow year in their 285 

drought definition.  286 

For an annual streamflow time series denoted by xt, t=1, 2, …, n and a constant threshold 287 

of x0, these drought metrics are specified below (Salas et al., 2005) and illustrated in Figure 2. 288 

• Drought duration or length (L). The period between the beginning and end of any 289 

drought event, i.e. the number of consecutive time intervals (e.g. years) in which xt < x0.  290 

• Cumulative deficit (D, drought magnitude). The deficit that accumulates below the 291 

threshold during the drought duration (Equation 1).  292 

𝐷 = ∑ (𝑥0 − 𝑥𝑗)

𝑡+𝐿−1

𝑗=𝑡

= ∑ 𝑑𝑗

𝑡+𝐿−1

𝑗=𝑡

 

 

  

• Drought intensity (I). The average deficit over the drought duration, namely the ratio of 293 

the magnitude to duration of a drought, I = D/L.  294 

• Interarrival time (T). The time between the start of two successive droughts. 295 

 296 
Figure 2. Schematic definition of drought characteristics. The black dashed line gives the 297 

threshold level. L1 and L2: length of the first and second drought, respectively. I1: intensity of 298 
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the first drought. T1: interarrival time of the first drought. D2: cumulative deficit of the second 299 

drought. 300 

As metrics for quantifying streamflow ensembles and evaluating the sufficiency of them, 301 

averages, standard deviations, and distributions of these drought statistics provide information 302 

about the simulated droughts in a streamflow ensemble. For example, if an ensemble does not 303 

reproduce the drought metrics similar to the historical record, it is not representative of what has 304 

occurred in the past and this could be used to invalidate an ensemble intended to reproduce past 305 

statistics. These metrics also provide information about the characteristics of future droughts in 306 

an ensemble. A shortcoming of event statistics is that they break a sustained dry period into 307 

separate events when one year, or a selected number of years exceed the threshold. The duration-308 

severity analysis described next are an effort to avoid this shortcoming. 309 

3.4. Duration-Severity Analysis 310 

The duration-severity approach, as introduced by (Salehabadi et al., 2020; 2022), 311 

provides a framework for analyzing streamflow data based on severity and duration in order to 312 

evaluate the severity and persistence of drought periods (and more generally wet extremes as 313 

well). In this approach, severity, which is different from the event definitions of magnitude and 314 

intensity discussed in the previous section, is quantified in terms of the mean flow over a specific 315 

duration. It considers all periods with that duration in the dataset, including both wet and dry 316 

years without separating specific drought events. The duration-severity analysis helps place 317 

droughts within the streamflow ensembles in a historical context by comparing these ensembles 318 

with either observed or paleo-reconstructed flows. In the context of extreme drought analysis, 319 

this approach sheds light on how the lowest mean flows within the ensemble may vary for 320 

different durations. It also reveals where the range of extreme droughts falls in relation to the 321 

historical flows. 322 

As metrics for quantifying and evaluating streamflow ensembles, examining the position 323 

and spread of duration-severity within these ensembles in comparison to historical flows 324 

provides insights into the simulated events, such as droughts, present in the ensemble. If an 325 

ensemble is intended to be representative of past statistics, the extreme events need to be aligned 326 

with what has occurred in the past. This analysis also provides information about changes in the 327 

severity of extreme events, and whether an ensemble has more severe and sustained droughts 328 

than the historical or paleo-reconstructed record. Streamflow ensembles developed to consider a 329 

warmer future may exhibit droughts of greater severity (lower duration-severity values) 330 

compared to past data, and the duration-severity analysis provides a quantitative measure of this. 331 

Additionally, this analysis reveals the degree of variability within the simulated extreme events. 332 

Ensembles with lower variability in hydrologic events have a narrower spread of duration-333 

severity values, while ensembles with higher variability display a broader spread. This variability 334 

information is valuable in understanding the range of simulated extreme events. 335 

3.5. Cumulative Deviation 336 

A recasting of the duration-severity analysis is the concept of cumulative deviation, 337 

which focuses on measuring the cumulative departure from a particular reference point, such as 338 

average conditions, over various durations (Salehabadi et al., 2020; 2022). The cumulative 339 

deviation for each n-year duration represents the total deficit or surplus accumulated relative to 340 

the reference over those n years. This metric differs from the cumulative deficit in drought event 341 
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statistics discussed above as it is more general, not accumulating only values below the threshold 342 

during a drought duration. Like the duration-severity analysis and unlike the cumulative deficit 343 

in drought event statistics, the cumulative deviation includes all years within each duration, 344 

whether they are wet or dry years. In the context of drought analysis, this method gives insights 345 

on how cumulative deficits within an ensemble vary for various durations. Conversely, in the 346 

context of flood analysis, this approach illustrates the variations in cumulative surplus within an 347 

ensemble across various durations. Depending on the purpose of analysis, the duration-severity 348 

or cumulative deviation approach may be employed. It is important to note that the cumulative 349 

deviation calculation depends on a chosen reference mean, while duration-severity analysis is 350 

parameter-independent.  351 

3.6. Count Below Threshold (CBT) 352 

The count of periods (e.g. years) with flow below a threshold serves as a drought 353 

measure, similar to drought event statistics and duration-severity metrics. The “count below 354 

threshold (CBT)” for a specific duration represents the average number of years with flow below 355 

the threshold within that duration. CBT can be expressed as either a moving count or an overall 356 

average. The moving CBT metric is also a useful tool for visualizing changes (increase or 357 

decrease) in the occurrence of flows below the threshold. The difference between this metric and 358 

drought length in drought event statistics is that CBT counts the number of below-threshold 359 

years without requiring them to be consecutive under a specific drought definition.    360 

3.7. Count Above Threshold (CAT) 361 

The “count above threshold (CAT)” is a metric similar to CBT, but it quantifies the 362 

number of years with flow exceeding a specified threshold. It serves as a measure of high-flow 363 

occurrence. This metric is particularly valuable when assessing the occurrence of high flows, the 364 

occurrence of which is important for filling reservoirs in some systems. 365 

3.8. Hurst Coefficient 366 

The Hurst coefficient (Hurst, 1951) quantifies persistence or long memory in a time 367 

series beyond that quantified by correlation or a model that captures correlation. Hurst 368 

coefficient (H) can be used to explore the long-term persistence of streamflow, climate, and other 369 

geophysical records (Hurst, 1951; Montanari et al., 1997; Vogel et al., 1998). Range (R) is 370 

defined as the maximum minus minimum cumulative departure from the mean in a sequence of 371 

flows n years long. Rescaled range (R/S) is R divided by standard deviation (S). The Hurst 372 

coefficient is defined as the scaling exponent associated with the increase in rescaled range with 373 

sample size n. Given a streamflow time series {𝑥1, 𝑥2, … , 𝑥𝑛} with sample mean 𝑥̅ and sample 374 

standard deviation 𝑆𝑥, the adjusted partial sums are (Equations 2-4): 375 

𝑌𝑘 = ∑(𝑥𝑡 − 𝑘𝑥̅)

𝑘

𝑡=1

        𝑘 = 1, … , 𝑛   

and the range is 376 

𝑅𝑛 = [𝑚𝑎𝑥(𝑌1, 𝑌2, … , 𝑌𝑛) − 𝑚𝑖𝑛(𝑌1, 𝑌2, … , 𝑌𝑛)]   

Hurst (1951) found that 377 
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𝐸 [
𝑅𝑛

𝑆𝑥
] ∝ 𝑛𝐻   

where the exponent H is the Hurst coefficient which varies between 0 and 1. Tarboton (1995) 378 

noted that this statistic is uncertain and depends on the length of record over which it is 379 

computed. Here, to have a consistent metric for comparison of ensembles we standardized on 380 

evaluating average R/S for durations of 8, 16, 32 and the full ensemble number of years and 381 

evaluated H from a regression of log(R/S) vs log(n). 382 

A value of H less than or equal to 0.5 means absence of long memory. The occurrence of 383 

H > 0.5 is indicative of long-term structure in time series dependence and is referred to as the 384 

Hurst phenomenon. This may manifest as persistent droughts and wet periods. The Hurst 385 

phenomenon may also be caused by non-stationarity, where the mean of the time series changes 386 

with time. It is important to note that when working with short records, the data may be 387 

insufficient for a robust interpretation of the Hurst coefficient. 388 

3.9. Mutual Information 389 

Mutual Information (MI) is based on the concept of Shannon entropy (Shannon, 2001), 390 

first introduced in 1948, which is a measure of the uncertainty (or lack of information) of a 391 

random variable and provides a measure of the amount of information that one random variable 392 

contains about another (Cover & Thomas, 2006). In the context of time series, it quantifies the 393 

dependence between past and future values. It is similar to correlation in this respect, but while 394 

correlation quantifies linear dependence between two variables, mutual information quantifies 395 

dependence that may not necessarily be linear. Mathematically, for two continuous random 396 

variables X and Y, the mutual information MI(X,Y) is defined as in Equation 5 (Cover & 397 

Thomas, 2006). 398 

𝑀𝐼(𝑋, 𝑌) = ∬ 𝑝(𝑥, 𝑦) 𝑙𝑜𝑔
𝑝(𝑥, 𝑦)

𝑝(𝑥) 𝑝(𝑦)
 𝑑𝑥 𝑑𝑦    

where p(x, y) is the joint probability density function and p(x) and p(y) are marginal probability 399 

density functions. In the time series context x and y may be the same variable at different lags. 400 

MI can be unbounded (infinite) and numerical estimation of mutual information from a sample 401 

involves discretization and binning, to approximate the probabilities and evaluate the integral 402 

above based on bin frequencies. Results depend on the chosen bin boundaries and thus 403 

comparison of numeric MI differences between ensembles should use consistent binning. Here, 404 

we used the optimal bin width suggested by (Scott, 2015), which depends on the standard 405 

deviation and the number of data values (see for example Gong et al., 2014). We then used the R 406 

entropy package (Hausser & Strimmer, 2021) to evaluate normalized MI, which is the MI 407 

standardized by the entropy of each variable. This metric helps quantify the nonlinear lagged 408 

dependence within streamflow ensembles. 409 

Figure 3 illustrates how mutual information and correlation metrics quantify linear and 410 

nonlinear dependence between some hypothetical variables with dependence. In Figure 3a, there 411 

is a visible linear relationship between x and z so both MI and Cor quantify this relationship with 412 

high values. Variables x and t in Figure 3b, on the other hand, are two independent variables 413 

without any specific relationship between them so that MI and Cor are close to zero. In Figure 414 

3c, there is an obvious relationship between x and y, however, this relationship is not linear and 415 
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so the Cor is zero. In this case, the mutual information captures the nonlinear relationship 416 

between x and y. This example illustrates the value of including the mutual information metric 417 

where there may be nonlinear dependence.  418 

With MI, there is no a-priori expectation that dependence should be linear, but with small 419 

sample sizes, as is typical for streamflow, the data may be insufficient to discern small nonlinear 420 

dependence robustly with statistical significance. 421 

 422 
Figure 3. Mutual information (MI) and correlation (Cor) of some hypothetical variables of x, y, t, 423 

and z. (a) Two variables with a visible linear relationship. (b) Two independent variables. (c) 424 

Two variables with a visible but not linear relationship. 425 

3.10. Reservoir Storage-Yield and Reliability 426 

Reservoir storage-yield and reliability analysis illustrate responses of streamflow 427 

ensembles to a set of desired yields and reliabilities. This metric captures the storage attributes of 428 

the ensemble at an abstract level distinct from particular reservoir sizing or operation policies. 429 

Reservoir storage-yield analysis has traditionally been used to determine the minimum active 430 

storage capacity required for delivery of a constant yield rate with a given reliability or 431 

alternatively, the yield that can be supplied from a reservoir with a known storage capacity 432 

(Loucks et al., 2017). Here, the reliability indicates the probability that the reservoir yields are 433 

met. Given the natural variability of streamflow, which may increase due to climate change, it is 434 

unclear how well reservoirs are able to ensure the delivery of specified yields with the desired 435 

reliabilities (Kuria & Vogel, 2014). These metrics help quantify the variability of yields and 436 

reliabilities due to streamflow variability. 437 

Given a time series of reservoir inflows, a computation based on mass balance may be 438 

used to determine the reservoir storage required to meet a certain specified yield or release. Let 439 

Rt denote the release volume at each time step t, Qt denote the inflow volume at t, and Kt denote 440 

the storage needed at the end of t, with K0 = 0. Then, Kt is calculated by Equation 6.  441 

{
𝐾𝑡 = 𝐾𝑡−1 + 𝑅𝑡 − 𝑄𝑡         𝑖𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒,
 𝐾𝑡 = 0                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   

If Kt from this equation is negative, it indicates that inflow was higher than release plus 442 

available unfilled storage capacity. This means that release can be met with available inflow 443 

during that time step and there is no need for additional storage, and so Kt reset to 0. For a given 444 

series of inflows, the maximum of all Kt is the active storage capacity, S, required to sustain the 445 

specified releases or yield. A storage-yield curve is constructed by calculating S for a series of 446 
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yields. After the storage-yield analysis, reservoir reliability can be evaluated. A reservoir 447 

reliability plot shows the probability that the storage required to meet a specified yield is less 448 

than a given value S.   449 

3.11. Ward’s Agglomerative Hierarchical Clustering method 450 

Ward’s Agglomerative Hierarchical Clustering method (hereafter Ward’s method) was 451 

used to categorize the ensembles based on the metrics calculated (Hastie et al., 2009; Murtagh & 452 

Contreras, 2012). Ward’s method is a bottom-up clustering (or classification) method in which 453 

each object (streamflow ensemble or metric in our case) is treated as a single cluster at the 454 

beginning of the algorithm. Then, pairs of clusters are merged (or agglomerated) until all clusters 455 

are merged into a single cluster containing all the objects. To choose the pair of clusters to merge 456 

at each step, Ward’s method uses the minimum sum-of-squares as a distance (similarity) 457 

criterion that determines how close (similar) or far (dissimilar) the clusters are. The hierarchy of 458 

clusters can be shown as a tree (or dendrogram). In dendrograms, the X-axis represents the 459 

objects and the Y-axis represents the distance at which the clusters merge. The similar objects 460 

with minimum distance fall in the same cluster, and the dissimilar objects are placed farther in 461 

the hierarchy. We used the R package pheatmap to perform Ward’s method (Kolde, 2019).   462 

4. Results 463 

We calculated all the metrics outlined in the preceding section for 21 streamflow 464 

ensembles available for the Colorado River Basin (Table 1). We employed these metrics for 465 

three primary purposes: 1) to provide a quantitative description of each individual ensemble, 2) 466 

to conduct comparisons among ensembles, identifying those that closely align with the desired 467 

attributes required for various planning purposes, and 3) to classify ensembles based on their 468 

characteristics.  469 

In this section, we present and explain the metrics for one individual ensemble in detail, 470 

namely ISM_1906_2020. We selected this ensemble for a thorough explanation here because it 471 

is widely used in Colorado River Basin studies and because is easy to understand as it is a 472 

resampling of the full historical record, making it good for illustrating how the metrics work. The 473 

results for the remaining ensembles are available in the online Supporting Information and the 474 

code for generating these metrics is in HydroShare (Salehabadi & Tarboton, 2024). Then, we 475 

provide ensemble comparison results, where we have calculated a specific metric for all 476 

ensembles and presented them in a single plot. The metrics presented quantify the statistical 477 

characteristics of streamflow ensembles, providing a quantitative foundation for interpreting and 478 

analyzing their similarities and differences. As each ensemble comprises multiple time series, the 479 

metric ranges calculated for each ensemble are depicted using box plots. These ranges quantify 480 

the uncertainty in each metric, useful when comparing ensembles. Note that in this paper the box 481 

plots use R defaults (R Core Team, 2023), where boxes represent the central half of the data, 482 

with whiskers extending to 1.5 times the interquartile range, and outliers beyond the whiskers are 483 

displayed as individual dots. 484 

4.1. Ensemble-Specific Metrics 485 

Figure 4 through Figure 8 present the metrics calculated for the Full Hydrology Index 486 

Sequential Method ensemble labeled as “ISM_1906_2020”. This ensemble comprises 115 time 487 

series, generated using the Index Sequential Method (ISM) as described by Ouarda et al. (1997) 488 
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and illustrated by Salehabadi et al. (2020). To generate this ensemble, ISM was applied to the 489 

full observed record from 1906 to 2020. The length of each time series within the ensemble is set 490 

by a designated planning period taken as 50 years here. 491 

 492 
Figure 4. Time series of the simulated annual natural flow at Lees Ferry for the ISM_1906_2020 493 

ensemble. This figure shows 10th to 90th percentiles (light blue area), and 25th to 75th percentiles 494 

(dark blue area), maximum and minimum (whiskers), median (navy line), and a sample sequence 495 

from the ensemble (red line). 496 

The results show that simulated annual natural flows are in the range of 5 to 25 maf/yr 497 

and there is no trend or variability in the distribution of the annual flows during the planning 498 

period (Figure 4), as expected since ISM is a recycling of historical flow sequences. The 499 

ensemble has a mean of 14.5 maf/yr (Figure 5a) with a standard deviation of about one-third of 500 

the mean, similar to the observed record (Figure 5d). Minimum annual flows are bounded by the 501 

historical minimum annual flow of 5.5 maf/yr, showing that the ensemble does not have any 502 

years with flows less than what has previously been observed (Figure 5b). Maximum annual 503 

flows with a range from 21 to 24.2 maf/yr (Figure 5c) and the average count above threshold (1.3 504 

years per decade, Figure 5l) indicate the frequency of high-flow years in the ensemble, which 505 

here is the same as the historical high-flow year frequency.  506 
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 507 
Figure 5. Summary metrics of simulated annual natural flow at Lees Ferry for the 508 

ISM_1906_2020 ensemble 509 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 
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The ensemble has a positive skewness of 0.15, equal to that of the historical record 510 

(Figure 5e). For a 50-year record, skewness needs to exceed a value of 0.66 to be statistically 511 

different from zero with a 95% confidence level. Thus, for this ensemble, the skewness is 512 

considered not significantly different from zero. Nevertheless, it is retained as a metric to provide 513 

historical context for other ensembles. Positive skewness means that, on average, there will be 514 

more flows below the mean than flows above the mean. This characteristic is also quantified 515 

using the count below threshold metric.  516 

The ACF results show that the historical lag 1 to 3 correlation of the historical record are 517 

reproduced in this ensemble (Figure 5f). The lag-1 correlation of the ensemble is centered on the 518 

historical correlation value of 0.2.  For a 115-year record, the threshold for statistical significance 519 

with 95% confidence is 1.96/√𝑛 = 0.18, indicating that lag-1 correlation is statistically different 520 

from zero. For the ensemble members that have 50 years of data, the threshold for statistical 521 

significance with 95% confidence is 1.96/√𝑛 = 0.28, indicating that we cannot discern this as 522 

being statistically different from zero. This is reflected in the range of the box whiskers crossing 523 

the zero axis, but from the pattern with historical dots within the box ranges we can see that 524 

historical correlations are reproduced.   525 

Drought event statistics (drought length, cumulative deficit, intensity, and interarrival 526 

time) quantify characteristics of droughts, defined by consecutive years during which the annual 527 

flow remains below the historical long-term average (i.e. 14.74 maf/yr as the specified 528 

threshold). The results in Figure 5g-j indicate that, overall, drought event characteristics in the 529 

ensemble are very similar to droughts in the historical record. Therefore, this ensemble is 530 

representative of drought events that have occurred in the past. Note that these statistics break a 531 

sustained dry period into separate events when one (or a selected number) of years exceed the 532 

threshold. 533 

Average count below/above threshold (Figure 5k and l) quantifies the average number of 534 

years in a decade with flows below/above a threshold. Below threshold years were counted using 535 

a threshold of 14.74 maf/yr, the long-term mean. Above threshold years were counted using a 536 

threshold of 20 maf/yr. This value is close to the highest flow occurring in the 21st century 537 

millennium drought period, which has been the worst 21-year drought that has occurred based on 538 

the observed record (Salehabadi et al., 2022), and by using this threshold, this metric helps 539 

evaluate whether an ensemble has occasional high flows at a higher or lower frequency than this 540 

period. Counts are reported as an average over 10-year durations. In this ensemble, on average, 541 

half of the years in each decade of the planning period are low-flow years (< 14.74 maf/yr) and 542 

one year in a decade is high-flow (> 20 maf/yr). These are similar to the number of low/high 543 

flow years in the full observed record. For this ISM-based ensemble, the moving count 544 

below/above threshold is flat, showing the lack of variability in the number of low/high flow 545 

years during various decades of the planning period (Supporting Information Figures S1 and S2). 546 

Duration-severity analysis (Figure 6) was used as a more general approach to quantify 547 

droughts, regardless of the occurrence of wet years during the dry periods. Duration-severity 548 

analysis shows how the lowest mean flows may vary for different durations (from 1 to 25 years) 549 

and where the range of extreme droughts in the ensemble sit with respect to the observed and 550 

paleo-reconstructed flows. The results indicate that extreme droughts in the ensemble are aligned 551 

with those in the observed record, and the ensemble does not have droughts any more severe 552 

than previously observed in the last century. However, the paleo-reconstructed flow data (dates 553 
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back to 1416) does contain droughts more severe than droughts in both the observed record and 554 

the ensemble across the full range of durations from 1 to 25 years depicted. The need to plan for 555 

potential recurrence of droughts as severe as in the paleo record, and potentially even more 556 

severe droughts associated with warming, suggests that this ISM_1906_2020 ensemble is not 557 

suitable for these planning purposes.  558 

 559 
Figure 6. Duration-severity analysis; Overlaying the range of extreme droughts (quantified as the 560 

minimum duration-severity) within the ISM_1906_2020 ensemble (orange area) on the duration-561 

severity plot of the observed (light dots) and tree-ring-reconstructed (dark dots) natural flows at 562 

Lees Ferry. The spread of the orange area illustrates how the ensemble's extreme droughts may 563 

vary across various durations, comparing them with the historical and tree-ring-reconstructed 564 

records. Each dot represents mean annual flow averaged over the duration on the x-axis. There is 565 

a dot for each duration (including overlaps) within the record. 566 

Reservoir storage-yield and reliability results illustrate responses of the streamflow 567 

ensemble to a set of desired yields and reliabilities (Figure 7). The metric captures the storage 568 

attributes of the ensemble at an abstract level distinct from particular reservoir sizing or 569 

operation policies. The results show that under this streamflow ensemble, an active storage 570 

capacity of 60 maf (close to the combined storage capacity of all major reservoirs in the basin) is 571 

required to provide a yield of 15 maf/yr with 90% of reliability during 50 years of the planning 572 

period. The yield of 15 maf/yr is equal to the total water allocated by the Law of the River to the 573 

Upper and Lower Basins (7.5 maf to each basin, not including 1.5 maf to Mexico). This indicates 574 

that, even under the ISM_1906_2020 ensemble, which is based on the full observed record 575 

including the early 20th-century pluvial period of unusually high flows, a high storage capacity is 576 

needed to meet the Law of the River. In the case of meeting a yield of 13.5 maf/yr (which is the 577 

sum of Upper Basin’s average consumptive uses and losses of 4.4 maf/yr and 9 maf/yr of normal 578 
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allocation in the Lower Basin and Mexico) with 90% of reliability, an active storage capacity of 579 

20 maf is needed.  580 

  581 

 582 
Figure 7. Reservoir storage-yield and reliability analysis for the ISM_1906_2020 ensemble. 583 

These plots illustrate the response of the streamflow ensemble to a set of desired yields and 584 

reliabilities. The metric captures the storage attributes of the streamflow ensemble at an abstract 585 

level distinct from particular reservoir sizing or operation policies. The plot on the left shows the 586 

storage needed for releasing the desired yields shown on the y axis. The plot on the right shows 587 

the storage needed for a specific yield and desired reliabilities. 588 

The Hurst coefficient for this ensemble is centered around 0.77, denoting a long-term 589 

structure in its dependence. However, due to the short evaluation period (50 years), the 590 

uncertainty in this coefficient limits its interpretation. Nevertheless, when compared to the 591 

historical record, this ensemble shows similarity in long-term persistence quantified with the 592 

Hurst coefficient (Figure 8). 593 

Overall, based on the metrics calculated, this ensemble will only test the system for flows 594 

already experienced. This was expected since this ISM-based ensemble is a recycling of 595 

historical flow sequences. This ensemble does not explore a sample space where the mean may 596 

have changed, or minima/maxima may go beyond the historical record, or droughts may be more 597 

severe or sustained than the historical record. Thus, based on this set of metrics, this ensemble is 598 

assessed to not provide enough variability to fulfill drought planning needs. 599 

 600 
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  601 
Figure 8. Hurst coefficient for the ISM_1906_2020 ensemble 602 

4.2. Comparison Results 603 

Figure 9 shows the ranges of decadal mean (yellow to green boxes) and full 50-year 604 

period mean (pink boxes) of the 21 ensembles. The mean ranges show how dry or wet the 605 

ensembles are, compared with each other and the historical long-term mean of 14.74 maf/yr 606 

(solid red line).  607 

In the ISM_1906_2020, AR1, NPC_1906_2020, and CMIP5_BCSD ensembles, the 608 

medians of simulated means closely match the historical long-term mean (Figure 9). These 609 

ensembles are thus consistent with an assumption of stationarity of the mean, as the historical 610 

mean is preserved in the simulations. Note though that CMIP5_BCSD 10-year means have 611 

greater spread than the other ensembles, indicating that this ensemble has increased variability. 612 

The other ensembles, however, deviate from stationarity of the mean with means less than the 613 

historical mean, indicating drier conditions. Among these, TempAdj_RCP4.5_10% and 614 

TempAdj_RCP8.5_10% are the driest ensembles, with mean flows lower than even the 615 

millennium drought mean (as shown by dashed red line in Figure 9).  616 

In the ISM-based ensembles, the stationarity of the simulated decadal mean values is 617 

clearly evident. These ensembles consistently provide similar mean flow ranges across various 618 

decades. On the other hand, in the temperature-adjusted flow ensembles (i.e. TempAdj_RCP), 619 

decadal mean values uniformly decrease, indicating a projected decrease. 620 

Among the ensembles, those based on CMIP (i.e. climate change-informed hydrology 621 

including CMIP3_BCSD, CMIP5_BCSD, and CMIP5_LOCA) exhibit the widest mean ranges 622 

and uncertainties (Figure 9). One significant source of uncertainty in CMIP flow projections is 623 

the downscaling process, which involves adapting coarse-resolution GCM outputs for high-624 

resolution hydrology models (Lukas et al., 2020). This downscaling-related uncertainty is 625 

evident when comparing the simulated mean values of the CMIP5_BCSD and CMIP5_LOCA 626 

ensembles. Interestingly, despite their common CMIP5 source, the choice of downscaling 627 

method (BCSD or LOCA) results in variations in the mean values, with CMIP5_BCSD showing 628 

a higher mean (closer to the full observed record mean) than CMIP5_LOCA (closer to the 629 

millennium drought mean). This is consistent with findings from other studies, such as Vano et 630 

al. (2020), which thoroughly compared downscaled LOCA and BCSD projections. 631 
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 632 
Figure 9. Mean of streamflow ensembles along with the long-term mean of the historical full 633 

record (1906-2020, solid red line) and the millennium drought mean (2000-2020, dashed red 634 

line). Yellow to green boxes of each ensemble show decadal mean and the pink boxes indicates 635 

the mean of full planning period. 636 

The minimum flow is a commonly used metric, particularly valuable when the purpose of 637 

using the streamflow ensembles is drought management. When the objective is to plan for future 638 

scenarios with low-flow years, the minimum flow serves as a crucial metric for quantifying and 639 

comparing ensembles, aiding in ensemble selection. Figure 10a shows the ranges of minimum 640 

one-year flow in decadal periods (yellow to green boxes) as well as during the full period (pink 641 

boxes). The results indicate that half of the ensembles (i.e., ISM-, NPC-, and Drought-based 642 

ensembles) are constrained to the historical minimum annual flow of 5.5 maf/yr (as shown by the 643 

red dashed line in Figure 10a). Furthermore, these ensembles exhibit limited variability in 644 

decadal minimum annual flows. Consequently, if the objective is to plan for or accommodate 645 

annual flows lower than historical records or to introduce some diversity in decadal minimum 646 

annual flows, these particular ensembles may not be the most suitable choices. 647 

Maximum is another frequently used metric for assessing the upper boundaries of annual 648 

flows within the ensembles. This metric is particularly valuable when selecting ensembles for 649 

planning wet periods or comparing maximum annual flows among various dry ensembles. The 650 

results show that the majority of the ensembles have high flows lower than the historical 651 

maximum of 24.18 maf/yr (Figure 10b). In contract, the CMIP-based ensembles have the highest 652 

annual flows. There are significant differences in maximum annual flows within the 653 

CMIP5_BCSD and CMIP5_LOCA ensembles, highlighting the effect of downscaling-related 654 

uncertainty on these flow projections. 655 

The standard deviation of the ensembles shows that the historical standard deviation of 656 

4.25 maf/yr is preserved in those ensembles that use the full historical flow record to generate the 657 
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flow sequences, except for the TempAdj ensembles (Figure 10c). Within the TempAdj 658 

ensembles, the proportionally reduction of historical natural flow in response to future 659 

temperature projections leads to a notable decline in standard deviations. This decreasing trend in 660 

variability over time may make these ensembles less suitable for planning purposes that require a 661 

broader range of variability when considering a changing future. In contrast, the CMIP5_BCSD 662 

ensemble has the highest standard deviation, higher than the variability provided by 663 

CMIP5_LOCA.  664 

Figure 10d shows skewness calculated for the ensembles. The ISM_1906_2020 and 665 

ISM_1416_2015 results indicate the skewness of the historical and paleo data evaluated over 50-666 

year intervals. The skewness values are mostly centered close to 0, indicating almost no 667 

skewness, but the range spanned by the boxes reveals the sampling variability in the skewness 668 

calculated within the 50-year intervals. Comparison between ensembles indicates that most of 669 

them have positive skewness (Figure 10d), showing that the simulated flows are more toward the 670 

values lower than the mean and median. 671 

 672 

 

(a) 
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 673 

Figure 10. Common metrics for the streamflow ensembles: (a) minimum, (b) maximum, (c) 674 

standard deviation, and (d) skewness. Yellow to green boxes show decadal metric and the pink 675 

boxes are for the full planning period. 676 

Figure 11 illustrates lags 1 to 3 correlation ranges of the ensembles, alongside the 677 

historical correlation. The results indicate that historical lag-1 correlation is not preserved the 678 

following ensembles: ISM_1988_2020, ISM_1416_2015, NPC_1988_2020, NPC_2000_2020, 679 

5YrBlockRes_2000_2018, three DroughtYrRes ensembles, and TempAdj_RCP8.5_10%. While 680 

not reproducing lag 1 correlation may not disqualify the use of these ensembles, it does 681 

differentiate them. It should also be noted that, for a series length of 50 years, the significance 682 

level is 0.28, encompassing a wide-range of correlations to be considered significant. The PACF 683 

measures correlations at higher lags that are not directly influenced by lower lag correlations 684 

(Figure 12). Since lag-2 and higher correlations are generally low and rarely statistically 685 

significantly different from 0, the PACF higher lag values also tend to be low and lack 686 

significant deviations from 0, offering limited additional information beyond what is observed in 687 

the ACF. 688 

(d) 
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 689 
Figure 11. Autocorrelation function (ACF) at lags one to three for the streamflow ensembles 690 

 691 

 692 
Figure 12. Partial Autocorrelation Function (PACF) at lags one to three for the ensembles 693 

The Hurst coefficient for the ensembles we evaluated is shown in Figure 13. All 694 

ensembles have a length of 50 years, except ISM_1988_2020 and 5YrBlockRes_2000_2018, 695 

which span shorter periods of 33 and 42 years, respectively. Ideally, for accurate Hurst 696 
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coefficient comparisons, the period should be consistent, as the computed value is dependent on 697 

the period length. The results show that the Hurst coefficient for ISM_1906_2020 effectively 698 

mirrors the Hurst coefficient for historical data assessed over 50-year periods, with the box range 699 

indicating uncertainty. Many of the evaluated ensembles exhibit box ranges lower than the 700 

historical Hurst coefficient, indicating that they are not preserving persistence. Ensembles that do 701 

maintain persistence include ISM_1906_2020, ISM_1416_2015, AR1, three NPC-based 702 

ensembles, CMIP5_LOCA, and six temperature-adjusted ensembles (identified by 703 

TempAdj_RCP at the beginning of their names on the plot). 704 

Reservoir Storage-Yield and Reliability analysis was used to compare the streamflow 705 

variability in the ensembles. As discussed previously, Figure 7 shows reservoir storage-yield and 706 

reliability analysis for the ISM_1906_2020 ensemble. The results for the other ensembles are in 707 

the Supporting Information. When comparing ensembles representative of the full historical 708 

record (i.e., ISM_1906_2020, AR1, NPC_1906_2020), it becomes evident that the 709 

NPC_1906_2020 ensemble requires more storage to achieve a specific yield, suggesting that the 710 

NPC_1906_2020 ensemble is characterized by higher persistence (Figure 7, Figures S29, and 711 

S36 in Supporting Information). 712 

 713 
Figure 13. Hurst coefficient for the streamflow ensembles (box plots) along with the historical 714 

Hurst coefficient (red line) 715 

The count below threshold metric, CBT, metric was calculated as the average number of 716 

years within 10-year durations with annual flows falling below a threshold of 12.56 maf/yr, 717 

representing the 21st-century average flow (Figure 14a). In general, ensembles with lower mean 718 

flow tend to have a higher CBT. However, there are exceptions to this pattern. Comparison of 719 

the millennium-drought-based ensembles (i.e. NPC_2000_2020, 5YrBlockRes_2000_2018, and 720 

DroughtYrRes_2000_2020) shows that, despite having similar mean values and other previously 721 
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assessed metrics, the 5YrBlockRes_2000_2018 ensemble has fewer years below the threshold 722 

compared to the other two ensembles.  723 

Similarly, the count above threshold, CAT, were calculated as the average number of 724 

years within 10-year durations with annual flows exceeding a threshold of 20 maf/yr, 725 

representing the 21st-century maximum annual flow (Figure 14b). The CAT results indicate that 726 

most ensembles have a lower frequency of high flows compared to the full observed record. A 727 

comparison between ISM_1906_2020 and ISM_1931_2020 shows that excluding the first 24 728 

years of the observed record (i.e. 1906-1931, known as the unusual pluvial period) in the 729 

ISM_1931_2020 flow generation results in a 50% decrease in the number of high flows. The 730 

ISM_1931_2020 high-flow frequency is more similar to ISM_1416_2015, an ensemble based on 731 

paleo-reconstructed flows extending the historical data up to 1416. The results also highlight the 732 

limitation of some ensembles in simulating high flows. Ensembles like 733 

DroughtYrRes_1576_1600, TempAdj_RCP4.5_10%, and TempAdj_RCP8.5_10% fail to 734 

produce high flows at least as high as the maximum annual flow observed in the 21st century. 735 

Consequently, these ensembles may not be suitable for planning scenarios that need to account 736 

for occasional high flows. 737 

 

(a) 
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Figure 14. (a) Average count below a threshold of 12.56 maf/yr (21st-century mean flow at Lees 738 

Ferry) over 10-year durations. (b) Average count above a threshold of 20 maf/yr over 10-year 739 

durations. 740 

Hydrologic drought event statistics were determined using a threshold of 14.74 maf/yr, 741 

which represents the historical long-term mean flow. This threshold was employed to identify 742 

consecutive years (with a length of two years or more) with flows below this value. 743 

Subsequently, we calculated the average drought length, magnitude (cumulative deficit), 744 

intensity, and interarrival time, as illustrated in Figure 15. As detailed in the methodology 745 

section, one limitation of drought event statistics is that they divide a sustained drought period 746 

into distinct events if there is a year that exceeds the threshold. To address this limitation and 747 

avoid dependency on a specific threshold, we conducted a duration-severity approach to quantify 748 

extreme droughts within the ensembles, regardless of the occasional occurrence of wet years 749 

during dry periods. Figure 6 shows duration-severity results for the ISM_1906_2020 ensemble. 750 

The results for the other ensembles are in Supporting Information. 751 

Among the ensembles that closely resemble the observed record based on the previously 752 

accessed metrics, the ISM_1906_2020 ensemble stands out as the only one that replicates all the 753 

available drought event statistics from the observed record (Figure 15). The duration-severity 754 

results indicate that extreme droughts in this ensemble closely align with those in the observed 755 

record, and the ensemble does not exhibit droughts of greater severity than those observed in the 756 

last century (Figure 6). This characteristic makes the ensemble unsuitable for planning in a 757 

warmer future with declining flow. 758 

Drought event statistics for the AR1 ensemble indicate that, overall, drought 759 

characteristics in this ensemble are very similar to the ISM_1906_2020 ensemble (Figure 15). 760 

However, the duration-severity results indicate that extreme droughts more severe than the 761 

ISM_1906_2020 is present in the AR1 ensemble (Supporting Information Figure S28). The 762 

(b) 
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extreme droughts in the AR1 ensemble are mostly consistent with what has previously occurred 763 

in the observed and paleo-reconstructed records. In some short durations (1- and 2-year) 764 

however, the unrealistically low mean flows are also available in the AR1 ensemble (Supporting 765 

Information Figure S28). 766 

The Paleo ISM ensemble (ISM_1416_2015) has drought length and magnitude higher 767 

than the ISM_1906_2020 ensemble, but drought intensity is similar, indicating a similar average 768 

deficit in dry years (Figure 15). The duration-severity results for the Paleo ISM ensemble show a 769 

wide range of variability for extreme droughts (Supporting Information Figure S21). Along with 770 

having extreme droughts similar to those in the observed record, the ensemble also includes 771 

more severe droughts similar to the extreme droughts in the paleo estimations. Therefore, this 772 

ensemble does provide extreme droughts that are more severe and sustained than what has been 773 

observed in the last century. However, there are not any droughts more severe or sustained than 774 

the paleo estimates. A warming future may add to the severity of the extreme paleo droughts and 775 

such droughts are needed to be considered in future drought planning. 776 

The TempAdj_RCP8.5_10% exhibits the most severe and sustained droughts with the 777 

highest length and magnitude (Figure 15). Under this ensemble, there would be, on average, a 5 778 

maf/yr deficit compared to the long-term mean during drought events. Looking at the duration-779 

severity results (Supporting Information Figure S140) also indicates that extreme droughts in this 780 

ensemble are significantly more severe than what has previously occurred in the observed and 781 

paleo-reconstructed records. Overall, this ensemble stands out as the most extreme in terms of 782 

providing drought conditions.  783 

Most of the metrics calculated for the NPC_1906_2020 ensemble are similar to the 784 

ISM_1906_2020 ensemble, with more variability in the metrics. The differences between these 785 

two ensembles are evident in the extreme droughts quantified by the duration-severity analysis 786 

(Figure 6 and Supporting Information Figure S35) and the reservoir storage-yield and reliability 787 

analysis (Figure 7 and Supporting Information Figure S36). The duration-severity results for the 788 

NPC_1906_2020 ensemble show a wide range of variability for the extreme droughts in which 789 

along with extreme droughts similar to those in the observed and paleo records, some more 790 

severe and sustained droughts are also available. This indicates that, even by only resampling 791 

from the full observed record, extreme droughts as severe and sustained as those in the paleo 792 

record can be created in an ensemble. While ISM is not able to produce such extreme droughts 793 

and thus is not a reasonable method to use. The extreme droughts available in the 794 

NPC_1906_2020 ensemble resulted in needs for higher storage than in the ISM_1906_2020 795 

ensemble to provide yields with more reliability. 796 

Looking at the millennium drought-based ensembles generated using NPC and drought 797 

resampling (i.e. NPC_2000_2020 and DroughtYrRes_2000_2020) indicates that these two 798 

ensembles are very similar in drought event statistics (Figure 15), but duration-severity analysis 799 

reveals the difference (Supporting Information Figures S49 and S63). The 800 

DroughtYrRes_2000_2020 ensemble does provide some extreme droughts (less than 10% of the 801 

extreme droughts in the ensemble) that are more severe and sustained than the past, but those are 802 

not as severe as the extreme droughts in the NPC_2000_2020 ensemble. This is despite these two 803 

ensembles being resampled from the same subset of the observed natural flow. 804 
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 805 

Figure 15. Drought event statistics: (a) drought length, (b) drought cumulative deficit, (c) 806 

drought intensity, and (d) drought interarrival time. The threshold is long-term average of the 807 

historical natural flow at Lees Ferry (14.7 maf/yr). All drought events with a length grater than 1 808 

year (LMin=2 and LMax=9999) have been considered, without specific thresholds for drought 809 

magnitude and intensity (D0=0 and I0=0). 810 

 811 

(c) 

(d) 
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Lag-1 normalized Mutual Information (MI) was calculated for the ensembles and is 812 

shown in Figure 16. These results are highly sensitive to the chosen bin boundaries. Therefore, a 813 

consistent binning method was applied to ensure the comparability of MI values across 814 

ensembles. The findings show variations in the degree of nonlinear dependence among 815 

ensembles. Notably, NPC_2000_2020 exhibits a higher MI compared to 816 

DroughtYrRes_2000_2020, despite their lack of correlation in Figure 11. This suggests that 817 

although both the NPC and random resampling methods are unable to reproduce correlation 818 

when the sampling period is short (21 years from 2000 to 2020), the NPC method can generate 819 

more nonlinear dependence than a random resampling method. 820 

 821 
Figure 16. Lag-1 normalized Mutual Information (MI) of the streamflow ensembles (box plots) 822 

along with the historical normalized MI (red line) 823 

4.3. Classifying Ensembles 824 

After quantifying the characteristics of the ensembles, we applied Ward’s method to 825 

classify ensembles based on the metric medians (Figure 17). To do this, we initially examined 826 

how sensitive the classification of streamflow ensembles was to metrics. Results indicated that 827 

when mutual information was in the set of metrics used for classification, ensembles tended to 828 

switch between groups for no apparent reason. Excluding mutual information from the set used 829 

for classification maintained the robustness of major ensemble classifications. Therefore, we 830 

excluded mutual information from our metric list used for classification. 831 

The heatmap in Figure 17 summarizes the metric results for the ensembles and the 832 

historical values highlighted in red. In this figure, each row corresponds to a streamflow 833 

ensemble, and each column represents a metric, with each cell indicating a specific metric 834 

median for a given ensemble. The color scheme of the heatmap was standardized using 835 

subtraction of the metric mean divided by the metric standard deviation across all the ensembles. 836 
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The dendrograms on the left represent ensembles, with the X-axis as the ensembles and the Y-837 

axis indicating the distance (as a similarity criterion) at which ensembles merge into the same 838 

category. Similar ensembles with minimum distance fall into the same category, while dissimilar 839 

ensembles are placed farther in the hierarchy. 840 

The results indicate that some temperature-adjusted ensembles, characterized by a steep 841 

decline in flow, were grouped together with the paleo drought resampled ensemble, 842 

DroughYrRes_1576_1600 (group 1). This cluster of ensembles has the worst values for drought 843 

metrics, the lowest flow magnitudes, and no high flows. The dendrograms on the left show that 844 

the TempAdj_RCP8.5_10% ensemble in this group is the most distinct one, while the paleo 845 

resampled ensemble (DroughYrRes_1576_1600) is positioned in the middle of the group. 846 

The ensembles based on resampling from specific drought periods are clustered together 847 

in group 2. In this group, it is interesting to note that the two millennium drought-based 848 

ensembles (NPC_2000_2020 and DroughtYrRes_2000_2020) are not the most similar ensembles 849 

despite them being resampled from the same drought period. A comparison of the two rows 850 

corresponding to these ensembles (Figure 17) shows that this dissimilarity is primarily due to the 851 

difference in the Hurst coefficient, which is higher in the NPC-based ensemble and is more 852 

similar to the historical Hurst coefficient. Therefore, when choosing between these two 853 

ensembles, the NPC-based one is preferred due to its preservation of historical persistence or 854 

long memory, as quantified by the historical Hurst coefficient. 855 

Group 3 comprises ensembles that exhibit the highest similarity to the historical record. 856 

Among these ensembles, ISM_1906_2020 and NPC-1906_2020 are the most like the historical 857 

record. The paleo-based ensemble (ISM_1416_2015) within this group has the highest 858 

correlation (0.37) among all ensembles. The ISM_1931_2020 and two TempAdj ensembles 859 

stand out as the most distinct within this group, showing worse drought statistics and lower 860 

flows.  861 

The CMIP-based ensembles also are clustered together (group 4). Based on the 862 

dendrograms on the left, the CMIP5-LOCA and CMIP3-BCSD are the most similar ensembles 863 

within this group. Interestingly, despite both CMIP5-LOCA and CMIP5-BCSD originating from 864 

the common CMIP5 source, the choice of downscaling method (BCSD or LOCA) introduces 865 

metric differences between these two ensembles. Nevertheless, they remain within the same 866 

group, representing a climate change-informed future.  867 

This ensemble grouping provides an analytical framework for characterizing and 868 

assessing the ensembles suitability for planning under different future scenarios. Ensembles 869 

within the same category help evaluate the system’s response to the future scenario represented 870 

by that category. Planning based on ensembles within a single category results in similarities, but 871 

significant differences in the system's responses are expected across different ensemble groups. 872 

Robust planning should consider ensembles from all the major groups identified to have higher 873 

confidence that the sample space of ensembles represented by these groups has been covered. 874 

Note that, in addition to classifying ensembles, Ward’s method also grouped metrics 875 

based on their median within each ensemble. This classification is indicated by the dendrograms 876 

at the top of Figure 17. Two major groupings emerge, Group A on the left and B on the right. 877 

Group A contains metrics largely related to flow magnitude, notably mean, minimum, median, 878 

maximum, and count above threshold. Here count above the threshold of 20 maf/yr serves as a 879 

proxy for flow magnitude so it is logical that it falls in this group. Standard deviation and 880 
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skewness are not magnitude quantities, but evidently are more closely aligned with the 881 

magnitude metrics than those metrics in group B. Similarly, the minimum 5- and 20-year 882 

duration-severity metrics relate to both magnitude and persistence, but evidently, more so to 883 

magnitude, by falling in group A. Group B metrics appear to be largely related to drought 884 

persistence (ACF, Hurst coefficient, reservoir storage-yield-reliability, drought event statistics, 885 

and count below threshold). The count below threshold metric here, with threshold being the 886 

long-term mean, does relate to persistence of flows below this threshold and so appears to be 887 

logically placed in this group. 888 

 889 
Figure 17. Classification of streamflow ensembles and metrics using Ward’s method and based 890 

on metric medians. The heatmap summarizes the metric results for all ensembles. Each row 891 

corresponds to a streamflow ensemble, and each column represents a metric, with each cell 892 

indicating a specific metric median for a given ensemble. The color scheme is standardized using 893 

subtraction of the metric mean divided by the metric standard deviation across all the ensembles. 894 

The dendrograms on the left represent ensembles, with the X-axis as the ensembles and the Y-895 

axis indicating the distance (as a similarity criterion) at which ensembles merge into the same 896 

category. Similar ensembles with minimum distance fall into the same category, while dissimilar 897 

ensembles are placed farther in the hierarchy. Dendrograms on the top represent metrics and 898 

show how similar the metrics are. 899 

5. Conclusions 900 

In this study, we suggested an evidence-based and structured framework for the 901 

quantification and comprehensive description of various streamflow ensembles, to assess their 902 
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suitability for different planning purposes. Our approach offers objective and quantitative 903 

evidence to interpret and analyze differences among these ensembles based on their distinctive 904 

characteristics. We employed a broad range of statistical metrics to quantitatively assess a wide 905 

range of streamflow ensembles available in the Colorado River Basin and provided guidance on 906 

their application and uncertainty. Our metrics address limitations of previous drought statistics 907 

and also quantify high flows, the occurrence of which are important for filling reservoirs in some 908 

systems. We also developed a classification approach that grouped similar ensembles based on 909 

the metrics. The ensemble classification facilitated the comparison of multiple ensembles and 910 

provided an analytical framework for characterizing and assessing the ensembles suitability for 911 

planning under different future scenarios. It also offers opportunities for efficiency, since not all 912 

ensembles with similar attributes based on this classification need to be evaluated in a planning 913 

scenario. For robust planning, we suggest considering ensembles from all the major identified 914 

groups to have higher confidence that the sample space of ensembles represented by these groups 915 

has been covered. 916 

This study’s framework serves as a tool for evaluating the key attributes that define each 917 

streamflow ensemble, enabling a deeper understanding of ensembles’ similarities and 918 

differences, which are critical for informed decision-making. Our evidence-based approach 919 

serves as a guiding tool for robust decision-making in operational water management, aiding in 920 

the selection of the ensembles to use for specific planning purposes such as Reclamation’s 921 

ongoing Colorado River Post-2026 operations effort. By providing clear, documented, 922 

communicable, and evidence-based information, our findings help prevent the adoption of 923 

streamflow ensembles without full information on their characteristics.  924 

In our upcoming studies, we plan to evaluate the characteristics of the streamflow 925 

ensembles from this study to associate each of them with a storyline that justifies their 926 

plausibility for future decision making in the face of uncertainty and non-stationarity. We also 927 

plan to investigate any gaps in the sample space represented by existing ensembles and to 928 

develop a new ensemble or ensembles as necessary to fill such gaps. 929 
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Introduction  

This supporting information contains figures illustrating metrics calculated for 

streamflow ensembles in the Colorado River Basin, as well as a summary description of 

each ensemble.  
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Figure S1. Moving count below threshold for the ISM_1906_2020 ensemble. This plot 

shows the moving number of below threshold (long-term mean of 14.74 maf/yr) years 

within a decade.  

 

 

Figure S2. Moving count above threshold for the ISM_1906_2020 ensemble. This plot 

shows the moving number of above threshold (20 maf/yr) years within a decade.  
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Text S1.   ISM_1931_2020: Pluvial-Removed ISM Ensemble  

Figure S3 through Figure S9 present the metrics calculated for the Pluvial-Removed 

ISM ensemble, labeled as “ISM_1931_2020”. This ensemble comprises 90 time series, 

generated using the Index Sequential Method (ISM) as described by Ouarda et al. (1997) 

and illustrated by Salehabadi et al. (2020). To generate this ensemble, ISM was applied to 

the post-pluvial historical natural flow from 1931 to 2020. The length of each time series 

of the ensemble is set by a designated planning period, taken as 50 years here. 

 

 

Figure S3. Time series of the simulated annual natural flow at Lees Ferry for the 

ISM_1931_2020 ensemble. This figure shows 10th to 90th percentiles (light blue area), and 

25th to 75th percentiles (dark blue area), maximum and minimum (whiskers), median 

(navy line), and a sample sequence of the ensemble (red line). 
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Figure S4. Summary metrics of simulated annual natural flow at Lees Ferry for the 

ISM_1931_2020 ensemble. 
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Figure S5. Moving count below threshold for the ISM_1931_2020 ensemble. This plot 

shows the moving number of below threshold (long-term mean of 14.74 maf/yr) years 

within a decade.  

 

 

Figure S6. Moving count above threshold for the ISM_1931_2020 ensemble. This plot 

shows the moving number of above threshold (20 maf/yr) years within a decade.  
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Figure S7. Duration-severity analysis; Overlaying the range of extreme droughts 

(quantified as the minimum duration-severity) within the ISM_1931_2020 ensemble 

(orange area) on the duration-severity plot of the observed (light dots) and tree-ring-

reconstructed (dark dots) natural flows at Lees Ferry. The spread of the orange area 

illustrates how the ensemble's extreme droughts may vary across various durations, 

comparing them with the historical and tree-ring-reconstructed records. Each dot 

represents mean annual flow averaged over the duration on the x-axis. There is a dot for 

each duration (including overlaps) within the record. 
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Figure S8. Reservoir storage-yield and reliability analysis for ISM_1931_2020. These plots 

illustrate the response of the streamflow ensemble to a set of desired yields and 

reliabilities. The metric captures the storage attributes of the streamflow ensemble at an 

abstract level distinct from particular reservoir sizing or operation policies. The plot on 

the left shows the storage needed for releasing the desired yields shown on the y axis. 

The plot on the right shows the storage needed for a specific yield and desired 

reliabilities.  

 

 

Figure S9. Hurst coefficient for the ISM_1931_2020 ensemble.  
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Text S2.   ISM_1988_2020: Stress Test ISM  

Figure S10 through Figure S16 present the metrics calculated for the Stress Test ISM 

ensemble, labeled as “ISM_1988_2020”. This ensemble is generated by applying ISM to a 

subset of the historical natural flow record from 1988 to 2020. This ensemble comprises 

33 time series, each 33 years long, and can only be used for planning periods up to 33 

years. 

 

 

Figure S10. Time series of the simulated annual natural flow at Lees Ferry for the 

ISM_1988_2020 ensemble. This figure shows 10th to 90th percentiles (light blue area), and 

25th to 75th percentiles (dark blue area), maximum and minimum (whiskers), median 

(navy line), and a sample sequence of the ensemble (red line). 
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Figure S11. Summary metrics of simulated annual natural flow at Lees Ferry for the 

ISM_1988_2020 ensemble. 
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Figure S12. Moving count below threshold for the ISM_1988_2020 ensemble. This plot 

shows the moving number of below threshold (long-term mean of 14.74 maf/yr) years 

within a decade.  

 

 

Figure S13. Moving count above threshold for the ISM_1988_2020 ensemble. This plot 

shows the moving number of above threshold (20 maf/yr) years within a decade.  
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Figure S14. Duration-severity analysis; Overlaying the range of extreme droughts 

(quantified as the minimum duration-severity) within the ISM_1988_2020 ensemble 

(orange area) on the duration-severity plot of the observed (light dots) and tree-ring-

reconstructed (dark dots) natural flows at Lees Ferry. The spread of the orange area 

illustrates how the ensemble's extreme droughts may vary across various durations, 

comparing them with the historical and tree-ring-reconstructed records. Each dot 

represents mean annual flow averaged over the duration on the x-axis. There is a dot for 

each duration (including overlaps) within the record. 
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Figure S15. Reservoir storage-yield and reliability analysis for ISM_1988_2020. These 

plots illustrate the response of the streamflow ensemble to a set of desired yields and 

reliabilities. The metric captures the storage attributes of the streamflow ensemble at an 

abstract level distinct from particular reservoir sizing or operation policies. The plot on 

the left shows the storage needed for releasing the desired yields shown on the y axis. 

The plot on the right shows the storage needed for a specific yield and desired 

reliabilities.   

 

 

Figure S16. Hurst coefficient for the ISM_1988_2020 ensemble.  
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Text S3.   ISM_1416_2015: Paleo ISM Ensemble 

Figure S17 through Figure S23 present the metrics calculated for the Paleo ISM 

ensemble, labeled as “ISM_1416_2015”. This ensemble comprises 600 time series, 

generated by applying ISM to the full period (1416-2015) of tree-ring-reconstructed 

natural flow data. The length of each time series of the ensemble is set by a designated 

planning period, taken as 50 years here. 

 

 

Figure S17. Time series of the simulated annual natural flow at Lees Ferry for the 

ISM_1416_2015 ensemble. This figure shows 10th to 90th percentiles (light blue area), and 

25th to 75th percentiles (dark blue area), maximum and minimum (whiskers), median 

(navy line), and a sample sequence of the ensemble (red line). 
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Figure S18. Summary metrics of simulated annual natural flow at Lees Ferry for the 

ISM_1416_2015 ensemble. 
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Figure S19. Moving count below threshold for the ISM_1416_2015 ensemble. This plot 

shows the moving number of below threshold (long-term mean of 14.74 maf/yr) years 

within a decade.  

 

 

Figure S20. Moving count above threshold for the ISM_1416_2015 ensemble. This plot 

shows the moving number of above threshold (20 maf/yr) years within a decade.  
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Figure S21. Duration-severity analysis; Overlaying the range of extreme droughts 

(quantified as the minimum duration-severity) within the ISM_1416_2015 ensemble 

(orange area) on the duration-severity plot of the observed (light dots) and tree-ring-

reconstructed (dark dots) natural flows at Lees Ferry. The spread of the orange area 

illustrates how the ensemble's extreme droughts may vary across various durations, 

comparing them with the historical and tree-ring-reconstructed records. Each dot 

represents mean annual flow averaged over the duration on the x-axis. There is a dot for 

each duration (including overlaps) within the record. 
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Figure S22. Reservoir storage-yield and reliability analysis for ISM_1416_2015. These 

plots illustrate the response of the streamflow ensemble to a set of desired yields and 

reliabilities. The metric captures the storage attributes of the streamflow ensemble at an 

abstract level distinct from particular reservoir sizing or operation policies. The plot on 

the left shows the storage needed for releasing the desired yields shown on the y axis. 

The plot on the right shows the storage needed for a specific yield and desired 

reliabilities.   

 

 

Figure S23. Hurst coefficient for the ISM_1416_2015 ensemble.  
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Text S4.   AR1 Ensemble  

Figure S24 through Figure S30 present the metrics calculated for the AR1 ensemble. 

This ensemble comprises 100 time series, each 50 years long, generated using an Auto-

Regressive order 1 (AR1) model with mean and variance of the full observed natural flow 

record.  

 

 

Figure S24. Time series of the simulated annual natural flow at Lees Ferry for the AR1  

ensemble. This figure shows 10th to 90th percentiles (light blue area), and 25th to 75th 

percentiles (dark blue area), maximum and minimum (whiskers), median (navy line), and 

a sample sequence of the ensemble (red line). 
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Figure S25. Summary metrics of simulated annual natural flow at Lees Ferry for the AR1 

ensemble. 
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Figure S26. Moving count below threshold for the AR1 ensemble. This plot shows the 

moving number of below threshold (long-term mean of 14.74 maf/yr) years within a 

decade.  

 

 

Figure S27. Moving count above threshold for the AR1 ensemble. This plot shows the 

moving number of above threshold (20 maf/yr) years within a decade.  
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Figure S28. Duration-severity analysis; Overlaying the range of extreme droughts 

(quantified as the minimum duration-severity) within the AR1 ensemble (orange area) on 

the duration-severity plot of the observed (light dots) and tree-ring-reconstructed (dark 

dots) natural flows at Lees Ferry. The spread of the orange area illustrates how the 

ensemble's extreme droughts may vary across various durations, comparing them with 

the historical and tree-ring-reconstructed records. Each dot represents mean annual flow 

averaged over the duration on the x-axis. There is a dot for each duration (including 

overlaps) within the record. 
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Figure S29. Reservoir storage-yield and reliability analysis for AR1. These plots illustrate 

the response of the streamflow ensemble to a set of desired yields and reliabilities. The 

metric captures the storage attributes of the streamflow ensemble at an abstract level 

distinct from particular reservoir sizing or operation policies. The plot on the left shows 

the storage needed for releasing the desired yields shown on the y axis. The plot on the 

right shows the storage needed for a specific yield and desired reliabilities.   

 

 

Figure S30. Hurst coefficient for the AR1 ensemble.  
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Text S5.   NPC_1906_2020: Full Observed Record Paleo-Conditioned Ensemble 

Figure S31 through Figure S37 present the metrics calculated for the Full Observed 

Record Paleo-Conditioned ensemble, labeled as “NPC_1906_2020”. This ensemble 

comprises 100 time series, each 50 years long, generated using the Nonparametric 

Paleo-Conditioned (NPC) method described by Prairie et al. (2008). NPC was applied to 

the full observed natural flow record from 1906 to 2020 and tree-ring reconstructed 

natural flows from 1416 to 2015. 

 

 

Figure S31. Time series of the simulated annual natural flow at Lees Ferry for the 

NPC_1906_2020 ensemble. This figure shows 10th to 90th percentiles (light blue area), and 

25th to 75th percentiles (dark blue area), maximum and minimum (whiskers), median 

(navy line), and a sample sequence of the ensemble (red line). 
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Figure S32. Summary metrics of simulated annual natural flow at Lees Ferry for the 

NPC_1906_2020 ensemble. 
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Figure S33. Moving count below threshold for the NPC_1906_2020 ensemble. This plot 

shows the moving number of below threshold (long-term mean of 14.74 maf/yr) years 

within a decade.  

 

 

Figure S34. Moving count above threshold for the NPC_1906_2020 ensemble. This plot 

shows the moving number of above threshold (20 maf/yr) years within a decade.  
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Figure S35. Duration-severity analysis; Overlaying the range of extreme droughts 

(quantified as the minimum duration-severity) within the NPC_1906_2020 ensemble 

(orange area) on the duration-severity plot of the observed (light dots) and tree-ring-

reconstructed (dark dots) natural flows at Lees Ferry. The spread of the orange area 

illustrates how the ensemble's extreme droughts may vary across various durations, 

comparing them with the historical and tree-ring-reconstructed records. Each dot 

represents mean annual flow averaged over the duration on the x-axis. There is a dot for 

each duration (including overlaps) within the record. 
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Figure S36. Reservoir storage-yield and reliability analysis for NPC_1906_2020. These 

plots illustrate the response of the streamflow ensemble to a set of desired yields and 

reliabilities. The metric captures the storage attributes of the streamflow ensemble at an 

abstract level distinct from particular reservoir sizing or operation policies. The plot on 

the left shows the storage needed for releasing the desired yields shown on the y axis. 

The plot on the right shows the storage needed for a specific yield and desired 

reliabilities.   

 

 

Figure S37. Hurst coefficient for the NPC_1906_2020 ensemble.  
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Text S6.   NPC_1988_2020: Stress Test Paleo-Conditioned Ensemble 

Figure S38 through Figure S44 present the metrics calculated for the Stress Test 

Paleo-Conditioned ensemble, labeled as “NPC_1988_2020”. This ensemble comprises 100 

time series, each 50 years long, generated using the Nonparametric Paleo-Conditioned 

(NPC) method described by Prairie et al. (2008). NPC was applied to a subset of the 

observed natural flow record from 1988 to 2020 and the full tree-ring reconstructed 

natural flows from 1416 to 2015. 

 

 

 

Figure S38. Time series of the simulated annual natural flow at Lees Ferry for the 

NPC_1988_2020 ensemble. This figure shows 10th to 90th percentiles (light blue area), and 

25th to 75th percentiles (dark blue area), maximum and minimum (whiskers), median 

(navy line), and a sample sequence of the ensemble (red line). 
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Figure S39. Summary metrics of simulated annual natural flow at Lees Ferry for the 

NPC_1988_2020 ensemble. 
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Figure S40. Moving count below threshold for the NPC_1988_2020 ensemble. This plot 

shows the moving number of below threshold (long-term mean of 14.74 maf/yr) years 

within a decade.  

 

 

Figure S41. Moving count above threshold for the NPC_1988_2020 ensemble. This plot 

shows the moving number of above threshold (20 maf/yr) years within a decade.  
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Figure S42. Duration-severity analysis; Overlaying the range of extreme droughts 

(quantified as the minimum duration-severity) within the NPC_1988_2020 ensemble 

(orange area) on the duration-severity plot of the observed (light dots) and tree-ring-

reconstructed (dark dots) natural flows at Lees Ferry. The spread of the orange area 

illustrates how the ensemble's extreme droughts may vary across various durations, 

comparing them with the historical and tree-ring-reconstructed records. Each dot 

represents mean annual flow averaged over the duration on the x-axis. There is a dot for 

each duration (including overlaps) within the record. 
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Figure S43. Reservoir storage-yield and reliability analysis for NPC_1988_2020. These 

plots illustrate the response of the streamflow ensemble to a set of desired yields and 

reliabilities. The metric captures the storage attributes of the streamflow ensemble at an 

abstract level distinct from particular reservoir sizing or operation policies. The plot on 

the left shows the storage needed for releasing the desired yields shown on the y axis. 

The plot on the right shows the storage needed for a specific yield and desired 

reliabilities.   

 

 

Figure S44. Hurst coefficient for the NPC_1988_2020 ensemble.  
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Text S7.   NPC_2000_2020: Millennium Drought Paleo-Conditioned Ensemble 

Figure S45 through Figure S51 present the metrics calculated for the Millennium 

Drought Paleo-Conditioned ensemble, labeled as “NPC_2000_2020”. This ensemble 

comprises 100 time series, each 50 years long, generated using the Nonparametric 

Paleo-Conditioned (NPC) method described by Prairie et al. (2008). NPC was applied to a 

subset of the observed natural flow record from 2000 to 2020 (the millennium drought 

period) and the full tree-ring reconstructed natural flows from 1416 to 2015. 

 

 

 

Figure S45. Time series of the simulated annual natural flow at Lees Ferry for the 

NPC_2000_2020 ensemble. This figure shows 10th to 90th percentiles (light blue area), and 

25th to 75th percentiles (dark blue area), maximum and minimum (whiskers), median 

(navy line), and a sample sequence of the ensemble (red line). 

 



 

 

34 

 

 

Figure S46. Summary metrics of simulated annual natural flow at Lees Ferry for the 

NPC_2000_2020 ensemble. 
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Figure S47. Moving count below threshold for the NPC_2000_2020 ensemble. This plot 

shows the moving number of below threshold (long-term mean of 14.74 maf/yr) years 

within a decade.  

 

 

Figure S48. Moving count above threshold for the NPC_2000_2020 ensemble. This plot 

shows the moving number of above threshold (20 maf/yr) years within a decade.  
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Figure S49. Duration-severity analysis; Overlaying the range of extreme droughts 

(quantified as the minimum duration-severity) within the NPC_2000_2020 ensemble 

(orange area) on the duration-severity plot of the observed (light dots) and tree-ring-

reconstructed (dark dots) natural flows at Lees Ferry. The spread of the orange area 

illustrates how the ensemble's extreme droughts may vary across various durations, 

comparing them with the historical and tree-ring-reconstructed records. Each dot 

represents mean annual flow averaged over the duration on the x-axis. There is a dot for 

each duration (including overlaps) within the record. 
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Figure S50. Reservoir storage-yield and reliability analysis for NPC_2000_2020. These 

plots illustrate the response of the streamflow ensemble to a set of desired yields and 

reliabilities. The metric captures the storage attributes of the streamflow ensemble at an 

abstract level distinct from particular reservoir sizing or operation policies. The plot on 

the left shows the storage needed for releasing the desired yields shown on the y axis. 

The plot on the right shows the storage needed for a specific yield and desired 

reliabilities.   

 

 

Figure S51. Hurst coefficient for the NPC_2000_2020 ensemble.  
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Text S8.   5YrBlockRes_2000_2018: Millennium Drought 5-Year Resampled 

Figure S52 through Figure S58 present the metrics calculated for the Millennium 

Drought 5-Year Resampled ensemble, labeled as “5YrBlockRes _2000_2018”. This 

ensemble comprises 100 time series, each 42 years long, generated by Salehabadi et al. 

(2022) through a 5-year drought scenario resampling method. 

 

 

Figure S52. Time series of the simulated annual natural flow at Lees Ferry for the 

5YrBlockRes _2000_2018 ensemble. This figure shows 10th to 90th percentiles (light blue 

area), and 25th to 75th percentiles (dark blue area), maximum and minimum (whiskers), 

median (navy line), and a sample sequence of the ensemble (red line). 
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Figure S53. Summary metrics of simulated annual natural flow at Lees Ferry for the 

5YrBlockRes _2000_2018 ensemble. 
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Figure S54. Moving count below threshold for the 5YrBlockRes _2000_2018 ensemble. 

This plot shows the moving number of below threshold (long-term mean of 14.74 

maf/yr) years within a decade.  

 

 

Figure S55. Moving count above threshold for the 5YrBlockRes _2000_2018 ensemble. 

This plot shows the moving number of above threshold (20 maf/yr) years within a 

decade.  
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Figure S56. Duration-severity analysis; Overlaying the range of extreme droughts 

(quantified as the minimum duration-severity) within the 5YrBlockRes _2000_2018 

ensemble (orange area) on the duration-severity plot of the observed (light dots) and 

tree-ring-reconstructed (dark dots) natural flows at Lees Ferry. The spread of the orange 

area illustrates how the ensemble's extreme droughts may vary across various durations, 

comparing them with the historical and tree-ring-reconstructed records. Each dot 

represents mean annual flow averaged over the duration on the x-axis. There is a dot for 

each duration (including overlaps) within the record. 
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Figure S57. Reservoir storage-yield and reliability analysis for 5YrBlockRes _2000_2018. 

These plots illustrate the response of the streamflow ensemble to a set of desired yields 

and reliabilities. The metric captures the storage attributes of the streamflow ensemble 

at an abstract level distinct from particular reservoir sizing or operation policies. The plot 

on the left shows the storage needed for releasing the desired yields shown on the y 

axis. The plot on the right shows the storage needed for a specific yield and desired 

reliabilities.   

 

 

Figure S58. Hurst coefficient for the 5YrBlockRes _2000_2018 ensemble.  
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Text S9.   DroughtYrRes_2000_2020: Millennium Drought Year Resampled 

Figure S59 through Figure S65 present the metrics calculated for the Millennium 

Drought Year Resampled ensemble, labeled as “DroughtYrRes_2000_2020”. This 

ensemble comprises 100 time series, each 50 years long, generated using the drought 

scenario resampling method described by Salehabadi et al. (2022). 

 

 

Figure S59. Time series of the simulated annual natural flow at Lees Ferry for the 

DroughtYrRes_2000_2020 ensemble. This figure shows 10th to 90th percentiles (light blue 

area), and 25th to 75th percentiles (dark blue area), maximum and minimum (whiskers), 

median (navy line), and a sample sequence of the ensemble (red line). 
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Figure S60. Summary metrics of simulated annual natural flow at Lees Ferry for the 

DroughtYrRes_2000_2020 ensemble. 
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Figure S61. Moving count below threshold for the DroughtYrRes_2000_2020 ensemble. 

This plot shows the moving number of below threshold (long-term mean of 14.74 

maf/yr) years within a decade.  

 

 

Figure S62. Moving count above threshold for the DroughtYrRes_2000_2020 ensemble. 

This plot shows the moving number of above threshold (20 maf/yr) years within a 

decade.  
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Figure S63. Duration-severity analysis; Overlaying the range of extreme droughts 

(quantified as the minimum duration-severity) within the DroughtYrRes_2000_2020 

ensemble (orange area) on the duration-severity plot of the observed (light dots) and 

tree-ring-reconstructed (dark dots) natural flows at Lees Ferry. The spread of the orange 

area illustrates how the ensemble's extreme droughts may vary across various durations, 

comparing them with the historical and tree-ring-reconstructed records. Each dot 

represents mean annual flow averaged over the duration on the x-axis. There is a dot for 

each duration (including overlaps) within the record. 
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Figure S64. Reservoir storage-yield and reliability analysis for DroughtYrRes_2000_2020. 

These plots illustrate the response of the streamflow ensemble to a set of desired yields 

and reliabilities. The metric captures the storage attributes of the streamflow ensemble 

at an abstract level distinct from particular reservoir sizing or operation policies. The plot 

on the left shows the storage needed for releasing the desired yields shown on the y 

axis. The plot on the right shows the storage needed for a specific yield and desired 

reliabilities.   

 

 

Figure S65. Hurst coefficient for the DroughtYrRes_2000_2020 ensemble.  

 



 

 

48 

 

Text S10.   DroughtYrRes_1953_1977: Mid-20th-Century Drought Year Resampled 

Figure S66 through Figure S72 present the metrics calculated for the Mid-20th-

Century Drought Year Resampled ensemble, labeled as “DroughtYrRes_1953_1977”. This 

ensemble comprises 100 time series, each 50 years long, generated using the drought 

scenario resampling method described by Salehabadi et al. (2022). 

 

 

Figure S66. Time series of the simulated annual natural flow at Lees Ferry for the 

DroughtYrRes_1953_1977 ensemble. This figure shows 10th to 90th percentiles (light blue 

area), and 25th to 75th percentiles (dark blue area), maximum and minimum (whiskers), 

median (navy line), and a sample sequence of the ensemble (red line). 
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Figure S67. Summary metrics of simulated annual natural flow at Lees Ferry for the 

DroughtYrRes_1953_1977 ensemble. 
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Figure S68. Moving count below threshold for the DroughtYrRes_1953_1977 ensemble. 

This plot shows the moving number of below threshold (long-term mean of 14.74 

maf/yr) years within a decade.  

 

 

Figure S69. Moving count above threshold for the DroughtYrRes_1953_1977 ensemble. 

This plot shows the moving number of above threshold (20 maf/yr) years within a 

decade.  
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Figure S70. Duration-severity analysis; Overlaying the range of extreme droughts 

(quantified as the minimum duration-severity) within the DroughtYrRes_1953_1977 

ensemble (orange area) on the duration-severity plot of the observed (light dots) and 

tree-ring-reconstructed (dark dots) natural flows at Lees Ferry. The spread of the orange 

area illustrates how the ensemble's extreme droughts may vary across various durations, 

comparing them with the historical and tree-ring-reconstructed records. Each dot 

represents mean annual flow averaged over the duration on the x-axis. There is a dot for 

each duration (including overlaps) within the record. 
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Figure S71. Reservoir storage-yield and reliability analysis for DroughtYrRes_1953_1977. 

These plots illustrate the response of the streamflow ensemble to a set of desired yields 

and reliabilities. The metric captures the storage attributes of the streamflow ensemble 

at an abstract level distinct from particular reservoir sizing or operation policies. The plot 

on the left shows the storage needed for releasing the desired yields shown on the y 

axis. The plot on the right shows the storage needed for a specific yield and desired 

reliabilities.   

 

 

Figure S72. Hurst coefficient for the DroughtYrRes_1953_1977 ensemble.  
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Text S11.   DroughtYrRes_1576_1600: Paleo Drought Year Resampled 

Figure S73 through Figure S79 present the metrics calculated for Paleo Drought 

Year Resampled ensemble, labeled as “DroughtYrRes_1576_1600”. This ensemble 

comprises 100 time series each 50 years long, generated using the drought scenario 

resampling method described by Salehabadi et al. (2022). 

 

 

Figure S73. Time series of the simulated annual natural flow at Lees Ferry for the 

DroughtYrRes_1576_1600 ensemble. This figure shows 10th to 90th percentiles (light blue 

area), and 25th to 75th percentiles (dark blue area), maximum and minimum (whiskers), 

median (navy line), and a sample sequence of the ensemble (red line). 
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Figure S74. Summary metrics of simulated annual natural flow at Lees Ferry for the 

DroughtYrRes_1576_1600 ensemble. 
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Figure S75. Moving count below threshold for the DroughtYrRes_1576_1600 ensemble. 

This plot shows the moving number of below threshold (long-term mean of 14.74 

maf/yr) years within a decade.  

 

 

Figure S76. Moving count above threshold for the DroughtYrRes_1576_1600 ensemble. 

This plot shows the moving number of above threshold (20 maf/yr) years within a 

decade.  
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Figure S77. Duration-severity analysis; Overlaying the range of extreme droughts 

(quantified as the minimum duration-severity) within the DroughtYrRes_1576_1600 

ensemble (orange area) on the duration-severity plot of the observed (light dots) and 

tree-ring-reconstructed (dark dots) natural flows at Lees Ferry. The spread of the orange 

area illustrates how the ensemble's extreme droughts may vary across various durations, 

comparing them with the historical and tree-ring-reconstructed records. Each dot 

represents mean annual flow averaged over the duration on the x-axis. There is a dot for 

each duration (including overlaps) within the record. 
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Figure S78. Reservoir storage-yield and reliability analysis for DroughtYrRes_1576_1600. 

These plots illustrate the response of the streamflow ensemble to a set of desired yields 

and reliabilities. The metric captures the storage attributes of the streamflow ensemble 

at an abstract level distinct from particular reservoir sizing or operation policies. The plot 

on the left shows the storage needed for releasing the desired yields shown on the y 

axis. The plot on the right shows the storage needed for a specific yield and desired 

reliabilities.   

 

 

Figure S79. Hurst coefficient for the DroughtYrRes_1576_1600 ensemble.  

 

 



 

 

58 

 

Text S12.   CMIP3_BCSD Ensemble 

Figure S80 through Figure S86 present the metrics calculated for BCSD CMIP3 

hydrology projections from USBR (2011), labeled as “CMIP3_BCSD”. This ensemble 

comprises 112 time series, projected by USBR (2011) using CMIP3 climate model 

simulations, the Bias Correction and Spatial Downscaling (BCSD) method, and Variable 

Infiltration Capacity (VIC) hydrology model.  

 

 

Figure S80. Time series of the simulated annual natural flow at Lees Ferry for the 

CMIP3_BCSD ensemble. This figure shows 10th to 90th percentiles (light blue area), and 

25th to 75th percentiles (dark blue area), maximum and minimum (whiskers), median 

(navy line), and a sample sequence of the ensemble (red line). 

 



 

 

59 

 

 

Figure S81. Summary metrics of simulated annual natural flow at Lees Ferry for the 

CMIP3_BCSD ensemble. 
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Figure S82. Moving count below threshold for the CMIP3_BCSD ensemble. This plot 

shows the moving number of below threshold (long-term mean of 14.74 maf/yr) years 

within a decade.  

 

 

Figure S83. Moving count above threshold for the CMIP3_BCSD ensemble. This plot 

shows the moving number of above threshold (20 maf/yr) years within a decade.  
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Figure S84. Duration-severity analysis; Overlaying the range of extreme droughts 

(quantified as the minimum duration-severity) within the CMIP3_BCSD ensemble (orange 

area) on the duration-severity plot of the observed (light dots) and tree-ring-

reconstructed (dark dots) natural flows at Lees Ferry. The spread of the orange area 

illustrates how the ensemble's extreme droughts may vary across various durations, 

comparing them with the historical and tree-ring-reconstructed records. Each dot 

represents mean annual flow averaged over the duration on the x-axis. There is a dot for 

each duration (including overlaps) within the record. 
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Figure S85. Reservoir storage-yield and reliability analysis for CMIP3_BCSD. These plots 

illustrate the response of the streamflow ensemble to a set of desired yields and 

reliabilities. The metric captures the storage attributes of the streamflow ensemble at an 

abstract level distinct from particular reservoir sizing or operation policies. The plot on 

the left shows the storage needed for releasing the desired yields shown on the y axis. 

The plot on the right shows the storage needed for a specific yield and desired 

reliabilities.   

 

 

Figure S86. Hurst coefficient for the CMIP3_BCSD ensemble.  

 

 



 

 

63 

 

Text S13.  CMIP5_BCSD Ensemble 

Figure S87 through Figure S93 present the metrics calculated for BCSD CMIP5 

hydrology projections from USBR (2014), labeled as “CMIP5_BCSD”. This ensemble 

comprises 97 time series, projected by USBR (2014) using CMIP5 climate model 

simulations, the Bias Correction and Spatial Downscaling (BCSD) method, and Variable 

Infiltration Capacity (VIC) hydrology model. 

 

 

Figure S87. Time series of the simulated annual natural flow at Lees Ferry for the 

CMIP5_BCSD ensemble. This figure shows 10th to 90th percentiles (light blue area), and 

25th to 75th percentiles (dark blue area), maximum and minimum (whiskers), median 

(navy line), and a sample sequence of the ensemble (red line). 
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Figure S88. Summary metrics of simulated annual natural flow at Lees Ferry for the 

CMIP5_BCSD ensemble. 
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Figure S89. Moving count below threshold for the CMIP5_BCSD ensemble. This plot 

shows the moving number of below threshold (long-term mean of 14.74 maf/yr) years 

within a decade.  

 

 

Figure S90. Moving count above threshold for the CMIP5_BCSD ensemble. This plot 

shows the moving number of above threshold (20 maf/yr) years within a decade.  
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Figure S91. Duration-severity analysis; Overlaying the range of extreme droughts 

(quantified as the minimum duration-severity) within the CMIP5_BCSD ensemble (orange 

area) on the duration-severity plot of the observed (light dots) and tree-ring-

reconstructed (dark dots) natural flows at Lees Ferry. The spread of the orange area 

illustrates how the ensemble's extreme droughts may vary across various durations, 

comparing them with the historical and tree-ring-reconstructed records. Each dot 

represents mean annual flow averaged over the duration on the x-axis. There is a dot for 

each duration (including overlaps) within the record. 
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Figure S92. Reservoir storage-yield and reliability analysis for CMIP5_BCSD. These plots 

illustrate the response of the streamflow ensemble to a set of desired yields and 

reliabilities. The metric captures the storage attributes of the streamflow ensemble at an 

abstract level distinct from particular reservoir sizing or operation policies. The plot on 

the left shows the storage needed for releasing the desired yields shown on the y axis. 

The plot on the right shows the storage needed for a specific yield and desired 

reliabilities.   

 

 

Figure S93. Hurst coefficient for the CMIP5_BCSD ensemble.  
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Text S14.  CMIP5_LOCA Ensemble 

Figure S94 through Figure S100 present the metrics calculated for LOCA CMIP5 

hydrology projections from Vano et al. (2020), labeled as “CMIP5_LOCA”. This ensemble 

comprises 64 time series, projected by Vano et al. (2020) using CMIP5 climate model 

simulations, the Localized Constructed Analogs (LOCA) downscaling method, and 

Variable Infiltration Capacity (VIC) hydrology model. 

 

 

Figure S94. Time series of the simulated annual natural flow at Lees Ferry for the 

CMIP5_LOCA ensemble. This figure shows 10th to 90th percentiles (light blue area), and 

25th to 75th percentiles (dark blue area), maximum and minimum (whiskers), median 

(navy line), and a sample sequence of the ensemble (red line). 
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Figure S95. Summary metrics of simulated annual natural flow at Lees Ferry for the 

CMIP5_LOCA ensemble. 
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Figure S96. Moving count below threshold for the CMIP5_LOCA ensemble. This plot 

shows the moving number of below threshold (long-term mean of 14.74 maf/yr) years 

within a decade.  

 

 

Figure S97. Moving count above threshold for the CMIP5_LOCA ensemble. This plot 

shows the moving number of above threshold (20 maf/yr) years within a decade.  
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Figure S98. Duration-severity analysis; Overlaying the range of extreme droughts 

(quantified as the minimum duration-severity) within the CMIP5_LOCA ensemble (orange 

area) on the duration-severity plot of the observed (light dots) and tree-ring-

reconstructed (dark dots) natural flows at Lees Ferry. The spread of the orange area 

illustrates how the ensemble's extreme droughts may vary across various durations, 

comparing them with the historical and tree-ring-reconstructed records. Each dot 

represents mean annual flow averaged over the duration on the x-axis. There is a dot for 

each duration (including overlaps) within the record. 
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Figure S99. Reservoir storage-yield and reliability analysis for CMIP5_LOCA. These plots 

illustrate the response of the streamflow ensemble to a set of desired yields and 

reliabilities. The metric captures the storage attributes of the streamflow ensemble at an 

abstract level distinct from particular reservoir sizing or operation policies. The plot on 

the left shows the storage needed for releasing the desired yields shown on the y axis. 

The plot on the right shows the storage needed for a specific yield and desired 

reliabilities.   

 

 

Figure S100. Hurst coefficient for the CMIP5_LOCA ensemble.  
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Text S15.   TempAdj_RCP4.5_3%:  RCP4.5-3% Temperature-Adjusted Flow  

Figure S101 through Figure S107 present the metrics calculated for the RCP4.5-3% 

Temperature-Adjusted Flow ensemble from Udall (2020), labeled as 

“TempAdj_RCP4.5_3%”. This ensemble comprises 112 time series, generated by Udall 

(2020) through temperature adjustment of the historical natural flow using RCP4.5 

projected future temperatures and a 6.5% streamflow sensitivity to temperature. 

 

 

 

Figure S101. Time series of the simulated annual natural flow at Lees Ferry for the 

TempAdj_RCP4.5_3% ensemble. This figure shows 10th to 90th percentiles (light blue 

area), and 25th to 75th percentiles (dark blue area), maximum and minimum (whiskers), 

median (navy line), and a sample sequence of the ensemble (red line). 
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Figure S102. Summary metrics of simulated annual natural flow at Lees Ferry for the 

TempAdj_RCP4.5_3% ensemble. 
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Figure S103. Moving count below threshold for the TempAdj_RCP4.5_3% ensemble. This 

plot shows the moving number of below threshold (long-term mean of 14.74 maf/yr) 

years within a decade.  

 

 

Figure S104. Moving count above threshold for the TempAdj_RCP4.5_3% ensemble. This 

plot shows the moving number of above threshold (20 maf/yr) years within a decade.  
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Figure S105. Duration-severity analysis; Overlaying the range of extreme droughts 

(quantified as the minimum duration-severity) within the TempAdj_RCP4.5_3% ensemble 

(orange area) on the duration-severity plot of the observed (light dots) and tree-ring-

reconstructed (dark dots) natural flows at Lees Ferry. The spread of the orange area 

illustrates how the ensemble's extreme droughts may vary across various durations, 

comparing them with the historical and tree-ring-reconstructed records. Each dot 

represents mean annual flow averaged over the duration on the x-axis. There is a dot for 

each duration (including overlaps) within the record. 

 



 

 

77 

 

 

Figure S106. Reservoir storage-yield and reliability analysis for TempAdj_RCP4.5_3%. 

These plots illustrate the response of the streamflow ensemble to a set of desired yields 

and reliabilities. The metric captures the storage attributes of the streamflow ensemble 

at an abstract level distinct from particular reservoir sizing or operation policies. The plot 

on the left shows the storage needed for releasing the desired yields shown on the y 

axis. The plot on the right shows the storage needed for a specific yield and desired 

reliabilities.   

 

 

Figure S107. Hurst coefficient for the TempAdj_RCP4.5_3% ensemble.  
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Text S16.   TempAdj_RCP4.5_6.5%:  RCP4.5-6.5% Temperature-Adjusted Flow  

Figure S108 through Figure S114 present the metrics calculated for the RCP4.5-6.5% 

Temperature-Adjusted Flow ensemble from Udall (2020), labeled as 

“TempAdj_RCP4.5_6.5%”. This ensemble comprises 112 time series, generated by Udall 

(2020) through temperature adjustment of the historical natural flow using RCP4.5 

projected future temperatures and a 6.5% streamflow sensitivity to temperature. 

 

 

 

Figure S108. Time series of the simulated annual natural flow at Lees Ferry for the 

TempAdj_RCP4.5_6.5% ensemble. This figure shows 10th to 90th percentiles (light blue 

area), and 25th to 75th percentiles (dark blue area), maximum and minimum (whiskers), 

median (navy line), and a sample sequence of the ensemble (red line). 
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Figure S109. Summary metrics of simulated annual natural flow at Lees Ferry for the 

TempAdj_RCP4.5_6.5% ensemble. 
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Figure S110. Moving count below threshold for the TempAdj_RCP4.5_6.5% ensemble. 

This plot shows the moving number of below threshold (long-term mean of 14.74 

maf/yr) years within a decade.  

 

 

Figure S111. Moving count above threshold for the TempAdj_RCP4.5_6.5% ensemble. 

This plot shows the moving number of above threshold (20 maf/yr) years within a 

decade.  
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Figure S112. Duration-severity analysis; Overlaying the range of extreme droughts 

(quantified as the minimum duration-severity) within the TempAdj_RCP4.5_6.5% 

ensemble (orange area) on the duration-severity plot of the observed (light dots) and 

tree-ring-reconstructed (dark dots) natural flows at Lees Ferry. The spread of the orange 

area illustrates how the ensemble's extreme droughts may vary across various durations, 

comparing them with the historical and tree-ring-reconstructed records. Each dot 

represents mean annual flow averaged over the duration on the x-axis. There is a dot for 

each duration (including overlaps) within the record. 
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Figure S113. Reservoir storage-yield and reliability analysis for TempAdj_RCP4.5_6.5%. 

These plots illustrate the response of the streamflow ensemble to a set of desired yields 

and reliabilities. The metric captures the storage attributes of the streamflow ensemble 

at an abstract level distinct from particular reservoir sizing or operation policies. The plot 

on the left shows the storage needed for releasing the desired yields shown on the y 

axis. The plot on the right shows the storage needed for a specific yield and desired 

reliabilities.   

 

 

Figure S114. Hurst coefficient for the TempAdj_RCP4.5_6.5% ensemble.  
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Text S17.   TempAdj_RCP4.5_10%:  RCP4.5-10% Temperature-Adjusted Flow  

Figure S115 through Figure S121 present the metrics calculated for the RCP4.5-10% 

Temperature-Adjusted Flow ensemble from Udall (2020), labeled as 

“TempAdj_RCP4.5_10%”. This ensemble comprises 112 time series, generated by Udall 

(2020) through temperature adjustment of the historical natural flow using RCP4.5 

projected future temperatures and a 10% streamflow sensitivity to temperature. 

 

 

 

Figure S115. Time series of the simulated annual natural flow at Lees Ferry for the 

TempAdj_RCP4.5_10% ensemble. This figure shows 10th to 90th percentiles (light blue 

area), and 25th to 75th percentiles (dark blue area), maximum and minimum (whiskers), 

median (navy line), and a sample sequence of the ensemble (red line). 
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Figure S116. Summary metrics of simulated annual natural flow at Lees Ferry for the 

TempAdj_RCP4.5_10% ensemble. 
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Figure S117. Moving count below threshold for the TempAdj_RCP4.5_10% ensemble. 

This plot shows the moving number of below threshold (long-term mean of 14.74 

maf/yr) years within a decade.  

 

 

Figure S118. Moving count above threshold for the TempAdj_RCP4.5_10% ensemble. 

This plot shows the moving number of above threshold (20 maf/yr) years within a 

decade.  
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Figure S119. Duration-severity analysis; Overlaying the range of extreme droughts 

(quantified as the minimum duration-severity) within the TempAdj_RCP4.5_10% 

ensemble (orange area) on the duration-severity plot of the observed (light dots) and 

tree-ring-reconstructed (dark dots) natural flows at Lees Ferry. The spread of the orange 

area illustrates how the ensemble's extreme droughts may vary across various durations, 

comparing them with the historical and tree-ring-reconstructed records. Each dot 

represents mean annual flow averaged over the duration on the x-axis. There is a dot for 

each duration (including overlaps) within the record. 
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Figure S120. Reservoir storage-yield and reliability analysis for TempAdj_RCP4.5_10%. 

These plots illustrate the response of the streamflow ensemble to a set of desired yields 

and reliabilities. The metric captures the storage attributes of the streamflow ensemble 

at an abstract level distinct from particular reservoir sizing or operation policies. The plot 

on the left shows the storage needed for releasing the desired yields shown on the y 

axis. The plot on the right shows the storage needed for a specific yield and desired 

reliabilities.   

 

 

Figure S121. Hurst coefficient for the TempAdj_RCP4.5_10% ensemble.  
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Text S18.   TempAdj_RCP8.5_3%:  RCP8.5_3% Temperature-Adjusted Flow  

Figure S122 through Figure S128 present the metrics calculated for the RCP8.5-3% 

Temperature-Adjusted Flow ensemble from Udall (2020), labeled as 

“TempAdj_RCP8.5_3%”. This ensemble comprises 112 time series, generated by Udall 

(2020) through temperature adjustment of the historical natural flow using RCP8.5 

projected future temperatures and a 3% streamflow sensitivity to temperature. 

 

 

Figure S122. Time series of the simulated annual natural flow at Lees Ferry for the 

TempAdj_RCP8.5_3% ensemble. This figure shows 10th to 90th percentiles (light blue 

area), and 25th to 75th percentiles (dark blue area), maximum and minimum (whiskers), 

median (navy line), and a sample sequence of the ensemble (red line). 
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Figure S123. Summary metrics of simulated annual natural flow at Lees Ferry for the 

TempAdj_RCP8.5_3%  ensemble. 
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Figure S124. Moving count below threshold for the TempAdj_RCP8.5_3% ensemble. This 

plot shows the moving number of below threshold (long-term mean of 14.74 maf/yr) 

years within a decade.  

 

 

Figure S125. Moving count above threshold for the TempAdj_RCP8.5_3% ensemble. This 

plot shows the moving number of above threshold (20 maf/yr) years within a decade.  
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Figure S126. Duration-severity analysis; Overlaying the range of extreme droughts 

(quantified as the minimum duration-severity) within the TempAdj_RCP8.5_3% ensemble 

(orange area) on the duration-severity plot of the observed (light dots) and tree-ring-

reconstructed (dark dots) natural flows at Lees Ferry. The spread of the orange area 

illustrates how the ensemble's extreme droughts may vary across various durations, 

comparing them with the historical and tree-ring-reconstructed records. Each dot 

represents mean annual flow averaged over the duration on the x-axis. There is a dot for 

each duration (including overlaps) within the record. 
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Figure S127. Reservoir storage-yield and reliability analysis for TempAdj_RCP8.5_3%. 

These plots illustrate the response of the streamflow ensemble to a set of desired yields 

and reliabilities. The metric captures the storage attributes of the streamflow ensemble 

at an abstract level distinct from particular reservoir sizing or operation policies. The plot 

on the left shows the storage needed for releasing the desired yields shown on the y 

axis. The plot on the right shows the storage needed for a specific yield and desired 

reliabilities.   

 

 

Figure S128. Hurst coefficient for the TempAdj_RCP8.5_3% ensemble.  
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Text S19.   TempAdj_RCP8.5_6.5%:  RCP8.5_6.5% Temperature-Adjusted Flow  

Figure S129 through Figure S135 present the metrics calculated for the RCP8.5-6.5% 

Temperature-Adjusted Flow ensemble from Udall (2020), labeled as 

“TempAdj_RCP8.5_6.5%”. This ensemble comprises 112 time series, generated by Udall 

(2020) through temperature adjustment of the historical natural flow using RCP8.5 

projected future temperatures and a 6.5% streamflow sensitivity to temperature. 

 

 

 

Figure S129. Time series of the simulated annual natural flow at Lees Ferry for the 

TempAdj_RCP8.5_6.5% ensemble. This figure shows 10th to 90th percentiles (light blue 

area), and 25th to 75th percentiles (dark blue area), maximum and minimum (whiskers), 

median (navy line), and a sample sequence of the ensemble (red line). 
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Figure S130. Summary metrics of simulated annual natural flow at Lees Ferry for the 

TempAdj_RCP8.5_6.5% ensemble. 
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Figure S131. Moving count below threshold for the TempAdj_RCP8.5_6.5% ensemble. 

This plot shows the moving number of below threshold (long-term mean of 14.74 

maf/yr) years within a decade.  

 

 

Figure S132. Moving count above threshold for the TempAdj_RCP8.5_6.5% ensemble. 

This plot shows the moving number of above threshold (20 maf/yr) years within a 

decade.  
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Figure S133. Duration-severity analysis; Overlaying the range of extreme droughts 

(quantified as the minimum duration-severity) within the TempAdj_RCP8.5_6.5% 

ensemble (orange area) on the duration-severity plot of the observed (light dots) and 

tree-ring-reconstructed (dark dots) natural flows at Lees Ferry. The spread of the orange 

area illustrates how the ensemble's extreme droughts may vary across various durations, 

comparing them with the historical and tree-ring-reconstructed records. Each dot 

represents mean annual flow averaged over the duration on the x-axis. There is a dot for 

each duration (including overlaps) within the record. 
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Figure S134. Reservoir storage-yield and reliability analysis for TempAdj_RCP8.5_6.5%. 

These plots illustrate the response of the streamflow ensemble to a set of desired yields 

and reliabilities. The metric captures the storage attributes of the streamflow ensemble 

at an abstract level distinct from particular reservoir sizing or operation policies. The plot 

on the left shows the storage needed for releasing the desired yields shown on the y 

axis. The plot on the right shows the storage needed for a specific yield and desired 

reliabilities.   

 

 

Figure S135. Hurst coefficient for the TempAdj_RCP8.5_6.5% ensemble.  
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Text S20.   TempAdj_RCP4.5_10%:  RCP8.5-10% Temperature-Adjusted Flow  

Figure S136 through Figure S142 present the metrics calculated for the RCP8.5-10% 

Temperature-Adjusted Flow ensemble from Udall (2020), labeled as 

“TempAdj_RCP8.5_10%”. This ensemble comprises 112 time series, generated by Udall 

(2020) through temperature adjustment of the historical natural flow using RCP8.5 

projected future temperatures and a 10% streamflow sensitivity to temperature. 

 

 

Figure S136. Time series of the simulated annual natural flow at Lees Ferry for the 

TempAdj_RCP8.5_10% ensemble. This figure shows 10th to 90th percentiles (light blue 

area), and 25th to 75th percentiles (dark blue area), maximum and minimum (whiskers), 

median (navy line), and a sample sequence of the ensemble (red line). 

 



 

 

99 

 

 

Figure S137. Summary metrics of simulated annual natural flow at Lees Ferry for the 

TempAdj_RCP8.5_10% ensemble. 
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Figure S138. Moving count below threshold for the TempAdj_RCP8.5_10% ensemble. 

This plot shows the moving number of below threshold (long-term mean of 14.74 

maf/yr) years within a decade.  

 

 

Figure S139. Moving count above threshold for the TempAdj_RCP8.5_10% ensemble. 

This plot shows the moving number of above threshold (20 maf/yr) years within a 

decade.  
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Figure S140. Duration-severity analysis; Overlaying the range of extreme droughts 

(quantified as the minimum duration-severity) within the TempAdj_RCP8.5_10% 

ensemble (orange area) on the duration-severity plot of the observed (light dots) and 

tree-ring-reconstructed (dark dots) natural flows at Lees Ferry. The spread of the orange 

area illustrates how the ensemble's extreme droughts may vary across various durations, 

comparing them with the historical and tree-ring-reconstructed records. Each dot 

represents mean annual flow averaged over the duration on the x-axis. There is a dot for 

each duration (including overlaps) within the record. 
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Figure S141. Reservoir storage-yield and reliability analysis for TempAdj_RCP8.5_10%. 

These plots illustrate the response of the streamflow ensemble to a set of desired yields 

and reliabilities. The metric captures the storage attributes of the streamflow ensemble 

at an abstract level distinct from particular reservoir sizing or operation policies. The plot 

on the left shows the storage needed for releasing the desired yields shown on the y 

axis. The plot on the right shows the storage needed for a specific yield and desired 

reliabilities.   

 

 

Figure S142. Hurst coefficient for the TempAdj_RCP8.5_10% ensemble.  
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	Figure S70. Duration-severity analysis; Overlaying the range of extreme droughts (quantified as the minimum duration-severity) within the DroughtYrRes_1953_1977 ensemble (orange area) on the duration-severity plot of the observed (light dots) and tree...
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	Figure S94. Time series of the simulated annual natural flow at Lees Ferry for the CMIP5_LOCA ensemble. This figure shows 10th to 90th percentiles (light blue area), and 25th to 75th percentiles (dark blue area), maximum and minimum (whiskers), median...
	Figure S95. Summary metrics of simulated annual natural flow at Lees Ferry for the CMIP5_LOCA ensemble.
	Figure S96. Moving count below threshold for the CMIP5_LOCA ensemble. This plot shows the moving number of below threshold (long-term mean of 14.74 maf/yr) years within a decade.
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