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Abstract

Mineral phase transformations significantly alter the bulk density and elastic properties of mantle rocks and consequently have

profound effects on mantle dynamics and seismic wave propagation. These changes in the physical properties of mantle rocks

result from evolution in the equilibrium mineralogical composition, which can be predicted by the minimization of the Gibbs

Free Energy with respect to pressure (P), temperature (T), and chemical composition (X). Thus, numerical models that simulate

mantle convection and/or probe the elastic structure of the Earth’s mantle must account for varying mineralogical compositions

to be self-consistent. Yet coupling Gibbs Free Energy minimization (GFEM) approaches with numerical geodynamic models is

currently intractable for high-resolution simulations because execution speeds of widely-used GFEM programs (100–102 ms) are

impractical in many cases. As an alternative, this study introduces machine learning models (RocMLMs) that have been trained

to predict thermodynamically self-consistent rock properties at arbitrary PTX conditions between 1–28 GPa, 773–2273 K, and

mantle compositions ranging from fertile (lherzolitic) to refractory (harzburgitic) end-members defined with a large dataset of

published mantle compositions. RocMLMs are 101–103 times faster than GFEM calculations or GFEM-based look-up table

approaches with equivalent accuracy. Depth profiles of RocMLMs predictions are nearly indistinguishable from reference models

PREM and STW105, demonstrating good agreement between thermodynamic-based predictions of density, Vp, and Vs and

geophysical observations. RocMLMs are therefore capable, for the first time, of emulating dynamic evolution of density, Vp,

and Vs in high-resolution numerical geodynamic models.
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Abstract14

Mineral phase transformations significantly alter the bulk density and elastic properties15

of mantle rocks and consequently have profound effects on mantle dynamics and seis-16

mic wave propagation. These changes in the physical properties of mantle rocks result17

from evolution in the equilibrium mineralogical composition, which can be predicted by18

the minimization of the Gibbs Free Energy with respect to pressure (P), temperature19

(T), and chemical composition (X). Thus, numerical models that simulate mantle con-20

vection and/or probe the elastic structure of the Earth’s mantle must account for vary-21

ing mineralogical compositions to be self-consistent. Yet coupling Gibbs Free Energy min-22

imization (GFEM) approaches with numerical geodynamic models is currently intractable23

for high-resolution simulations because execution speeds of widely-used GFEM programs24

(100–102 ms) are impractical in many cases. As an alternative, this study introduces ma-25

chine learning models (RocMLMs) that have been trained to predict thermodynamically26

self-consistent rock properties at arbitrary PTX conditions between 1–28 GPa, 773–227327

K, and mantle compositions ranging from fertile (lherzolitic) to refractory (harzburgitic)28

end-members defined with a large dataset of published mantle compositions. RocMLMs29

are 101–103 times faster than GFEM calculations or GFEM-based look-up table approaches30

with equivalent accuracy. Depth profiles of RocMLMs predictions are nearly indistin-31

guishable from reference models PREM and STW105, demonstrating good agreement32

between thermodynamic-based predictions of density, Vp, and Vs and geophysical ob-33

servations. RocMLMs are therefore capable, for the first time, of emulating dynamic evo-34

lution of density, Vp, and Vs in high-resolution numerical geodynamic models.35

Plain language summary36

The mineralogical makeup of rocks within Earth’s mantle largely determines how the37

mantle flows over geologic time, and how it responds to seismic waves triggered by earth-38

quakes, because mineral assemblages control important rock properties such as density39

and stiffness (elasticity). The mineralogy of mantle rocks is not constant, however. It40

changes depending on three factors: pressure, temperature, and the chemical composi-41

tion of the rock. Thus, it is important for computer simulations of mantle convection to42

account for the evolution of rock mineralogy. Computer programs that can predict rock43

properties based on thermodynamic calculations are available, but are generally too slow44

to be used in high-resolution simulations. As an alternative approach, this study intro-45
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duces machine learning models (RocMLMs) that have “learned” how to predict rock prop-46

erties (density and elasticity) by “training” on a large dataset of thermodynamic calcu-47

lations. We demonstrate that RocMLMs can then predict rock properties up to 101–10348

times faster than state-of-the-art methods. We tested RocMLM predictions against ref-49

erence mantle models based on observations of seismic waves and found good agreement.50

RocMLMs are therefore capable of fast and highly-accurate predictions of changes in rock51

properties and can be implemented in high-resolution computer simulations of mantle52

convection.53

1 Introduction54

The dominant mineral phases in Earth’s mantle are olivine, pyroxene, garnet, wad-55

sleyite, ringwoodite, bridgmanite, ferropericlase, calcium silicate perovskite, and MgSiO356

post-perovskite (e.g., Stixrude and Lithgow-Bertelloni, 2012). Mantle mineralogy evolves57

with depth by a series of relatively discontinuous phase transformations that define sharp58

transitions in the physical properties of mantle rocks (Ringwood, 1991). The most im-59

portant phase transformations occur at depths between 410 km and 670 km beneath Earth’s60

surface, defining the transition from the upper to the lower mantle (Equation (1)). This61

mantle transition zone (MTZ) is characterized by sharp variations in density and elas-62

tic properties that strongly impact mantle convection (Christensen, 1995; Fukao et al.,63

2001; Jenkins et al., 2016; Karato et al., 2001; Kuritani et al., 2019; Nakagawa and Buf-64

fett, 2005; Ringwood, 1991; Schubert et al., 1975; Tackley et al., 1994; Wang et al., 2015),65

and the propagation of teleseismic waves (Dziewoński and Anderson, 1981; Ita and Stixrude,66

1992; Ringwood, 1991). The MTZ is therefore an essential feature for modeling mantle67

structure and dynamics. With respect to a simple FeO-MgO-SiO2 chemical system, the68

most important MTZ reactions can be written as:69

olivine
410 km−−−−→ wadsleyite → ringwoodite

670 km−−−−→ bridgmanite + ferropericlase

(Mg,Fe)2SiO4 → (Mg,Fe)2SiO4 → (Mg,Fe)2SiO4 → (Mg,Fe)SiO3 + (Mg,Fe)O (1)

These phase changes (e.g., Equation (1)) are often parameterized in numerical geo-70

dynamic simulations with simple pressure-temperature (PT)-dependent reaction bound-71

aries based on high-pressure experiments (e.g., Agrusta et al., 2017; Ballmer et al., 2015;72
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Christensen, 1995; Č́ıžková and Bina, 2013; Kerswell et al., 2021; Liu et al., 1991; Nak-73

agawa and Buffett, 2005; Tackley et al., 1994; Torii and Yoshioka, 2007). Alternatively,74

some numerical geodynamic experiments (e.g., Li et al., 2019; Yang and Faccenda, 2020)75

use Gibbs Free Energy minimization (GFEM) programs (e.g., Connolly, 2009; Riel et al.,76

2022) to precompute Lookup Tables of rock properties, which are subsequently referenced77

to adjust material properties as the numerical experiments evolve. These implementa-78

tions usually consider fixed ideal mantle compositions, such as pyrolite, and/or approx-79

imate phase transitions with simple functions. These approaches neglect the PT depen-80

dency of mineral transitions on natural variations of mantle composition (X) such as vari-81

ations of Fe-Mg and Al-Ca that may be either primordial or result from melt extraction82

or reactions during melt transport. Despite these simplifications, these models have cor-83

roborated that the MTZ is a critical feature impacting subduction dynamics, mantle plume84

dynamics, and water cycling in the deep Earth.85

More self-consistent numerical models of mantle convection would track changes86

in physical properties of mantle rocks by computing GFEM as a function of the evolu-87

tion of PTX conditions. However, this is currently intractable for high-resolution geo-88

dynamic models because GFEM programs remain too slow (≥ 4–228 ms per PTX point)89

to be applied recursively during a geodynamic simulation (see Supporting Information).90

Parallelization of GFEM programs can increase efficiency by scaling the number of par-91

allel processes (Riel et al., 2022), but continuously computing phase relations during geo-92

dynamic simulations would require GFEM efficiency on the order of ≤ 100–10−1 ms to93

be feasible (see Supporting Information), which may be difficult to achieve solely by par-94

allelisation and/or direct improvements to the current GFEM paradigm.95

Here, we propose an alternative approach to predicting rock properties based on96

the use of machine learning models (referred to as RocMLMs) that have been “trained”97

on a multidimensional dataset of precomputed rock properties using classical (k-Neighbors,98

Decision Trees) and deep (Neural Network) regression algorithms. These later regres-99

sion algorithms compress large amounts of thermodynamic information into highly ef-100

ficient nonlinear functions, allowing RocMLMs to infer (predict) rock properties across101

arbitrary PTX conditions faster than any current GFEM algorithm. We demonstrate102

that RocMLMs are thus highly efficient emulators of GFEM programs and are well-suited103

for predicting bulk rock properties in numerical geodynamic models.104

–4–



manuscript submitted to Geochemistry, Geophysics, Geosystems

This article begins by detailing our method for building, training, and evaluating105

RocMLMs. We then demonstrate that RocMLMs can predict densities and seismic ve-106

locities in a dry upper mantle and transition zone up to 101–103 times faster than com-107

monly used GFEM programs with equivalent accuracies. Finally, we compare RocMLM108

predictions with reference models derived from seismological datasets (Dziewoński and109

Anderson, 1981; Kustowski et al., 2008) and discuss the accuracy and performance of110

RocMLMs with respect to their future implementation in numerical geodynamic mod-111

els.112

2 Methods113

The following sections describe the methodologies employed in constructing, train-114

ing, and assessing RocMLMs, with a focus on four primary objectives. First, define the115

size and scope of RocMLM training data to ensure widespread applicability of RocMLMs116

to the upper mantle and transition zone (Section 2.1). Second, define a generalized ap-117

proach for generating RocMLM training data to ensure applicability to any GFEM pro-118

gram (e.g., MAGEMin, Perple X, and others, Section 2.2). Third, train RocMLMs on119

a set of input features that can be routinely computed during geodynamic simulations120

to ensure widespread applicability of RocMLMs to various geodynamic codes (Section121

2.3). Fourth, rank the overall performance of RocMLMs in terms of accuracy and effi-122

ciency (Section 2.4).123

2.1 RocMLM Training Dataset Design124

2.1.1 Pressure-Temperature Conditions125

High-pressure experiments constrain the reaction olivine � wadsleyite between 14.0126

± 1.0 GPa and 1600 ± 400 K with Clapeyron slopes between 2.4x10−3
± 1.4x10−3 GPa/K127

(Akaogi et al., 1989; Katsura and Ito, 1989; Li et al., 2019; Morishima et al., 1994). Like-128

wise, the reaction ringwoodite � bridgmanite + ferropericlase is constrained between129

24.0 ± 1.5 GPa and 1600 ± 400 K with negative Clapeyron slopes between -2.0x10−3
130

± 1.6x10−3 GPa/K (Akaogi et al., 2007; Bina and Helffrich, 1994; Hirose, 2002; Ishii et al.,131

2018; Ito, 1982; Ito et al., 1990; Ito and Katsura, 1989; Ito and Takahashi, 1989; Kat-132

sura et al., 2003; Litasov et al., 2005). We therefore compute RocMLM training data within133

a rectangular PT region bounded between 1–28 GPa and 773–2273 K to encompass ex-134
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pected conditions for the entire upper mantle and MTZ—from approximately 30 km to135

865 km depth (Figure 1).136

Figure 1 shows that our training dataset PT range includes PT conditions that are137

not expected to exist in neither the Earth’s mantle, nor geodynamic simulations (e.g.,138

very cold conditions with thermal gradients ≤ 5 K/km, Cerpa et al., 2022; Maruyama139

et al., 1996; Syracuse et al., 2010). Such a large rectangular PT range might be consid-140

ered impractical with respect to training efficiency (unnecessary amounts of training data)141

and accuracy (outside the bounds of calibrated thermodynamic data) compared to an142

irregular PT range bounded between arbitrary geotherms. However, initial sensitivity143

tests showed comparable RocMLM performance irrespective of the range of PT condi-144

tions used to generate RocMLM training data. Thus, we adopted a regular rectangu-145

lar training dataset design because it is computationally convenient and does not dete-146

riorate RocMLM accuracy.147

Figure 1: PT diagram showing the range of conditions considered for generating
RocMLM training data (hatched region) compared to a range of possible upper man-
tle conditions (inner white region). The dotted black lines are geotherms with arbitrary
mantle potential temperatures of 673 K and 1773 K and a constant adiabatic gradient
of 0.5 K/km, representing hypothetical lower and upper bounds for mantle PT condi-
tions (including hypothetical cold lithospheric slabs). The dashed black line is an average
geotherm for a mid-ocean ridge (1573 K adiabat). Phase boundaries for the 410 km and
670 km discontinuities (colored lines) are from a compilation by Li et al. (2019).
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2.1.2 Bulk Mantle Compositions148

We derived an array of synthetic bulk mantle compositions with the aim of encom-149

passing the widest range of chemical variability in Earth’s mantle. For this, we applied150

a statistical analysis to publicly-available geochemical data from thousands of natural151

peridotite samples. The procedure was as follows.152

Bulk chemical analyses of peridotite samples were downloaded using the Earthchem.org153

Search Portal with a single search criterion: “set sample type > igneous rocks > names154

from Earthchem categories > igneous-plutonic-ultramafic”. The search queried 19791 sam-155

ples with rock type classifications that we did not modify from their original labels. Sam-156

ples lacking analyses for SiO2, MgO, Al2O3, or CaO were excluded from the dataset. All157

samples classified as “unknown”, chromitite, limburgite, wehrlite, undifferentiated peri-158

dotite, dunite, or pyroxenite were also excluded from the dataset to focus on samples that159

are most likely mantellic, that is, residues of partial melting modified (or not) by refer-160

tilization, rather than products of fractional crystallization (Bowen, 1915). The data were161

grouped according to the remaining rock types (lherzolite and harzburgite) and outliers162

were removed from each group using a 1.5 interquartile range threshold applied to each163

chemical component. Cr and Ni measured as minor elements (ppm) were converted to164

Cr2O3 and NiO (wt.%) and all Fe oxides were converted to Fe2O3T. Total oxides were165

then checked against H2O, CO2, and LOI to determine if chemical analyses were per-166

formed before or after ignition. Analyses with total oxides summing to ≤ 97% or ≥ 103%167

were considered erroneous, or otherwise low-quality, and excluded from the dataset. All168

analyses were then normalized to a volatile-free basis before converting Fe2O3T to FeOT.169

After normalization, the final compositional space investigated includes the components170

Na2O-CaO-FeO-MgO-Al2O3-SiO2-TiO2 (NCFMAST system). The final dataset contains171

3111 chemical analyses of classified peridotite samples (Table 1).172

We applied Principal Component Analysis (PCA) to the standardized peridotite173

dataset to reduce its dimensionality from the original 7-oxides space. PCA requires com-174

plete data, so samples were first arranged by decreasing MgO and increasing SiO2 con-175

tent and a k-Neighbors algorithm was applied to impute missing oxide analyses, which176

were mainly the Na2O component (see Table 1 for missing analyses counts). Following177

common practice, a “z-score normalization” was applied to all oxide components before178

running PCA. The first two principal components (PC1 and PC2) explain 78% of the179
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variance of the dataset, which we considered to be sufficient for modeling a broad range180

of peridotitic mantle compositions. PC1 separates samples by their TiO2, Al2O3, MgO,181

CaO, and Na2O contents, while PC2 separates samples by SiO2 and FeO (Figure 2).182

In this PC space, we drew a mixing line connecting the lherzolite and harzburgite183

group centroids (i.e., the median values for PC1 and PC2 for each group). The lherzolite-184

harzburgite mixing line was then extended until reaching the approximate location of185

the most fertile (Al2O3-CaO-TiO2-rich) and most refractory (MgO-rich, SiO2-poor) peri-186

dotite samples, hereafter referred to as Primitive Synthetic Upper Mantle (PSUM) and187

Depleted Synthetic Upper Mantle (DSUM, Figure 2b), respectively. The mixing line ap-188

proximates the widest array of mantle compositions derived from the natural rock record189

and may be interpreted as representing the first order composition variation in response190

to melt extraction (depletion) or addition (refertilization) in the mantle. The mixing line191

therefore provides a basis for sampling synthetic bulk mantle compositions directly from192

PC space, which were then used to generate RocMLM training data.193

Table 1: Summary of the filtered and standardized peridotite dataset from Earth-

chem.org. Columns with an asterisk are in wt.%. Std = standard deviation, IQR = in-

terquartile range.

Oxide MeasuredMissing Min∗ Max∗ Mean∗ Median∗ Std∗ IQR∗

SiO2 3111 0 36.7 52 44.1 44.1 1.16 1.24

TiO2 2835 276 0 0.268 0.051 0.03 0.05 0.068

Al2O3 3111 0 0.023 4.95 1.65 1.31 1.14 1.82

FeOT 3111 0 5.98 15.3 8.05 8.01 0.675 0.569

MgO 3111 0 31.8 50.8 43 43.6 2.96 4.38

CaO 3111 0 0.01 5.2 1.46 1.17 1.04 1.66

Na2O 2008 1103 0 0.525 0.127 0.098 0.11 0.171

2.1.3 Reducing Bulk Mantle Compositions to a Single Fertility Index194

Value195

Training RocMLMs with either 7 oxide components or two PCs as inputs is pos-196

sible. However, our targeted application (e.g., implementing RocMLMs in geodynamic197

codes) discourages the use of the two options because in either case it would require track-198
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ing the oxides in numerical geodynamic codes, which is currently impractical. Thus, we199

aimed to reduce the dimensionality of the training dataset from nine dimensions (7 ox-200

ide components + PT) to three dimensions (1 compositional dimension + PT) by es-201

timating the amount of melt extraction (depletion) that might have produced the syn-202

thetic bulk mantle compositions in the training dataset. Assuming that all synthetic sam-203

ples were derived from a PSUM source, we adopt a simple modal fractional melting model204

(after Shaw, 1970):205

Cs
TiO2

C0
TiO2

= R = (1− F )
1

D0
−1 (2)

where R is the ratio of the TiO2 concentration of the sample to the initial PSUM source206

(Table 2), F is the melt fraction, and D0 = 0.05 is the bulk distribution coefficient for207

TiO2 in peridotite (after Brown and Lesher, 2016). Note that unlike the dataset of nat-208

ural peridotite samples, synthetic samples were drawn directly from PC space and their209

TiO2 concentrations (and other oxide components) change monotonically with PC1 from210

the initial PSUM source (Figure 2b,c). Synthetic samples therefore represent a smooth211

and idealized variability from fertile (PSUM) to depleted (DSUM) mantle compositions212

that captures the average variation in natural peridotite samples.213

A Fertility Index (ξ) is calculated by rearranging Equation (2) for F and subtract-214

ing F from 1:215

ξ = 1− F = R
1

( 1
D0

)−1
(3)

Training RocMLMs on ξ instead of seven oxide components is beneficial for two216

reasons: 1) it greatly increases RocMLM efficiency and 2) unlike oxide components or217

PCs, melt fraction is routinely implemented in numerical geodynamic simulations (e.g.,218

Cerpa et al., 2019; Gerya and Yuen, 2003; Kelley et al., 2010; Li et al., 2019; Sizova et al.,219

2010; Yang and Faccenda, 2020). Likewise, tracking the depletion/fertility of the man-220

tle in geodynamics models with Lagrangian tracers and/or compositional fields is more221

conceivable (Agrusta et al., 2015; Cagnioncle et al., 2007; Gerya and Meilick, 2011; Tack-222

ley and Xie, 2003). Although we chose ξ for RocMLM training, ξ and F represent op-223

posite reference frames for the same time-integrated melting process, and are therefore224
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interchangeable. This approach offers a generalized solution for coupling RocMLMs to225

geodynamic codes.226

Figure 2: PC1-PC2 diagrams showing the standardized geochemical dataset of natu-
ral peridotite samples (a) and a mixing array between hypothetical end-member mantle
compositions Primitive Synthetic Upper Mantle (PSUM) and Depleted Synthetic Up-
per Mantle (DSUM, b). Black arrows in (a) indicate PCA loading vectors. Colored data
points in (b) are the synthetic mantle compositions used to train RocMLMs, which were
sampled independently from the natural peridotite samples (gray data points). The inset
(c) shows how the Fertility Index (ξ) changes nonlinearly with PC1. DMM, PUM, and
PYR are from Table 2.

The melting model in Equation (2) is oversimplified since it assumes: 1) melt is in-227

stantaneously removed from the source region, 2) D0 is constant, and 3) minerals melt228

in the same proportions that they exist in the source rock. It nevertheless provides an229

efficient parameterization of the variation in mantle composition as a function of melt230

extraction and addition. Equation (2) predicts that a Depleted MORB Mantle (DMM)231

composition is produced through a time-integrated 2.2% melt extraction from a Prim-232

itive Upper Mantle (PUM) source (Table 2). This result is consistent with the degree233

of depletion inferred from trace element patterns and mass balance constraints (2-3%234

melt removal from PUM, Workman and Hart, 2005). We therefore consider ξ an ade-235

quate first-order proxy for describing the variations in bulk mantle composition used in236

our RocMLM training dataset. However, given that TiO2 concentrations are strongly237

affected by reactive melt transport (e.g., Le Roux et al., 2007), ξ may only be estimated238

for the average compositional trend as expressed in PC1-PC2 space, rather than on in-239

dividual peridotite samples.240
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Table 2: Hypothetical upper mantle end-member compositions. Columns with an asterisk

are in wt.%. Depleted MORB Mantle (DMM) is from Workman and Hart (2005), Prim-

itive Upper Mantle (PUM) is from Sun and McDonough (1989), and Pyrolite (PYR) is

from Green (1979). Primitive Synthetic Upper Mantle (PSUM) and Depleted Synthetic

Upper Mantle (DSUM), are end-member compositions derived in this study.

Sample SiO∗
2 TiO∗

2 Al2O
∗
3 FeOT∗ MgO∗ CaO∗ Na2O

∗ ξ

DSUM 44.1 0.0012 0.261 7.96 47.4 0.22 0.042 0.764

DMM 44.7 0.13 3.98 8.18 38.7 3.17 0.13 0.974

PYR 45 0.16 4.4 7.6 38.8 3.4 0.34 0.984

PUM 44.9 0.2 4.44 8.03 37.7 3.54 0.36 0.996

PSUM 46.2 0.216 4.88 8.88 35.2 4.34 0.33 1

2.2 Generating RocMLM Training Data241

We used the GFEM program Perple X (version 7.0.9, Connolly, 2009) to generate242

RocMLM training data across PT conditions as described in Section 2.1.1 and synthetic243

bulk mantle compositions as described in Section 2.1.2. The Perple X calculations were244

constrained to the Na2O-CaO-FeO-MgO-Al2O3-SiO2 (NCFMAS) chemical system to com-245

ply with the thermodynamic data and solution models of Stixrude and Lithgow-Bertelloni246

(2022). The Stixrude and Lithgow-Bertelloni (2022) dataset (stx21ver.dat) was used be-247

cause our initial tests with alternative thermodynamic datasets (hp02ver.dat and hp633ver.dat,248

Connolly and Kerrick, 2002; Holland et al., 2018; Holland and Powell, 2001) failed to re-249

produce the seismic wave velocities of geophysical reference models (PREM and STW105,250

Dziewoński and Anderson, 1981; Kustowski et al., 2008) with sufficient accuracy because251

these datasets lack a parametrization of the shear modulii of the minerals phases. Note252

that our Perple X calculations ignored TiO2, which was initially included to define ξ and253

derive synthetic bulk mantle compositions. Despite being measured as a major oxide com-254

ponent, the average TiO2 content of our standardized samples is 0.05 ± 0.1 wt.% (2σ,255

Table 1). Such small concentrations of TiO2 may safely be ignored in phase relation cal-256

culations with negligible effects on the RocMLM training dataset.257

The Perple X models used to generate the present RocMLM training database in-258

cluded equations of state for solution phases: olivine, plagioclase, spinel, clinopyroxene,259
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wadsleyite, ringwoodite, perovskite, ferropericlase, high-pressure C2/c pyroxene, orthopy-260

roxene, akimotoite, post-perovskite, Ca-ferrite, garnet, and Na-Al phase. Melt was not261

considered due to the absence of melt models in the Stixrude and Lithgow-Bertelloni (2022)262

dataset, but may be considered in future versions of training datasets if the elastic pa-263

rameters in hp02ver.dat are corrected. Once configured, Perple X generated RocMLM264

training data (density, as well as P- and S-wave seismic velocities) by minimizing the to-265

tal Gibbs Free Energy of a multicomponent multiphase thermodynamic system at fixed266

PTX conditions (Gibbs, 1878; Spear, 1993). The reader is referred to Connolly (2009)267

and Riel et al. (2022) for a complete description of the GFEM problem.268

In principle, applying identical sets of solution phase models, thermodynamic data,269

and bulk compositions will define identical Gibbs Free Energy hyperplanes. This implies270

that any GFEM algorithm should converge on identical phase relations. Thus, although271

this study uses Perple X exclusively, an identical set of training data can be generated272

by applying the procedures outlined above to other GFEM programs. Note that RocMLM273

capabilities and performance are primarily dependent on the size and the range of PTX274

conditions of the training dataset, not on the choice of GFEM algorithm.275

2.3 Training RocMLMs276

RocMLM training data were preprocessed using the following procedure. First, two-277

dimensional grids of rock properties (“pseudosections”) calculated by Perple X were stacked278

into a three-dimensional array, Z = (z1,1,1, . . . , zn,w,w), where w = 128 is the resolution279

of the PT grid and n = 128 is the number of random synthetic bulk mantle composi-280

tions represented by a ξ value. Z was flattened into arrays of training features (PT and281

ξ), X = (x1,1,1, . . . , xv,v,v), and training targets (density, Vp, and Vs), y = (y1,1,1, . . . , yv,v,v),282

where v = n·w2 = 1283 is the total number of training examples. Following common283

practice, X and y were scaled using “z-score normalization” before training.284

The preprocessed training data were then fit with three different nonlinear regres-285

sion algorithms (Decision Tree: DT, k-Neighbors: KN, and Neural Networks: NN) from286

the scikit-learn python library (Pedregosa et al., 2011). Each regression algorithm was287

tuned with a grid search approach, where a performance score (RMSE) was evaluated288

over all hyperparameter combinations relevant to the particular regression algorithm (Ta-289
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ble 3). The set of hyperparameters that produced the best score (lowest RMSE) was used290

to train the RocMLM.291

Table 3: RocMLM configuration. Hyperparameter values in parentheses are tested se-

quentially by a cross-validation grid search algorithm and the best set of hyperparameters

is chosen by the lowest RMSE. Hyperparameters that are not shown use default values

(see regression model documentation on scikit-learn.org).

Model Hyperparameter Value Tuned

DT splitter (best, random) tuned

max features (1, 2, 3) tuned

min samples leaf (1, 2, 3) tuned

min samples split (2, 4, 6) tuned

KN n neighbors (2, 4, 8) tuned

weights (uniform, distance) tuned

NN1 hidden layer sizes (8, 16, 32) tuned

NN2 hidden layer sizes ([16, 16], [32, 16], [32, 32]) tuned

NN3 hidden layer sizes ([32, 16, 16], [32, 32, 16], [32, 32, 32]) tuned

NN(all) learning rate (0.001, 0.005, 0.001) tuned

batch size 20% fixed

max epochs 100 fixed

2.4 Evaluating RocMLM Accuracy and Performance292

Connolly and Khan (2016) estimated the uncertainties of Vp and Vs to be on the293

order of 3–5% within the same thermodynamic framework used to generate RocMLM294

training data (Stixrude and Lithgow-Bertelloni, 2005). We can therefore consider the base-295

uncertainty of RocMLM predictions to be 3–5%. RocMLM predictions must also account296

for additional uncertainties that are introduced during RocMLM training (i.e., the vari-297

ance of residuals between RocMLM predictions and targets), which are about 2% for NN1298

and < 1% for DT, KN, and NN3. Assuming the lowest-uncertainty models (DT, KN,299

NN3) would be preferred for geodynamic applications, we ignore the small variances in-300

troduced during training (< 1%) and evaluate the total RocMLM prediction uncertain-301
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ties to be on the same order as the base GFEM uncertainty (3–5%) after Connolly and302

Khan (2016).303

RocMLM accuracy (in terms of RMSE) was evaluated by: 1) testing RocMLMs304

on a separate validation dataset to determine the generalization capacity of RocMLMs305

to unseen mantle conditions (internal accuracy), and 2) comparing RocMLMs predic-306

tions with geophysical reference models PREM and STW105 (external accuracy). The307

first test evaluates the degree to which RocMLMs can reproduce GFEM predictions. The308

second test evaluates the degree to which the “true data” used for RocMLM training re-309

produces the phase transitions actually observed in Earth’s upper mantle, which depend310

on the thermodynamic data, GFEM algorithm, and parameterization used to describe311

the composition of mantle rocks (i.e., ξ).312

The validation dataset was generated by Perple X in the same manner as the train-313

ing dataset, but shifted by one-half step (in the positive PT directions) so that RocMLM314

predictions could be evaluated at completely independent PT conditions. RocMLM per-315

formance was evaluated by: 1) measuring single-point prediction times (execution speed),316

and 2) scaling execution speed by RocMLM file size (disk space) to account for infor-317

mation compression (model efficiency).318

The number of PT points and synthetic bulk mantle compositions used for gen-319

erating training data were varied from 8 to 128 (211–221 total training examples) to test320

the sensitivity of RocMLM accuracy and performance with respect to the size (“capac-321

ity”) and composition of the training dataset. The same sets of training data were also322

used to evaluate single-point execution speed using a common Lookup Table approach,323

where a cubic spline interpolation was applied to the training dataset and rock proper-324

ties were evaluated at arbitrary PTX conditions. Prediction accuracy and performance325

were measured in a consistent manner so that direct comparisons could be made between326

RocMLMs, Lookup Tables, and GFEM programs.327

3 Results328

3.1 RocMLM Accuracy329

The following examples of Decision Tree (DT, Figure 3), single-layer Neural Net-330

work (NN1, Figure 4), and three-layer Neural Network (NN3, Figure 5) models demon-331
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strate how different regression algorithms ultimately influence the accuracy of RocMLM332

predictions (see Supplementary Information for all regression algorithms).333

DT predictions are practically indistinguishable from that of Perple X, indicating334

a nearly-perfect mapping of the validation dataset by the DT algorithm (RMSE for den-335

sity: 0.01 g/cm3, Vp and Vs: 0.02 km/s, Figure 3). Absolute differences between Per-336

ple X and DT predictions (residuals) are broadly dispersed and approach zero in most337

regions of PT space. Some concentrations of residuals exist near phase transitions, but338

are subtle and discontinuous (Figure 3g–i).339

In contrast, NN1 predictions are notably smoother than Perple X (Figure 4), with340

higher errors (RMSE for density: 0.02 g/cm3, Vp: 0.06 km/s, Vs: 0.05 km/s) that in-341

dicate an inability to resolve sharp gradients in physical properties when using a single-342

layer Neural Network with a small to moderate amount of neurons. This is evident by343

the NN1 residuals, which are systematically concentrated near phase transitions (Fig-344

ure 4g–i). NN1 profiles display relatively weak discontinuities with gradual changes in345

physical properties across the olivine � wadsleyite and ringwoodite � bridgmanite +346

ferropericlase transitions (Figure 4j–l), and phase transformations within the MTZ are347

virtually absent compared to DT and NN3 profiles. While NN1 predictions do not re-348

produce the validation dataset or geophysical profiles with the highest accuracy, deeper349

(and/or wider) NN architectures with more hidden-layers (e.g., NN3) are more capable350

(Figure 5). NN3 predictions fit the validation dataset and resolve discontinuities in geo-351

physical profiles with nearly equivalent accuracy as DT and KN algorithms (compare352

profiles in Supplementary Information).353

Comparing density, Vp, and Vs depth profiles predicted by RocMLMs (for an av-354

erage mid-ocean ridge-like geotherm with a mantle potential temperature of 1573 K) with355

PREM and STW105 reveals relatively low errors (density: ≤ 0.08 g/cm3, Vp: ≤ 0.26356

km/s, Vs: ≤ 0.14 km/s) and high correlations (R2 ≥ 0.94) that indicate good agreement357

between seismically-derived profiles and thermodynamic predictions, irrespective of re-358

gression algorithm (compare profiles in the Supplementary Information). The largest de-359

viations between RocMLM profiles, PREM, and STW105 fall within two regions: 1) be-360

tween 1–8 GPa, and 2) at the base of the MTZ (Figures 3–5j–l). At pressures lower than361

5 GPa, the divergence between RocMLM profiles and seismically-derived profiles may362

be explained by the low resolution of the 1D geophysical profiles relative to the extreme363
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spatial variability in composition and geotherms on Earth. Tests using an average con-364

tinental geotherm to calculate RocMLM profiles results in less divergence between RocMLM365

profiles and PREM at < 5 GPa compared to the mid-ocean ridge-like geotherms used366

to build the profiles presented in Figures 3–5. At pressures between 5–8 GPa, the two367

geophysical models show a discrepancy: PREM contains a discontinuity, especially in368

seismic velocities, while STW105 has a gradual and continuous increase. RocMLM pro-369

files between 5–8 GPa are more similar to STW105, which does not map any disconti-370

nuities until the olivine � wadsleyite transition at 410 km depth (Figures 3–5j–l).371

Within the MTZ, DT and NN3 profiles predict intermediate discontinuities, while372

PREM and STW105 are gradual and continuous (Figures 3,5g–i). As expected, compar-373

ing RocMLM profiles for different geotherms shows that the choice of a mantle poten-374

tial temperature leads to contrasting predictions of: 1) the overall evolution of rock prop-375

erties with depth, and 2) the depths, magnitudes, and sharpness of phase transitions within376

the MTZ (Figures 3–5g–i). RocMLM profiles show, similarly to those directly derived377

from the Perple X calculation, temperature-sensitive discontinuities at the olivine � wad-378

sleyite and wadsleyite � ringwoodite transitions, but a rather temperature insensitive379

ringwoodite � bridgmanite + ferropericlase transition (Figures 3–5g–i). This can be ex-380

plained by differences in Clapeyron slopes modeled by the Stixrude and Lithgow-Bertelloni381

(2022) dataset.382

3.2 RocMLM Performance383

We now compare RocMLM performance to two other tools classically used to pre-384

dict the variations of physical properties of mantle rocks in geodynamic models: GFEM385

programs and Lookup Tables. Note that RocMLM, GFEM, and Lookup Table perfor-386

mance is platform specific. Running analogous implementations with other programming387

languages and/or on alternative computer hardware will differ from the results presented388

here. All computations in this study were made using CPUs of a Macbook Pro (2022;389

M2 chip) with macOS 13.4 and using Python 3.11.4. All performance metrics were eval-390

uated with a single CPU core.391

Figure 6 shows how execution speed, efficiency, and accuracy scale with the capac-392

ity of Lookup Tables and RocMLMs. Here, “capacity” refers to the number of scalar val-393

ues stored by Lookup Tables, or alternatively, the number of pseudosection PTX points394

–16–



manuscript submitted to Geochemistry, Geophysics, Geosystems

Figure 3: PT diagrams showing density (left column, g/cm3), Vp (middle column,
km/s), and Vs (right column, km/s) predictions from a Perple X model with a PUM
bulk composition (a–c), a Decision Tree RocMLM (d–f), and absolute differences between
Perple X and DT (g–i) measured on the validation dataset. Depth profiles (j–l) compare
Perple X and DT predictions extracted along a 0.5 K/km adiabat with different man-
tle potential temperatures (white lines) with reference models PREM (solid black line,
Dziewoński and Anderson, 1981) and STW105 (dotted black line, Kustowski et al., 2008).
The RMSE in (j–l) indicates the measured differences between DT-1573 and PREM.
Colored ribbons indicate 5% uncertainty in RocMLM predictions.
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Figure 4: PT diagrams showing density (left column, g/cm3), Vp (middle column,
km/s), and Vs (right column, km/s) predictions from a Perple X model with a PUM bulk
composition (a–c), a single-layer Neural Network RocMLM (d–f), and absolute differences
between Perple X and NN1 (g–i) measured on the validation dataset. Other legend details
are the same as in Figure 3.
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Figure 5: PT diagrams showing density (left column, g/cm3), Vp (middle column,
km/s), and Vs (right column, km/s) predictions from a Perple X model with a PUM
bulk composition (a–c), a three-layer Neural Network RocMLM (d–f), and absolute differ-
ences between Perple X and NN3 (g–i) measured on the validation dataset. Other legend
details are the same as in Figure 3.
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“learned” by RocMLMs. Thus, “capacity” is intended to convey and compare the breadth395

of petrological “knowledge”, or predictive capabilities, of Lookup Tables and RocMLMs.396

Within the same context, the notion of “capacity” is irrelevant for GFEM programs. Rather,397

GFEM performance primarily scales with the number of chemical components, phase398

solutions, and size of the compositional space defined by the user, as well as automatic399

grid refinement settings and other user-defined configuration options.400

GFEM performance is reported using the range of average execution speeds (4–228401

ms) and efficiencies (60–3138 ms·Mb) that we measured while generating our RocMLM402

training datasets as described in Section 2.2. To demonstrate the sensitivity of GFEM403

performance to alternative Perple X configurations, we also show GFEM execution speed404

and efficiency for similar calculations using the thermodynamic data and phase solutions405

of Holland et al. (2018). Note that none of the Perple X calculations using the Holland406

et al. (2018) configuration were used to train RocMLMs due to inaccurate seismic ve-407

locity predictions, and their performance metrics are only shown for illustrative purposes.408

Figure 6: Computational efficiency of various approaches in terms of execution speed (a)
and model efficiency (b). “Capacity” (x-axis) is a proxy for the petrological “knowledge”,
or predictive capabilities, of Lookup Tables and RocMLMs. White regions indicate GFEM
efficiencies for different Perple X configurations (thermodynamic dataset, chemical sys-
tem, and number of solution phases are indicated in square brackets). stx21: Stixrude and
Lithgow-Bertelloni (2022), hp633: Holland and Powell (2011) updated in Holland et al.
(2018). Perple X was run without multilevel grid refinement. RMSE is measured between
density predictions and the validation dataset.

For Lookup Tables, execution speed and efficiency both scale roughly linearly with409

capacity on a logarithmic scale—indicating an inverse power-law relationship between410

Lookup Table capacity and performance (Figure 6). RocMLM performance, in contrast,411
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scales differently depending on the performance metric and regression algorithm. For ex-412

ample, RocMLM execution speed remains roughly constant, or increasing slightly with413

capacity, and shows relatively small variance among all regression algorithms (0.14 ± 0.26414

ms, 2σ, Figure 6a). Yet RocMLM efficiency is markedly different for DT and KN algo-415

rithms compared to NN algorithms (Figure 6b). Despite the fast execution times of KN416

and DT algorithms (Figure 6a), their efficiency scales roughly linearly with capacity on417

a logarithmic scale—indicating an inverse power-law relationship between efficiency and418

capacity similar to Lookup Tables (Figure 6b). NN algorithms, on the other hand, show419

roughly constant efficiencies that indicate a high degree of information compression with-420

out sacrificing execution speed (Figure 6b). We note that training times for NN algo-421

rithms are many orders of magnitude larger than DT and KN algorithms (Supplemen-422

tary Information). However, training times are neither limiting nor critical for geody-423

namic applications as training is independent from, and precedes numerical simulations.424

Since accuracy is measured relative to the rock properties generated by GFEM pro-425

grams, GFEM programs have perfect accuracy by definition. With respect to RocMLMs,426

validation accuracies (RMSE) are observed to be roughly constant for regression algo-427

rithms that apply binary decisions or local distance-based weights (DT and KN), while428

algorithms that apply global activation-based weights (NNs) show a positive correlation429

between accuracy and capacity (Figure 6). In addition to improving accuracy with in-430

creasing amounts of training examples, NN accuracy also increases with the number of431

hidden-layers (Figure 6) because deeper networks are more capable of fitting sharp gra-432

dients in the training data (see Supplementary Information for examples of NN1, NN2,433

and NN3 RocMLMs). We also tested the effects of NN width (changing the number of434

nodes within each hidden layer), but this had a negligible impact on NN performance435

and accuracy compared to increasing NN depth.436

4 Discussion437

4.1 RocMLM Performance Tradeoffs438

RocMLM performance and accuracy are both critical for geodynamic applications439

and crucial for determining if RocMLMs are an improvement over methods commonly440

used for predicting rock properties in numerical geodynamic simulations. In terms of pure441

execution speed, our testing demonstrates that RocMLMs can make predictions between442
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101–103 times faster than GFEM programs and Lookup Tables (Figure 6), depending443

on the GFEM program configuration. The difference in execution speed between Lookup444

Tables and RocMLMs is small for low-resolution models (Figure 6) that are limited to445

≤ 16 mantle compositions and large PT intervals (≥ 1.7 GPa and 100 K PT step sizes).446

However, such low-resolution models are not an obvious improvement over simple poly-447

nomial approximations of a selective number of important phase transformations. At higher448

resolutions, RocMLMs can accurately resolve the physical properties of all thermodynamically-449

stable mineral assemblages in fine detail (at PT intervals of ≤ 0.2 GPa and 12 K) and450

for a wide variety of bulk mantle compositions (Figure 2). In addition to their broad pre-451

dictive capabilities, high-resolution RocMLMs make predictions at speeds (approximately452

0.1–1 ms, Figure 6) that allow computation of physical properties at the node-scale dur-453

ing geodynamic simulations. We therefore argue that high-resolution RocMLMs over-454

come all practical limitations for implementing thermodynamically self-consistent den-455

sity evolution in numerical geodynamic models.456

With respect to ranking the practicality of different RocMLM for geodynamic ap-457

plications, execution speeds and accuracies alone suggest that high-resolution RocMLMs458

will perform with roughly equivalent outcomes regardless of the regression algorithm (Fig-459

ure 6a). However, our testing reveals an obvious tradeoff between RocMLM performance460

and accuracy when accounting for compression ratio (i.e., the amount of “learned” in-461

formation relative to the RocMLM file size). Figure 6b shows DT and KN algorithms462

becoming rapidly inefficient compared to NNs as the capacity of the training dataset in-463

creases. This is because NN algorithms require relatively little information to make pre-464

dictions after training (weights and biases for each neuron) compared to DT (tree struc-465

ture: nodes, splits, and predictions) and KN (entire training dataset with distance weights)466

algorithms. Moreover, accuracy tends to improve monotonically with dataset capacity467

for NN, but not for DT or KN. We therefore argue that deep NN RocMLMs are the most468

practical choice for geodynamic applications for three reasons: 1) modeling more rock469

types only requires adding more training data, 2) adding more training data improves470

prediction accuracy without diminishing performance, and 3) further improvements and471

adaptations to different geodynamic applications are possible by exploring different ar-472

chitectures than the simple NN models we have tested thus far.473

The main limitations of NN RocMLMs are twofold: 1) training is computationally474

expensive compared to other regression algorithms (Supplementary Information) and 2)475
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shallow NN architectures imply smoother gradients in rock properties than GFEM cal-476

culations. We do not consider these limitations critical because training time is indepen-477

dent from RocMLM performance and even if deeper NN architectures are needed to fit478

discontinuities in rock properties with high accuracy, the number of layers and neurons479

in each layer remains small (Table 3). We note that our testing has been limited to the480

prediction of three properties that are mostly P-dependent and are relatively continu-481

ous despite a few large discontinuities. In principle, RocMLMs can be trained on any ther-482

modynamic variable output by GFEM programs. However, we have not yet trained RocMLMs483

on more discrete, discontinuous, and/or highly T-dependent variables, such as modal pro-484

portions of minerals, volatile contents, or melt fraction, which will be treated in future485

developments of RocMLMs.486

4.2 Geophysical and Thermodynamic Estimates of Elastic Properties487

The amount of overlap between RocMLM profiles and PREM (Figures 3–3) sug-488

gests good agreement between thermodynamic and geophysical estimates of the elastic489

properties of mantle rocks within the limits of our training dataset and Perple X con-490

figuration (see Sections 2.1 and 2.2). Discrepancies between thermodynamic profiles and491

PREM can be explained by chemical heterogeneity and/or differences in mantle geotherms492

that modify phase relations (Goes et al., 2022; Karki and Stixrude, 1999; Karki et al.,493

2001; Stixrude and Lithgow-Bertelloni, 2012; Waszek et al., 2021; Xu et al., 2008). Be-494

cause the RocMLM training dataset spans a wide array of synthetic bulk mantle com-495

positions, we can directly test the sensitivity of thermodynamic estimates to changes in496

bulk FeO–MgO contents (Figure 7).497

As Fertility Index (ξ) increases by refertilization and/or lack of melt extraction and498

the bulk mantle composition becomes more Fe-rich (and more dense), Vp and Vs respond499

(both positively and negatively) according to the equations of state described in Stixrude500

and Lithgow-Bertelloni (2005). RocMLM training data show that density is the least sen-501

sitive parameter to ξ overall with only modest variations across a broad range of man-502

tle rocks from fertile to highly depleted (ξ = 0.76, Figure 7a). The largest density vari-503

ations occur at pressures below the olivine � wadsleyite transition (< 410 km), yet are504

still small enough (approximately 3–5 %) to imply that spontaneous mantle convection505

requires strong thermal gradients and/or hydration by metamorphic fluids in addition506

to melt extraction.507
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In contrast to density, Vp and Vs are more sensitive to ξ overall, especially at pres-508

sures above the olivine � wadsleyite transition (> 410 km). RocMLM training data sug-509

gests that an “optimal” Vp/Vs profile requires a more depleted mantle between 410–670510

km and a more fertile mantle at < 410 km (Figure 7b,c). Forming this compositional511

layering pattern is counterintuitive, however, as partial melting is expected to be more512

pervasive at lower pressures. Moreover, density profiles are incongruent with this pat-513

tern, suggesting instead that a depleted mantle at < 410 km and more fertile mantle at514

> 410 km are required for an optimal fit with PREM and STW105 (Figure 7a).515

Figure 7: Depth profiles of RocMLM training data along a 1573 K mantle adiabat
showing the sensitivities of thermodynamic estimates of density (a), Vp (b), and Vs (c)
to changes in bulk mantle composition (as represented by the Fertility Index, ξ). Geo-
physical profiles PREM and STW105 (green lines) and the profiles of synthetic mantle
end-member compositions PSUM and DSUM (thick colored lines) are shown for reference.
Thin colored lines show profiles for the entire range of RocMLM training data.

5 Conclusions516

The dynamics of Earth’s upper mantle is largely driven by density contrasts stem-517

ming from changes in PT conditions, which lead to phase transformations in mantle rocks.518

These phase transformations also modify the elastic properties of mantle rocks. There-519

fore phase changes must be considered when inverting present-day mantle structure from520

seismic data. Likewise, numerical geodynamic simulations of mantle convection must ac-521

count for thermodynamics, but are typically implemented with simple PT-dependent pa-522

rameterizations of rock properties and phase boundaries that do not explicitly account523

for changes in Gibbs Free Energy resulting from changes in PT and in bulk composition.524

Here, we introduce RocMLMs as an alternative to GFEM programs and we evaluate RocMLM525

performance and accuracy. We also show how the RocMLM predictions compare to PREM526

and STW105. Our main findings are as follows:527
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1. RocMLMs predict density and elastic properties with high accuracy and are up528

to 101–103 faster than commonly used methods. This improvement in prediction529

speed makes thermodynamically self-consistent mantle convection within high-resolution530

numerical geodynamic models practical for the first time.531

2. RocMLMs trained with moderately deep (3 hidden layers) NNs are more robust532

and efficient compared to RocMLMs trained with other regression algorithms, and533

are therefore the most practical models for coupling with numerical geodynamic534

codes.535

3. RocMLM training data are sensitive to bulk mantle composition and geothermal536

gradients, yet show good agreement with PREM and STW105 for an average man-537

tle geotherm.538

Based on our results, we argue that moderately deep NN RocMLMs can be excep-539

tional emulators of GFEM programs in geodynamic simulations that require computa-540

tionally efficient predictions of rock properties. We have demonstrated that RocMLMs541

perform remarkably well for dry mantle rocks with compositions ranging from very fer-542

tile lherzolites to strongly depleted harzburgites and PT conditions ranging from 1–28543

GPa and 773–2273 K.544

Moreover, the RocMLM approach can be used with any GFEM program and ther-545

modynamic dataset. Any improvement to the underlying thermodynamic data should546

further increase the accuracy of RocMLM predictions. Testing RocMLMs predictions547

on other thermodynamic variables of interest, including modal proportions of minerals,548

volatile contents, and melt fractions will be the focus of future studies. Likewise, in fu-549

ture works, we will extend the training data to include hydrous systems and additional550

end-member mantle compositions (e.g., pyroxenites and dunites).551
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Abstract14

Mineral phase transformations significantly alter the bulk density and elastic properties15

of mantle rocks and consequently have profound effects on mantle dynamics and seis-16

mic wave propagation. These changes in the physical properties of mantle rocks result17

from evolution in the equilibrium mineralogical composition, which can be predicted by18

the minimization of the Gibbs Free Energy with respect to pressure (P), temperature19

(T), and chemical composition (X). Thus, numerical models that simulate mantle con-20

vection and/or probe the elastic structure of the Earth’s mantle must account for vary-21

ing mineralogical compositions to be self-consistent. Yet coupling Gibbs Free Energy min-22

imization (GFEM) approaches with numerical geodynamic models is currently intractable23

for high-resolution simulations because execution speeds of widely-used GFEM programs24

(100–102 ms) are impractical in many cases. As an alternative, this study introduces ma-25

chine learning models (RocMLMs) that have been trained to predict thermodynamically26

self-consistent rock properties at arbitrary PTX conditions between 1–28 GPa, 773–227327

K, and mantle compositions ranging from fertile (lherzolitic) to refractory (harzburgitic)28

end-members defined with a large dataset of published mantle compositions. RocMLMs29

are 101–103 times faster than GFEM calculations or GFEM-based look-up table approaches30

with equivalent accuracy. Depth profiles of RocMLMs predictions are nearly indistin-31

guishable from reference models PREM and STW105, demonstrating good agreement32

between thermodynamic-based predictions of density, Vp, and Vs and geophysical ob-33

servations. RocMLMs are therefore capable, for the first time, of emulating dynamic evo-34

lution of density, Vp, and Vs in high-resolution numerical geodynamic models.35

Plain language summary36

The mineralogical makeup of rocks within Earth’s mantle largely determines how the37

mantle flows over geologic time, and how it responds to seismic waves triggered by earth-38

quakes, because mineral assemblages control important rock properties such as density39

and stiffness (elasticity). The mineralogy of mantle rocks is not constant, however. It40

changes depending on three factors: pressure, temperature, and the chemical composi-41

tion of the rock. Thus, it is important for computer simulations of mantle convection to42

account for the evolution of rock mineralogy. Computer programs that can predict rock43

properties based on thermodynamic calculations are available, but are generally too slow44

to be used in high-resolution simulations. As an alternative approach, this study intro-45
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duces machine learning models (RocMLMs) that have “learned” how to predict rock prop-46

erties (density and elasticity) by “training” on a large dataset of thermodynamic calcu-47

lations. We demonstrate that RocMLMs can then predict rock properties up to 101–10348

times faster than state-of-the-art methods. We tested RocMLM predictions against ref-49

erence mantle models based on observations of seismic waves and found good agreement.50

RocMLMs are therefore capable of fast and highly-accurate predictions of changes in rock51

properties and can be implemented in high-resolution computer simulations of mantle52

convection.53

1 Introduction54

The dominant mineral phases in Earth’s mantle are olivine, pyroxene, garnet, wad-55

sleyite, ringwoodite, bridgmanite, ferropericlase, calcium silicate perovskite, and MgSiO356

post-perovskite (e.g., Stixrude and Lithgow-Bertelloni, 2012). Mantle mineralogy evolves57

with depth by a series of relatively discontinuous phase transformations that define sharp58

transitions in the physical properties of mantle rocks (Ringwood, 1991). The most im-59

portant phase transformations occur at depths between 410 km and 670 km beneath Earth’s60

surface, defining the transition from the upper to the lower mantle (Equation (1)). This61

mantle transition zone (MTZ) is characterized by sharp variations in density and elas-62

tic properties that strongly impact mantle convection (Christensen, 1995; Fukao et al.,63

2001; Jenkins et al., 2016; Karato et al., 2001; Kuritani et al., 2019; Nakagawa and Buf-64

fett, 2005; Ringwood, 1991; Schubert et al., 1975; Tackley et al., 1994; Wang et al., 2015),65

and the propagation of teleseismic waves (Dziewoński and Anderson, 1981; Ita and Stixrude,66

1992; Ringwood, 1991). The MTZ is therefore an essential feature for modeling mantle67

structure and dynamics. With respect to a simple FeO-MgO-SiO2 chemical system, the68

most important MTZ reactions can be written as:69

olivine
410 km−−−−→ wadsleyite → ringwoodite

670 km−−−−→ bridgmanite + ferropericlase

(Mg,Fe)2SiO4 → (Mg,Fe)2SiO4 → (Mg,Fe)2SiO4 → (Mg,Fe)SiO3 + (Mg,Fe)O (1)

These phase changes (e.g., Equation (1)) are often parameterized in numerical geo-70

dynamic simulations with simple pressure-temperature (PT)-dependent reaction bound-71

aries based on high-pressure experiments (e.g., Agrusta et al., 2017; Ballmer et al., 2015;72
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Christensen, 1995; Č́ıžková and Bina, 2013; Kerswell et al., 2021; Liu et al., 1991; Nak-73

agawa and Buffett, 2005; Tackley et al., 1994; Torii and Yoshioka, 2007). Alternatively,74

some numerical geodynamic experiments (e.g., Li et al., 2019; Yang and Faccenda, 2020)75

use Gibbs Free Energy minimization (GFEM) programs (e.g., Connolly, 2009; Riel et al.,76

2022) to precompute Lookup Tables of rock properties, which are subsequently referenced77

to adjust material properties as the numerical experiments evolve. These implementa-78

tions usually consider fixed ideal mantle compositions, such as pyrolite, and/or approx-79

imate phase transitions with simple functions. These approaches neglect the PT depen-80

dency of mineral transitions on natural variations of mantle composition (X) such as vari-81

ations of Fe-Mg and Al-Ca that may be either primordial or result from melt extraction82

or reactions during melt transport. Despite these simplifications, these models have cor-83

roborated that the MTZ is a critical feature impacting subduction dynamics, mantle plume84

dynamics, and water cycling in the deep Earth.85

More self-consistent numerical models of mantle convection would track changes86

in physical properties of mantle rocks by computing GFEM as a function of the evolu-87

tion of PTX conditions. However, this is currently intractable for high-resolution geo-88

dynamic models because GFEM programs remain too slow (≥ 4–228 ms per PTX point)89

to be applied recursively during a geodynamic simulation (see Supporting Information).90

Parallelization of GFEM programs can increase efficiency by scaling the number of par-91

allel processes (Riel et al., 2022), but continuously computing phase relations during geo-92

dynamic simulations would require GFEM efficiency on the order of ≤ 100–10−1 ms to93

be feasible (see Supporting Information), which may be difficult to achieve solely by par-94

allelisation and/or direct improvements to the current GFEM paradigm.95

Here, we propose an alternative approach to predicting rock properties based on96

the use of machine learning models (referred to as RocMLMs) that have been “trained”97

on a multidimensional dataset of precomputed rock properties using classical (k-Neighbors,98

Decision Trees) and deep (Neural Network) regression algorithms. These later regres-99

sion algorithms compress large amounts of thermodynamic information into highly ef-100

ficient nonlinear functions, allowing RocMLMs to infer (predict) rock properties across101

arbitrary PTX conditions faster than any current GFEM algorithm. We demonstrate102

that RocMLMs are thus highly efficient emulators of GFEM programs and are well-suited103

for predicting bulk rock properties in numerical geodynamic models.104
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This article begins by detailing our method for building, training, and evaluating105

RocMLMs. We then demonstrate that RocMLMs can predict densities and seismic ve-106

locities in a dry upper mantle and transition zone up to 101–103 times faster than com-107

monly used GFEM programs with equivalent accuracies. Finally, we compare RocMLM108

predictions with reference models derived from seismological datasets (Dziewoński and109

Anderson, 1981; Kustowski et al., 2008) and discuss the accuracy and performance of110

RocMLMs with respect to their future implementation in numerical geodynamic mod-111

els.112

2 Methods113

The following sections describe the methodologies employed in constructing, train-114

ing, and assessing RocMLMs, with a focus on four primary objectives. First, define the115

size and scope of RocMLM training data to ensure widespread applicability of RocMLMs116

to the upper mantle and transition zone (Section 2.1). Second, define a generalized ap-117

proach for generating RocMLM training data to ensure applicability to any GFEM pro-118

gram (e.g., MAGEMin, Perple X, and others, Section 2.2). Third, train RocMLMs on119

a set of input features that can be routinely computed during geodynamic simulations120

to ensure widespread applicability of RocMLMs to various geodynamic codes (Section121

2.3). Fourth, rank the overall performance of RocMLMs in terms of accuracy and effi-122

ciency (Section 2.4).123

2.1 RocMLM Training Dataset Design124

2.1.1 Pressure-Temperature Conditions125

High-pressure experiments constrain the reaction olivine � wadsleyite between 14.0126

± 1.0 GPa and 1600 ± 400 K with Clapeyron slopes between 2.4x10−3
± 1.4x10−3 GPa/K127

(Akaogi et al., 1989; Katsura and Ito, 1989; Li et al., 2019; Morishima et al., 1994). Like-128

wise, the reaction ringwoodite � bridgmanite + ferropericlase is constrained between129

24.0 ± 1.5 GPa and 1600 ± 400 K with negative Clapeyron slopes between -2.0x10−3
130

± 1.6x10−3 GPa/K (Akaogi et al., 2007; Bina and Helffrich, 1994; Hirose, 2002; Ishii et al.,131

2018; Ito, 1982; Ito et al., 1990; Ito and Katsura, 1989; Ito and Takahashi, 1989; Kat-132

sura et al., 2003; Litasov et al., 2005). We therefore compute RocMLM training data within133

a rectangular PT region bounded between 1–28 GPa and 773–2273 K to encompass ex-134
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pected conditions for the entire upper mantle and MTZ—from approximately 30 km to135

865 km depth (Figure 1).136

Figure 1 shows that our training dataset PT range includes PT conditions that are137

not expected to exist in neither the Earth’s mantle, nor geodynamic simulations (e.g.,138

very cold conditions with thermal gradients ≤ 5 K/km, Cerpa et al., 2022; Maruyama139

et al., 1996; Syracuse et al., 2010). Such a large rectangular PT range might be consid-140

ered impractical with respect to training efficiency (unnecessary amounts of training data)141

and accuracy (outside the bounds of calibrated thermodynamic data) compared to an142

irregular PT range bounded between arbitrary geotherms. However, initial sensitivity143

tests showed comparable RocMLM performance irrespective of the range of PT condi-144

tions used to generate RocMLM training data. Thus, we adopted a regular rectangu-145

lar training dataset design because it is computationally convenient and does not dete-146

riorate RocMLM accuracy.147

Figure 1: PT diagram showing the range of conditions considered for generating
RocMLM training data (hatched region) compared to a range of possible upper man-
tle conditions (inner white region). The dotted black lines are geotherms with arbitrary
mantle potential temperatures of 673 K and 1773 K and a constant adiabatic gradient
of 0.5 K/km, representing hypothetical lower and upper bounds for mantle PT condi-
tions (including hypothetical cold lithospheric slabs). The dashed black line is an average
geotherm for a mid-ocean ridge (1573 K adiabat). Phase boundaries for the 410 km and
670 km discontinuities (colored lines) are from a compilation by Li et al. (2019).
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2.1.2 Bulk Mantle Compositions148

We derived an array of synthetic bulk mantle compositions with the aim of encom-149

passing the widest range of chemical variability in Earth’s mantle. For this, we applied150

a statistical analysis to publicly-available geochemical data from thousands of natural151

peridotite samples. The procedure was as follows.152

Bulk chemical analyses of peridotite samples were downloaded using the Earthchem.org153

Search Portal with a single search criterion: “set sample type > igneous rocks > names154

from Earthchem categories > igneous-plutonic-ultramafic”. The search queried 19791 sam-155

ples with rock type classifications that we did not modify from their original labels. Sam-156

ples lacking analyses for SiO2, MgO, Al2O3, or CaO were excluded from the dataset. All157

samples classified as “unknown”, chromitite, limburgite, wehrlite, undifferentiated peri-158

dotite, dunite, or pyroxenite were also excluded from the dataset to focus on samples that159

are most likely mantellic, that is, residues of partial melting modified (or not) by refer-160

tilization, rather than products of fractional crystallization (Bowen, 1915). The data were161

grouped according to the remaining rock types (lherzolite and harzburgite) and outliers162

were removed from each group using a 1.5 interquartile range threshold applied to each163

chemical component. Cr and Ni measured as minor elements (ppm) were converted to164

Cr2O3 and NiO (wt.%) and all Fe oxides were converted to Fe2O3T. Total oxides were165

then checked against H2O, CO2, and LOI to determine if chemical analyses were per-166

formed before or after ignition. Analyses with total oxides summing to ≤ 97% or ≥ 103%167

were considered erroneous, or otherwise low-quality, and excluded from the dataset. All168

analyses were then normalized to a volatile-free basis before converting Fe2O3T to FeOT.169

After normalization, the final compositional space investigated includes the components170

Na2O-CaO-FeO-MgO-Al2O3-SiO2-TiO2 (NCFMAST system). The final dataset contains171

3111 chemical analyses of classified peridotite samples (Table 1).172

We applied Principal Component Analysis (PCA) to the standardized peridotite173

dataset to reduce its dimensionality from the original 7-oxides space. PCA requires com-174

plete data, so samples were first arranged by decreasing MgO and increasing SiO2 con-175

tent and a k-Neighbors algorithm was applied to impute missing oxide analyses, which176

were mainly the Na2O component (see Table 1 for missing analyses counts). Following177

common practice, a “z-score normalization” was applied to all oxide components before178

running PCA. The first two principal components (PC1 and PC2) explain 78% of the179
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variance of the dataset, which we considered to be sufficient for modeling a broad range180

of peridotitic mantle compositions. PC1 separates samples by their TiO2, Al2O3, MgO,181

CaO, and Na2O contents, while PC2 separates samples by SiO2 and FeO (Figure 2).182

In this PC space, we drew a mixing line connecting the lherzolite and harzburgite183

group centroids (i.e., the median values for PC1 and PC2 for each group). The lherzolite-184

harzburgite mixing line was then extended until reaching the approximate location of185

the most fertile (Al2O3-CaO-TiO2-rich) and most refractory (MgO-rich, SiO2-poor) peri-186

dotite samples, hereafter referred to as Primitive Synthetic Upper Mantle (PSUM) and187

Depleted Synthetic Upper Mantle (DSUM, Figure 2b), respectively. The mixing line ap-188

proximates the widest array of mantle compositions derived from the natural rock record189

and may be interpreted as representing the first order composition variation in response190

to melt extraction (depletion) or addition (refertilization) in the mantle. The mixing line191

therefore provides a basis for sampling synthetic bulk mantle compositions directly from192

PC space, which were then used to generate RocMLM training data.193

Table 1: Summary of the filtered and standardized peridotite dataset from Earth-

chem.org. Columns with an asterisk are in wt.%. Std = standard deviation, IQR = in-

terquartile range.

Oxide MeasuredMissing Min∗ Max∗ Mean∗ Median∗ Std∗ IQR∗

SiO2 3111 0 36.7 52 44.1 44.1 1.16 1.24

TiO2 2835 276 0 0.268 0.051 0.03 0.05 0.068

Al2O3 3111 0 0.023 4.95 1.65 1.31 1.14 1.82

FeOT 3111 0 5.98 15.3 8.05 8.01 0.675 0.569

MgO 3111 0 31.8 50.8 43 43.6 2.96 4.38

CaO 3111 0 0.01 5.2 1.46 1.17 1.04 1.66

Na2O 2008 1103 0 0.525 0.127 0.098 0.11 0.171

2.1.3 Reducing Bulk Mantle Compositions to a Single Fertility Index194

Value195

Training RocMLMs with either 7 oxide components or two PCs as inputs is pos-196

sible. However, our targeted application (e.g., implementing RocMLMs in geodynamic197

codes) discourages the use of the two options because in either case it would require track-198
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ing the oxides in numerical geodynamic codes, which is currently impractical. Thus, we199

aimed to reduce the dimensionality of the training dataset from nine dimensions (7 ox-200

ide components + PT) to three dimensions (1 compositional dimension + PT) by es-201

timating the amount of melt extraction (depletion) that might have produced the syn-202

thetic bulk mantle compositions in the training dataset. Assuming that all synthetic sam-203

ples were derived from a PSUM source, we adopt a simple modal fractional melting model204

(after Shaw, 1970):205

Cs
TiO2

C0
TiO2

= R = (1− F )
1

D0
−1 (2)

where R is the ratio of the TiO2 concentration of the sample to the initial PSUM source206

(Table 2), F is the melt fraction, and D0 = 0.05 is the bulk distribution coefficient for207

TiO2 in peridotite (after Brown and Lesher, 2016). Note that unlike the dataset of nat-208

ural peridotite samples, synthetic samples were drawn directly from PC space and their209

TiO2 concentrations (and other oxide components) change monotonically with PC1 from210

the initial PSUM source (Figure 2b,c). Synthetic samples therefore represent a smooth211

and idealized variability from fertile (PSUM) to depleted (DSUM) mantle compositions212

that captures the average variation in natural peridotite samples.213

A Fertility Index (ξ) is calculated by rearranging Equation (2) for F and subtract-214

ing F from 1:215

ξ = 1− F = R
1

( 1
D0

)−1
(3)

Training RocMLMs on ξ instead of seven oxide components is beneficial for two216

reasons: 1) it greatly increases RocMLM efficiency and 2) unlike oxide components or217

PCs, melt fraction is routinely implemented in numerical geodynamic simulations (e.g.,218

Cerpa et al., 2019; Gerya and Yuen, 2003; Kelley et al., 2010; Li et al., 2019; Sizova et al.,219

2010; Yang and Faccenda, 2020). Likewise, tracking the depletion/fertility of the man-220

tle in geodynamics models with Lagrangian tracers and/or compositional fields is more221

conceivable (Agrusta et al., 2015; Cagnioncle et al., 2007; Gerya and Meilick, 2011; Tack-222

ley and Xie, 2003). Although we chose ξ for RocMLM training, ξ and F represent op-223

posite reference frames for the same time-integrated melting process, and are therefore224
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interchangeable. This approach offers a generalized solution for coupling RocMLMs to225

geodynamic codes.226

Figure 2: PC1-PC2 diagrams showing the standardized geochemical dataset of natu-
ral peridotite samples (a) and a mixing array between hypothetical end-member mantle
compositions Primitive Synthetic Upper Mantle (PSUM) and Depleted Synthetic Up-
per Mantle (DSUM, b). Black arrows in (a) indicate PCA loading vectors. Colored data
points in (b) are the synthetic mantle compositions used to train RocMLMs, which were
sampled independently from the natural peridotite samples (gray data points). The inset
(c) shows how the Fertility Index (ξ) changes nonlinearly with PC1. DMM, PUM, and
PYR are from Table 2.

The melting model in Equation (2) is oversimplified since it assumes: 1) melt is in-227

stantaneously removed from the source region, 2) D0 is constant, and 3) minerals melt228

in the same proportions that they exist in the source rock. It nevertheless provides an229

efficient parameterization of the variation in mantle composition as a function of melt230

extraction and addition. Equation (2) predicts that a Depleted MORB Mantle (DMM)231

composition is produced through a time-integrated 2.2% melt extraction from a Prim-232

itive Upper Mantle (PUM) source (Table 2). This result is consistent with the degree233

of depletion inferred from trace element patterns and mass balance constraints (2-3%234

melt removal from PUM, Workman and Hart, 2005). We therefore consider ξ an ade-235

quate first-order proxy for describing the variations in bulk mantle composition used in236

our RocMLM training dataset. However, given that TiO2 concentrations are strongly237

affected by reactive melt transport (e.g., Le Roux et al., 2007), ξ may only be estimated238

for the average compositional trend as expressed in PC1-PC2 space, rather than on in-239

dividual peridotite samples.240
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Table 2: Hypothetical upper mantle end-member compositions. Columns with an asterisk

are in wt.%. Depleted MORB Mantle (DMM) is from Workman and Hart (2005), Prim-

itive Upper Mantle (PUM) is from Sun and McDonough (1989), and Pyrolite (PYR) is

from Green (1979). Primitive Synthetic Upper Mantle (PSUM) and Depleted Synthetic

Upper Mantle (DSUM), are end-member compositions derived in this study.

Sample SiO∗
2 TiO∗

2 Al2O
∗
3 FeOT∗ MgO∗ CaO∗ Na2O

∗ ξ

DSUM 44.1 0.0012 0.261 7.96 47.4 0.22 0.042 0.764

DMM 44.7 0.13 3.98 8.18 38.7 3.17 0.13 0.974

PYR 45 0.16 4.4 7.6 38.8 3.4 0.34 0.984

PUM 44.9 0.2 4.44 8.03 37.7 3.54 0.36 0.996

PSUM 46.2 0.216 4.88 8.88 35.2 4.34 0.33 1

2.2 Generating RocMLM Training Data241

We used the GFEM program Perple X (version 7.0.9, Connolly, 2009) to generate242

RocMLM training data across PT conditions as described in Section 2.1.1 and synthetic243

bulk mantle compositions as described in Section 2.1.2. The Perple X calculations were244

constrained to the Na2O-CaO-FeO-MgO-Al2O3-SiO2 (NCFMAS) chemical system to com-245

ply with the thermodynamic data and solution models of Stixrude and Lithgow-Bertelloni246

(2022). The Stixrude and Lithgow-Bertelloni (2022) dataset (stx21ver.dat) was used be-247

cause our initial tests with alternative thermodynamic datasets (hp02ver.dat and hp633ver.dat,248

Connolly and Kerrick, 2002; Holland et al., 2018; Holland and Powell, 2001) failed to re-249

produce the seismic wave velocities of geophysical reference models (PREM and STW105,250

Dziewoński and Anderson, 1981; Kustowski et al., 2008) with sufficient accuracy because251

these datasets lack a parametrization of the shear modulii of the minerals phases. Note252

that our Perple X calculations ignored TiO2, which was initially included to define ξ and253

derive synthetic bulk mantle compositions. Despite being measured as a major oxide com-254

ponent, the average TiO2 content of our standardized samples is 0.05 ± 0.1 wt.% (2σ,255

Table 1). Such small concentrations of TiO2 may safely be ignored in phase relation cal-256

culations with negligible effects on the RocMLM training dataset.257

The Perple X models used to generate the present RocMLM training database in-258

cluded equations of state for solution phases: olivine, plagioclase, spinel, clinopyroxene,259

–11–



manuscript submitted to Geochemistry, Geophysics, Geosystems

wadsleyite, ringwoodite, perovskite, ferropericlase, high-pressure C2/c pyroxene, orthopy-260

roxene, akimotoite, post-perovskite, Ca-ferrite, garnet, and Na-Al phase. Melt was not261

considered due to the absence of melt models in the Stixrude and Lithgow-Bertelloni (2022)262

dataset, but may be considered in future versions of training datasets if the elastic pa-263

rameters in hp02ver.dat are corrected. Once configured, Perple X generated RocMLM264

training data (density, as well as P- and S-wave seismic velocities) by minimizing the to-265

tal Gibbs Free Energy of a multicomponent multiphase thermodynamic system at fixed266

PTX conditions (Gibbs, 1878; Spear, 1993). The reader is referred to Connolly (2009)267

and Riel et al. (2022) for a complete description of the GFEM problem.268

In principle, applying identical sets of solution phase models, thermodynamic data,269

and bulk compositions will define identical Gibbs Free Energy hyperplanes. This implies270

that any GFEM algorithm should converge on identical phase relations. Thus, although271

this study uses Perple X exclusively, an identical set of training data can be generated272

by applying the procedures outlined above to other GFEM programs. Note that RocMLM273

capabilities and performance are primarily dependent on the size and the range of PTX274

conditions of the training dataset, not on the choice of GFEM algorithm.275

2.3 Training RocMLMs276

RocMLM training data were preprocessed using the following procedure. First, two-277

dimensional grids of rock properties (“pseudosections”) calculated by Perple X were stacked278

into a three-dimensional array, Z = (z1,1,1, . . . , zn,w,w), where w = 128 is the resolution279

of the PT grid and n = 128 is the number of random synthetic bulk mantle composi-280

tions represented by a ξ value. Z was flattened into arrays of training features (PT and281

ξ), X = (x1,1,1, . . . , xv,v,v), and training targets (density, Vp, and Vs), y = (y1,1,1, . . . , yv,v,v),282

where v = n·w2 = 1283 is the total number of training examples. Following common283

practice, X and y were scaled using “z-score normalization” before training.284

The preprocessed training data were then fit with three different nonlinear regres-285

sion algorithms (Decision Tree: DT, k-Neighbors: KN, and Neural Networks: NN) from286

the scikit-learn python library (Pedregosa et al., 2011). Each regression algorithm was287

tuned with a grid search approach, where a performance score (RMSE) was evaluated288

over all hyperparameter combinations relevant to the particular regression algorithm (Ta-289
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ble 3). The set of hyperparameters that produced the best score (lowest RMSE) was used290

to train the RocMLM.291

Table 3: RocMLM configuration. Hyperparameter values in parentheses are tested se-

quentially by a cross-validation grid search algorithm and the best set of hyperparameters

is chosen by the lowest RMSE. Hyperparameters that are not shown use default values

(see regression model documentation on scikit-learn.org).

Model Hyperparameter Value Tuned

DT splitter (best, random) tuned

max features (1, 2, 3) tuned

min samples leaf (1, 2, 3) tuned

min samples split (2, 4, 6) tuned

KN n neighbors (2, 4, 8) tuned

weights (uniform, distance) tuned

NN1 hidden layer sizes (8, 16, 32) tuned

NN2 hidden layer sizes ([16, 16], [32, 16], [32, 32]) tuned

NN3 hidden layer sizes ([32, 16, 16], [32, 32, 16], [32, 32, 32]) tuned

NN(all) learning rate (0.001, 0.005, 0.001) tuned

batch size 20% fixed

max epochs 100 fixed

2.4 Evaluating RocMLM Accuracy and Performance292

Connolly and Khan (2016) estimated the uncertainties of Vp and Vs to be on the293

order of 3–5% within the same thermodynamic framework used to generate RocMLM294

training data (Stixrude and Lithgow-Bertelloni, 2005). We can therefore consider the base-295

uncertainty of RocMLM predictions to be 3–5%. RocMLM predictions must also account296

for additional uncertainties that are introduced during RocMLM training (i.e., the vari-297

ance of residuals between RocMLM predictions and targets), which are about 2% for NN1298

and < 1% for DT, KN, and NN3. Assuming the lowest-uncertainty models (DT, KN,299

NN3) would be preferred for geodynamic applications, we ignore the small variances in-300

troduced during training (< 1%) and evaluate the total RocMLM prediction uncertain-301
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ties to be on the same order as the base GFEM uncertainty (3–5%) after Connolly and302

Khan (2016).303

RocMLM accuracy (in terms of RMSE) was evaluated by: 1) testing RocMLMs304

on a separate validation dataset to determine the generalization capacity of RocMLMs305

to unseen mantle conditions (internal accuracy), and 2) comparing RocMLMs predic-306

tions with geophysical reference models PREM and STW105 (external accuracy). The307

first test evaluates the degree to which RocMLMs can reproduce GFEM predictions. The308

second test evaluates the degree to which the “true data” used for RocMLM training re-309

produces the phase transitions actually observed in Earth’s upper mantle, which depend310

on the thermodynamic data, GFEM algorithm, and parameterization used to describe311

the composition of mantle rocks (i.e., ξ).312

The validation dataset was generated by Perple X in the same manner as the train-313

ing dataset, but shifted by one-half step (in the positive PT directions) so that RocMLM314

predictions could be evaluated at completely independent PT conditions. RocMLM per-315

formance was evaluated by: 1) measuring single-point prediction times (execution speed),316

and 2) scaling execution speed by RocMLM file size (disk space) to account for infor-317

mation compression (model efficiency).318

The number of PT points and synthetic bulk mantle compositions used for gen-319

erating training data were varied from 8 to 128 (211–221 total training examples) to test320

the sensitivity of RocMLM accuracy and performance with respect to the size (“capac-321

ity”) and composition of the training dataset. The same sets of training data were also322

used to evaluate single-point execution speed using a common Lookup Table approach,323

where a cubic spline interpolation was applied to the training dataset and rock proper-324

ties were evaluated at arbitrary PTX conditions. Prediction accuracy and performance325

were measured in a consistent manner so that direct comparisons could be made between326

RocMLMs, Lookup Tables, and GFEM programs.327

3 Results328

3.1 RocMLM Accuracy329

The following examples of Decision Tree (DT, Figure 3), single-layer Neural Net-330

work (NN1, Figure 4), and three-layer Neural Network (NN3, Figure 5) models demon-331
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strate how different regression algorithms ultimately influence the accuracy of RocMLM332

predictions (see Supplementary Information for all regression algorithms).333

DT predictions are practically indistinguishable from that of Perple X, indicating334

a nearly-perfect mapping of the validation dataset by the DT algorithm (RMSE for den-335

sity: 0.01 g/cm3, Vp and Vs: 0.02 km/s, Figure 3). Absolute differences between Per-336

ple X and DT predictions (residuals) are broadly dispersed and approach zero in most337

regions of PT space. Some concentrations of residuals exist near phase transitions, but338

are subtle and discontinuous (Figure 3g–i).339

In contrast, NN1 predictions are notably smoother than Perple X (Figure 4), with340

higher errors (RMSE for density: 0.02 g/cm3, Vp: 0.06 km/s, Vs: 0.05 km/s) that in-341

dicate an inability to resolve sharp gradients in physical properties when using a single-342

layer Neural Network with a small to moderate amount of neurons. This is evident by343

the NN1 residuals, which are systematically concentrated near phase transitions (Fig-344

ure 4g–i). NN1 profiles display relatively weak discontinuities with gradual changes in345

physical properties across the olivine � wadsleyite and ringwoodite � bridgmanite +346

ferropericlase transitions (Figure 4j–l), and phase transformations within the MTZ are347

virtually absent compared to DT and NN3 profiles. While NN1 predictions do not re-348

produce the validation dataset or geophysical profiles with the highest accuracy, deeper349

(and/or wider) NN architectures with more hidden-layers (e.g., NN3) are more capable350

(Figure 5). NN3 predictions fit the validation dataset and resolve discontinuities in geo-351

physical profiles with nearly equivalent accuracy as DT and KN algorithms (compare352

profiles in Supplementary Information).353

Comparing density, Vp, and Vs depth profiles predicted by RocMLMs (for an av-354

erage mid-ocean ridge-like geotherm with a mantle potential temperature of 1573 K) with355

PREM and STW105 reveals relatively low errors (density: ≤ 0.08 g/cm3, Vp: ≤ 0.26356

km/s, Vs: ≤ 0.14 km/s) and high correlations (R2 ≥ 0.94) that indicate good agreement357

between seismically-derived profiles and thermodynamic predictions, irrespective of re-358

gression algorithm (compare profiles in the Supplementary Information). The largest de-359

viations between RocMLM profiles, PREM, and STW105 fall within two regions: 1) be-360

tween 1–8 GPa, and 2) at the base of the MTZ (Figures 3–5j–l). At pressures lower than361

5 GPa, the divergence between RocMLM profiles and seismically-derived profiles may362

be explained by the low resolution of the 1D geophysical profiles relative to the extreme363
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spatial variability in composition and geotherms on Earth. Tests using an average con-364

tinental geotherm to calculate RocMLM profiles results in less divergence between RocMLM365

profiles and PREM at < 5 GPa compared to the mid-ocean ridge-like geotherms used366

to build the profiles presented in Figures 3–5. At pressures between 5–8 GPa, the two367

geophysical models show a discrepancy: PREM contains a discontinuity, especially in368

seismic velocities, while STW105 has a gradual and continuous increase. RocMLM pro-369

files between 5–8 GPa are more similar to STW105, which does not map any disconti-370

nuities until the olivine � wadsleyite transition at 410 km depth (Figures 3–5j–l).371

Within the MTZ, DT and NN3 profiles predict intermediate discontinuities, while372

PREM and STW105 are gradual and continuous (Figures 3,5g–i). As expected, compar-373

ing RocMLM profiles for different geotherms shows that the choice of a mantle poten-374

tial temperature leads to contrasting predictions of: 1) the overall evolution of rock prop-375

erties with depth, and 2) the depths, magnitudes, and sharpness of phase transitions within376

the MTZ (Figures 3–5g–i). RocMLM profiles show, similarly to those directly derived377

from the Perple X calculation, temperature-sensitive discontinuities at the olivine � wad-378

sleyite and wadsleyite � ringwoodite transitions, but a rather temperature insensitive379

ringwoodite � bridgmanite + ferropericlase transition (Figures 3–5g–i). This can be ex-380

plained by differences in Clapeyron slopes modeled by the Stixrude and Lithgow-Bertelloni381

(2022) dataset.382

3.2 RocMLM Performance383

We now compare RocMLM performance to two other tools classically used to pre-384

dict the variations of physical properties of mantle rocks in geodynamic models: GFEM385

programs and Lookup Tables. Note that RocMLM, GFEM, and Lookup Table perfor-386

mance is platform specific. Running analogous implementations with other programming387

languages and/or on alternative computer hardware will differ from the results presented388

here. All computations in this study were made using CPUs of a Macbook Pro (2022;389

M2 chip) with macOS 13.4 and using Python 3.11.4. All performance metrics were eval-390

uated with a single CPU core.391

Figure 6 shows how execution speed, efficiency, and accuracy scale with the capac-392

ity of Lookup Tables and RocMLMs. Here, “capacity” refers to the number of scalar val-393

ues stored by Lookup Tables, or alternatively, the number of pseudosection PTX points394
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Figure 3: PT diagrams showing density (left column, g/cm3), Vp (middle column,
km/s), and Vs (right column, km/s) predictions from a Perple X model with a PUM
bulk composition (a–c), a Decision Tree RocMLM (d–f), and absolute differences between
Perple X and DT (g–i) measured on the validation dataset. Depth profiles (j–l) compare
Perple X and DT predictions extracted along a 0.5 K/km adiabat with different man-
tle potential temperatures (white lines) with reference models PREM (solid black line,
Dziewoński and Anderson, 1981) and STW105 (dotted black line, Kustowski et al., 2008).
The RMSE in (j–l) indicates the measured differences between DT-1573 and PREM.
Colored ribbons indicate 5% uncertainty in RocMLM predictions.
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Figure 4: PT diagrams showing density (left column, g/cm3), Vp (middle column,
km/s), and Vs (right column, km/s) predictions from a Perple X model with a PUM bulk
composition (a–c), a single-layer Neural Network RocMLM (d–f), and absolute differences
between Perple X and NN1 (g–i) measured on the validation dataset. Other legend details
are the same as in Figure 3.
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Figure 5: PT diagrams showing density (left column, g/cm3), Vp (middle column,
km/s), and Vs (right column, km/s) predictions from a Perple X model with a PUM
bulk composition (a–c), a three-layer Neural Network RocMLM (d–f), and absolute differ-
ences between Perple X and NN3 (g–i) measured on the validation dataset. Other legend
details are the same as in Figure 3.
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“learned” by RocMLMs. Thus, “capacity” is intended to convey and compare the breadth395

of petrological “knowledge”, or predictive capabilities, of Lookup Tables and RocMLMs.396

Within the same context, the notion of “capacity” is irrelevant for GFEM programs. Rather,397

GFEM performance primarily scales with the number of chemical components, phase398

solutions, and size of the compositional space defined by the user, as well as automatic399

grid refinement settings and other user-defined configuration options.400

GFEM performance is reported using the range of average execution speeds (4–228401

ms) and efficiencies (60–3138 ms·Mb) that we measured while generating our RocMLM402

training datasets as described in Section 2.2. To demonstrate the sensitivity of GFEM403

performance to alternative Perple X configurations, we also show GFEM execution speed404

and efficiency for similar calculations using the thermodynamic data and phase solutions405

of Holland et al. (2018). Note that none of the Perple X calculations using the Holland406

et al. (2018) configuration were used to train RocMLMs due to inaccurate seismic ve-407

locity predictions, and their performance metrics are only shown for illustrative purposes.408

Figure 6: Computational efficiency of various approaches in terms of execution speed (a)
and model efficiency (b). “Capacity” (x-axis) is a proxy for the petrological “knowledge”,
or predictive capabilities, of Lookup Tables and RocMLMs. White regions indicate GFEM
efficiencies for different Perple X configurations (thermodynamic dataset, chemical sys-
tem, and number of solution phases are indicated in square brackets). stx21: Stixrude and
Lithgow-Bertelloni (2022), hp633: Holland and Powell (2011) updated in Holland et al.
(2018). Perple X was run without multilevel grid refinement. RMSE is measured between
density predictions and the validation dataset.

For Lookup Tables, execution speed and efficiency both scale roughly linearly with409

capacity on a logarithmic scale—indicating an inverse power-law relationship between410

Lookup Table capacity and performance (Figure 6). RocMLM performance, in contrast,411
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scales differently depending on the performance metric and regression algorithm. For ex-412

ample, RocMLM execution speed remains roughly constant, or increasing slightly with413

capacity, and shows relatively small variance among all regression algorithms (0.14 ± 0.26414

ms, 2σ, Figure 6a). Yet RocMLM efficiency is markedly different for DT and KN algo-415

rithms compared to NN algorithms (Figure 6b). Despite the fast execution times of KN416

and DT algorithms (Figure 6a), their efficiency scales roughly linearly with capacity on417

a logarithmic scale—indicating an inverse power-law relationship between efficiency and418

capacity similar to Lookup Tables (Figure 6b). NN algorithms, on the other hand, show419

roughly constant efficiencies that indicate a high degree of information compression with-420

out sacrificing execution speed (Figure 6b). We note that training times for NN algo-421

rithms are many orders of magnitude larger than DT and KN algorithms (Supplemen-422

tary Information). However, training times are neither limiting nor critical for geody-423

namic applications as training is independent from, and precedes numerical simulations.424

Since accuracy is measured relative to the rock properties generated by GFEM pro-425

grams, GFEM programs have perfect accuracy by definition. With respect to RocMLMs,426

validation accuracies (RMSE) are observed to be roughly constant for regression algo-427

rithms that apply binary decisions or local distance-based weights (DT and KN), while428

algorithms that apply global activation-based weights (NNs) show a positive correlation429

between accuracy and capacity (Figure 6). In addition to improving accuracy with in-430

creasing amounts of training examples, NN accuracy also increases with the number of431

hidden-layers (Figure 6) because deeper networks are more capable of fitting sharp gra-432

dients in the training data (see Supplementary Information for examples of NN1, NN2,433

and NN3 RocMLMs). We also tested the effects of NN width (changing the number of434

nodes within each hidden layer), but this had a negligible impact on NN performance435

and accuracy compared to increasing NN depth.436

4 Discussion437

4.1 RocMLM Performance Tradeoffs438

RocMLM performance and accuracy are both critical for geodynamic applications439

and crucial for determining if RocMLMs are an improvement over methods commonly440

used for predicting rock properties in numerical geodynamic simulations. In terms of pure441

execution speed, our testing demonstrates that RocMLMs can make predictions between442
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101–103 times faster than GFEM programs and Lookup Tables (Figure 6), depending443

on the GFEM program configuration. The difference in execution speed between Lookup444

Tables and RocMLMs is small for low-resolution models (Figure 6) that are limited to445

≤ 16 mantle compositions and large PT intervals (≥ 1.7 GPa and 100 K PT step sizes).446

However, such low-resolution models are not an obvious improvement over simple poly-447

nomial approximations of a selective number of important phase transformations. At higher448

resolutions, RocMLMs can accurately resolve the physical properties of all thermodynamically-449

stable mineral assemblages in fine detail (at PT intervals of ≤ 0.2 GPa and 12 K) and450

for a wide variety of bulk mantle compositions (Figure 2). In addition to their broad pre-451

dictive capabilities, high-resolution RocMLMs make predictions at speeds (approximately452

0.1–1 ms, Figure 6) that allow computation of physical properties at the node-scale dur-453

ing geodynamic simulations. We therefore argue that high-resolution RocMLMs over-454

come all practical limitations for implementing thermodynamically self-consistent den-455

sity evolution in numerical geodynamic models.456

With respect to ranking the practicality of different RocMLM for geodynamic ap-457

plications, execution speeds and accuracies alone suggest that high-resolution RocMLMs458

will perform with roughly equivalent outcomes regardless of the regression algorithm (Fig-459

ure 6a). However, our testing reveals an obvious tradeoff between RocMLM performance460

and accuracy when accounting for compression ratio (i.e., the amount of “learned” in-461

formation relative to the RocMLM file size). Figure 6b shows DT and KN algorithms462

becoming rapidly inefficient compared to NNs as the capacity of the training dataset in-463

creases. This is because NN algorithms require relatively little information to make pre-464

dictions after training (weights and biases for each neuron) compared to DT (tree struc-465

ture: nodes, splits, and predictions) and KN (entire training dataset with distance weights)466

algorithms. Moreover, accuracy tends to improve monotonically with dataset capacity467

for NN, but not for DT or KN. We therefore argue that deep NN RocMLMs are the most468

practical choice for geodynamic applications for three reasons: 1) modeling more rock469

types only requires adding more training data, 2) adding more training data improves470

prediction accuracy without diminishing performance, and 3) further improvements and471

adaptations to different geodynamic applications are possible by exploring different ar-472

chitectures than the simple NN models we have tested thus far.473

The main limitations of NN RocMLMs are twofold: 1) training is computationally474

expensive compared to other regression algorithms (Supplementary Information) and 2)475
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shallow NN architectures imply smoother gradients in rock properties than GFEM cal-476

culations. We do not consider these limitations critical because training time is indepen-477

dent from RocMLM performance and even if deeper NN architectures are needed to fit478

discontinuities in rock properties with high accuracy, the number of layers and neurons479

in each layer remains small (Table 3). We note that our testing has been limited to the480

prediction of three properties that are mostly P-dependent and are relatively continu-481

ous despite a few large discontinuities. In principle, RocMLMs can be trained on any ther-482

modynamic variable output by GFEM programs. However, we have not yet trained RocMLMs483

on more discrete, discontinuous, and/or highly T-dependent variables, such as modal pro-484

portions of minerals, volatile contents, or melt fraction, which will be treated in future485

developments of RocMLMs.486

4.2 Geophysical and Thermodynamic Estimates of Elastic Properties487

The amount of overlap between RocMLM profiles and PREM (Figures 3–3) sug-488

gests good agreement between thermodynamic and geophysical estimates of the elastic489

properties of mantle rocks within the limits of our training dataset and Perple X con-490

figuration (see Sections 2.1 and 2.2). Discrepancies between thermodynamic profiles and491

PREM can be explained by chemical heterogeneity and/or differences in mantle geotherms492

that modify phase relations (Goes et al., 2022; Karki and Stixrude, 1999; Karki et al.,493

2001; Stixrude and Lithgow-Bertelloni, 2012; Waszek et al., 2021; Xu et al., 2008). Be-494

cause the RocMLM training dataset spans a wide array of synthetic bulk mantle com-495

positions, we can directly test the sensitivity of thermodynamic estimates to changes in496

bulk FeO–MgO contents (Figure 7).497

As Fertility Index (ξ) increases by refertilization and/or lack of melt extraction and498

the bulk mantle composition becomes more Fe-rich (and more dense), Vp and Vs respond499

(both positively and negatively) according to the equations of state described in Stixrude500

and Lithgow-Bertelloni (2005). RocMLM training data show that density is the least sen-501

sitive parameter to ξ overall with only modest variations across a broad range of man-502

tle rocks from fertile to highly depleted (ξ = 0.76, Figure 7a). The largest density vari-503

ations occur at pressures below the olivine � wadsleyite transition (< 410 km), yet are504

still small enough (approximately 3–5 %) to imply that spontaneous mantle convection505

requires strong thermal gradients and/or hydration by metamorphic fluids in addition506

to melt extraction.507
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In contrast to density, Vp and Vs are more sensitive to ξ overall, especially at pres-508

sures above the olivine � wadsleyite transition (> 410 km). RocMLM training data sug-509

gests that an “optimal” Vp/Vs profile requires a more depleted mantle between 410–670510

km and a more fertile mantle at < 410 km (Figure 7b,c). Forming this compositional511

layering pattern is counterintuitive, however, as partial melting is expected to be more512

pervasive at lower pressures. Moreover, density profiles are incongruent with this pat-513

tern, suggesting instead that a depleted mantle at < 410 km and more fertile mantle at514

> 410 km are required for an optimal fit with PREM and STW105 (Figure 7a).515

Figure 7: Depth profiles of RocMLM training data along a 1573 K mantle adiabat
showing the sensitivities of thermodynamic estimates of density (a), Vp (b), and Vs (c)
to changes in bulk mantle composition (as represented by the Fertility Index, ξ). Geo-
physical profiles PREM and STW105 (green lines) and the profiles of synthetic mantle
end-member compositions PSUM and DSUM (thick colored lines) are shown for reference.
Thin colored lines show profiles for the entire range of RocMLM training data.

5 Conclusions516

The dynamics of Earth’s upper mantle is largely driven by density contrasts stem-517

ming from changes in PT conditions, which lead to phase transformations in mantle rocks.518

These phase transformations also modify the elastic properties of mantle rocks. There-519

fore phase changes must be considered when inverting present-day mantle structure from520

seismic data. Likewise, numerical geodynamic simulations of mantle convection must ac-521

count for thermodynamics, but are typically implemented with simple PT-dependent pa-522

rameterizations of rock properties and phase boundaries that do not explicitly account523

for changes in Gibbs Free Energy resulting from changes in PT and in bulk composition.524

Here, we introduce RocMLMs as an alternative to GFEM programs and we evaluate RocMLM525

performance and accuracy. We also show how the RocMLM predictions compare to PREM526

and STW105. Our main findings are as follows:527
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1. RocMLMs predict density and elastic properties with high accuracy and are up528

to 101–103 faster than commonly used methods. This improvement in prediction529

speed makes thermodynamically self-consistent mantle convection within high-resolution530

numerical geodynamic models practical for the first time.531

2. RocMLMs trained with moderately deep (3 hidden layers) NNs are more robust532

and efficient compared to RocMLMs trained with other regression algorithms, and533

are therefore the most practical models for coupling with numerical geodynamic534

codes.535

3. RocMLM training data are sensitive to bulk mantle composition and geothermal536

gradients, yet show good agreement with PREM and STW105 for an average man-537

tle geotherm.538

Based on our results, we argue that moderately deep NN RocMLMs can be excep-539

tional emulators of GFEM programs in geodynamic simulations that require computa-540

tionally efficient predictions of rock properties. We have demonstrated that RocMLMs541

perform remarkably well for dry mantle rocks with compositions ranging from very fer-542

tile lherzolites to strongly depleted harzburgites and PT conditions ranging from 1–28543

GPa and 773–2273 K.544

Moreover, the RocMLM approach can be used with any GFEM program and ther-545

modynamic dataset. Any improvement to the underlying thermodynamic data should546

further increase the accuracy of RocMLM predictions. Testing RocMLMs predictions547

on other thermodynamic variables of interest, including modal proportions of minerals,548

volatile contents, and melt fractions will be the focus of future studies. Likewise, in fu-549

ture works, we will extend the training data to include hydrous systems and additional550

end-member mantle compositions (e.g., pyroxenites and dunites).551
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Č́ıžková, H. and Bina, C. (2013). Effects of mantle and subduction-interface rheolo-606

gies on slab stagnation and trench rollback. Earth and Planetary Science Let-607

ters, 379:95–103.608

Connolly, J. (2009). The geodynamic equation of state: what and how. Geochem-609

istry, geophysics, geosystems, 10(10).610

Connolly, J. and Kerrick, D. (2002). Metamorphic controls on seismic velocity of611

subducted oceanic crust at 100–250 km depth. Earth and Planetary Science612

Letters, 204(1-2):61–74.613

Connolly, J. and Khan, A. (2016). Uncertainty of mantle geophysical properties614

computed from phase equilibrium models. Geophysical Research Letters,615

43(10):5026–5034.616
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Synthetic Peridotite Compositions

Figure S1 shows a comparison between natural peridotite compositions in the stan-

dardized Earthchem.org dataset and synthetic peridotite compositions sampled randomly

along the PCA mixing array as described in Section 2.1.2 of the main text. The data in

Figure S1 are the same as presented in Figure 2 of the main text, but show peridotite

compositions in chemical space (Harker diagrams vs. SiO2) instead of PC space. The trend

from more fertile lherzolite samples to more depleted harzburgite samples is closely ap-

proximated by the synthetic peridotite mixing array. While PUM and DMM are often

represented in the literature as distinct mantle end-members, they have quite similar ma-

jor oxide compositions (e.g., Al2O3, CaO, MgO, and FeO). Synthetic mantle end-members

PSUM and DSUM represent a much wider range of recorded mantle compositions than

PUM and DMM (Figure S1).

Figure S1: Harker Diagrams vs. SIO2 (in wt.%) showing the distribution of peridotite
samples from Earthchem.org (colored data points and contours). PUM (white square),
DMM (white triangle), and pyrolite (white plus) are commonly-referenced bulk mantle
compositions (see Table 2 in the main text), while PSUM (white diamond) and DSUM
(white circle) define a mixing array used to generate RocMLM training data (black data
points).
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RocMLM Regression Algorithms

Figures S2–S6 show RocMLM predictions and depth profiles for a PUM bulk man-

tle composition. The Decision Tree, single-layer Neural Network, and three-layer Neu-

ral Network RocMLMs were presented in the main text (Figures 3–5), while the k-Neighbors

(Figure S3) and two-layer Neural Network RocMLMs (Figures S5) are presented here

for a comprehensive comparison of all the regression algorithms tested in this study.

Figure S2: (ref:image12-PUM-DT-cap)
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Figure S3: (ref:image12-PUM-KN-cap)
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Figure S4: (ref:image12-PUM-NN1-cap)
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Figure S5: (ref:image12-PUM-NN2-cap)
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Figure S6: (ref:image12-PUM-NN3-cap)
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GFEM, Lookup Table, and RocMLM Performance Datasets

The Lookup Table and GFEM performance data referenced in the main text are

not included here for brevity, but can be found at https://doi.org/10.17605/OSF.IO/

K23TB. These data are shown in Figure 6 of the main text and referenced in the Intro-

duction of the main text to give a sense of the execution speeds of widely-used GFEM

programs (4–228 ms per PTX point). The Introduction of the main text also references

a feasibility objective for RocMLM performance (100–10−1 ms), which was estimated

with the following reasoning. Numerical geodynamic models on the order of 2000 x 300

km in scale, containing at least 277,221 nodes (921 x 301, e.g., Kerswell et al., 2021) are

widely-considered “high-resolution”. Running GFEM on each node (at 4–228 ms/node)

would take between 18.5 minutes to 17.5 hours with modern GFEM programs, depend-

ing on their configuration and assuming a simple sequential computation. At execution

speeds of 100–10−1 ms, however, only 0.5–4.5 minutes of computation time would be added

to each timestep, in a similar context. We consider an additional 0.5–4.5 minutes per timestep

reasonable considering the advantage of implementing thermodynamic self-consistency

in numerical experiments, especially given that parallel computing would further decrease

these time estimations. We therefore set 100–10−1 ms as a minimum feasibility objec-

tive for RocMLM execution speeds.

Note that Figure 6 of the main text shows a representative subset of the RocMLM

performance data evaluated in this study. RocMLM performance was measured multi-

ple times for each regression algorithm: iterating over all combinations of PT and X res-

olutions (Table S1), or model “capacities”, which was too much data to include in the

main text. For graphical clarity, Figure 6 of the main text only shows the set of RocMLM

models with the lowest prediction times for each unique model capacity (ranging from

211–221). The same filtering procedure is equally applied to Lookup Table results. Re-

moving this filtering step (or alternatively selecting for the highest prediction times) does

not alter the main conclusions discussed in Section 4 of the main text, but does make

the results presented in Figure 6 of the main text easier to digest for the reader. For trans-

parency and reproducibility, the complete RocMLM performance dataset is contained

in Table S1 below.
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Table S1: RocMLM PTX resolution, accuracy (RMSE vs. Perple X), and performance

(training and prediction times) measured on a validation dataset after training.

Model

PT

Res

(pts)

X Res

(pts)

Train

(ms)

Predict

(ms)

RMSE rho

(g/cm3)

RMSE

Vp

(km/s)

RMSE

Vs

(km/s)

Filesize

(Mb)

DT 8 2 0.77 0.03 0.017 0.038 0.038 0.034

DT 8 32 2.8 0.04 0.014 0.034 0.034 0.313

DT 8 64 5.1 0.05 0.014 0.034 0.034 0.572

DT 8 128 8.5 0.05 0.014 0.034 0.034 0.52

DT 16 2 1.1 0.04 0.0098 0.022 0.021 0.117

DT 16 32 9.7 0.04 0.013 0.029 0.027 1.12

DT 16 64 19 0.05 0.013 0.029 0.027 2.04

DT 16 128 34 0.05 0.014 0.029 0.027 1.86

DT 32 2 3.6 0.04 0.0099 0.022 0.02 0.44

DT 32 32 43 0.07 0.011 0.022 0.021 4.22

DT 32 64 39 0.07 0.011 0.022 0.022 4.63

DT 32 128 170 0.09 0.011 0.022 0.022 7.02

DT 64 2 14 0.04 0.011 0.022 0.022 1.7

DT 64 32 220 0.09 0.011 0.023 0.022 16.4

DT 64 64 440 0.11 0.012 0.023 0.022 29.8

DT 64 128 790 0.15 0.012 0.023 0.023 27.2

DT 128 2 64 0.06 0.01 0.022 0.022 6.71

DT 128 32 1000 0.12 0.011 0.023 0.022 64.4

DT 128 64 2100 0.17 0.011 0.023 0.022 117

DT 128 128 4100 0.18 0.011 0.023 0.022 108

KN 8 2 0.39 0.18 0.027 0.078 0.058 0.017

KN 8 32 0.61 0.16 0.015 0.035 0.034 0.174

KN 8 64 0.98 0.16 0.015 0.035 0.034 0.342

KN 8 128 1.6 0.17 0.015 0.034 0.034 0.678

KN 16 2 0.47 0.14 0.015 0.041 0.033 0.057

KN 16 32 1.5 0.17 0.014 0.031 0.028 0.603

KN 16 64 2.9 0.18 0.014 0.029 0.027 1.19
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Model

PT

Res

(pts)

X Res

(pts)

Train

(ms)

Predict

(ms)

RMSE rho

(g/cm3)

RMSE

Vp

(km/s)

RMSE

Vs

(km/s)

Filesize

(Mb)

KN 16 128 6 0.23 0.014 0.029 0.027 2.35

KN 32 2 0.67 0.22 0.011 0.028 0.024 0.21

KN 32 32 7.4 0.45 0.011 0.024 0.023 2.27

KN 32 64 14 0.29 0.011 0.023 0.022 4.48

KN 32 128 31 0.31 0.011 0.023 0.022 8.89

KN 64 2 2.1 0.21 0.011 0.023 0.022 0.814

KN 64 32 29 0.3 0.012 0.024 0.023 8.82

KN 64 64 56 0.33 0.012 0.023 0.023 17.4

KN 64 128 120 0.35 0.012 0.023 0.023 34.5

KN 128 2 8.4 0.2 0.01 0.022 0.022 3.2

KN 128 32 130 0.47 0.011 0.023 0.022 34.8

KN 128 64 270 0.62 0.011 0.023 0.022 68.5

KN 128 128 610 0.95 0.011 0.023 0.022 136

NN1 8 2 240 0.03 0.049 0.15 0.12 0.02

NN1 8 32 450 0.04 0.042 0.13 0.11 0.02

NN1 8 64 13000 0.1 0.04 0.12 0.096 0.02

NN1 8 128 14000 0.09 0.035 0.09 0.077 0.02

NN1 16 2 270 0.04 0.052 0.15 0.13 0.02

NN1 16 32 14000 0.13 0.036 0.087 0.081 0.02

NN1 16 64 16000 0.12 0.029 0.072 0.068 0.02

NN1 16 128 32000 0.1 0.021 0.06 0.055 0.02

NN1 32 2 14000 0.07 0.04 0.12 0.099 0.02

NN1 32 32 32000 0.13 0.025 0.061 0.057 0.02

NN1 32 64 51000 0.11 0.022 0.055 0.051 0.02

NN1 32 128 82000 0.16 0.019 0.05 0.046 0.02

NN1 64 2 15000 0.08 0.03 0.073 0.068 0.019

NN1 64 32 84000 0.13 0.02 0.048 0.044 0.019

NN1 64 64 140000 0.11 0.016 0.039 0.039 0.019

NN1 64 128 250000 0.14 0.017 0.045 0.041 0.019

NN1 128 2 36000 0.12 0.022 0.055 0.051 0.02
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Model

PT

Res

(pts)

X Res

(pts)

Train

(ms)

Predict

(ms)

RMSE rho

(g/cm3)

RMSE

Vp

(km/s)

RMSE

Vs

(km/s)

Filesize

(Mb)

NN1 128 32 250000 0.1 0.017 0.041 0.038 0.02

NN1 128 64 500000 0.13 0.017 0.042 0.04 0.02

NN1 128 128 980000 0.11 0.016 0.039 0.036 0.02

NN2 8 2 290 0.04 0.045 0.12 0.11 0.045

NN2 8 32 14000 0.07 0.034 0.098 0.089 0.045

NN2 8 64 26000 0.13 0.024 0.076 0.072 0.045

NN2 8 128 28000 0.11 0.016 0.046 0.04 0.045

NN2 16 2 14000 0.1 0.046 0.12 0.11 0.045

NN2 16 32 28000 0.1 0.017 0.056 0.046 0.045

NN2 16 64 32000 0.09 0.015 0.043 0.035 0.045

NN2 16 128 63000 0.15 0.014 0.037 0.032 0.045

NN2 32 2 26000 0.11 0.033 0.088 0.079 0.045

NN2 32 32 63000 0.11 0.013 0.032 0.027 0.045

NN2 32 64 96000 0.12 0.012 0.032 0.027 0.045

NN2 32 128 150000 0.14 0.013 0.037 0.033 0.045

NN2 64 2 29000 0.13 0.02 0.054 0.048 0.043

NN2 64 32 160000 0.18 0.013 0.032 0.029 0.043

NN2 64 64 270000 0.15 0.011 0.03 0.026 0.043

NN2 64 128 500000 0.16 0.012 0.031 0.028 0.043

NN2 128 2 67000 0.16 0.013 0.032 0.028 0.045

NN2 128 32 510000 0.15 0.012 0.028 0.025 0.045

NN2 128 64 1e+06 0.14 0.015 0.032 0.03 0.045

NN2 128 128 2.1e+06 0.19 0.015 0.037 0.032 0.045

NN3 8 2 330 0.04 0.04 0.12 0.1 0.069

NN3 8 32 27000 0.1 0.021 0.061 0.059 0.069

NN3 8 64 40000 0.11 0.016 0.048 0.044 0.069

NN3 8 128 42000 0.15 0.016 0.042 0.037 0.069

NN3 16 2 27000 0.08 0.04 0.12 0.099 0.069

NN3 16 32 42000 0.16 0.015 0.048 0.039 0.069

NN3 16 64 47000 0.11 0.015 0.042 0.035 0.069
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Model

PT

Res

(pts)

X Res

(pts)

Train

(ms)

Predict

(ms)

RMSE rho

(g/cm3)

RMSE

Vp

(km/s)

RMSE

Vs

(km/s)

Filesize

(Mb)

NN3 16 128 91000 0.16 0.016 0.041 0.034 0.069

NN3 32 2 40000 0.2 0.028 0.072 0.067 0.069

NN3 32 32 92000 0.13 0.011 0.027 0.024 0.069

NN3 32 64 140000 0.13 0.014 0.037 0.033 0.069

NN3 32 128 220000 0.13 0.012 0.03 0.026 0.069

NN3 64 2 44000 0.14 0.016 0.044 0.037 0.068

NN3 64 32 230000 0.17 0.013 0.028 0.026 0.068

NN3 64 64 400000 0.14 0.012 0.027 0.025 0.068

NN3 64 128 780000 0.18 0.012 0.027 0.024 0.068

NN3 128 2 97000 0.18 0.012 0.03 0.025 0.069

NN3 128 32 780000 0.15 0.011 0.025 0.023 0.069

NN3 128 64 1.6e+06 0.12 0.011 0.025 0.023 0.069

NN3 128 128 2.9e+06 0.16 0.012 0.025 0.024 0.069

1 References
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