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Abstract 21 
Horizontal pressure gradient error (HPGE) in coordinate transformation is well known in 22 
meteorology and oceanography. However, HPGE has been ignored completely in spherical, 23 
spheroidal, and true geopotential coordinate transformations. Let gravitational acceleration on a 24 
point-mass in atmosphere or oceans be n0 with uniform Earth mass density and be n with 25 
nonuniform Earth mass density such as 5 structural layers. Combination of n0 with centrifugal 26 
acceleration leads to apparent gravity ga and associated spheroidal geopotential Φa.  Combination 27 
of n with centrifugal acceleration leads to true gravity gt and associated true geopotential Φt. 28 
Subtraction of n0 from n is the gravity disturbance vector, δg ≡ n – n0. Spherical geopotential 29 
approximation (SGA) is to approximate the spheroidal geopotential (Φa) as spherical geopotential 30 
(Φs) corresponding to standard gravity gs (i.e., to approximate ga as gs or to transform spheroidal 31 
into spherical geopotential coordinates).  Spheroidal (ellipsoidal) geopotential approximation 32 
proposed by Chang et al. (2023) (EGA-CWSM) is to approximate the true geopotential surfaces 33 
as spheroidal (i.e., to approximate gt as ga or to transform true into spheroidal geopotential 34 
coordinates). EGA-CWSM is totally different from the earlier proposed EGA-SB (Staniforth 2014; 35 
Beńard 2014).  The horizontal momentum equation does not change from transforming spheroidal 36 
to spherical geopotential coordinates due to negligible HPGE but does change evidently from 37 
transforming true to spheroidal geopotential coordinates due to nonnegligible HPGE, which equals 38 
the horizontal gravity disturbance vector. Thus, EGA-CWSM is invalid. It is urgent to include the 39 
horizontal gravity disturbance vector in atmospheric and oceanic models. 40 

Plain Language Summary 41 

The effect of the solid Earth with nonuniform versus uniform mass densities on atmospheric and 42 
oceanic dynamics is identified through geopotential coordinate transformation. The true gravity 43 
due to the nonuniform Earth mass density is associated with the true geopotential coordinates. The 44 
apparent gravity due to the uniform Earth mass density is associated with the spheroidal 45 
geopotential coordinates. The spherical geopotential approximation is to approximate the 46 
spheroidal geopotential surfaces as spherical. Transformation among the true, spheroidal, and 47 
spherical geopotential coordinates leads to the horizontal pressure gradient error, which is 48 
negligible in using the spherical geopotential approximation but nonnegligible with equalling the 49 
horizontal gravity disturbance vector in approximating the true geopotential surfaces as spheroidal. 50 
Thus, we should include the horizontal gravity disturbance vector in atmospheric and oceanic 51 
models.  52 

1 Introduction 53 

 Spherical, spheroidal, and true geopotential surfaces and associated geopotential 54 
coordinates exist in meteorology and oceanography. Among them, the spherical geopotential (Φs) 55 
coordinates are used most often to represent the global atmosphere with the outward unit vector ks 56 
in the radial direction. The spheroidal geopotential (Φa) coordinates are established more recently 57 
for numerical modelling (e.g., Gates 2004; White et el. 2008; Beńard 2014; Staniforth 2014; 58 
Staniforth and White 2015) with the outward unit vector ka perpendicular to the spheroidal 59 
(ellipsoidal) geopotential surfaces. The true geopotential (Φt) coordinates are only used recently 60 
for theoretical studies (Chu 2021a; Chang et al. 2023; Chu 2021a, 2023, 2024) with the outward 61 
unit vector kt perpendicular to the true geopotential surfaces. The corresponding standard gravity 62 
(gs), apparent gravity (ga), and true gravity (gt) are given by.  63 

,   ,        s s s a a a t t tg g k g g k g g k                                                                                                (1) 64 
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where |gs| = g0 = 9.81 m s-2 (constant) due to negligible radial variation of gs in the oceans and 65 
combined troposphere and stratosphere due to their thin thicknesses in comparison to the Earth 66 
radius. The angles between kt and ka and between ka and ks are small (10-5 – 10-4 radian) (Gill 67 
1982, Chang, and Wolfe 2022). Deviation of |ga| and |gt| from g0 is less than two orders of 68 
magnitude than g0 (e.g., Gill 1982; Staniforth 2014), 69 

0 02 2

0 0

10 ,   10  
 a tg g

g g

g g
                                                                                                            (2) 70 

If neglecting such small differences, Eq (1) becomes, 71 

0 0 0,   ,        s s a a t tg g gg k g k g k                                                                                                         (3) 72 

 Let (i, j, ka) be the unit vectors of confocal hyperboloids spheroidal geopotential 73 
coordinates (λ, φ, ξ) with λ the longitude, φ the geodetic latitude, and ξ the dimensionless parameter 74 
for spheroidal geopotential surface as depicted in Gates (2004). The other spheroidal geopotential 75 
coordinates using approximated spheroidal geopotentials (Beńard 2014; Staniforth 2014) will be 76 
discussed in subsection 5.2.  Let (i, j, kt) be the unit vectors of the true geopotential coordinates (λ, 77 
φ, zt) with zt denoting vertical coordinate. Let (i, js, ks) be the unit vectors of the spherical 78 
geopotential coordinates (λ, φs, r) with φs the geocentric latitude and r the radial coordinate.   Let 79 
three-dimensional velocity vector be Vs = (us, vs, ws), using the standard gravity gs in the spherical 80 
geopotential coordinates; be Va = (ua, va, wa), using the apparent gravity ga in the spheroidal 81 
geopotential coordinates; and be Vt = (ut, vt, wt), using the true gravity gt in the true geopotential 82 
coordinates. The horizontal velocity vectors are represented by Us = (us, vs), Ua = (ua, va), and Ut 83 
= (ut, vt) in corresponding geopotential coordinates.   84 
 All the three geopotential coordinates are curved and quasi-orthogonal. The unit vectors in 85 
the spherical and spheroidal geopotential coordinates vary in space. However, the unit vectors in 86 
the true geopotential coordinates vary in space and time. The temporal variation of the true 87 
geopotential is on very long time scale in meteorological sense because the physical processes to 88 
change the mass density σ(r, t) inside the solid Earth is slow and excluded in this study. For a non-89 
globally Cartesian system such as the true geopotential coordinates, the acceleration vector DV/Dt 90 
(Holton and Hakim 2013), 91 

     
D Du Dv Dw D D D

u v w
Dt Dt Dt Dt Dt Dt Dt

V i j k
i j k                                                                        (4a)           92 

is separated into two parts, 93 

   
d Du Dv Dw

dt Dt Dt Dt

V
i j k                                                                                                                       (4b) 94 

   
D D D

u v w
Dt Dt Dt

i j k
m                                                                                                                 (4c) 95 

where (V, DV/Dt, dV/dt, m, j, k) represents one of [(Vs, DVs/Dt, dVs/dt, ms, js, ks), (Va, DVa/Dt, 96 
dVa/dt, ma, j, ka), (Vt, DVt/Dt, dVt/dt, mt, j, kt)];  dV/dt is the acceleration vector as if it is in the 97 
global Cartesian system; and m denotes the metric terms [or called the curvature terms in Holton 98 
and Hakim (2013)].  99 
 On the base of small metric term difference between the spheroidal (ma) and spherical (ms) 100 
geopotential coordinates (Gill 1982),  101 

 
  0.17%
a s

s

O

O

m m

m
 ,                                                                                                               (5) 102 
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the spherical geopotential approximation (SGA) was proposed to approximate the spheroidal 103 
geopotential surfaces for the apparent gravity ga as spherical. Such an approximation was 104 
confirmed by numerical modelling studies such as Gates (2004), Staniforth and White (2014), 105 
however, small systematic differences may accumulate in long-term simulations (Gates 2004). 106 
With the SGA, almost all analytical and numerical atmospheric models use the spherical 107 
geopotential coordinates (i.e., corresponding to the standard gravity gs) and related local 108 
coordinates.  109 
 Two types of spheroidal geopotential coordinates have been established with the one based 110 
on the confocal hyperboloids (e.g., Gates 2004) and the other based on the simplified spheroidal 111 

geopotential ̂a  to represent Φa (e.g., Staniforth and White 2014; Beńard 2014). Such a 112 

simplification (i.e., to approximate Φa as ̂a ) is called the spheroidal geopotential approximation 113 

by Staniforth (2004) and Beńard (2014), hereafter referred to EGA-SB. Note that the EGA-SB is 114 
only for the spheroidal geopotential coordinates and  does not involve the spherical and true 115 
geopotential coordinates.  116 
 On the base of small metric errors between the true and spheroidal geopotential coordinates 117 
(Chang and Wolfe 2022), Chang et al. (2023) proposed a different spheroidal geopotential 118 
approximation “to approximate the true geopotential surfaces for the true gravity gt as 119 
spheroidal,” which is referred here as the EGA-CWSM to distinguish from the EGA-SB. A 120 
question arises: Can we confirm the SGA and EGA-CWSM only on the base of small metric 121 
errors? The answer is obviously negative because these two approximations involve the curved 122 
quasi-orthogonal coordinate transformation from spheroidal to spherical geopotential coordinates 123 
(SGA) and from true to spheroidal geopotential coordinates (EGA-CWSM), where the horizontal 124 
pressure gradient error (HPGE) needs to be investigated. 125 
 Chu (2021a, b, c) introduced the gravity disturbance vector δg (then called horizontal 126 
gravity gh) into the horizontal equations of motion in atmosphere and oceans in the spherical 127 
geopotential coordinates, and used the publicly available meteorological, oceanographic, and 128 
geodetic datasets to confirm δg nonnegligible. Comments on Chu (2021 a, b, c) by Chang and 129 
Wolfe (2022) and Stewart and McWilliams (2022), claimed δg negligible in atmospheric and 130 
oceanic dynamics, were based on small metric errors, wrong comparison, and wrong derivations, 131 
and ignorance of the HPGE in the true to spherical geopotential coordinate transformation.  132 
    Comments and critics on research papers are common in scientific journals. Replies versus 133 
comments largely advance scientific knowledge. It is quite unusual in this case that Chang and 134 
Wolfe (2022) and Stewart and McWilliams (2022) with severe mistakes (see Appendix A) were 135 
published in the Scientific Reports (SR). However, Chu‘s  replies submitted to SR (also sent to 136 
Chang, McWilliams, Stewart, and Wolfe on 20 April 2022) (see website https://ars.els-137 
cdn.com/content/image/1-s2.0-S0377026523000209-mmc1.pdf ) was rejected for publication in 138 
SR and the paper (Chu, 2021a) was mistakenly retracted by the Chief Editor of SR.  Later, the then 139 
Editor-in-Chief of the Journal of Geophysical Research – Atmospheres (Minghua Zhang) 140 
disregarded responses from Chu and mistakenly retract the paper (Chu, 2021b) on 30 September 141 
2022. Chu (2023) demonstrated the importance of the horizontal gravity disturbance vector in 142 
atmospheric dynamics. Chang et al. (2023) commented on Chu (2023) with the same mistakes 143 
such as neglecting the HPGE in the geopotential coordinate transformation and others.   144 
 As prominent atmospheric and oceanic fluid dynamitists, Chang, McWilliams, Stewart, 145 
and Wolfe have misled and continue to mislead the meteorological and oceanographic 146 
communities. To counter their negative influences, Chu (2024) replied to the comments by Chang 147 
et al. (2023) and showed the EGA-CWSM invalid due to the nonnegligible HPGE (equaling 148 
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the horizontal gravity disturbance vector) in transforming the true to spheroidal geopotential 149 
coordinates. However, a question remains:  Why is the SGA valid but not the EGA-CWSM? To 150 
answer this question, two types of spheroidal geopotential coordinates are used to identify the 151 
HPGE in transforming the spheroidal to spherical geopotential coordinates.  152 
 The rest of the paper is organized as follows.  Section 2 shows the gravitational acceleration 153 
with nonuniform and uniform Earth mass density. Section 3 presents the horizontal momentum 154 
equations in the spherical, spheroidal, and true geopotential coordinates with corresponding 155 
gravities. Section 4 lists the mathematical expressions of the SGA and EGA-CWSM. Section 5 156 
uses the horizontal atmospheric equations of motion with two types of spheroidal geopotential 157 
coordinates to confirm negligible HPGE in transforming spheroidal to spherical geopotential 158 
coordinates and to confirm the SGA. Section 6 uses the relationship between the orthometric, and 159 
ellipsoidal (spheroidal) heights commonly employed in the geodetic community to confirm the 160 
nonnegligible HPGE in transforming true to spheroidal geopotential coordinates (same as in Chu 161 
2024). Section 7 presents the conclusions. Appendix A lists the mistakes in Chang and Wolfe 162 
(2022), Stewart and McWilliams (2022), and Chang et al. (2023). 163 

2 Gravitational Acceleration with Nonuniform and Uniform Earth Mass Density 164 

 Newton’s law of universal gravitation states that every point mass attracts every other point 165 
mass by a force acting along the line intersecting the two points. The force is proportional to the 166 
product of the two-point masses, and inversely proportional to the square of the distance between 167 
them. The Newton’s gravitational force (FN) of solid Earth on an atmospheric point mass (mA) at 168 
location rA is the volume integration over all the point masses located at r inside the solid Earth 169 
(Figure 1) with the formula [Equation (6.4) in Vaniček and Krakiwsky 1986] 170 

 3

( )
( ) ,   = ( )





  
N A A A

A

m G d
r

F r n n r r
r r

                                                                                (6) 171 

where G = 6.67408×10-11Nm2kg-2, is the Newtonian gravitational constant; [σ(r), Π] are the mass 172 
density and volume of the solid Earth; n is the true gravitational acceleration, and the Earth center 173 
is the origin of the position vectors r and rA. Combination of n and centrifugal acceleration leads 174 
to the true gravity gt.   175 
 Let σ0 be the average mass density. With σ0, Eq (6) becomes, 176 

 0
3 3

( )
( ) ( )

 




    

N A A A A A

A A

GM
m Gm d

r
F r r r r

r r r
                                                               (7) 177 

where M = σ0Π = 5.98×1024 kg is the total mass of the solid Earth.  178 
 179 
 180 
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 181 
Figure 1. Newtonian gravitation of a point mass located at r inside the solid Earth on a point mass located at rA in 182 
atmosphere. The gravitation of the solid Earth on a point mass mA at rA is the volume integration, and non-radial [i.e., 183 
FN(rA) is not pointing to the center O], with associated true gravitational acceleration, n = FN(rA)/mA.  Combination of 184 
n and the centrifugal acceleration leads to the true gravity gt.  185 

For uniform mass density, 0( ) const,  r  the Earth gravitation (7) becomes,   186 

0 0 0 3( ) ,      A A

A

GM
m AF r n n r

r
                                                                                                 (8) 187 

which is radial and equivalent to treating the solid Earth as a point mass located at the Earth center 188 
O with the total Earth mass to attract the atmospheric point mass (mA) at location rA by F0(rA) 189 
(Figure 2). Here, n0 is the gravitational acceleration by the solid Earth with the uniform mass 190 
density. The combination of n0 and centrifugal acceleration leads to the apparent gravity ga.  191 
Subtraction of (8) from (6) and use of (7) lead to  192 

 0
0 3

( )
( )

 





      

 A t a

A

G d
r

g n n r r g g
r r

                                                                   (9) 193 

which is the gravity disturbance vector. δg is neglected completely in atmospheric modelling 194 
although it is a major variable in geodesy. The gravity disturbance vector at the Earth spheroidal 195 
surface (z = 0) is given by (Sandwell and Smith 1997), 196 

0 0|   z g Ng                                                                                                                            (10) 197 

 198 
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 199 

Figure 2. Corresponding to the spherical and spheroidal geopotentials, the solid Earth is treated either as uniform 200 
mass density or as a point mass located at the Earth centre (O) with the whole Earth mass to attract a point mass mA 201 
in atmosphere.  The associated hypothetical gravitational acceleration (n0) is radial (pointing to the Earth centre O). 202 
Combination of n0 and the centrifugal acceleration leads to the apparent gravity ga, which is non-radial.  203 

3 Horizontal Momentum Equations 204 

The horizontal momentum equation without friction is given by.  205 

  1
2


          

   
s

s s s
s s

d
p

dt

U
m Ω U                                                                              (11a) 206 

for the standard gravity gs in the spherical geopotential coordinates, by 207 

  1
2


          

   
a

a a a
a a

d
p

dt

U
m Ω U                                                                              (11b)     208 

for the apparent gravity ga in the spheroidal geopotential coordinates, and by 209 

  1
2


          

   
t

t t t
t t

d
p

dt

U
m Ω U                                                                                  (11c) 210 

for the true gravity gt in the true geopotential coordinates. Here, the symbols ( )s, ( )a, ( )t represent 211 
the corresponding geopotential coordinates; Ω is the angular velocity vector of the Earth self-212 
spinning; ρ is the density; and p is pressure. Note that gravity vanishes in the horizontal momentum 213 
equations (11a), (11b), (11c).  The meteorological and oceanographic communities have reached 214 
the consensus of negligible metric terms ms, ma, mt (e.g., Gill 1982; Gates 2004; Holton and 215 
Hakim 2013; Staniforth 2014; Chang and Wolfe 2022; Chang et al. 2023). We may delete the 216 
metric terms in (11a), (11b), (11c) for this study, 217 

   1
2


         
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s

s s
s s

d
p

dt

U
Ω U                                                                                         (12a)                           218 
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  1
2


         
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a

a a
a a

d
p

dt

U
Ω U                                                                                          (12b)                          219 

  1
2


         
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t

t t
t t

d
p

dt

U
Ω U                                                                                             (12c)                          220 

4 Mathematical Expressions of the SGA and EGA-CWSM 221 

 Mathematically, the SGA is to extend (12a) into  222 

  1

1
2 


          
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a

a s
s s

d
p

dt

U
Ω U                                                                                                 (13a) 223 

for the apparent gravity ga in the spherical geopotential coordinates to get the same velocity and 224 
acceleration vectors as in the spheroidal geopotential coordinates, 225 

    ,  
       
   

a a
a aa s

a s

d d

dt dt

U U
U U                                                                                                            (13b) 226 

Here, ε1 is the SGA error, which can be identified through subtracting (13a) from (12b) and using 227 
(13b), 228 

1

1 1
 

   
      
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p p                                                                                                                                  (13c) 229 

which is the HPGE in transforming the spheroidal to spherical geopotential coordinates. Similarly, 230 
the EGA-CWSM is to extend (12b) into  231 

  2

1
2 


          
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t

t a
a a

d
p

dt

U
Ω U                                                                                                      (14a) 232 

for the true gravity gt in the spheroidal coordinates to get the same velocity and acceleration vectors 233 
in the true geopotential coordinates, 234 

    ,  
       
   

t t
t tt a

t a

d d

dt dt

U U
U U                                                                                                                 (14b) 235 

Here, ε2 is the EGA-CWSM error, which can be identified through subtracting (14a) from (12c) 236 
and using (14b), 237 

2

1 1
 

   
      
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p p                                                                                                                                   (14c) 238 

which shows that ε2 is the HPGE in transforming the true to spheroidal geopotential coordinates. 239 
Validity of SGA and EGA-CWSM should be justified on the magnitudes of (ε1, ε2), i.e., only small 240 
|ε1| verifies the SGA, and only small | ε2| verifies the EGA-CWSM. 241 

5 HPGE in Transforming Spheroidal to Spherical Geopotential Coordinates 242 

5.1 Use of confocal hyperboloids for spheroidal geopotential coordinates 243 

 Let location of an atmospheric (or oceanic) point-mass be represented by (λ, φ, ξ) in the 244 
confocal hyperboloid type of spheroidal geopotential coordinates (Gates 2004) and by (λ, φs, r) in 245 
the spherical geopotential coordinates. Let (a, b) be the Earth semimajor and semi minor axes; c = 246 
(a2 – b2)1/2 be the Earth focal distance; α = (sin2φ + sinh2ξ)1/2 be the separation parameter [same as 247 
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the symbol ‘R’ used in Gates (2004)]. The horizontal pressure gradient in the spheroidal 248 
geopotential coordinates is given by [see equation (35) in Gates (2004)], 249 

  1 1

cos cosh    
 

  
 a

p p
p

c c
i j                                                                                          (15)      250 

The hydrostatic balance is represented by [see equation (54) in Gates (2004)],  251 

0

1 
 
 

   
 

p p
g

c z
                                                                                                                 (16)                      252 

where z is the spheroidal (ellipsoidal) height along the vertical ξ coordinate from the Earth 253 
reference spheroid. The horizontal pressure gradient in the spherical geopotential coordinates is 254 
given by, 255 

  1 1

cos  
 

  
 ss

s s

p p
p

r r
i j                                                                                                     (17)                         256 

Substitution of (15) and (17) into (13c) leads to,   257 

1
1 1 1 1 1

cos cos cosh


       
  
  
   

     
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s s s

p p p
r c r c

i j j .                                            (18)                         258 

The direction of the standard gravity, gs = -g0ks, is towards the Earth’s center. The direction of the 259 
apparent gravity, ga = -g0ka, is perpendicular to the Earth spheroidal surface. Let δ be the geodetic 260 
latitude minus the geocentric latitude,  261 

     s                                                                                                                                    (19)                         262 

which is represented in the spheroidal geopotential coordinates by [see equation (39) in Gates 263 
(2004)],  264 

1 sin cos
tan

sinh cosh

 
 

  
  

 
                                                                                                            (20)                         265 

The unit vector ja can be represented in the spherical geopotential coordinates by  266 

cos sin  s sj j k                                                                                                                    (21)                         267 

where the component (-ks sin δ) is in the radial direction of the spherical geopotential coordinates 268 
and does not affect the horizontal pressure gradient in the spherical geopotential coordinates.  Thus 269 
(18) becomes,  270 

 
1

1 1 1 1 cos
cos cos cosh


       

    
    
     

     
  s

s s

p p p
r c r c

i j                                       (22)                          271 

Since φs depends on (φ, δ) as shown in Eq (19), latitudinal pressure gradients are connected by  272 

(1 )
 

    
     

    
s

s s

p p p                                                                                                   (23)                         273 

between the spheroidal and spherical geopotential coordinates.  Substitution of (23) into (22) gives, 274 

1
1 1 1 1 cos

1
cos cos cosh

 
       
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  s

s s

p p
r c r c

i j                                (24)               275 

The relative longitudinal horizontal pressure error is given by,  276 
cos

1
cos cosh


 

  sr
c

.                                                                                                              (25)                         277 

The relative latitudinal horizontal pressure error is given by,  278 

cos
1 1

 
 

 
 
 

  
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r
c

                                                                                                           (26)                   279 
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Derivative of (20) respect to φ gives, 280 
12

cos 2 sin 2
1

sinh cosh 2sinh cosh

  
    


    

           
                                                                                  (27)         281 

Substitution of (27) into (26) leads to 282 
1

2
cos cos 2 sin 21 1 1

sinh cosh 2 sinh cosh
  

    

                  

   
s

r
c

.                                    (28)     283 

As pointed out by Gates (2004), the dimensionless parameter ξ for the Earth spheroidal surface ξE 284 
= 3.193; the values of ξ are only slightly larger than ξE; it is reasonably to approximate sinh ξ and 285 
cosh ξ at ξE, i.e., sinh ξ ≈ 12.09, cosh ξ ≈ 12.22. Besides, the other parameters in (25) and (28) are 286 
also taken from Gates (2004) such as a = 6378.4 km, b = 6356.9 km, cα ≈ 6323 km, δmax = max(δ) 287 
= 11’35”; the radius of Earth spherical surface r is taken as a. All these parameters are listed in 288 
Table 1.  289 
 290 
Table 1. Values of parameters used to identify the HPGEs in the spherical geopotential approximation 291 
obtained from Gates (2004).   292 
 293 

Parameter Mathematic Formula Value 
Earth Semimajor Axis    a    6378.4 km 
Earth Semiminor Axis    b    6356.9 km 
Earth Focal Distance      c 2 2( c a b  

    523.0 km 

Earth Spherical Radius r r = a    6378.4 km 
Separation Parameter α  2 2sin sinh     

6323 km c  

Dimensionless Parameter ξ for  
Spheroidal Geopotential Surfaces  

  

Earth Spheroidal Surface ξE 1tanh ( / ) 
E

b a     3.192 

sinh ξ  12.15  
cosh   12.22  

Geodetic Latitude Minus 
Geocentric Latitude δ 

1 sin cos
tan

sinh cosh

 


 

 
 
 

 max0 11'35"

0.99999432 cos 1

 



 

 


 

 294 
Thus Eqs (25) and (28) becomes,  295 

2

2 3

0 .9980191 cos cos sin
1 1 0.9980191 1

cos sinh cosh

1 0.9980191 1 0.006769 cos sin O  (10 )
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                                           (29)             296 

12
3cos 2 sin 2

1 0.9980191 cos 1 1 O (10 )
147.7398 295.4796
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


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    
s

                      (30)               297 

Here, the definition for δ [i.e., Eq (20)] is used in (29). The relative longitudinal and latitudinal 298 
HPGEs in the SGA is on the order of 10-3,   299 

    310   O O                                                                                                          (31) 300 
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which confirms the validity of SGA [i.e., Eq (13a)] (the approximation of spheroidal geopotential 301 
surfaces as spherical) on both negligible metric error and HPGE.  302 

5.2 Use of approximated spheroidal geopotential for spheroidal geopotential coordinates   303 

 The spheroidal geopotential (Φa) is given by [see Eq (18) in Staniforth (2014)] 304 

2 32 3
2

2 3

3 23 2

3 2

2
( , ) 1 sin

2 2

2

6 2

   

  





                  
         

             
       

a s s

GM a r R r
r

r R R a R

GM a r R r

r R R a R

                                     (32) 305 

with 306 

2 3

,      
 

a b a

a GM
                                                                                                         (33) 307 

where φs is the geocentric latitude; a and b are the equatorial and polar semi-axes of Earth’s 308 
assumed spheroidal surface with ε the measure of the ellipticity; and μ is ratio of centrifugal and 309 
gravitational forces. Note that the spheroidal geopotential (Φa) is independent on the longitude (λ). 310 
Both ε and μ are small parameters (Staniforth (2014), 311 

2 2 5( , , ) (10 )   O O                                                                                                       (34) 312 

Since the thickness of combined troposphere and stratosphere in much thinner in comparison to 313 
the Earth radius [see Eq (19) in Staniforth (2014)], 314 

1 1 ( , ) 
   

r r R
O

R R
                                                                                                  (35) 315 

where R = 6378 km, is the equatorial Earth radius. Eq (32) is approximated by [see Eq (20) in 316 
Staniforth (2014)], 317 

2 3 2 3
2

2 3 2 3
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r
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       (36) 318 

Thus, the EGA-SB (i.e., to approximate ̂a for Φa) is totally different from EGA-CWSM (i.e., to 319 

approximate the true geopotential surfaces as spheroidal) (Chang et al. 2023).  320 

 The zonal and latitudinal coefficients (hλ, hφs) in the metric are given by [see Eqs (47) and 321 
(48) in Staniforth (2014)], 322 
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                                                             (37) 323 
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                                  (38) 324 

For limiting case, ε→0, μ→0, Eqs (37) and (38) reduce to the coefficients for the spherical 325 
geopotential coordinates (R cos φs, R). The relative longitudinal horizontal pressure gradient error 326 
is given by,  327 

2 3
2

2 3

2
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                                                                            (39)                                    328 

The relative latitudinal horizontal pressure error is given by,  329 
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                                                (40)  330 

Here,                                                                                       331 
2 2| sin | 1,  | cos | 1,  1,   s s

a
R

                                                                               (41)                                   332 

From (34) we have 333 
5 / 2 5 / 21 0 ,  1 0                                                                                                        (42) 334 

Use of (41) and (42) for (39) and (40) leads to 335 

     5 / 210 0 .3%    O O O                                                                         (43) 336 

which also confirms the validity of SGA (13a) (the approximation of spheroidal geopotential 337 
surfaces as spherical) on both negligible metric error and HPGE.  338 

6 HPGE in Transforming True to Spheroidal Geopotential Coordinates 339 

 Chu (2024) shows that the HPGE is non-negligible and equals the horizontal gravity 340 
disturbance vector in transforming true to spheroidal geopotential coordinates, which is presented 341 
in this section for comparison to the HPGE in transforming spheroidal to spherical geopotential 342 
coordinates.     343 

6.1 Orthometric and spheroidal (ellipsoidal) heights 344 

 The spheroidal coordinates (λ, φ, ξ) can be changed into (λ, φ, z) according to Eq (16).  Let 345 
location of an atmospheric point-mass A be determined by (λ, φ, z) in the spheroidal geopotential 346 
coordinates and by (λ, φ, zt) in the true geopotential coordinates (with irregular geometry) (Figure 347 
3). Here, z is the spheroidal (ellipsoidal) height; zt is the orthometric height. The spheroidal 348 
geopotential surfaces are represented by,   349 

constz                                                                                                                                      (44)               350 

The true geopotential surfaces are represented by, 351 

 consttz                                                                                                                                    (45)                         352 

with   353 
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 - ( , ) tz z N                                                                                                                            (46) 354 

which is commonly used in the geodetic community with N the geoidal height.   355 

       356 

Figure 3. Orthometric height (zt), spheroidal height (z), geoid height (N), and unit vertical vectors (ka, kt) for the 357 
spheroidal and true geopotential surfaces most fitted to the global mean sea level. Here, z = AD, zt = AB, N = BC. The 358 
angle between (ka, kt) is over exaggerated since it is only around 2×10-5 radian. The formula zt = z - N is quite accurate 359 
and commonly used in the geodetic community. 360 

6.2 HPGE equaling horizontal gravity disturbance vector. 361 

 In the true geopotential coordinate (λ, φ, zt), the true gravity gt does not have component 362 
on the true geopotential surfaces (i.e., the true horizontal surfaces). The hydrostatic balance 363 
equation with the true gravity gt is given by, 364 

0
 

 t

p
g

z
                                                                                                                                  (47)                         365 

A derivative with respect to λ between the z and zt as the vertical coordinates is given by, 366 

  
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Using (48) to the derivative of p gives 368 

  
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Substitution of (46) and (47) into  (49) leads to  370 

0
  
              

tz z

p p N
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We obtain the following relationship after conducting similar operation for φ, 372 

    0 ( )     aa t
p p g N                                                                                                         (51)                       373 

Substitution of (51) into (14c) leads to  374 

2 0

1 1
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 
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a

a t

p p g N                                                                                        (52)                         375 

which shows that the error of the horizontal pressure gradient force equals the horizontal gravity 376 

disturbance vector 0 )( ag N in transforming the true geopotential to spheroidal geopotential 377 
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coordinates. The horizontal gravity disturbance vector g0𝛻𝑁 has comparable order of magnitudes 378 
as the Coriolis force with the ratio changing from 0.6168 (max) at 1,000 hPa to 0.1573 (min) at 379 
200 hPa, and mean of 0.3052 in the troposphere (Chu 2023) using the two publicly available and 380 
independent datasets with the geoid height (N) from the static gravity field model EIGEN-6C4 381 
(http://icgem.gfz-potsdam.de/home) and long-term mean atmospheric data such as wind velocity 382 
U, and temperature (T) at 12 pressure levels (1000 to 100 hPa) in troposphere from the 383 
NCEP/NCAR reanalyzed climatology 384 
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.derived.pressue.html. 385 

 Nonnegligible HPGE shows the invalidity of the EGA-CWSM (the approximation of true 386 
geopotential surfaces as spheroidal). Substitution of (52) into (14a) gives the horizontal momentum 387 
equation in the spheroidal geopotential coordinates for the true gravity gt  388 

  0

1
2 ( )


           

   
t

t aa
a a

d
p g N

dt

U
Ω U                                                                                (53)                         389 

which shows the occurrence of the horizontal gravity vector in the horizontal momentum equation 390 
in the spheroidal geopotential coordinates using the true gravity gt. Section 5 confirms the validity 391 
of SGA (approximating the spheroidal geopotential surfaces as spherical) based on both negligible 392 
metric error and HPGE, Eq (53) can be reasonably transformed from the spheroidal geopotential 393 
to spherical geopotential coordinates,  394 

   0

1
2 ( )


           
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t

t ss
s s

d
p g N

dt

U
Ω U                                                                             (54)                         395 

which shows that the horizontal gravity disturbance vector 0 ( ) sg N  also occurs in the spherical 396 

geopotential coordinates using the true gravity gt.  397 

7 Conclusions 398 

 Metric and horizontal pressure gradient errors exist in geopotential coordinate 399 
transformation, but only the metric error is recognized in the meteorological and oceanographic 400 
communities. Due to negligible metric error, it is to approximate the true geopotential surfaces as 401 
spheroidal (i.e., EGA-CWSM) and to approximate the spheroidal geopotential surfaces as 402 
spherical (i.e., the SGA). Almost all the analytical and numerical models use spherical geopotential 403 
coordinates.    404 

 The horizontal pressure gradient error is identified in this study as negligible in 405 
transforming the spheroidal to spherical geopotential coordinates, and as nonnegligible with 406 

equaling the horizontal gravity disturbance vector (g0𝛻𝑁) in transforming the true to spheroidal 407 
geopotential coordinates. Such identification confirms the SGA and rejects the EGA-CWSM 408 
proposed by Chang et al. (2023).  It is urgent to include the horizontal gravity disturbance vector 409 

(g0𝛻𝑁) in any analytical or numerical atmospheric models. 410 

 411 

 412 
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Appendix A. Mistakes Identified in Chang and Wolfe (2022), Stewart and McWilliams 413 
(2022), and Chang et al. (2023) 414 

 In this appendix, Chang and Wolfe (2022) is referred to CW22; Stewart and McWilliams 415 

(2022) is referred to SM22; Chang et al. (2023) is referred to CWSM23. Mistakes have been 416 

identified in CW22, CW22 Supplementary, SM22, SM22 Supplementary and CWSM23. The 417 

quoted contents with italic font are directly copied from these references. 418 

A1. Wrong comparison leads to wrong statement of “negligible impact of δg” 419 

 SM22 used the following equations, 420 

0 0 0         h h

D
f p V

Dt

U
k U F                                                     Eq (1) in SM22 421 

0 ( ) V g N z                                                                                      Eq (3) in SM22 422 

0 0 0

'

0 0 0 0 0

'

'  ( ) ( )

  

   




  

       
z z

h h h

z S

D
f

Dt

g dz g S N g N

U
k U F

                          Eq (5) in SM22    423 

to claim that   424 

 425 

“At the surface z = S the “horizontal gravity anomaly” term is zero by construction because ρ = 426 

ρ0. In the subsurface, while the “horizontal gravity anomaly” term in (5) is non-zero, it is 427 

approximately three orders of magnitude smaller than the “horizontal gravity” term in (1) …… 428 

Consequently, “horizonal gravity” would likely have a negligible impact on ocean circulation 429 

even in a model formulated in absolute spherical coordinates.”    430 

                                    431 

 Anyone with basic scientific knowledge knows that the importance of a forcing term in 432 

atmospheric and oceanic dynamics should be compared to other terms in the same dynamic 433 

equation. SM22 compared 0 0[ ( ) ]   hg N in [Eq (5) SM22] to 0[ ] hg N in [Eq (1) SM22].  434 

Such comparison is wrong. The correct comparison should be between the horizontal gravity 435 

disturbance vector  0 0[ ( ) ]   hg N  and the baroclinic pressure gradient  
'

0 '
'  






z z

hz S
g dz in the 436 

same equation [i.e., Eq (5) SM22].   437 

 Besides, ρ0 is a constant (e.g., 1028 kg/m3) using the Boussinesq approximation, not the 438 

surface density. The statement in SM22  439 

 440 

“At the surface z = S the ‘horizontal gravity anomaly’ term is zero by construction because ρ = 441 

ρ0”  442 

 443 

is also wrong. The horizontal gravity disturbance vector 0 0[ ( ) ]   hg N is NOT zero at the 444 

ocean surface. 445 
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A2. Wrong derivation led to wrong statement on “shift in the reference density in oceanic 446 
Ekman layer.” 447 

 SM22 Supplementary used the following four equations (h is the horizontal vector 448 

differential operator),  449 

“
0 0 0

0 0

1 1
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 
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U k k                                (13) in SM22 Supp  450 

* * *
0 0 0 0 0 0 0 0* ( ) / ,   /           b g b b b g                                      (14) in SM22 Supp 451 

0 0 0
0

0 0

1 1
ˆ' * ' '


 


       h h h

z z z

b
dz p dz b Ndz z N

f f f f

k τ
U k k k     (15) in SM22 Supp 452 

0 0ˆ ˆ *      h h hp p g N                                                                          (16) in SM22 Supp 453 

Here, ρ is the density; 0 0 0( ) / ,    b g is the buoyancy; *
0 ˆ( ,  *, *) b p  are the shifted (ρ0, 454 

b, p̂ ) due to δρ0.”  455 

to claim that:  456 

“An arbitrary change in the reference density leads to a vertically-uniform addition to the 457 

“horizontal gravity”-driven component of the flow, and thus a vertically-integrated transport that 458 

increases linearly with depth. This implies that the “horizontal gravity”-driven component of the 459 

flow is ill-defined, and thus that analyzing this flow in isolation, or as part of the ‘Ekman’ transport 460 

(as done by Chu1) is misleading.”                                461 

[Eq(15) SM22 Supplementary] has two severe mistakes: (a) the sign for the term 462 

0( / ) hz b f Nk  should be ‘+’ not ‘-’; (b) the buoyancy b in [Eq.(15) SM22 Supplementary] is 463 

based on the unshifted reference density ρ0, but the dynamic pressure ˆ *p  is based on  the shifted 464 

reference density *
0 . If the shifted reference density *

0  is used for both buoyancy b and dynamic 465 

pressure p̂ , and the sign for the term 
0( / )  hz b f Nk is corrected from ‘-’ to ‘+’,  [Eq.(15) 466 

SM22 Supplementary] becomes  [substitution of Eq.(14) into Eq.(15) in SM22 Supplementary]  467 

      
0 0 0

0 0

1 1ˆ' * ' * '

Total Pressure Gradient Gravity Disturbance Wind Stress (Ekman)

 
      h h

z z z

dz p dz b Ndz
f f f

k τU k k         (A1) 468 

which shows that the Ekman transport driven by the horizontal gravity disturbance vector is well-469 

defined, and there is no vertically integrated transport that increases linearly with depth.    470 

A3.  Mistakenly used neutral atmosphere to get wrong statement on “shift to absolute 471 
spherical coordinates in atmospheric Ekman layer.”  472 

 SM22 Supplementary used the following equations,  473 
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0                                                                          (5) in SM22 Supplementary 474 

( )
 


 

K
z z

U
F                                                              (10) in SM22 Supplementary 475 

0 3 0( )     f p zk U g F                                     (20) in SM22 Supplementary 476 

0 ( ) ,        g h h hf p zk U g g g                          (24) in SM22 Supplementary 477 

0 0( )   gfk U U F                                                  (25) in SM22 Supplementary 478 

to claim that 479 

            480 

“Thus the ‘Ekman’ flow and pumping are unchanged by the shift to absolute spherical coordinates.” 481 

                                 482 

  SM22 supplementary mistakenly or intentionally used neutral atmosphere, i.e., (ρ, )h p483 

independent on z. In fact, the atmospheric density used in Chu (2021c) varies with z [see Eq (23) 484 

in Chu 2021c]:  485 

0

( ),   ( ) exp ,      = 10.4 km



 
 
 

   z
s z s z H

H
                                                                 (A2)  486 

Anyone with basic knowledge on college ordinary differential equations knows that solution of a 487 
linear ordinary differential equation is invariant with the shift of the independent variable only if 488 
all the coefficients in the equation are constants; but is variant even if even only one coefficient 489 
is not constant (i.e., a function of the independent variable).   [Eq (25) in SM Supplementary] is a 490 
second order ordinary differential equation with U the dependent variable, and z the independent 491 
variable, and (K, Ug) the coefficients.  492 

Invariant solution of [Eq (25) SM Supplementary] with the shift to the absolute spherical 493 

coordinates (i.e., moving z-surfaces up and down) is valid only for very special conditions: neutral 494 

atmosphere and constant K, which leads to the constant coefficients (K, Ug) (i.e., independent on z) 495 

in [Eq (25) SM Supplementary].    496 

However, with gravity disturbance vector δg ≠ 0 and stratified atmosphere ρ(z), the term 497 

( ) z g  depends on z, and so the coefficient Ug [see Eq (24) SM Supplementary]. Thus, Eq (25) in 498 

SM Supplementary is a second order ordinary differential equation with z-varying coefficient Ug. 499 

The solution of [Eq (25) in SM Supplementary] varies with the shift to the absolute spherical 500 

coordinates. The Ekman flow and Ekman pumping change with the shift to absolute spherical 501 

coordinates as shown in Chu (2021c). The gravity disturbance vector δg does affect the atmospheric 502 

Ekman flow and Ekman pumping. The Ekman pumping velocity is the same by Eq (41) in Chu 503 

(2021b, retracted by JGR – Atmospheres) as by Eq (46) in Chu (2023).  504 

A4. Mistakenly treated the metric terms as the only errors in the geopotential coordinate 505 
transformations.  506 

 The metric terms are treated as the only errors among the spheroidal, spherical, and true 507 

geopotential coordinate transformations in CW22 and CWMS23. The Second Paragraph on Page 508 

2 in CW22: 509 
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“Let us estimate how large this error might be. Mathematically, the exact form of the metric 510 

terms is:  511 

        D Du Dv Dw D D Du v w
Dt Dt Dt Dt Dt Dt Dt

U i j ki j k                                             Eq (4) in CW22 512 

where u, v, w are the three velocity components, and i, j, and k are the three are the three unit 513 

vectors of the coordinate system. The last 3 terms on the RHS of (4) are the metric terms, which 514 

arise due to the local unit vectors changing direction following the fluid motion. …… This estimate 515 

confirms that the errors made by approximating the near oblate spheroidal coordinate in which 516 

the true gravity is exact vertical with a truly oblate spheroidal coordinate system is negligible, as 517 

suggested in ocean dynamics texts3,4” 518 

Line 13-17 in the Second Paragraph in CWSM23 519 

“As shown by CW22, the metric errors introduced in the calculus of the spheroidal geopotential 520 

approximation are small, reaffirming the long-standing practice of using this coordinate system 521 

for atmospheric and oceanic modeling (Gill 1982, Staniforth 2022). Based on these and similar 522 

analyses, CW22 and SM22 concluded that the horizontal components of the true gravity are not 523 

relevant to ocean (and atmospheric) dynamics because these horizontal components vanish when 524 

the coordinate system is interpreted correctly.”  525 

It is incorrect because the HPGE in transforming the true to spheroidal/spherical geopotential 526 
coordinates is non-negligible and equals the horizontal gravity disturbance vector in addition to 527 
the metric terms (see Section 5). Such an important error (HPGE) is totally neglected in CW22 528 
and CWSM23.     529 

A5. Irrelevant scale analysis on the metric terms 530 

 To ignore the HPGE in the geopotential coordinate transformations completely, detailed 531 
scale analysis on the metric terms depicted in CW22 and CWSM23 is irrelevant because the metric 532 
errors are negligible in comparison to HPGE in the geopotential coordinate transformations.  533 

A6. Invalid EGA-CWSM  534 

 Any approximation needs to be verified. However, the EGA-CWSM proposed in 535 
CWSM23 has never been verified.  Section 5 shows that the HPGE is non-negligible in 536 
transforming the true to spheroidal geopotential coordinates. Thus, the comments below by 537 
CWSM23 are incorrect.  538 

First Paragraph in CWSM23                               539 

“…… Chang and Wolfe (2022; hereafter CW22) and Stewart and McWilliams (2022; hereafter 540 
SM22) pointed out that atmospheric and oceanic scientists express the equations of motion in 541 
coordinate form by defining the “vertical” direction in the coordinate system to be opposite to g, 542 
effectively using a geopotential coordinate (see, e.g., Gill 1982).  543 
Importantly, in this coordinate system, the true gravity, g = geff + δg, is exactly vertical – with no 544 
horizontal components. Furthermore, in this coordinate system “horizontal” geopotential surfaces 545 
are not exactly spheroidal but nearly spheroids with some bumps due to the inhomogeneities of the 546 
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Earth’s mass distribution. For mathematical simplicity, atmospheric and oceanic scientists 547 
approximate these geopotential coordinate surfaces geometrically as exact spheroids; that is, they 548 
use a coordinate system in which true gravity is exactly aligned with the vertical coordinate r and 549 
approximate the shapes of the iso-surfaces of r as spheroids. For clarity we will henceforth refer 550 
to this approximation as the spheroidal geopotential approximation.”  551 
  552 

Lines 9-13 in the Second Paragraph in CWSM23 553 

   554 

“However, as noted by CW22 and SM22, this analysis only quantifies the error introduced by 555 

making the absolute spheroidal approximation; that is, neglecting the horizontal component of 556 

gravity in an absolute spheroidal coordinate system. It does not quantify the error in the 557 

community-standard spheroidal geopotential approximation described in the preceding 558 

paragraph; that is, in adopting geopotential coordinates and then approximating the shapes of the 559 

geopotentials as spheroids.”   560 

 561 

The community-standard spheroidal geopotential approximation is for the use of 562 

approximated spheroidal geopotential for spheroidal geopotential coordinates (i.e., EGA-SB) as 563 

depicted in Subsection 5.2. It is totally different from EGA-CWSM.  564 

A7. Mistakenly treated the fluid dynamics in rotating frame as in non-rotating frame.  565 

CW22, SM22, atrue3 confuse the fluid dynamics in rotating with non-rotating frame and 566 

mistakenly claim the static horizontal pressure gradient force largely cancels the horizontal 567 

component of the true gravity. Last paragraph in CWSM23: 568 

 569 

“Physically, as pointed by CW22 and SM22, the reason why the horizontal components of 570 

gravity in a spheroidal (or spherical) coordinate system are not dynamically relevant is that in a 571 

fluid, static forces are largely balanced by a static pressure gradient force. The presence of 572 

horizonal gravity in the equation of motion will drive a static horizontal pressure gradient force 573 

that largely cancels this component of gravity.  574 

…… Failure to account for this cancelation is also the fundamental flaw of Chu (2021), in 575 

which the author assumed that the horizontal components of gravity will drive Ekman transport 576 

instead of being largely balanced by a static horizontal pressure gradient force in spheroidal 577 

coordinates (see equations 17-20 of Chu 2021).” 578 

  579 

 Anyone with basic knowledge of fluid dynamics and geophysical fluid dynamics knows 580 

that static forces are largely balanced by a static pressure gradient force only in nonrotating frame, 581 

not in rotating frame. Due to the Earth rotation, the steady-state dynamics under low Rossby 582 

number is the balance among the gravity, the pressure gradient force, and the Coriolis force. Since 583 

the climatological datasets (or called static datasets) for the horizontal component of the true 584 

gravity, horizontal pressure gradient force, and the Coriolis force (from horizontal velocity vector) 585 

are all available online, the best way is to use these data rather than to use vague statement “static 586 
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forces are largely balance by a static pressure gradient force” to identify if the static horizontal 587 

pressure gradient force largely cancels the horizontal component of the true gravity or not. Chu 588 

(2021a, b, c; 2023, 2024) clearly shows that the static horizontal pressure gradient force does 589 

not cancel the horizontal component of the true gravity, i.e., the horizontal gravity 590 

disturbance vector (g0𝛁𝐍). 591 

A8. Mistakenly decomposed the gravity into gravitational and centrifugal accelerations. 592 

 The ultimate cause to use gravity in atmospheric and oceanic dynamics is to make the 593 
centrifugal acceleration vanish in the equation of motion. Thus, two basic rules are always 594 
followed by meteorologists and oceanographers consciously or unconsciously:  595 
 596 
Rule-1 The centrifugal acceleration should never occur in the atmospheric and oceanic dynamics 597 
such as in the equation of motion. 598 
Rule-2 The gravity should never be split into gravitational acceleration and centrifugal 599 
acceleration. 600 
  601 
Breaking these two rules would be equivalent to not conforming to the foundational atmospheric 602 
and oceanic dynamics. However, the centrifugal force was stated explicitly in CW22 603 
Supplementary, and implicitly in CWSM23 as the “neglected horizontal” component of ge. The 604 
“neglected horizontal” component of ge in an exact spherical coordinate system is the centrifugal 605 
acceleration. In CW22 Supplementary: 606 
 607 

“Note that while the horizontal component of the centrifugal force is stronger than the 608 

“horizontal” component of gravity associated with the wiggles in the true geopotential surfaces, 609 

the scale over which the centrifugal force varies is larger, hence the error associated with 610 

ignoring its variation can be smaller.” 611 

 612 

Lines 10-12 in the Third Paragraph in CWSM23: 613 

 614 

“If we proceeded with Chu23’s analysis and compared the magnitude of the ‘neglected 615 

horizontal’ component of geff in an exact spherical coordinate system to the Coriolis force 616 

(equivalent to the C number of Chu23), we would find C > 10.” 617 

      Lines 13-16 in the Third Paragraph in CWMS23: 618 

“On the contrary, this apparent paradox is resolved in the community-standard treatment of the 619 

spherical geopotential approximation (see Staniforth 2022) by redefining the vertical direction to 620 

be opposite geff, such that horizontal component of geff becomes exact zero. The approximation 621 

then becomes an approximation of the geometry (i.e., approximating spheroids as spheres) rather 622 

than the neglect of the horizontal component of geff, resulting in errors that are small (e.g., 623 

Benard).” 624 

CW22 and CWSM23 split ge into gravitational acceleration and centrifugal acceleration. Such an 625 
intention is equivalent to destroying the foundation of the atmospheric and oceanic dynamics. 626 
 627 
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A9. Mistakenly treated the Earth mass density as the Earth surface mass distribution.  628 

The mass density σ(r) represents mass distribution inside the Earth and related to the internal 629 
structure of the Earth such as crust, mantle, inner core, and outer core. It is not the Earth surface 630 
mass distribution from spherical to near spheroid. The Earth gravitational acceleration is the 631 
volume integration over the whole solid Earth with σ(r) as part of the integrand [see Eq (6) in 632 
Section 2].   633 

The following statement in the First Paragraph CWSM23 is wrong:  634 

“The rotation of the Earth produces a centrifugal force which distorts the Earth’s mass 635 
distribution from spherical to nearly spheroidal with small spatial inhomogeneities.  ……. If 636 
Earth’s mass distribution were exactly spheroidal, the geopotential would also be exactly 637 
spheroidal, and net gravity due to this hypothetical geopotential would be perpendicular to 638 
spheroidal surfaces – this is geff defined by Chu (2023; hereafter Chu23). However, the Earth’s 639 
mass distribution is not exactly spheroidal, and the (slightly) uneven mass distribution gives rise 640 
to a perturbation field δg. The true (or) total gravity g is the sum of geff and δg.”     641 

  642 

A10. Mistakenly extended the SGA into the EGA-CWSM   643 

 The authors of CW22, SM22, and CWSM23 are not aware of the difference between the 644 
SGA (negligible HPGE, see Section 5) and the EGA-CWSM (non-negligible HPGE, see Section 645 
6) and used the SGA (Lines 3-6 in the Third Paragraph): 646 

“This is analogous to the spheroidal (spherical?) geopotential approximation described above: 647 
the vertical coordinate is aligned with geopotentials, and then those geopotentials are 648 
approximated as spheres instead of spheroids. This approximation is also adopted by Chu23, 649 
stating that the errors of such an approximation are small (last paragraph in section 2.2 of 650 
Chu23).” 651 

to extend to the EGA-CWSM (Lines 6-9 in Third Paragraph):  652 

“It is inconsistent of Chu23 to apply this spherical geopotential approximation while insisting 653 

that spheroidal geopotential approximation cannot be applied to the smaller variations in the 654 

geopotential field due to the Earth’s uneven mass distribution.”                                655 

These statements are incorrect.  656 

A11. The claim of “geometric approximation” in CWSM23 is wrong. 657 

 This paper clearly shows that the spheroidal geopotential surface approximation mentioned 658 
by CW22, SM22, CWSM23 is invalid. The horizontal pressure gradient error is the same as the 659 

horizontal component of the true gravity (g0𝛻𝑁). The statement in the Abstract of CWSM23 660 
especially the geometrical approximation is completely wrong:  661 

 662 
“In recent papers by the authors [Chang and Wolfe (2022; CW22) and Stewart and 663 

McWilliams (2022; CW22)], we explained that the actual interpretation of the approximation 664 
made in atmospheric and oceanic modeling is not neglecting the horizontal component of the true 665 
gravity, but is a geometrical approximation, approximating nearly spheroidal geopotential 666 
surfaces with bumps on which the true gravity is vertical by exactly spheroidal surfaces.”  667 
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A12. Wrong comments by CW22 and SM22 led to wrong retractions.  668 
  669 
 The Chief Editor of the Scientific Reports mistakenly retracted Chu (2021a) on the base of 670 
wrong comments by CW22 and SW22 (see https://www.nature.com/articles/s41598-022-10846-671 
0). The Statement-1, “In practice, this component can be taken to be zero, because the errors 672 
associated with this neglect are smaller than the error of assuming the resting ocean surface 673 
appears locally level, as shown by Chang and Wolfe”, is wrong because the horizontal pressure 674 
gradient error in transforming the true to spheroidal geopotential coordinates is non-negligible and 675 

equals the horizontal gravity disturbance vector 0g N (see Section 11). The Statement-2, “This is 676 

further expanded upon in Stewart and McWilliams, who also show that in a model formulated in 677 
absolute spherical coordinates, the horizontal component of gravity has a negligible impact on 678 
ocean circulation,” is also wrong since  the comments by Stewart and McWilliams are based on 679 
wrong comparisons (Subsection A1), wrong derivation (Subsection A2), and wrong treatment of 680 
z-varying coefficient as constant in a second order differential equation (Subsection A3).  681 
 682 
 The then Editor-in-Chief, Minghua Zhang, of the Journal of Geophysical Research – 683 
Atmospheres mistakenly retracted Chu (2021b) (see 684 
https://agupubs.onlinelibrary.wiley.com/doi/10.1002/jgrd.58211)   on the base of wrong comment 685 
by SM22 “Thus the ‘Ekman’ flow and pumping are unchanged by the shift to absolute spherical 686 
coordinates” (see Subsection A3). The retract statement by Minghua Zhang “The retraction has 687 
been agreed because the conclusions of the paper were found to be incorrect, since they depend 688 
on the choice of the coordinate system that does not apply to practical application of the theory of 689 
atmospheric Ekman boundary layer” is wrong since  the comment on the atmospheric Ekman layer 690 
dynamics  by Stewart and McWilliams is  based on wrong comparison (Subsection A1), wrong 691 
derivation (Subsection A2) and wrong treatment of z-varying coefficient as constant in a second 692 
order ordinary differential equation (Subsection A3).  693 
 694 
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