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Abstract

Dispersion coefficients and the average solute transport velocity are pivotal for groundwater solute transport modeling. Accu-

rately and efficiently determining these parameters is challenging due to difficulties in directly correlating them with pore-space

structure. To address this issue, we introduced the Physics-enhanced Convolutional Neural Network-Transformer (PhysenCT-

Net), an innovative model designed to concurrently estimate the longitudinal dispersion coefficient and average solute trans-

port velocity in three-dimensional porous media. PhysenCT-Net exhibited excellent predictive performance on unseen testing

datasets and significantly reduced computational demands. Comprehensive evaluations confirmed its robust generalization

across various flow conditions and pore structures. Notably, the longitudinal dispersion coefficient predictions closely align with

established empirical relationships involving flow velocity, affirming the model’s physical interpretability and potential to aid

in simulating transport phenomena in porous media.
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Abstract 17 

Dispersion coefficients and the average solute transport velocity are pivotal for groundwater 18 

solute transport modeling. Accurately and efficiently determining these parameters is 19 

challenging due to difficulties in directly correlating them with pore-space structure. To address 20 

this issue, we introduced the Physics-enhanced Convolutional Neural Network-Transformer 21 

(PhysenCT-Net), an innovative model designed to concurrently estimate the longitudinal 22 

dispersion coefficient and average solute transport velocity in three-dimensional porous media. 23 

PhysenCT-Net exhibited excellent predictive performance on unseen testing datasets and 24 

significantly reduced computational demands. Comprehensive evaluations confirmed its robust 25 

generalization across various flow conditions and pore structures. Notably, the longitudinal 26 

dispersion coefficient predictions closely align with established empirical relationships involving 27 

flow velocity, affirming the model’s physical interpretability and potential to aid in simulating 28 

transport phenomena in porous media. 29 

Plain Language Summary 30 

Advection-dispersion equation serves as the mathematical model for solute transport in aquifers 31 

and other porous media, with dispersion coefficients and average solute transport velocity 32 

(advective velocity) being key parameters. Typically, these are derived from optimization 33 

inversion of experimental data. Traditional pore-scale direct numerical simulation methods, 34 

while precise, demand considerable computational resources and time. To overcome these 35 

limitations, we developed PhysenCT-Net, a physics-enhanced neural network, aimed at 36 

simultaneously predicting the longitudinal dispersion coefficient and average solute transport 37 

velocity. The network integrates physical parameters such as molecular diffusion coefficient, 38 

Darcy velocity, and porosity into three-dimensional images of porous media through a 39 

convolutional neural network. The Transformer network then processes the high-dimensional 40 

data, with fully connected layers finalizing the concurrent prediction of both parameters. Direct 41 

simulations combined with an inversion technique calculate these parameters to establish the 42 

ground truth of the dataset. The trained PhysenCT-Net demonstrated outstanding predictive 43 

performance across various scenarios, proving its robustness. Transfer learning techniques 44 

further enhanced its generalization across different flow conditions and pore-space structures. 45 

Moreover, PhysenCT-Net represents a major advancement in physical interpretability for 46 

parameter prediction through deep learning methods.  47 

1 Introduction 48 

Precise modeling of solute dispersion within porous media holds significant relevance across 49 

various scientific and engineering disciplines, such as carbon dioxide sequestration, oil recovery, 50 

seawater intrusion into aquifers, and groundwater hydrology (Bear, 2013; Kamrava, Sahimi, et 51 

al., 2021; Sahimi, 2011; Xiong et al., 2020; Xiong et al., 2023). The transport of a conservative 52 

solute in porous media is governed by the advection-dispersion equation (ADE), wherein 53 

dispersion coefficients and average solute transport velocity (advective velocity in ADE) are 54 

pivotal parameters (Bear, 2013; Dentz et al., 2018; Lee et al., 2018). Dispersion coefficients 55 

cannot be directly measured and require be inferred or calibrated based on hypotheses related to 56 

observable characteristics (Abderrezzak et al., 2015; Ahsan, 2008). Previous studies have 57 

empirically or experimentally determined the longitudinal dispersion coefficient as a function of 58 

hydraulic and geometric parameters, such as Péclet number (Afshari et al., 2018; De Arcangelis 59 
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et al., 1986; Sahimi et al., 1986). Typically, the average advective velocity is assumed to be 60 

equivalent to the average fluid velocity; however, column experiments and pore-scale 61 

simulations have revealed discrepancies. This is because the solute distribution within pore 62 

spaces of porous media is not uniform (Darland & Inskeep, 1997; Rovey & Niemann, 2005; 63 

Zhang & Lv, 2009). Therefore, precise determination of the average advective velocity is 64 

essential for accurately simulating solute transport in porous media. 65 

Pore-scale computational simulation methods, like pore network modelling (PNM), have been 66 

employed to investigate dispersion (Kamrava, Im, et al., 2021; Sahimi & Imdakm, 1988). 67 

However, PNM simplifies the pore space structure through inherent network approximations and 68 

treats the pore space as if it were composed of well-mixed entities, resulting in dispersive 69 

concentration profiles (Sadeghi et al., 2020; Yang et al., 2016). Consequently, other numerical 70 

simulation methods that directly model images of pore space, such as lattice Boltzmann method 71 

(LBM) or particle tracking, have increasingly been adopted to study dispersion in fluid flow 72 

(Bijeljic et al., 2011; Blunt et al., 2013; Hasan et al., 2020). Direct simulation methods can 73 

accurately compute macroscopic parameters of porous media, yet their substantial time and 74 

resource demands are significant limitations (Bedrunka et al., 2021; Kamrava, Im, et al., 2021). 75 

Therefore, a novel method that strikes a balance between efficiency and accuracy in parameter 76 

estimation is essential for effectively predicting solute transport processes.  77 

In this letter, we introduce a physics-enhanced neural network, specifically designed to estimate 78 

longitudinal dispersion coefficient (DL) and average solute transport velocity (u). The network 79 

leverages LBM and particle tracking simulations, combined with a parameter inversion approach, 80 

to provide a more efficient yet accurate solution for simulating transport phenomena in porous 81 

media.  82 

Deep learning, or neural networks, have evolved as a superior alternative to traditional machine 83 

learning for analyzing complex system parameters (LeCun et al., 2015; LeCun et al., 1989; 84 

Vaswani et al., 2017). Notably, convolutional neural networks (CNNs) and Transformer 85 

networks have become leading architectures in computer vision and natural language processing, 86 

respectively, driving significant progress and forming the cornerstone of various deep learning 87 

applications (Devlin et al., 2018; He et al., 2017; He et al., 2016). CNNs excel in detecting local 88 

patterns and spatial information in images, making them ideal for linking the geometric features 89 

of porous media with their transport and physical properties, such as permeability and diffusivity 90 

(Elmorsy et al., 2022; Kamrava, Im, et al., 2021; Kamrava, Sahimi, et al., 2021; Rabbani et al., 91 

2020; Tang et al., 2022). On the other hand, Transformer networks, with their self-attention 92 

mechanism, proficient in capturing long-range dependencies, enhancing feature extraction and 93 

generalization when combined with CNNs (Bai & Tahmasebi, 2022; Vaswani et al., 2017). This 94 

integrated CNN-Transformer approach achieves high accuracy with fewer parameters, proving 95 

advantageous in computational resource-limited settings and facilitating research on large-sized 96 

porous media (Meng et al., 2023). Moreover, the infusion of physical information into the 97 

network—permitting the direct assimilation of porous media's physical parameters during 98 

training—markedly elevates the model's predictive precision and its generalization capacity 99 

(Kamrava, Im, et al., 2021; Meng et al., 2023; Tang et al., 2022). In this letter, we propose the 100 

Physics-enhanced Convolutional Neural Network-Transformer (PhysenCT-Net), designed for the 101 

prediction of parameters DL and u in large-sized (200 × 200 × 1,000 cubic voxels) porous media 102 

flows. 103 
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The structure of the letter is as follows: Section 2 introduces the numerical simulation methods 104 

of LBM and particle tracking, describes the data processing for training the PhysenCT-Net, and 105 

presents the network framework. In Section 3, we detail the research methodology of the 106 

PhysenCT-Net model, discussing the impact of varying data volumes, Péclet numbers, 107 

cementation and differences in particle size on the model's predictive and generalization 108 

capabilities. Section 4 summarizes and concludes the findings of the letter.  109 

 110 

Figure 1. Schematic of the PhysenCT-Net 111 

2 The Methodology 112 

We first elucidate the methods for calculating the longitudinal dispersion coefficient DL and 113 

average solute transport velocity u of the porous media, as well as the process of preparing and 114 

preprocessing data for PhysenCT-Net. Subsequently, we describe the framework of PhysenCT-115 

Net. 116 

2.1 Porous Media Generation and Parameter Calculation 117 

We utilized the sedimentation-producing method (Batchelor, 1972; Pilotti, 1998) to fabricate 118 

three-dimensional (3D) porous media, subsequently modeling the flow field and solute transport 119 

by LBM and particle tracking method (Jiang & Wu, 2021; Mostaghimi et al., 2012).  120 

The process of creating porous media via the sedimentation-producing method involves 121 

sequentially depositing spherical grains into a column. Each spherical grain starts at the top and 122 

descends freely until it reaches the column's bottom or lands on another grain. If the descending 123 

grain encounters another, it slides along the latter's surface until it finds a stable position, either 124 

at the bottom or in a state of minimum potential energy, thus preserving the porous medium's 125 

topological characteristics. This iterative process continues with subsequent grains. The spherical 126 

grains used in this method have diameters ranging from 0.4 to 1.2 mm, forming a porous 127 

medium with dimensions of 4 mm × 4 mm × 20 mm. Water flow is oriented along the column’s 128 

long axis, with the porous medium’s lateral boundaries defined as periodic to simulate an infinite 129 

system. 130 

Generating 10,000 flow field samples for the dataset is computationally demanding. To 131 

efficiently manage the intricate boundaries within porous media, we employed the bounce-back 132 

scheme in LBM, specifically adopting the D3Q19 model to simulate pore-level flows. This 133 

model is formulated as: 134 

𝑓𝑖(𝑥 + 𝑒𝑖Δ𝑡, 𝑡 + Δ𝑡) = 𝑓𝑖(𝑥, 𝑡) +
Δ𝑡

τ
[𝑓𝑖

𝑒𝑞(𝑥, 𝑡) − 𝑓𝑖(𝑥, 𝑡)] 
(1) 
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where 𝑓𝑖(𝑥, 𝑡) represents the density distribution function in the ith direction at discrete lattice 135 

point x and 𝑓𝑖
𝑒𝑞(𝑥, 𝑡) denotes the equilibrium distribution function, determined by the updated 136 

fluid velocities (Chen & Doolen, 1998). 137 

For simulating solute molecule movement in porous media, we utilized the particle tracking 138 

method(Srinivasan et al., 2010). The solute's breakthrough curve at the porous media exit was 139 

calculated and then fitted by the ADE to determine the DL and u. Solute transport within the 140 

porous media entails two dynamics: advective movement with water flow and random Brownian 141 

motion, which can be mathematically described as: 142 

𝑟(𝑡 + Δ𝑡) = 𝑟(𝑡) + 𝑢(𝑟(𝑡))Δ𝑡 + 2√𝐷𝑚Δ𝑡𝜉 
(2) 

where u(r) indicates the flow velocity at the position r, 𝐷𝑚 denotes molecular diffusion 143 

coefficient, and 𝜉 represents a random variable conforming to a standard normal distribution. 144 

The migration of conservative solutes in the porous media can be described by the ADE with the 145 

initial and boundary conditions (Van Genuchten, 1981): 146 

𝜕𝐶

𝜕𝑡
= 𝐷𝐿

𝜕2𝐶

𝜕𝑥2
− 𝑢

𝜕𝐶

𝜕𝑥
 

(3) 

𝐶(𝑥, 𝑡)|𝑡=0 = 0 
(4) 

𝜕𝐶

𝜕𝑥
|

𝑥→∞
= (finite) (t ≥ 0) 

(5) 

(−𝐷L

𝜕𝐶

𝜕𝑥
+ 𝑢𝐶)|

𝑥=0
= 𝑢𝐶0 

(6) 

where C is the solute concentration, C0 the concentration of the injected solute, x the solute 147 

migration distance, u the average advective velocity, and DL the longitudinal dispersion 148 

coefficient.  149 

This mathematical model has an exact solution, which can be formulated as: 150 

𝐶(𝑥, 𝑡) = 𝐶0 {
1

2
𝑒𝑟𝑓𝑐 (

𝑥 − 𝑢𝑡

2√𝐷𝐿𝑡
) + √

𝑢2𝑡

𝜋𝐷𝐿
𝑒𝑥𝑝 [−

(𝑥 − 𝑢𝑡)2

4𝐷𝐿𝑡
] −

1

2
[1 +

𝑢𝑥

𝐷𝐿
+

𝑢2𝑡

𝐷𝐿
] 𝑒𝑥𝑝 (

𝑢𝑥

𝐷𝐿
) 𝑒𝑟𝑓𝑐 (

𝑥 + 𝑢𝑡

2√𝐷𝐿𝑡
)}  

(7) 

where the symbols are defined as above, erfc is the complementary error function.  151 

For each sample of porous media, we designated two Darcy flow velocities and four molecular 152 

diffusion coefficients, resulting in four breakthrough curves 𝐶(𝑡) at the outlet. The DL and u 153 

were precisely fitted via solute concentration analytical solutions (Eq. 7) and SciPy optimization 154 

inversion algorithm (Virtanen et al., 2020), respectively. The process minimizes the sum of 155 

squared residuals to align predicted concentration values 𝐶̂(𝑡) closely with observed ones 𝐶(𝑡), 156 

thus accurately identifying optimal values for DL and u. 157 

2.2 Dataset Preparation 158 

To enhance training of the neural network, we augmented the image dataset through vertical, 159 

horizontal, and diagonal flipping, effectively tripling the number of porous medium images 160 
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(Elmorsy et al., 2022). This strategy mitigated the issue of a single 3D image correlating with 161 

multiple DL or u. We then constructed a dataset comprising 10,000 samples, with porosity (ε) of 162 

the 3D porous media ranging from 0.42 to 0.46. The Péclet number (Pe), defined as Pe = 163 

vd/(εDm), where v represents the Darcy velocity, d the average grain diameter, varied between 12 164 

and 12,000, with an average value of 806 and a standard deviation of 1227. The dimensions of 165 

the porous media images were 200Δx × 200Δy × 1,000Δz, with Δx = Δy = Δz = 20 μm. 166 

We constructed three-channel porous medium images infused with physical information entails 167 

the following steps: For each two-dimensional (2D) single-channel image within a sequence 168 

(depicting slices of a 3D porous medium), separate 2D parameter matrices for Dm and the slice 169 

pore velocity (vsli = v/εsli), where εsli denotes the porosity of the 2D slice, respectively, are 170 

developed. The numerical values of these matrices are unified as Dm or vsli and are then resized to 171 

align with the dimensions of the slice images. By integrating these two matrices with the original 172 

image along the channel axis, a 2D three-channel image with physical information is created, 173 

subsequently enhancing the entire sequence with physics. 174 

2.3 The Neural Network Framework 175 

The effectiveness of deep learning methods relies on the correct neural architecture and a 176 

sufficiently large dataset. In this letter, PhysenCT-Net primarily processes images of porous 177 

media infused with physical information through the CNN-Transformer architecture. A 178 

schematic of the PhysenCT-Net is depicted in Figure 1. The CNN comprises four convolutional 179 

layers, with the first two layers featuring 4 × 4 2D convolution kernels, a stride of 2, and padding 180 

of 1, and the number of channels in feature maps increasing sequentially from 12 to 24. The 181 

kernel size of the subsequent two convolutional layers is adjusted to 3 × 3, while maintaining a 182 

stride of 2 and padding of 1, with the channels in the feature maps escalating sequentially from 183 

48 to 96. Following each convolutional operation, Batch Normalization (Ioffe & Szegedy, 2015) 184 

and the activation function of rectified linear unit (ReLU) (Nair & Hinton, 2010) are applied to 185 

enhance the network's non-linear representation capability. By setting up four convolutional 186 

layers, the three-channel (physics-enhanced) images of porous medium slices are transformed 187 

into 96-channel feature maps to represent their high-dimensional deep information. Subsequently, 188 

a fully connected layer compresses the feature map of each slice image into a feature vector with 189 

a dimensionality of 200. This same process is applied to each slice image of the porous medium, 190 

transforming the original 3D image into a sequence represented by a series of feature vectors. 191 

This sequence is then fed into the Transformer network as input. 192 

The Transformer network, a deep learning model based on the multi-head self-attention 193 

mechanism, utilizes the mechanism to capture and learn the global dependencies within a 194 

sequence, thereby acquiring a long-term representation of the sequence (see Vaswani et al. 195 

(2017), for a comprehensive review of the terminology of the Transformer). We adopted the 196 

vanilla model proposed by Vaswani et al. (2017), which consists of six identical encoder layers, 197 

each containing two sublayers. The first sublayer, a multi-head attention layer, captures the 198 

relationships between elements (representing the compressed information of porous medium 199 

slice images) within the sequence. The second sublayer, a feed-forward fully connected layer, is 200 

employed for further feature extraction. Residual connections (He et al., 2016; Mo et al., 2019) 201 

and regularization operations between sublayers enhance the network's generalization ability and 202 

training stability. The Transformer network incorporates positional encoding into its input to 203 

capture the relative positional information of elements within the sequence; we employed 204 
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sinusoidal encoding (McAulay & Quatieri, 1995) for the purpose. After processing the input 205 

sequence, the Transformer network averages the outputs along the sequence length dimension, 206 

compressing them into a fixed-size vector. This vector then serves as the input to the fully 207 

connected layers following the Transformer network, with the output of the layers being the DL 208 

and u.  209 

3 The Computational Procedure and Results 210 

Prior to training the neural network, standardizing parameter values is crucial to achieve 211 

consistency in data scale and distribution. Given the wide magnitude ranges for v and u (from 212 

10
−5

 to 10
−3

 m/s), Dm (from 10
−10

 to 10
−9

 m²/s), and DL (from 10
−9

 to 10
−7

 m²/s), we applied a 213 

logarithmic transformation to these parameters. Specifically, for v and u, a scaling factor of 10
5
 is 214 

utilized preceding the logarithmic transformation to adjust the values to a more practical range. 215 

Similarly, for Dm and DL, a scaling factor of 10
10

 is employed. This preprocessing step ensures 216 

the parameter values are uniformly scaled, facilitating the neural network's learning process. 217 

During the training process of the neural network, we initially divided the dataset into a training 218 

set (80% of the data, totaling 8,000 samples) and a testing set (20% of the data, totaling 2,000 219 

samples). The training set was further divided into a training subset and a validation subset at a 220 

ratio of 8:2. We employed the Adam optimizer (Kingma & Ba, 2014) with training epochs set to 221 

30 and batch size to 32. The initial learning rate was set at 1e-4, with decay to 10%, 5%, and 2.5% 222 

of the initial rate at epochs 10, 20, and 25, respectively. The root mean square error (Chai & 223 

Draxler, 2014) was selected as the network's loss function. We ran the model five times and 224 

calculated the average coefficient of determination (R²) values for DL and u on the validation 225 

subset and testing set. The average R² for DL on the validation subset was 0.9914, and for u was 226 

0.9964; for the testing set, the average R² for DL was 0.9913, and for u was 0.9962. The 227 

computational time for training dataset by LBM and particle tracking amounted to 10 million 228 

CPU seconds. While training the neural network required approximately 100,000 GPU seconds 229 

on four NVIDIA GeForce RTX 4090 GPUs. The direct prediction of DL and u for the testing set 230 

by the trained PhysenCT-Net model required merely 1,600 GPU seconds. This represents a 231 

substantial improvement in computational efficiency, marked by several orders of magnitude, 232 

when compared to direct simulation approaches. 233 
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 234 

Figure 2. Performance of the PhysenCT-Net model on validation and testing sets: (a) and (b) 235 

showcase the optimal prediction results and porous medium structures in the dataset; (c) 236 

illustrates four box plots for each sample group, representing predictions of DL and u for both 237 

validation and testing sets. Each box plot delineates the mean (triangle symbol), median 238 

(horizontal line within the box), outliers (dots), and the 95% confidence interval (shaded area) 239 

according to the t-distribution. 240 

To examine the effect of training sample size on the predictive accuracy and generalization 241 

capability of the model, we modified the training dataset proportions to 10%, 20%, 40%, and 60% 242 

of the total data, while maintaining a constant testing set size. Each model variant, defined by its 243 

training sample size, underwent five rounds of training. Subsequently, we computed and 244 

illustrated the model's predictive accuracy (R²) and its 95% confidence intervals employing the t-245 

distribution methodology (Lange et al., 1989; Reich & Barai, 1999). As depicted in Figure 2, 246 

PhysenCT-Net exhibited remarkable precision and resilience. The model was capable of 247 

delivering precise predictions for unseen testing data with a minimal quantity of training samples 248 

(including instances where the training sample size was less than the testing sample size), with 249 

an observable enhancement in accuracy correlating with increased training data volume. 250 

Bijeljic and Blunt (2006) employed the PNM method to investigate the relationship between 251 

hydrodynamic dispersion coefficients and Pe, while Mostaghimi et al. (2012) determined DL as a 252 

function of the Pe through direct simulation. Instead of directly establishing a numerical 253 

relationship between Pe and DL , we explored and evaluated the PhysenCT-Net model's 254 

capabilities to predict DL and u with varying Pe conditions. 255 

The PhysenCT-Net was set up with Pe < 1,000 (incorporating 7,552 samples) for training, 256 

partitioning the dataset into training and validation sets at an 8:2 ratio. The dataset for Pe > 1,000 257 

conditions was designated as the testing set with 2,432 samples. The training approach was kept 258 

consistent, ensuring the dataset size strictly aligned with multiples of the batch size. The findings 259 

reveal that PhysenCT-Net (referenced in Figures 3a and 3b), with training conditions Pe < 1,000, 260 

yielded promising results on the validation set (totaling 1,504 samples), achieving R² values of 261 
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0.985 for DL and 0.997 for u. However, its generalization capability on the unseen testing set (Pe > 262 

1,000) was compromised, evidenced by R² values of 0.881 for DL and 0.928 for u. To improve 263 

the model's generalization capacity, transfer learning methods were employed (Devlin et al., 264 

2018; Yosinski et al., 2014). We refined the overall parameters of the trained models by utilizing 265 

10% of the testing set samples, then proceeded to predict the remaining 90% of the testing set 266 

samples. During this phase, we adjusted the model's batch size to 16 and lowered the initial 267 

learning rate to 1e-5 to fit the smaller data sample size. The inset graphs at the lower right 268 

corners of Figures 3a and 3b display the model's predictions and R² values for 90% of the testing 269 

set, illustrating that transfer learning improved the model's generalization ability. 270 

 271 
Figure 3. Model performance under different predicting conditions. (a) and (b) show the main 272 

graphs of each subfigure, illustrating direct predictions of the model on Pe < 1,000 (validation) 273 

and Pe > 1,000 (testing) datasets, respectively, while the inset graphs depict predictions for 90% 274 

of the testing datasets after transfer learning. (c)-(h) demonstrate model performance for 275 

predicting conditions with average grain diameters of 0.8 < d < 1.2 mm, 1.2 < d < 1.6 mm, and 276 

1.6 < d < 2 mm. In the main graphs, blue dots represent direct predictions by the trained model 277 

on the dataset of 600 samples, while red dots indicate predictions for the remaining 90% by the 278 

retrained model after transfer learning. The inset graphs show the pore structure of the porous 279 

media in the corresponding datasets. 280 

 281 

The primary dataset comprised 10,000 porous media with no cementation and grain sizes ranging 282 

from 0.4 to 1.2 mm. To evaluate the prediction performance of the trained models on cemented 283 

porous media with grain sizes between 0.8 and 2 mm, we developed three additional datasets. 284 

Each dataset contains 600 samples, featuring porosities spanning 0.37 to 0.39, 0.39 to 0.43, and 285 

0.41 to 0.45, respectively. The model with the best generalization performance, as shown in 286 

Figures 2a and 2b, was adopted to directly predict DL and u for each of these groups. The 287 

outcomes, represented by the blue scatter points in Figures 3c to 3h, confirmed the model's 288 

effectiveness in precisely estimating parameters for these unencountered porous media samples. 289 

Moreover, the application of transfer learning, represented by the red scatter points in the same 290 

figures, significantly enhanced the model's generalization ability. This finding highlights that 291 
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transfer learning, which involves fine-tuning model parameters with limited sample sizes, 292 

substantially strengthens the model's generalization capabilities, crucial for broader applicability. 293 

Leveraging the physics-enhanced neural network and transfer learning strategies discussed in 294 

this letter, we anticipate that the pretrained models will be adept at accurately estimating physical 295 

parameters across diverse porous media and under varied flow conditions. 296 

During direct simulations, we assigned two Darcy flow velocities to each porous medium to 297 

calculate parameters DL and u. In the training process of PhysenCT-Net, we applied three image 298 

transformations to each porous medium sample to prevent redundancy of input-output pairs in 299 

the deep learning dataset. Here, we created a unique dataset by assigning 256 different Darcy 300 

flow velocities to the same porous medium image samples while maintaining constant Dm. Six 301 

porous medium samples were selected for analysis. The trained PhysenCT-Net model reliably 302 

predicted an increment in the DL as average fluid velocity increased. This pattern complies with 303 

the DL = αL∙ 𝑢avg
𝑛  + Dm empirical formula proposed by Cherry and Freeze (1979), where αL 304 

denotes the longitudinal dispersivity and 𝑢avg the average fluid velocity (𝑢avg = v/ε), validating 305 

the model's competency in providing parameter predictions consistent with physical principles. 306 

Such alignment emphasizes the model's proficiency in accurately capturing the fundamental 307 

physics governing solute transport in porous media. 308 

 309 
Figure 4. Predicted longitudinal dispersion coefficient versus average fluid velocity by the 310 

trained PhysenCT-Net model. 311 

5 Conclusions 312 

In this letter, we introduce the development of PhysenCT-Net, a significant advancement in 313 

utilizing neural networks to predict crucial solute transport parameters in porous media, such as 314 

the longitudinal dispersion coefficient and average solute transport velocity. The PhysenCT-Net 315 

methodology combines the precision of numerical simulation methods with the computational 316 

efficiency of deep learning technologies. It adeptly integrates three-dimensional images of 317 

porous media with pertinent physical parameters governing the dispersion process, showcasing 318 

robust performance and adherence to physical principles. Our study establishes the basis for 319 

future research that synergizes deep learning with direct pore-scale simulations, aiming for the 320 

rapid and precise determination of critical parameters to enhance the modeling of transport 321 
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phenomena in porous media and align computational predictions closely with real-world 322 

behaviors. 323 
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