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Abstract

How seismic magnitudes are distributed is important for estimating stress levels in seismic hazard studies, and two methods of

characterizing the magnitude distribution are through the Gutenberg-Richter b-value, or equivalently through , and through the

information entropy. A closed relationship between the b-value and the entropy (applicable to any exponential distribution and

its entropy) is presented and is checked through numerical evaluation of the entropy using exact probabilities derived directly

from the magnitude exponential distribution. Since the numerical evaluation of the entropy is done over a finite magnitude

range, it is possible to assess the possible contribution to the entropy of real or hypothetical very large magnitudes, and these

contributions are found to be quite small. The relationship is also compared with entropies calculated from synthetic data, and

Monte Carlo simulations are used to explore the behavior of entropy determinations as a function of sample size. Finally, it

is considered how, for the usual case of having data from a single realization, in spite of the relation between them, because

entropy and Aki-Utsu b-value are measured in different ways, both measures are not redundant and may be complementary

and useful in determining when a sample is large enough to give reliable results.
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Abstract 9 

 How seismic magnitudes are distributed is important for estimating stress levels in 10 

seismic hazard studies, and two methods of characterizing the magnitude distribution are through 11 

the Gutenberg-Richter b-value, or equivalently through 𝛽 = 𝑏 ln 10, and through the 12 

information entropy. A closed relationship between the b-value and the entropy (applicable to 13 

any exponential distribution and its entropy) is presented and is checked through numerical 14 

evaluation of the entropy using exact probabilities derived directly from the magnitude 15 

exponential distribution. Since the numerical evaluation of the entropy is done over a finite 16 

magnitude range, it is possible to assess the possible contribution to the entropy of real or 17 

hypothetical very large magnitudes, and these contributions are found to be quite small. The 18 

relationship is also compared with entropies calculated from synthetic data, and Monte Carlo 19 

simulations are used to explore the behavior of entropy determinations as a function of sample 20 

size. Finally, it is considered how, for the usual case of having data from a single realization, in 21 

spite of the relation between them, because entropy and Aki-Utsu b-value are measured in 22 

different ways, both measures are not redundant and may be complementary and useful in 23 

determining when a sample is large enough to give reliable results. 24 

Plain Language Summary 25 

 Two important measures for seismic hazard, that describe the relative abundance of small 26 

to medium and large earthquakes, are the slope of the logarithmic cumulative magnitude 27 

histogram, known as b-value, and the information entropy, S, of the probabilities of the 28 

magnitudes. We find an analytic relationship between both measures and check it numerically. 29 

The effects of a studying a finite magnitude range are explored. It is proposed that since b-value 30 

and S are measured in different ways, their estimates can be complementary for interpreting 31 

results from a single set of data. 32 

1 Introduction 33 

 The Shannon, or information, entropy and the b-value of the Gutenberg-Richter 34 

distribution, both discussed in detail below, have become useful and widely-used tools in the 35 

study of seismicity, because both seem to quantify behaviors of seismicity related to the levels of 36 

stress. Here, a relationship between b and the entropy of the seismic magnitudes will be 37 
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presented, some of its features will be discussed, and ways in which these measures can 38 

complement each other will be proposed. 39 

 In what follows unrounded magnitudes will be denoted by m and magnitudes rounded to 40 

∆𝑀 by M (usually ∆𝑀 = 0.1). 41 

 42 

1.1 The G-R b-value 43 

 Ishimoto and Ida (1939) and Gutenberg and Richter (1944) observed that seismic 44 

magnitudes are distributed as 45 

(1) 46 

where 𝑁(𝑀) is the number of magnitudes ≥ 𝑀 and b describes the proportion of large 47 

magnitudes to small ones (Richter, 1958). The magnitude origin has been shifted by 𝑀𝑐, the 48 

completeness magnitude below which log10 𝑁(𝑀) ceases to behave linearly due to insufficient 49 

coverage (e.g. Wiemer and Wyss, 2000). Although the physical meaning of this relation, and of 50 

related distributions of seismic energy and moment are still subject to discussion (e.g. El-Isa and 51 

Eaton, 2014; Wyss, 1973) the b-value has been widely used to characterize seismicity in 52 

different regions in the world (e. g. Kagan, 1999;   Utsu, 2002), and it has been proposed that b is 53 

related to the fractal dimension (Aki, 1981; Hirata, 1989; Wyss et al., 2004). There are many 54 

studies that relate b to the level of stress and observe changes in its value before large 55 

earthquakes (DeSalvio & Rudolph, 2021; El-Isa & Eaton, 2014; Enescu & Ito, 2001; Frohlich & 56 

Davis, 1993; Godano et al., 2024; Hu et al, 2024; Li & Chen, 2021; Nanjo et al., 2012; Scholtz, 57 

2015; Schorlemmer et al, 2005; Utsu, 2002; Wang, 2016; Wyss, 1973; Wyss et al., 2004; and 58 

many others), which gives b an important role in earthquake hazard estimation and forecasting. 59 

 b-values can be estimated directly from the slope of the linear range on the G-R 60 

histogram (e.g. Guttorp, 1987; Monterroso & Kulhanek, 2003), but frequently b-values are 61 

estimated from the mean magnitude (Aki, 1965; Marzocchi & Sandri, 2003; Tinti & Mulargia, 62 

1987; Utsu, 1965), and most studies use the Aki-Utsu maximum likelihood estimate  63 

(2) 64 

where �̅� is the observed mean of the data  (Aki, 1965; Utsu, 1965). This estimate shares with the 65 

entropy determinations the problem of determining 𝑚𝑐, but otherwise it is based on the mean 66 

magnitude that, in a way, incorporates the information from all magnitudes. This measure is 67 

log10 𝑁(𝑀) = 𝑎 − 𝑏 (𝑀 − 𝑀𝑐);    𝑀 ≥ 𝑀𝑐 

𝑏 =
log10(e)

�̅� − 𝑚𝑐

 , 
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extremely easy to obtain but, unfortunately, many people use (2) as a magic formula without 68 

considering that the estimate will be good only if the observed �̅� is close to 𝜇 (compare (2) with 69 

(7)), which requires having a sample large enough to be representative (Geffers et al., 2022; 70 

Marzocchi et al. 2020; Nava et al., 2017; Ogata and Yamashina, 1986; Shi and Bolt, 1982). 71 

 72 

1.2 The Information Entropy 73 

 Another important statistical-probabilistical concept is Shannon’s definition of the 74 

information entropy, S, of a process characterized by K states or classes of events, each having 75 

probability 𝑃𝑖,  with 76 

(3) 77 

as 78 

(4) 79 

 (Shannon, 1948), where the logarithm can have any base; we will use base 2 because it is the 80 

one most commonly used for information purposes and yields an entropy expressed in bits, easy 81 

to interpret. Capital letters have been used for the probabilities to emphasize that they are not 82 

densities, and in this definition it is implicitly assumed that 0 ≤ 𝑃𝑖 ≤ 1, so that log2 𝑃𝑖 ≤ 0  ∀𝑖. 83 

Each term in the first sum in (3) is the contribution to the total entropy S of the probability of 84 

each rounded magnitude class, called entropy score by Harte and Vere-Jones (2005), and will be 85 

denoted by 𝑠𝑖, where i is the index of the class, or generally as s. 86 

 Remembering that the self-information of an event with probability 𝑃𝑖 is 87 

(5) 88 

 (Fano, 1961), the entropy (4) can be recognized as the expected self-information of the process. 89 

Although the self-information ranges from zero to infinity, the contribution to the entropy from 90 

any probability ranges from zero, for both 𝑠(0) and 𝑠(1), to the maximum 𝑠(e−1) = 0.530738 91 

bit, as shown in Figure 1. This point will be retaken later. 92 

 93 

𝑆 = − ∑ 𝑃𝑖   log2 𝑃𝑖 ≡ ∑ 𝑠𝑖

𝐾

𝑖=1

𝐾

𝑖=1

 

∑ 𝑃𝑖  = 1 ,

𝐾

𝑖=1

 

𝐼𝑖 = − log2 𝑃𝑖 
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Fig. 1 Contribution of each particular probability value to the entropy. The dotted line indicates 94 

the position of the maximum for 𝑃 = e-1. The shaded area indicates the entropy for the range of 95 

probabilities corresponding to magnitude distributions with 𝑏 ≤ 1.5 and ∆𝑀 = 0.1 (discussed 96 

below). 97 

 98 

 The concept of entropy has been widely used in seismology, particularly through the 99 

Principle of Maximum Entropy (PME), to study distributions, recurrence relationships, model 100 

stress fields, estimate seismic hazard, etc. (Berrill & Davis, 1980; Bookstein, 2021; De Santis et 101 

al., 2011; Dong et al., 1984; Feng and Luo, 2009; Janes, 1957; Mansinha & Shen, 1987; Main & 102 

Naylor, 2008; Shen & Mansinha, 1983; Telesca et al 2004 ). Other studies use entropy as an 103 

indicator of proximity to criticality (Main & Al-Kindy, 2002; Vogel et al., 2020), some using so-104 

called natural time (Ramírez-Rojas et al., 2018; Rundle et al. 2019; Sarlis et al, 2018; Varotsos et 105 

al., 2004; Varotsos et al., 2022; Varotsos et al., 2023) many using other definitions of entropy, 106 

and some for seismic electric signals (Varotsos et al., 2006). Entropy has also been used to study 107 

the spatial distribution of seismic sources (e.g. Bressan et al., 2017; Goltz, 1966; Goltz and Böse, 108 

2002; Nava et al., 2021; Nicholson et al., 2000; Ohsawa, 2018) and to study noise (e. g. 109 

Lyubushin, 2021). 110 

 111 

 It is because of the possible usefulness of both the b-parameter and the magnitude 112 

entropy, that it is important to explore the relationship between these two observables. 113 

 114 
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2. The entropy of seismic magnitude distributions 115 

 Now, let the process considered in the information entropy be the seismic magnitudes and 116 

the classes be the classes of a magnitude histogram, and let us see what can the entropy be 117 

expected to be like by assuming that the magnitudes obey a G-R distribution. 118 

 The G-R relation (1) is a reverse cumulative histogram corresponding to an exponential 119 

magnitude probability density function,  120 

(6) 121 

where  122 

(7) 123 

𝜇 is the mean of the exponential distribution, and, since it needs to include all magnitudes that 124 

contribute to the rounded ones, is defined for unrounded magnitudes 𝑚 ≥ 𝑚𝑐, where 𝑚𝑐 = 𝑀𝑐 −125 

∆𝑀/2. 126 

 Let the classes considered in (3) correspond to the magnitudes rounded to ∆𝑀 = 0.1, and 127 

the probability 𝑃𝑖 of the class of a given rounded magnitude 𝑀𝑖, where 𝑀1 = 𝑀𝑐, is determined 128 

from the pdf  (6). 129 

 Commonly, 𝑃𝑖 is approximated from (6) as  130 

(8) 131 

(e.g. Rundle et al., 2019); a better procedure will be proposed below, but for now let us digress to 132 

discuss some reported results based on this approximation. 133 

 134 

2.1 The Entropy of a Continuous Distribution 135 

 Substitution of (8) in (4) yields 136 

(9) 137 

 138 

which can be written as 139 

(10) 140 

 141 

On letting ∆𝑀 → 0 the first term on the right side of (10) becomes what Shannon (1948) 142 

defined as the entropy of a continuous distribution for a process having probability density 143 

distribution 𝑝(𝑚): 144 

𝑝(𝑚) = 𝛽 e−𝛽 (𝑚−𝑚𝑐) 

𝛽 = 𝑏 ln(10) = 1/ (𝜇 − 𝑚𝑐) , 

𝑃𝑖 ≈ 𝑝(𝑀𝑖) ∆𝑀  

𝑆 = − ∑ 𝑝(𝑀𝑖) ∆𝑀  log2[𝑝(𝑀𝑖) ∆𝑀] ,

𝐾

𝑖=1

 

𝑆 = − ∑ 𝑝(𝑀𝑖) log2 𝑝(𝑀𝑖) ∆𝑀 − log2 ∆𝑀 ,

𝐾

𝑖=1
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(11) 145 

which we will denote by 𝑆𝑐 to differentiate it from what would be the limit of the entropy in 10). 146 

Formula (11), without the minus sign, corresponds to what Wiener (1948) defined as the amount 147 

of information of , not as entropy. Shannon (1948) states that “The entropies of 148 

continuous distributions have most (but not all) of the properties of the discrete case.”, and it is 149 

clear they differ in this case, because the second term on the right-hand side of (10) has not been 150 

included in the limit and this term grows as ∆𝑀 decreases and tends to infinity as ∆𝑀 → 0 151 

(Mansinha & Shen, 1987). Goldman (1953) is aware of the − log2 ∆𝑀 term, but states that it 152 

always cancels out, which is certainly not the case for the problem at hand. 153 

 A second problem is that the meaning of − log2 𝑝(𝑚) is not clear, because the definitions 154 

of self-information and information entropy refer to mass probabilities, not to densities. For 155 

exponential distributions, unless 𝛽 < 1, i. e., 𝑏 < 1/ln 10 ≈ 0.43429448, which is an 156 

unrealistic value, the integral in (11) will include a range with 𝑝(𝑚) > 1 that would imply 157 

negative information and result in negative entropy.  158 

 Equation (11) has been used in several studies (e.g. De Santis et al., 2011; Main and 159 

Burton, 1964; Posadas et al., 2002; Posadas et al., 2021 Shen & Mansinha, 1983;) with varying 160 

results, some of them unfortunate. For example, De Santis et al. (2011) obtained 𝑏𝑚𝑎𝑥 =161 

e log10 e≈1.1805 as the upper limit for b-values, which illustrates the perils of using (11).  162 

Here, we will keep to the original definition of entropy (4) 163 

 164 

2.2 Entropy of exponential distributions 165 

 Although this paper is oriented towards seismic magnitude distributions, what follows is 166 

applicable to any exponential probability distribution. 167 

 Coming back to equation (4), instead of using the approximation (8), the exact 168 

probability corresponding to the class of a rounded magnitude 𝑀𝑖 can be calculated exactly as 169 

 170 

(12) 171 

which results in 172 

 173 

(13) 174 

  p( M )

𝑆𝑐 = − ∫ 𝑝(𝑚) log2 𝑝(𝑚) d𝑚

∞

−∞

 

𝑃𝑖 ≡ 𝑃(𝑀𝑖) = ∫ 𝛽 e−𝛽 (𝑚−𝑚𝑐) d𝑚

𝑀𝑖+∆𝑀/2

𝑀𝑖−∆𝑀/2

 , 

𝑃𝑖 = e−𝛽(𝑀𝑖−𝑚𝑐) (e 𝛽
∆𝑀

2 − e−𝛽
∆𝑀

2 ) =                 

             = e−𝛽(𝑀𝑖−𝑀𝑐)(1 − e−𝛽∆𝑀) ≡ e−𝛽(𝑀𝑖−𝑀𝑐) ∆𝑀𝑃 . 
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 To show how this probability estimation compares with the approximation shown before, 175 

(8) can be written as 176 

(14) 177 

so both (13) and (14), consist of the same exponential multiplied by different factors that are 178 

shown in Figure 2 for various values of  b. Both factors differ by very little for small b-values, 179 

but for large b-values ∆𝑀𝑝 is appreciably larger than the factor in (14), which shows that it is 180 

worthwhile to use the exact probability from (13).  181 

 182 

Figure 2. Comparison of the factors that multiply an exponential to evaluate or estimate 183 

probabilities.  184 

 185 

 Substituting probability (13) in (4), yields  186 

(15) 187 

which is the expression for the entropy that will be used to calculate the theoretical entropy 188 

corresponding to a given magnitude distribution, to illustrate how the elements of the magnitude 189 

𝑆 = − ∑ e−𝛽(𝑀𝑖−𝑀𝑐) ∆𝑀𝑃    log2[e−𝛽(𝑀𝑖−𝑀𝑐) ∆𝑀𝑃 ]  ,

𝐾

𝑖=1

 

β e−𝛽(𝑀𝑖−𝑚𝑐)∆𝑀 =  e−𝛽(𝑀𝑖−𝑀𝑐)𝛽 e−𝛽 ∆𝑀/2 ∆𝑀  
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distribution contribute to the entropy, and to estimate through Monte Carlo simulation, what can 190 

be expected from data samples of different sizes. 191 

 To obtain an estimate for the theoretical value of S, let 𝐾 → ∞ in (15) because the 192 

theoretical G-R distribution does not have an upper limit; this limit will be discussed below. 193 

Equation (15) can be written as: 194 

 195 

or 196 

(16) 197 

 198 

The sum in the second right-hand term of (16) is the total probability equal to unity. In the first 199 

right-hand term, the factor (𝑀𝑖 − 𝑀𝑐) takes values 0∆𝑀, 1∆𝑀, 2∆𝑀, 3∆𝑀, …, so the sum written 200 

explicitly as: 201 

(17) 202 

can be recognized as the series representation of 203 

(18) 204 

for 𝑥 = −∆𝑀 𝛽. Hence, the total entropy of an exponential distribution with parameter 𝛽 205 

expressed in bits is 206 

(19) 207 

 208 

 Equation (19) is a closed, analytic expression for the entropy of an exponential 209 

distribution with parameter 𝛽 and class width ∆𝑀. For a magnitude distribution, since  ∆𝑀 =210 

0.01 can be considered to be a set, constant value, (19) can be considered a direct relation 211 

between S and 𝛽 (or 𝑏 = 𝛽 log10 e). Although 𝛽 has been used in the derivation of (19), results 212 

will be expressed in terms of b, because it is a more familiar parameter and its global average 213 

value, a good reference, is conveniently very close to 1.0 (e.g. El-Isa & Eaton, 2014).  214 

 The direct, closed, relationship (19) between the b-value and the magnitude entropy is 215 

shown in Figure 3. Figure 3 also shows the range of entropies for reasonable b-values: from 216 

𝑆 = − ∑ e−𝛽(𝑀𝑖−𝑀𝑐) ∆𝑀𝑃  [−𝛽(𝑀𝑖 − 𝑀𝑐) log2 e + log2  ∆𝑀𝑃] ,

∞

𝑖=1

 

𝑆 =  ∆𝑀𝑃 log2 e ∑ −𝛽(𝑀𝑖 − 𝑀𝑐) e−𝛽(𝑀𝑖−𝑀𝑐)

∞

𝑖=1

− log2 ∆𝑀𝑃 ∑  e−𝛽(𝑀𝑖−𝑀𝑐) ∆𝑀𝑃 .

∞

𝑖=1

 

0 − 1∆𝑀𝛽e−1∆𝑀𝛽 − 2∆𝑀𝛽e−2∆𝑀𝛽 − 3∆𝑀𝛽e−3∆𝑀𝛽 − ⋯ , 

𝑆 = 𝛽 ∆𝑀 
e−𝛽 ∆𝑀

1 − e−𝛽 ∆𝑀
 log2 e − log2(1 − e−𝛽 ∆𝑀) .  

∆𝑀 𝛽 
𝑑 

𝑑𝑥
(1 − e𝑥)−1 = ∆𝑀𝛽

e𝑥

(1 − e𝑥) 2
 , 



manuscript submitted to Journal of Geophysical Research Solid Earth 

 

𝑆 = 2.98 bit for 𝑏 = 1.5 to 𝑆 = 4.08 bit for 𝑏 = 0.7; a range of ≈ 1.1 bit for a b range of 0.8. 217 

This range has been chosen to illustrate the results because, although b-values in the  0.3 ≤ 𝑏 ≤218 

2.5 range have been reported (El-Isa & Eaton, 2014), for estimates based on magnitudes scaling 219 

as 𝑀𝑊 (Kanamori, 1983; Hanks & Kanamori, 1979) 𝑏 = 0.7 is an adequate lower limit for 220 

global b-values ( Frohlich & Davis, 1993) and an upper limit of 𝑏 = 1.5 has proposed on 221 

physical grounds by Olsson (1999). 222 

 Figure 3 shows that S increases as b decreases, so that entropy appears to be directly 223 

related to the state of stress in the medium; indeed, since low b corresponds to probabilities being 224 

less concentrated around 𝑚𝑐, the significant probabilities are spread over a larger magnitude 225 

range, so the medium can be considered as being less ordered. 226 

 227 

Figure 3   Relationship between b and S.  228 

 229 

2.3 Numerical entropies over a finite magnitude range 230 

 Now the results of (19) will be checked against numerical results from (13) and (4) to see 231 

how results for finite K differ from those for 𝐾 → ∞. Although the G-R relation does not 232 

contemplate an upper limit for M, there are physical limits to how large a magnitude can be, so it 233 

is important to consider how results from a finite magnitude range differ from those of an infinite 234 

one. It is also important to consider the role of large magnitudes in the entropy determinations. 235 

 The very interesting problem of a maximum possible magnitude has been widely 236 

addressed (e.g. Beirlant et al., 2019; Chinnery and North, 1975; Kijko, 2004; Kijko & Singh, 237 
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2011; Smith, 1976; Sornette, 2009) and manners of dealing with modified G-R distributions or 238 

using other distributions have been proposed (e.g. Cornell & Vanmarke, 1969; Cosentino et al., 239 

1977; Holschneider et al., 2011; Lomnitz-Adler & Lomnitz, 1979; Main, 1996; Main & Burton, 240 

1984). The problem of a maximum magnitude is outside the scope of this paper, but it will be 241 

seen that the effects of very large magnitudes on entropy estimates are quite low and the possible 242 

existence, or not, of very large earthquakes does not affect the results shown here. 243 

 To check the results of (19), the entropy of the magnitude distribution will be computed 244 

by evaluating exactly from (13) the probabilities for rounded magnitudes in a finite magnitude 245 

range. The 2.0 ≤ 𝑀𝑖 ≤ 9.0 range has been chosen to illustrate the probablities, because M 2.0 is 246 

not an uncommon 𝑀𝑐 and because M 9.0 is sufficiently rare as to be a practical upper limit 247 

because magnitudes much larger than 9.0 (including infinite ones) are not realistic. Since 248 

probabilities from a finite range will be considered, they have to be normalized by dividing by a 249 

factor 250 

(20) 251 

For the proposed magnitude range, this factor differs from 1 by 2 × 10−6  for 𝑏 = 0.8, and by 252 

3 × 10−9 for 𝑏 = 1.2, so corrections are very small and do not affect significantly the results. 253 

 Next, these exact theoretical probabilities will be used to calculate each term 𝑠𝑖 in the 254 

sum (4). and finally 𝑆 = ∑ 𝑠𝑖
𝐾
𝑖=1  will be computed and compared with the analytic total entropy 255 

values. 256 

 Figure 4 shows in (A) the theoretical probability mass distribution for three representative 257 

b-values; (B) shows the 𝑠(𝑀𝑖) corresponding to the probabilities shown in (A), and (C) shows 258 

the entropies computed using (4). Strictly speaking, the entropies correspond to the (larger) 259 

markers at the end of each curve, but the cumulative s leading to the total entropies is also 260 

shown, to illustrate its different behaviors for different b-values.  The dotted hrizontal lines in 261 

(C) correspond to the analytical entropies. 262 

 263 

𝑓𝑁 = ∫ 𝛽 e−𝛽(𝑚−𝑚𝑐) d𝑚 =   1 − 𝑒−𝛽(𝑚𝑥−𝑚𝑐) .

𝑚𝑥

𝑚𝑐
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 264 

Fig. 4  Exact numerical probabilities (a), corresponding information scores (b) and entropies (c), 265 

for three representative b-values and a finite magnitude range. Panel (c) shows the numerical 266 

entropy values as large symbols over the largest magnitude, and the analytical entropies as dotted 267 

lines; also shown are the cumulative s values. 268 
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 For the smallest magnitudes s is largest for the higher b, but about one magnitude unit 269 

above 𝑀𝑐 the roles are reversed and the entropies for smaller b-values grow faster and soon the 270 

entropy for the smallest b is the largest of all. All entropies tend asymptotically to their 271 

theoretical values, with the largest b-values approaching it earlier. The magnitudes that make 272 

more difference are those in the 3.0 ≤ 𝑀 ≤ 5.0 range.  273 

 As shown in Figure 4 (A), large magnitudes have very small probabilities which are close 274 

to the left end of the shaded area in in Figure 1 and contribute very little to the total entropy, as 275 

shown in (B) and (C). Hence, the presence of magnitudes above 6.5 or 7.0 is not necessary for 276 

obtaining good, approximate estimates of S. 277 

 The numerical values for the total entropies differ from the analytic ones by only 278 

4.2 × 10−5 for 𝑏 = 0.8, 2.0 × 10−6 for 𝑏 = 1.0, and 9.0 × 10−8 for 𝑏 = 1.2, differences too 279 

small to be of practical concern.  As would be expected from the properties of the exponential 280 

distribution, shifting the magnitude range while conserving the same width, to 1.5 ≤ 𝑀𝑖 ≤ 8.5, 281 

say, results in exactly the same entropy estimates. 282 

 Estimates do change if the range is enlarged, for example considering the 1.5 ≤ 𝑀𝑖 ≤ 9.0 283 

range (five classes wider) reduces the differences between numerical and analytical to 1.7 ×284 

10−5 for 𝑏 = 0.8, 6.7 × 10−7 for  𝑏 = 1.0, and 2.4 × 10−8 for 𝑏 = 1.2, because of the 285 

contributions from the extra five terms in (15). 286 

 For reference, the entropy of a uniform distribution with K classes is 287 

(22) 288 

so for the example, with range 2.0 ≤ 𝑀𝑖 ≤ 9.0 and 𝐾 = 71, the entropy of the uniform 289 

distribution, i.e., the largest possible entropy, would be 𝑆𝑈 = 6.15 bit, some 2.26 bit larger than 290 

the entropy for 𝑏 = 0.8. 291 

 The total entropies are distintictly larger for the smaller b-values, which means that 292 

measuring entropies can be a good method for identifying regions of low or large b, that is, of 293 

large or low stress. 294 

 295 

2.4 Numerical entropy from samples 296 

 Next, it will be seen how entropy measured from samples compares to the entropy 297 

computed from exact probabilities, and how it depends on the sample size; the samples will be 298 

𝑆𝑈 = − ∑
1

𝐾
 log2

1

𝐾

𝐾

𝑖=1

= log2 𝐾 , 
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synthetics from random simulations, for the same magnitude range and the three representative 299 

b-values used above.  300 

For each b-value, N exponentially distributed random magnitudes are generated as  301 

(23) 302 

where r is a uniformly distributed pseudo-random number in the zero to one range, and 303 

(24) 304 

maps this range onto the range that results in probabilities 𝑚𝑐 ≤ 𝑚 ≤ 𝑚𝑥. 305 

With these magnitudes a histogram with classes ∆𝑀 wide, corresponding to the rounded 306 

magnitudes, is constructed and the number of events in each class 𝑛(𝑀𝑖) is counted. The 307 

probabilities are estimated as  308 

(25) 309 

(c.f. Feng & Luo, 2009) and used to calculate the 𝑠𝑖 values and thence S. 310 

 311 

 Figure 5 shows simulations for three b-values, each having 𝑁 = 5000 magnitudes, a 312 

reasonably good-sized sample. The magnitude histograms  𝑛(𝑀𝑖) are shown in (A), and the 313 

contributions 𝑠(𝑀𝑖) are shown in (B); the cumulatives for s and the entropies are shown in (C), 314 

together with the theoretical entropies. 315 

 A comparison of panels (C) of Figures 4 and 5 shows very good agreement between 316 

entropies from theoretical and simulated magnitudes, both converging nicely to the analytic 317 

entropies from (19). 318 

 319 

 320 

 321 

 322 

 323 

 324 

 325 

 326 

 327 

 328 

𝑚 = 𝑚𝑐 − ln(1 −  𝑟 ∗ 𝜌) / 𝛽 , 

𝜌 = 1 − e𝛽 (𝑚𝑐−𝑚𝑥) 

𝑃𝑖 = 𝑛(𝑀𝑖) / 𝑁 
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 329 

Fig. 5 Numerical probabilities from a synthetic sample of 5,000 magnitudes (a), corresponding 330 

information scores (b) and entropies c), for three representative b-values and a finite magnitude 331 

range. Panel (c) shows the numerical entropy values as large symbols over the largest magnitude, 332 

and the analytical entropies as dotted lines; also shown are the cumulative s values. 333 

 334 

 335 
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 The simulations shown in Figure 6 are like those of Figure 5, but for a much smaller 336 

sample of 𝑁 = 500 magnitudes. The histograms in the (A) and (B) panels show clear differences 337 

from the respective graphs in Figure 5; differences are less apparent between panels (C), but 338 

there is a noticeable difference for the entropy corresponding to the largest 𝑏 = 1.2, which is 339 

well below the analytic entropy. 340 

 341 
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Fig. 6 Numerical probabilities from a synthetic sample of 5,000 magnitudes (a), corresponding 342 

information scores (b) and entropies (c), for three representative b-values and a finite magnitude 343 

range. Panel (c) shows the numerical entropy values as large symbols over the largest magnitude, 344 

and the analytical entropies as dotted lines; also shown are the cumulative s values.  345 

 346 
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2.5 Monte Carlo simulations and sample size 347 

 Monte Carlo simulations are used to characterize how numerical entropies depend on 348 

sample size, each simulation consisting of 𝑁𝑟 = 5000 realizations, like those shown in the 349 

previous section, of magnitude samples of different sizes, from 𝑁 = 250 to 𝑁 = 5000. The 350 

means and standard deviations of the 𝑁𝑟 entropies calculated for each combination of b and N, 351 

are shown in Figure 7. 352 

 353 

Fig. 7  Monte Carlo analysis of entropies S determined from synthetic samples for different 354 

sample sizes N. Thick lines with different colors and symbols, corresponding to representative b-355 

values are the means of 5,000 realizations for each combination of b and N. The thin lines show 356 

the means plus/minus one standard deviation, and the horizontal dotted lines indicate the 357 

analytical entropies.  358 

 359 
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 Figure 7 shows the mean calculated S for each b-value as a thick line with a particular 360 

color and symbol, shows the mean plus/minus one standard deviation as thin lines and the true 361 

analytical value as a dotted line in the corresponding color. In order to interpret correctly the 362 

information in the standard deviations it is necessary to determine how the entropy value 363 

determinations are distributed, and Figure 8 shows an example of these distributions for 𝑏 = 1.0 364 

and 𝑁 = 5000, which tells that the values can be considered to be normally distributed around 365 

the mean. 366 

 367 

Fig.8. Histogram of 𝑁𝑟 = 5,000 Monte Carlo entropy determinations for 𝑏 = 1.0 and 368 

magnitudes in the 2.0 ≤ 𝑀 ≤ 9.0 range (blue line); te vertical red line shows the mean value, 369 

and the vertical dashed line is the analytical S value. The thin line is the normal distribution for 370 

the observed standard deviation 𝜎𝑆 multiplied by 𝑁𝑟.  371 

 372 

 Figure 7 shows that the entropy estimated from samples smaller than ~200 will almost 373 

certainly be undervalued, particularly for low b. Entropies corresponding to b-values differing by 374 

as much as 0.1 cannot be distinguished with 0.7 confidence for samples smaller than about 350 375 

for low b and about 550 for high b; distinguishing them with 0.95 confidence requires ~1,500 376 

and ~3,00 samples, respectively.  377 

 For samples ~2000 to ~2500, mean values underestimate the analytical entropy by ~0.01 378 

bit, and for samples of 5000 the underestimations go from 0.0067 bit for 𝑏 = 0.8 to 0.0051 bit 379 

for 𝑏 = 1.2, with standard deviations ~0.02 bit. For the larger samples the means tend to the 380 
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analytical entropies very slowly, and including larger magnitudes does not help very much 381 

because their number is very small and, as shown in Figures 1, 5, and 6, their contribution to the 382 

total entropy is almost insignificant. 383 

 Standard deviations diminish slowly, and even for large samples ~5,000 the standard 384 

deviation corresponding to 𝑏 = 0.8, 𝜎𝑆 = 0.0201, is ~0.005 of the mean value 𝑆̅ = 3.8778, 385 

while for 𝑏 = 1.2, 𝜎𝑆 = 0.0202 is ~0.0061 of the mean value 𝑆̅ = 3.2978. These normalized 386 

standard deviations are smaller than the corresponding ones for b-values estimated by the Aki-387 

Utsu method for the same synthetic samples used to evaluate the entropies. 388 

 Figure 7 shows that, although entropies evaluated over a finite magnitude range should be 389 

smaller than the analytical ones, the entropies measured from samples could be overvalued and 390 

thus be slightly larger. 391 

 392 

2.6 Measured entropies and b-values for single trials 393 

 It has been discussed how entropies are measured from data, and Figure (7) shows how 394 

the measurements can expected to agree with the real values, but in practice the real values are 395 

not known nor are there thousands of realizations; usually the data correspond to a single 396 

realization and there is no way of knowing how well it conforms to the behavior of the means 397 

shown above. 398 

 Since there is an explicit relation between S and b, it would seem that their measures 399 

would be redundant but this is not exactly the case because they are measured in different ways. 400 

b-value measurements (2) depend only on �̅�, while entropy estimations depend on the values of 401 

all entropy scores 𝑠𝑖.  402 

 In order to illustrate how single realizations agree with, or differ from, the means of many 403 

realizations and from the true values, let us look at four examples of single sample realizations, 404 

and see how each single realization depends on sample size. All realizations share exactly the 405 

same parameters and differ only in the number used as seed for the pseudo-random number 406 

generator. Each realization was a set of 𝑁𝑇 = 5,000 magnitudes, and we obtained estimates of S, 407 

using (25) and (4), and b, using (2), for subsets of 𝑁 = 500, 600, 700, … , 5,000, and from each 408 

b, we calculated the entropy using (19).  409 

 410 
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Figure 9 Four examples of  entropy and b-value determinations from single realizations of 411 

𝑁𝑇 = 5,000 synthetic exponentially distributed magnitudes, taken N elements at a time. The (c) 412 

panels show the magnitude histograms for the total 𝑁𝑡 data, the (b) panels show the b-values 413 

estimated using (2) with �̅� deternined from N data (blue circles) and the true b-value (dashed red 414 

line). The (a) panels show as blue circles the entropies determined for each N data, and as 415 

asterisks the entropies estimated from the measured b-values in (b), using (19); the analytical 416 

entropy corresponding to the true b is shown as a dashed red line.  417 

 418 
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 The examples are shown in Figure 9, where panels (c) plot the histograms of the total 𝑁𝑇 419 

magnitudes to show that the synthetic magnitudes are indeed exponentially distributed. Panels 420 

(b) show the estimated b-values and, for reference,  the true b-value, while panels (a) show the 421 

estimated entropies as blue circles, the analytic entropy corresponding to the true b, and show as 422 

asterisks the entropies computed from the estimated b-values. 423 

 424 

 As mentioned above, the realizations in Fig. 9 differ only in the random number seed, and 425 

illustrate how a realization corresponding to some set of real data can vary randomly while being 426 

a product of a given conditions on a given seismic system. The two upper examples show 427 

“expected” behaviors, with values varying considerably for short samples and gradually 428 

converging to a value close to the true one, albeit one (upper left) from above and the other 429 

(upper right) from below. The example at lower left does converge but does not reach the true 430 

value, and the example at lower right does not converge to the true value at all. It should be said 431 

that most realizations behave more like the good examples, so that many different seeds were 432 

tried before the ugly example at lower right was obtained. 433 

 All the examples show that for small data sets the measured entropies and those 434 

eestimated from the b-values differ very much for small samples, but run almost parallel for 435 

large samples. Entropies from b estimates are larger than measured ones, but that is to be 436 

expected because of the finite magnitude range. Thus, it is proposed that, although related and 437 

calculated from the same data, entropy and b measurements are not just scaled versions of each 438 

other, because they are calculated in different ways that are sensitive to different kinds of errors, 439 

and when both measurements are correct they should agree within the limitations. Hence, the 440 

differences between directly estimated entropies and those estimates from b-values can help us 441 

determine when samples are adequate and results are trustworthy. 442 

 As an example of how the entropy and Aki-Utsu b-value measurements are not 443 

equivalent, consider the contribution of a very large magnitude. Let a data set have 𝑁 − 1 444 

elements, and let the entropy determined from the sample be  445 

(26) 446 

and the b-value be  447 

(27) 448 

𝑆[𝑁−1] = ∑ 𝑝𝑖

𝑁−1

𝑖=1

log2 𝑝𝑖 , 

𝑏[𝑁−1] =
ln 10

�̅�[𝑁−1] − 𝑚𝑐

 , 
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where �̅�[𝑁−1] =
1

𝑁−1
∑ 𝑀𝑖

𝑁−1
𝑖=1 . Now, let the next magnitude 𝑀𝑁 be large enough so so that it 449 

stands alone in a class, then, because there is only one event in the class, its probability will be 450 

1/N, so  451 

(28) 452 

and the change of entropy does not depend on the value of 𝑀𝑁, as long as it is large enough to 453 

stand alone in a class. On the other hand, 454 

(29) 455 

does depend on the actual value of  𝑀𝑁. Hence, unless N is very large the effect of a large 456 

magnitude is different for entropies and for b-values. 457 

 458 

5 Discussion and Conclusions 459 

 An analytical relationship between the b-value, or 𝛽, that characterize the magnitude G-R 460 

distribution, or any other exponential distribution, and the information entropy of the distribution 461 

has been found and checked by means of the numerical evaluation of the entropy computed 462 

using the exact probabilities derived from the distribution. 463 

 Since neither the G-R distribution nor the associated exponential distributions 464 

contemplate a maximum magnitude it was possible to evaluate the effect of working with a finite 465 

magnitude range on the entropy, and it was found that, because very small probabilities 466 

contribute very little to the entropy, the difference between the analytical and the finite range 467 

entropies is quite small. 468 

 Next, the results of the relationship were compared with entropies estimated from 469 

synthetic sets of exponentially distributed random data, and very good agreement was found.  470 

 Using Monte Carlo simulations, the accuracy and precision for entropy evaluations as a 471 

function of sample size were explored. The evaluations were found to be distributed normally 472 

around their means, which allows setting familiar confidence limits to the capacity of 473 

discriminating between different values of the entropy. 474 

 Although b-values and entropies are formally related, they are evaluated from the data by 475 

different methods and so are affected differently by different characteristics of the data, 476 

𝑆[𝑁] =
𝑁 − 1

𝑁
𝑆[𝑁−1] +

𝑁 − 1

𝑁
 log2

𝑁 − 1

𝑁
 + 

1

𝑁
 log2

1

𝑁
 

𝑏[𝑁] =
ln 10

�̅�[𝑁−1] − 𝑚𝑐 +
1
𝑁

(𝑀𝑁 − �̅�[𝑁−1])
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particularly for small data sets. Hence, it is proposed that entropy and G-R b-value measurements 477 

can be complementary and help to estimate when a sample is large enough for results to be 478 

reliable. 479 
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