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Abstract. Seismic urgent computing enables early assessment of an earthquake’s impact by delivering rapid simulation-based

ground-shaking forecasts. This information can be used by local authorities and disaster risk managers to inform decisions for

rescue and mitigation activities in the affected areas. Uncertainty quantification for urgent computing applications stands as

one of the most challenging tasks. Present-day practice accounts for the uncertainty stemming from Ground Motion Models

(GMMs), but neglects the uncertainty originating from the source model, which, in the first minutes after an earthquake, is5

only known approximately. In principle, earthquake source uncertainty can be propagated to ground motion predictions with

physics-based simulations of an ensemble of earthquake scenarios capturing source variability. However, full ensemble sim-

ulation is unfeasible under emergency conditions with strict time constraints. Here we present ProbShakemap, a Python

toolbox that generates multi-scenario ensembles and delivers ensemble-based forecasts for urgent source uncertainty quantifi-

cation. The toolbox implements GMMs to efficiently propagate source uncertainty from the ensemble of scenarios to ground10

motion predictions at a set of Points of Interest (POIs), while also accounting for model uncertainty (by accommodating

multiple GMMs, if available) along with their intrinsic uncertainty. ProbShakemap incorporates functionalities from two

open-source toolboxes routinely implemented in seismic hazard and risk analyses: the USGS ShakeMap software and the

OpenQuake-engine. ShakeMap modules are implemented to automatically select the set and weights of GMMs available

for the region struck by the earthquake, whereas the OpenQuake-engine libraries are used to compute ground shaking over15

a set of points by randomly sampling the available GMMs. ProbShakemap provides the user with a set of tools to explore,

at each POI, the predictive distribution of ground-motion values encompassing source uncertainty, model uncertainty and the

inherent GMMs variability. Our proposed method is quantitatively tested against the 30 October 2016 Mw 6.5 Norcia, and the

6 February 2023 Mw 7.8 Pazarcik earthquakes. We also illustrate the differences between ProbShakemap and ShakeMap

output.20
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1 Introduction

Seismic Urgent Computing (UC) (Beckman et al., 2007; Beckman, 2008; Grandinetti, 2008; Leong and Kranzlmüller, 2015)

relies on time-critical simulations to estimate the potential hazard of an earthquake shortly after its occurrence (on the order of

minutes to hours). This information is of utmost importance for local authorities and disaster risk managers to reduce casualties,

manage rescue operations and mitigate financial loss.25

Given the inherent uncertainty of forecasting nonlinear processes, ensemble simulations of multiple scenarios are preferred

over a purely deterministic approach (Murphy, 1993; Molteni et al., 1996; Sparks, 2003; Gneiting and Raftery, 2005; Selva

et al., 2021b; Folch et al., 2023). In the context of seismic UC, the hazard is quantified in terms of ground shaking intensities.

In principle, ground shaking can be predicted by 3D modelling of seismic wave propagation for an ensemble of multiple

earthquake sources (Ejarque et al., 2022; Folch et al., 2023). However, ensemble-based uncertainty quantification represents a30

main challenge. While physics-based numerical simulations can provide accurate and physically meaningful ground-shaking

scenarios (provided that the source and velocity models are accurate enough), full ensemble simulations are currently unfeasible

because of the strict time constraints imposed by UC applications (Selva et al., 2021a; Guérin-Marthe et al., 2021). In this case,

to optimize the utilization of the computational resources while still spanning the entire source variability, simulations are run

only for a subset of ensemble members, identified with dimensionality reduction techniques (Team, 2010; Feenstra, 1998).35

Beyond the challenges specific to UC applications, the application of physics-based simulations of ground motions for three-

dimensional structures is hampered by their high computational demand at the frequencies of engineering interest and the large

uncertainties in the velocity structure, especially at shallow depths (Douglas and Aochi, 2008).

An alternative to numerical simulations of ground motion scenarios lies in the use of Ground Motion Models (GMMs),

also known as Ground Motion Prediction Equations (GMPEs). GMMs are empirically-based parametric models that return40

estimates of the median and variability of expected ground motions at a given site. Over the years, however, the implementation

of GMMs for seismic hazard assessment has encountered growing criticism given the significant uncertainties in ground-motion

estimates. This owes to the limited data (Douglas, 2003, 2010a, b), the wide variety of empirical relationships for a given area

(Gasparini et al., 2007; Douglas, 2020) and the ergodic assumption (Anderson and Brune, 1999). Nevertheless, given the high

computational cost of physics-based simulations, GMMs still represent the key ingredient of seismic hazard assessment. For45

seismic UC, GMMs are routinely implemented in the US Geological Survey’s (USGS) ShakeMap system (Worden et al.,

2020), which is the most widely adopted software for a quick post-earthquake estimation of ground shaking intensities. At its

core, ShakeMap software is a seismologically-based data interpolator that relies on parametric ground motion data, GMMs

and local site amplifications. Maps of ShakeMap uncertainties are calculated based on the spatial variability of peak ground

motions (which is assumed to be zero at the recording stations and increases with distance) and on the total variability of50

the implemented GMMs (Worden et al., 2018; Engler et al., 2022). These maps are generated for a single earthquake source,

with initial parameter estimates typically available within 30 minutes of the earthquake’s origin time. A better constraint of

the source parameters is achievable only after several hours, once new data become available, and preliminary finite fault
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inversions are performed. This implies that, at the time span of urgent decision-making (minutes to hours), uncertainty about

the earthquake source is highest.55

Here we present ProbShakemap, a Python toolbox that efficiently quantifies and propagates ensemble-based source un-

certainty while accounting for inter-model (among different GMMs) and intra-model (within each GMMs) uncertainties. We

present two proofs of concept aimed at testing ProbShakemap in the context of UC applications: the Mw 6.5, 2016 Norcia

and the Mw 7.8, 2023 Pazarcik earthquakes.

ProbShakemap exploits both the USGS ShakeMap software (Worden et al., 2020) and the OpenQuake-engine (the60

open-source software for seismic hazard and risk analyses of the Global Earthquake Model, GEM; Pagani et al., 2014a).

ProbShakemap generates an ensemble of scenarios consisting of finite faults with variable geometry and focal mechanism.

These source scenarios are compatible with the event under consideration, in that they are based on early estimations of

magnitude and hypocentre while also relying on prior information on faults and past seismicity in the region (Selva et al.,

2021b). The scenarios, along with the user-provided target points (Points of Interest, POIs), are then converted into a format65

suitable for the OpenQuake-engine. For each earthquake scenario, ProbShakemap generates a distribution of ground

motion fields at each target point by sampling the GMMs probability distributions proportionally to their weight. In the final

stage, the predictions are aggregated into a stacked distribution at each target point. Alike the USGS ShakeMap software,

ProbShakemap samples the GMMs inherent variability. Differently from the USGS ShakeMap software, it also accounts

for earthquake source uncertainty. ProbShakemap does not rely on ground-motion recordings and derived peak ground70

motion parameters, but only on the ensemble of source scenarios and the GMMs available for the area struck by the earthquake.

The output consists of Probability Density Functions (PDFs) forecasting the maximum shaking value (PGA, PGV, SA(0.3),

SA(1.0), SA(3.0)) at all target points. These PDFs can be explored with three “prob tools”, aiding the user to visualize and

summarize the predictive ground-motion distributions at the entire set or a subset of target points.

2 Method75

2.1 ProbShakemap: the toolbox

ProbShakemap relies on ShakeMap and OpenQuake Python-based packages. The code can be run locally for a rela-

tively small number of earthquake source scenarios (in the order of a few thousand), but it is recommended to exploit HPC

resources and parallelism for large ensembles and/or to enhance code performance. The ProbShakemap package includes

SeisEnsMan, a tool for generating an ensemble of K source scenarios compatible with faults and past seismicity that oc-80

curred in the region affected by the event under consideration. The user selects the optimal value for K, and it is recommended

to perform trial-and-error tests with progressively larger ensemble sizes. The user needs to provide an estimate of the magni-

tude and hypocenter of the event. This can be input following two approaches: (1) an automatic search from the "Early-Est"

(Bernardi et al., 2015) retrieves the magnitude and hypocenter information with their associated uncertainty matrix; (2) the

user can fill in the model provided in input with its own information. Without any additional input information, SeisEnsMan85

generates ensemble scenarios by selecting the source parameters in a hierarchical order: at each level, the parameter space is
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defined by a Probability Density Function (PDF) conditioned to the parameters’ realisations at the higher levels of the hier-

archy. This implies that, at any given level, the realization of a parameter is independent of the parameters at lower levels.

Following Selva et al. (2016); Basili et al. (2021); Selva et al. (2021b), four hierarchical levels are defined: (1) Moment magni-

tude; (2) Hypocentral coordinates (x, y, z); (3) Fault geometry described by strike, dip and average rake; (4) Rupture area and90

slip derived using scaling laws based on magnitude and rake (Leonard, 2014). The moment magnitude PDF is a normal density

function centered on the first magnitude estimate with a standard deviation of 0.3. The hypocenter PDF corresponds to a 3D

multivariate Gaussian function centered on the first estimate of the hypocenter with a variance in the 3 directions of 10 km2.

The 3-angle strike-dip-rake PDF corresponds to local probabilistic laws conditioned on the previously picked magnitude and

position. It is based on long-term information about local historical seismicity and known faults (see supplementary material95

in Selva et al., 2016). The choice of the prior model for the 3-angle is automated, with the selection being made between a

Mediterranean (Basili et al., 2019, 2021) and a global seismicity model (Taroni and Selva, 2021), based on the earthquake lo-

cation. Finally, the fault length and the slip are deducted from scaling laws (more details can be found in Selva et al. (2021b)).

The following parameterization is used to define each scenario of the ensemble: magnitude, longitude, latitude, hypocenter

depth (km), strike, dip, rake, fault area (L*W, km2), fault length (L, km), slip (m).100

ProbShakemap reads a file (Table 1) containing the Shakemap ID of the event and the input parameters required by the

OpenQuake modules (for more details, we refer the reader to the OpenQuake manual; Pagani et al., 2014b). An example of

the input file is provided in the GitHub repository of the ProbShakemap toolbox (INPUT_FILES/input_file.txt).

As a first step, ProbShakemap converts each source scenario in the ensemble to an OpenQuake BaseRupture object

representing a single earthquake rupture.105

Subsequently, it proceeds to calculate, for each rupture configuration and for each GMM, the ground-motion mean µ=

(µ1,µ2, ...,µS) and an array of standard deviations for all POIs s= (1,2, ...,S), calling the context_maker.get_mean_stds

method from OpenQuake. Each GMM provides indeed a set of equations to compute the mean and standard deviation of the

lognormal distribution representing ground motion variability at a specific location, given an earthquake rupture (Atik et al.,

2010). The array of standard deviations comprises the total standard deviation σ and its two components, τ (Inter-Event Stan-110

dard Deviation) and ϕ (Intra-Event Standard Deviation).

The total GMM variability is given by the sum of the ϵτ and ϵϕ, the inter- and intra-event variability, respectively (Atik

et al., 2010; Worden et al., 2018). The inter-event variability ϵτ is constant over the POIs as it only depends on earthquake-to-

earthquake variability described by the cross-correlation model defined in input by the user. It is modeled as a random variable

that follows a standard univariate (log-)normal distribution (Eq. (1)). On the other hand, the intra-event variability changes115

across the POIs as it reflects the spatial correlation model (ρ) selected by the user. It is modeled as a two-dimensional random

field following a multivariate zero-mean (log-)normal distribution with a covariance matrix Σ describing spatial correlation

(Eq. (2)). Σ reduces to a diagonal matrix when no correlation in the intra-event variability is considered.

ϵτ = (ϵτ , ϵτ , ..., ϵτ ),ϵτ ∼N (0, τ) (1)120
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Input Description

TectonicRegionType Tectonic region type 1

Magnitude_Scaling_Relationship Area-Magnitude Scaling Relationship 2

Rupture_aratio Rupture aspect ratio 3

ID_Event Shakemap ID of the event

Vs30file VS,30 filename

CorrelationModel Correlation model 4

CrosscorrModel Croscorrelation model 5

vs30_clustering True if VS,30 values show or are expected to show clustering 6

truncation_level Number of standard deviations for truncation of the crosscorrelation model distribution 7

Table 1. Input information passed to the code. 1As defined in the tectonic regionalisation of

OpenQuake. 2As defined in module openquake.hazardlib.scalerel. 3As required from module

openquake.hazardlib.geo.surface.PlanarSurface.from_hypocenter 4As defined in module

openquake.hazardlib.correlation. 5As defined in module openquake.hazardlib.cross_correlation.
6As required from module openquake.hazardlib.correlation. 7As required from module

openquake.hazardlib.cross_correlation.

ϵϕ = (ϵϕ1
, ϵϕ2

, ..., ϵϕS
),ϵϕ ∼N (0,Σ) (2)

with:

Σ=


ϕ2
1 ϕ1ϕ2ρ12 · · · ϕ1ϕSρ1S

ϕ2ϕ1ρ21 ϕ2
2 · · · ϕ2ϕSρ2S

...
...

. . .
...

ϕSϕ1ρS1 ϕSϕ2ρS2 · · · ϕS
1


125

ProbShakemap relies on the OpenQuake gmf module to quantify the total GMMs uncertainty. For a given combination

of rupture and GMM, the ground motion field (GMF) at each POI is simulated by sampling both ϵτ and ϵϕ, and adding them

to µ (Eq. (3)).

GMF = exp(µ+ ϵτ + ϵϕ) (3)

Randomly sampling N times from the probability distributions of ϵτ and ϵϕ returns a set of N ground motion fields. It is130

important to note that the returned GMF distribution is fixed for a given combination of source and POIs collection, thus assur-
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ing the retrieval of the same set of ground motion fields each time the code is run. As the last step, predictions are aggregated at

all the POIs, combining the GMFs sampled from the whole GMM set. Importantly, each GMM is sampled proportionally to its

weight. In this way, the most relevant GMMs dominate the simulated GMFs. A more detailed description of the probabilistic

analysis implemented in ProbShakemap is reported in Alg. 1.135

Algorithm 1 Algorithm pseudocode for the probabilistic analysis implemented in ProbShakemap

Require:

- POIs file

- event.xml (ShakeMap-like)

- stationlist.json (ShakeMap output, only needed for data-based tools)

- VS,30 file (optional)

1: STEP 1: Sampling Uncertainty

2: K = number of scenarios in the ensemble

3: G= number of GMMs

4: S = number of POIs

5: N = number of GMFs

6: for k,scen_k in ensemble do

7: build OpenQuake BaseRupture object;

8: build OpenQuake context object for the current combination of Source - OpenQuake Site Collection (= collection of POIs);

9: compute means and standard deviations from the underlying GMMs.

// Statistical measures for a given combination of GMM and POI (the IM is fixed): mean,

σ (Total Standard Deviation), τ ( Inter-Event Standard Deviation), ϕ (Intra-Event

Standard Deviation).

10: for g,GMM_g in GMM set do

11: generate a distribution of n ground motion fields (GMFs), with 1≤ n≤N proportional to the weight of the current GMM.

−→ GMF array of shape (M, S, n), where M is the number of IMs (M = 0 as the IM is fixed in ProbShakemap).

12: end for

13: end for

14: STEP 2: Aggregating Results

−→ 3D matrix of shape (K, S, N) −→ Ground-motion predictive distribution at each POI.

// For each scenario, each POI is assigned the GMFs aggregated from all the GMMs.

ProbShakemap offers a variety of functionalities: three utility tools (StationRecords, Save_Output and QueryHDF5)

and three “prob tools”: GetStatistics, GetDistributions and EnsemblePlot.

– StationRecords: inspects Shakemap .json station file and plots the recorded peak ground motions at the station

locations.140
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– Save_Output: save the output of the probabilistic analysis to a .HDF5 file with the following hierarchical structure:

scenario → POI → GMMs realizations.

– QueryHDF5: navigates and queries the .HDF5 file at a given scenario.

– GetStatistics: calculates and save the predictive distribution statistics at each POI; plots the results on a map.

– EnsemblePlot: visualizes and summarizes the key statistical features of the predictive distribution at the selected145

POIs with a boxplot.

– GetDistributions: plots the CDF of the predictive distribution at a specific POI together with the ground-motion

value recorded either at the station coinciding with the POI or, if unavailable, at the nearest station (datum taken from

the Shakemap .json station file). Importantly, this tool can be also used to associate an uncertainty interval to the peak

ground motion recorded at a specific station.150

The output of the probabilistic analysis described in Alg. 1 can be explored with any tool among GetStatistics,

GetDistributions or EnsemblePlot.

2.2 ProbShakemap validation tests

We validate ProbShakemap against data by implementing the statistical test proposed in Selva et al. (2021b) for tsunami

warning probabilistic forecasts. Here we only consider predictions at POIs coincident with stations. With this test, we verify155

the existence of significant biases in the forecasted peak ground motions. This is done by examining whether the differences

between observed and expected values follow a distribution that includes the value 0, indicative of an unbiased forecast. We

only consider stations located within a 100 km radius from the event epicenter, and recorded ground motions that are above a

minimum threshold value of 0.1 cm/s2 and 1 cm/s for PGA and PGV, respectively. We stack the misfit values calculated for

all seismic stations, ensemble scenarios and GMMs realizations. Under the assumption that ProbShakemap predictions are160

unbiased, we expect the range 2.5 – 97.5 percentiles range to include the zero misfit.

In addition, we assess the predictive performance of ProbShakemap at all available stations located within a 100 km radius

from the event epicenter. As for the bias test, we only consider recorded ground motions that are above a minimum threshold

value of 0.1 cm/s2 and 1 cm/s for PGA and PGV, respectively. Results are displayed using a traffic-light visualization system:

if a ground-motion record falls within the 2.5th - 97.5th percentiles of the ProbShakemap predictive distribution at the165

corresponding station, it is represented by a green traffic light. Otherwise, it is shown as red.

3 Proof-of-concept

3.1 ProbShakemap for the 30 October 2016 Mw 6.5 Norcia earthquake

We first apply ProbShakemap to the 30 October 2016 Mw 6.5 Norcia earthquake, the largest among the three main shocks

in the 2016 Amatrice-Visso-Norcia sequence. To account for site effects, we use the VS,30 dataset included in the ShakeMap170
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Italian configuration, which implements the VS,30 model compiled by Michelini et al. (2020) for the Italian region. The list of

POIs consists of 1,552 geographical points, including the 472 seismic stations listed in ShakeMap stationlist.json

file and the 1,080 nodes of a ≈ 10−km spaced grid (400km x 270km) centered at the event epicenter. The first step consists of

running SeisEnsMan to generate the ensemble of source scenarios (for more details on the scenarios sampling, see Section 2).

After testing various ensemble sizes, we found that an ensemble of 1,000 scenarios effectively captures the source uncertainty175

for this particular event. Fig. S1 in the Supplementary Material shows the range of source parameters sampled from the 1,000

scenarios in the ensemble. As Intensity Measure (IM), we consider PGA (g) and PGV (cm/s). In the Italian implementation

of ShakeMap, only one GMM is adopted for the area struck by the Mw 6.5 Norcia earthquake occurred (Bindi et al., 2011).

For each scenario in the ensemble, we sample this GMM a total of 10 times, resulting in 10,000 (K x N, i.e. 1,000 x 10)

PGA/PGV values predicted at each POI. For the application presented here, we only show the results for PGA and PGV,180

although ProbShakemap is capable of performing the analysis for SA(0.3), SA(1.0), SA(3.0) as well. Nonetheless, similar

conclusions can be drawn for these spectral values.

The main output of ProbShakemap consists of various products for inspecting and visualising the distribution of ground-

motion predictions at the POIs (or at a subset of POIs). In the following, we present products related to PGA (the PGV output

can be found in Fig. S2-S4 of the Supplementary Material).185

Fig. 1 is the output of the module GetStatistics, i.e. the statistics summarizing the PGA predictive distribution at

each POI of the ≈ 10− km grid (stations have been excluded for visualization purposes). The output shows significant spatial

variability in ground motion. Peaks of ground motion align along the NW-SE direction, consistent with the prevailing fault

striking in that portion of the Apennines. Considering the maps at the 10th and 90th percentiles, we find that the region

experiencing the highest ground shaking covers an area of approximately 100 km2, with a maximum value of approximately190

0.3g in the 10th percentile map. In the 90th percentile map, locations experiencing a PGA ≥ 0.1g cover most of the grid,

whereas near the epicenter PGA values exceed 0.5g.
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Figure 1. GetStatistics output for the 30 October 2016 Mw 6.5 Norcia earthquake: mean, median, percentile 10, percentile 20,

percentile 80, percentile 90 of the distribution of 10,000 (1,000 x 10) logPGA values (g) at each POI of the regular grid. Stations have been

ignored for visualization purposes and to align with the standard ShakeMap layout.

To focus our analysis on specific POIs, we use the options pois_subset and pois_selection_method of ProbShakemap

to extract a set of 20 azimuthally uniformly distributed POIs at a maximum distance of 50± 5km from the epicenter. The se-

lected subset is shown in Fig. 2a. To explore the variability of the predicted ground-motions across the selected POIs, we195

implement the EnsemblePlot module to visualize the key statistical features of the predictive distribution at each of the

selected POIs (Fig. 2b). We notice that the POIs exhibiting the highest variability in the predictive distribution are POIs 7, 8

and 9, which are all clustered on the N-W section of the fault area. This may suggest a greater likelihood of relatively higher

ground-motion values within the N-W section of the fault area compared to other regions of interest. It could also imply a

larger indeterminacy in estimating the ground motion for POIs located along directions nearly coinciding with the fault strike.200
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(a) (b)

Figure 2. (a) Map of the POIs subset extracted by ProbShakemap. POIs are selected to be evenly distributed with respect to the azimuth

and to lie within a ring at a distance of 50± 5km from the event epicenter. (b) EnsemblePlot output for the 30 October 2016 Mw 6.5

Norcia earthquake summarizing the PGA (g) predictive distribution at each POI of the subset with median and 5th and 95th percentiles.

We then use the GetDistributions module to compare the PGA predictive distribution at the set of POIs with the PGA

value recorded at the corresponding stations, if available, or at the nearest stations. The PGA distribution is summarized with

the Cumulative Distribution Function (CDF) and three main statistics: median, 10th and 90th percentiles. For visualization

purposes, Fig. 3 shows the output for only 4 of the 20 POIs, all coinciding with stations. Fig. S5 in the Supplementary Material

presents the output for all 20 POIs, and shows that the PGA recorded values fall in the range 10th - 90th percentiles at all POIs205

except two.

10



Figure 3. GetDistributions output for the 30 October 2016 Mw 6.5 Norcia earthquake (at 4 of the 20 POIs plotted in Fig. 2a, all

co-located with stations): PGA (g) recorded values are compared with the PGA predictive distribution at each POI. On the left-hand side

of each plot, a map shows the epicenter location, the selected POI and the position of the station. On the right-hand side, the CDF of the

PGA predictive distribution is plotted with highlighted the main statistics: median, 10th and 90th percentiles. The red line corresponds to

the datum value. On top, the PGA recorded value is shown together with the POI-station distance.

To assess the accuracy of our predictions to account for the spatial correlation of ground motions correctly, we implement

a bias test similar to the one adopted in Selva et al. (2021b) (see Section 2.2 for more details on this test). Our expectation is

that the distribution of these misfits will not deviate significantly from zero (further details are available in Section 2). We have

identified 147 (131) stations within 100 km radius from the event epicenter where PGA (PGV) is ≥ 0.1cm/s2 (≥ 1cm/s).210

11



Figure 4. Bias test for the 30 October 2016 Mw 6.5 Norcia earthquake. Left: PGA (log10(g)), Right: PGV (log10(cm/s)). The red dashed

line is the testing value (zero misfit), whereas the three dashed lines are the 2.5 percentile, the median and the 97.5 percentile. The test is

rejected (i.e., predictions are biased) if the testing value falls in the rejection region, whereas it is accepted if the testing value falls within the

95% confidence interval.

The results of the bias test are shown in Fig. 4. We observe that predictions are overall accurate, meaning that the spatial

correlation of ground motion is correctly reproduced. We additionally test the predictive performance of ProbShakemap

using the traffic-light method described in Section 2. Results are shown in Fig. 5. We observe that ProbShakemap can

predict data with a 95% confidence level at the majority of the stations.
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Figure 5. Traffic-light visualization of ProbShakemap performance against data (for stations at a distance less than 100 km from the event

epicenter). If a ground-motion record falls within the 2.5th - 97.5th percentiles of the ProbShakemap predictive distribution at the station,

it is represented by a green traffic light (inlier). Otherwise, it is shown as red (outlier). The yellow star indicates the event epicenter. Left:

PGA (g) results; Right: PGV (cm/s) results.

3.2 ProbShakemap for the 6 February 2023 Mw 7.8 Pazarcik earthquake215

Here we apply ProbShakemap to the 6 February 2023 Mw 7.8 Pazarcik earthquake, which is part of the Kahramanmaraş

Mw 7.8-7.6 earthquake doublet sequence that ruptured at least six major fault segments of the East Anatolian Fault system

(Jia et al., 2023). The list of POIs comprises 500 nodes of a ≈ 20− km spaced regular grid (500km x 400km) centered at

the event epicenter. The ensemble includes 1,000 earthquake source scenarios. Fig. S6 in the Supplementary Material shows

the distribution of source parameters from the 1,000 scenarios in the ensemble. We consider only PGA as IM since not all the220

GMMs available for this area include PGV. The GMMs retrieved by ProbShakemap for this event are: AkkarEtAlRjb2014

(Akkar et al., 2014), AbrahamsonEtAl2014 (Abrahamson et al., 2014), BooreEtAl2014LowQ (Boore et al., 2014), Campbell-

Bozorgnia2014LowQ (Campbell and Bozorgnia, 2014), CauzziEtAl2014 (Cauzzi et al., 2015), ChiouYoungs2014 (Chiou and

Youngs, 2014), ZhaoEtAl2016Asc (Zhao et al., 2016). These GMMs have been sampled 7, 7, 1, 1, 1, 1, 2 times over a total of

20 times, respectively. For this event, we use VS,30 default values (760 m/s).225
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Fig. 6 summarizes the PGA predictive distribution at each POI of the regular grid with basic statistics. Compared to the Mw

6.5 Norcia earthquake, where the highest PGA values are expected to concentrate near the event epicenter, for the Mw 7.8

Pazarcik earthquake ProbShakemap predicts relatively high PGA values on a much wider area surrounding the epicenter, as

expected. The 10th and 90th percentile map predicts a PGA value of about 0.03g and ≥ 0.3g, respectively, at the majority of

POIs.230

Figure 6. GetStatistics output for the 6 February 2023 Mw 7.8 Pazarcik earthquake: mean, median, percentile 10, percentile 20,

percentile 80, percentile 90 of the distribution of 20,000 (1,000 x 20) PGA (g) values at each POI of the regular grid.

Following the previous proof of concept, we select 20 azimuthally uniformly distributed POIs at a maximum distance of

100km from the event epicenter. Fig. 7a shows the selected POIs as returned by ProbShakemap. Fig. 7b explores the

predictive distribution variability across the POIs’ subset. In contrast to the Mw 6.5 Norcia earthquake, we do not notice any

azimuth-dependent pattern in the expected uncertainty. However, we notice that at POI 5, situated to the north-northeast of the

event epicenter, ProbShakemap predicts a substantially higher variability in ground-motion values.235
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(a) (b)

Figure 7. (a) Map of the POIs subset as returned by ProbShakemap. POIs are selected to be evenly distributed with respect to the azimuth

and to lie within a ring at a distance of 100± 10km from the 6 February 2023 Mw 7.8 Pazarcik earthquake epicenter. (b) EnsemblePlot

output for the 6 February 2023 Mw 7.8 Pazarcik earthquake summarizing the PGA (g) predictive distribution at each POI of the subset with

median and 5th and 95th percentiles.

Fig. S7 displays the primary tectonic features of the East Anatolian Zone, with highlighted the Mw 7.8-7.6 earthquake

doublet and the Mw 4+ earthquakes occurred in the following 10 days. We recall here that only the Mw 7.8 Pazarcik earthquake,

i.e. the first earthquake of the doublet, served as an input event for the ProbShakemap analysis. Notably, POI 5 sits along one

of the fault segments that ruptured during the doublet sequence, in the proximity of a triple junction. Here ProbShakemap

predictive distribution exhibits the largest uncertainty among all POIs.240

Finally, we compare the PGA predictive distribution at the selected POIs with the PGA value recorded at the closest station.

We recall that, differently from the previous proof-of-concept, here we are considering a regular grid as input, which does not

include POIs coinciding with stations. Fig. 8 shows the output for 4 POIs only. Results for all the 20 POIs can be visualized in

Fig. S8 of the Supplementary Material. The latter shows that the PGA recorded values fall in the range 10th - 90th percentiles

for all the POIs except for 3, even if POIs are not coinciding with stations. To validate ProbShakeMap against data, we re-run245

the probabilistic analysis, this time using as input POIs file a combination of the 500km x 400km regular grid and the stations’

locations.
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Figure 8. GetDistributions output for the 6 February 2023 Mw 7.8 Pazarcik earthquake (at only 4 of the 20 POIs plotted in Fig. 7a):

PGA (g) recorded values are compared with the PGA predictive distribution at each POI. On the left-hand side of each plot, a map shows the

epicenter location, the selected POI and the position of the closest station. On the right-hand side, the CDF of the PGA predictive distribution

is plotted with highlighted the main statistics: median, 10th and 90th percentiles. The red line corresponds to the datum value. On top, the

PGA recorded value is shown together with the POI-station distance.

We then employ the bias test introduced for the Mw 6.5 Norcia earthquake. There are 31 stations within a 100 km radius

from the event epicenter where PGA is ≥ 0.1cm/s2. Results are shown in Fig. 9. For this case as well, our predictions are

accurate overall.250
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Figure 9. Bias test for the 6 February 2023 Mw 7.8 Pazarcik earthquake (PGA only (log10(g))). The red dashed line is the testing value

(zero misfit), whereas the three dashed lines are the 2.5 percentile, the median and the 97.5 percentile. The test is rejected (ie. predictions are

biased) if the testing value falls in the rejection region, whereas it is accepted if the testing value falls within the 95% confidence interval.

Results from the traffic-light method described in Section 2 are shown in Fig. 10. Once again, we find that ProbShakemap

can predict data with a 95% confidence level at the majority of the stations.
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Figure 10. Traffic-light visualization of ProbShakemap performance against data (for stations at a distance less than 100 km from the event

epicenter). If a ground-motion PGA record (g) falls within the 2.5th - 97.5th percentiles of the ProbShakemap predictive distribution at the

station, it is represented by a green traffic light (inlier). Otherwise, it is shown as red (outlier). The yellow star indicates the event epicenter.

3.3 ProbShakeMap vs ShakeMap

The USGS ShakeMap software provides uncertainty estimates in the form of a grid file containing medians and standard

deviations for all ground-motion parameters at each grid point. While the seismic source is assumed to be known, the GMMs255

uncertainty is quantified by combining two terms: 1) intra-event variability: spatial variability of strong-motion data error con-

trolled by the record proximity to the seismic stations (where it reduces to zero if the station lies on the ShakeMap grid);

2) inter-event variability: GMM variability within the frame of multivariate normal distribution (Worden et al., 2018; Engler
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et al., 2022). In ProbShakeMap, the GMMs uncertainty is modelled as in ShakeMap. In addition to that, ProbShakeMap

accounts for earthquake source uncertainty by computing ensemble-based forecasts capturing the variability in source param-260

eters.

Here we compare ShakeMap and ProbShakemap predictions at 12 random POIs for the Mw 6.5 Norcia earthquake (see

Fig. 11). The selection of the 12 POIs was constrained by their inclusion in both the ShakeMap and ProbShakemap grids.

Since ProbShakemap samples the total GMMs variability as in ShakeMap, and considering that the input VS,30 file (i.e., the

VS,30 model adopted by Michelini et al., 2020) is consistent between both software, the differences observed in distributions265

between ProbShakemap and ShakeMap at the specified POIs can be attributed to two factors: the incorporation of real data

in ShakeMap and/or the quantification of the source effect implemented in ProbShakemap. In the context of this test, the

12 POIs were selected with a maximum distance of 100km from the hypocentre, to specifically highlight the discrepancies due

to the influence of source uncertainties.
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(a) (b)

(c)

Figure 11. Output comparison between USGS ShakeMap software and ProbShakemap at 12 randomly distributed POIs. a) Map of the

POIs; b) 2σ for ProbShakemap (blue) and ShakeMap (orange) distributions (in logarithmic scale) for PGA (top) and PGV (bottom); c)

Median ±2σ for the ProbShakemap (blue) and ShakeMap (orange) distributions (in logarithmic scale) for PGA (left) and PGV (right).

Fig. 11 presents a comparison of 2σ (Fig. 11b) and medians ±2σ (Fig. 11c). As expected, ProbShakemap exhibits con-270

sistently higher variability in ground-motion predictions compared to ShakeMap, although this discrepancy is not spatially

uniform. At some POIs (e.g., POIs 8,12), it increases, whereas at other POIs (e.g., POI 4,11), the two distributions compare

better. Such variability, which the GMMs alone may not fully account for, could be attributed to the combined influence of

source characteristics and local site conditions on overall uncertainty estimation. Notably, ProbShakemapmedian is substan-

tially higher than the Shakemap median at all POIs. This implies that, for the Norcia earthquake, ProbShakemap predictive275

distributions tend to be shifted towards higher values of PGA/PGV.

We perform the same analysis for the 2023 Mw 7.8 Pazarcik earthquake (Fig. 12). The 12 POIs have been selected within

200km from the hypocentre. In this case, ProbShakemap and ShakeMap distributions exhibit a greater discrepancy com-
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pared to the Norcia earthquake. However, ProbShakemap predictive distributions are not always shifted towards higher

values.280

(a) (b)

(c)

Figure 12. Output comparison between USGS ShakeMap software and ProbShakemap at 12 randomly distributed POIs. a) Map of the

POIs; b) 2σ for ProbShakemap (blue) and ShakeMap (orange) distributions (in logarithmic scale); c) Median ±2σ for ProbShakemap

(blue) and ShakeMap (orange) distributions (in logarithmic scale).

We here stress that ShakeMap is an evolving product and that the initial maps, containing only the epicenter and data,

are available within a few minutes after a strong earthquake occurs. For larger events, requiring the definition of the extended

source and the inclusion of source geometry, this can take several hours. Conversely, ProbShakeMap relies solely on the

input of hypocenter and magnitude estimations, accessible within seconds to minutes after the event.

4 Discussion and Conclusion285

Uncertainty quantification plays a pivotal role in forecasting nonlinear processes, serving the purpose of quantifying both our

lack of knowledge about the process (epistemic uncertainty) and its inherent randomness (aleatoric uncertainty). This task is

particularly challenging in the context of UC, where information and its uncertainty must be released within minutes to hours

following an earthquake. Physics-based simulations of multiple ground-motion scenarios would represent the most accurate
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solution for quantifying the uncertainty on the peak ground shaking expected at a given grid of points. But, even with significant290

advancements in HPC systems, full-ensemble physics-based simulations are not tractable on a time scale of minutes to hours.

Here we have presented ProbShakemap, a Python toolbox designed to address earthquake source uncertainty quantifica-

tion in UC applications. It generates an ensemble of event-compatible scenarios capturing source uncertainty and implements

GMMs to propagate source uncertainty to peak ground-motion estimates (PGA, PGV, SA(0.3), SA(1.0), SA(3.0)) at spe-

cific points of interest. ProbShakemap also quantifies model uncertainty by sampling all available GMMs for the region295

and the GMMs inherent variability. The predictive distribution of ground motion values at the grid of POIs can be explored

both visually and quantitatively through the ProbShakemap “prob tools”: GetStatistics, GetDistributions and

EnsemblePlot.

In this paper, we have shown the capabilities of ProbShakemap through two proof-of-concept examples — the 30 October

2016 Mw 6.5 Norcia earthquake and the 6 February 2023 Mw 7.8 Pazarcik earthquake. As an illustration of ProbShakemap300

computational performance, we consider its first proof-of-concept, where we examined 1,000 earthquake source scenarios and

1,552 POIs: notably, all three different products of ProbShakemap (Fig. 1, Fig. 2, Fig. 3) were generated in approximately 10

minutes using a standard laptop equipped with 8 CPUs. This outcome highlights ProbShakemap’s potential in addressing the

critical period between the event occurrence time and the retrieval of initial estimates of source geometry parameters. Without

relying on source inversion completion, in a few minutes ProbShakemap computes ground-motion predictive distributions305

encompassing both source and GMMs uncertainty. Yet, significant source uncertainty persists even after retrieving the initial

source parameters. For this reason, the implementation of ProbShakemap based on subsequent updates of the scenario

ensemble holds promise for uncertainty quantification also after first estimates of source parameters become available (see

Section 5).

Besides its role in uncertainty quantification for UC applications, ProbShakemap provides valuable additional insights.310

For the Norcia proof-of-concept, we showed that the distribution of peak ground-motion values displays greater variability

along the N-W section of the fault area. In this case, the POIs are located outside the finite fault, also striking NW. This outcome

implies that, given the provided ensemble of 1,000 scenarios resembling long-term source uncertainty and the GMM available

for the region (Bindi et al., 2011), relatively higher peak ground-motion values and larger uncertainties can be expected in the

N-W section of the fault area. We observed something similar in the second proof of concept at POI 5, located at the triple315

junction of the East Anatolian Fault system. We believe that local seismotectonics, which are accounted for when sampling

the fault geometry parameters of the ensemble scenarios, could be responsible for larger uncertainties at specific locations

compared to others. The GMMs alone cannot account for these uncertainties. The two proofs-of-concept also highlighted

the effect of incorporating earthquake source uncertainty on the characteristics of the final predictive distribution. When an

ensemble of plausible source scenarios is included in the analysis, the predictive distribution of ground motion can be shifted320

towards higher values (Norcia earthquake) or exhibits a substantially higher uncertainty (Pazarcik earthquake) with respect

to Shakemap predictions. This comparative test demonstrates that there is no unique answer to how the output of the two

software compares. ProbShakemap is a probabilistic tool that accounts for historical seismic activity and known faults, and

it is independent of data. The extent to which its predictive distributions align with data-based ShakeMap predictions depends
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on the capability of the ensemble to capture the whole source uncertainty and on the relative likelihood of the event with respect325

to the remaining scenarios in the ensemble.

Another useful resource provided by ProbShakemap is the GetDistributions tool (cf. Fig. 3 and Fig. 8), which

enables the association of an uncertainty range to ground-motion recorded at seismic stations. This practice can be a valuable

standard, especially in areas where little or no data are available since it can contribute to providing a more comprehensive and

precise representation of potential ground motions at specific locations.330

Lastly, we want to emphasize the implications of ProbShakemap being independent of any recorded data, with the excep-

tion of the magnitude and hypocenter estimates that are available within minutes after the occurrence of any event worldwide.

Our analysis has evidenced that in cases where recorded ground motion data is accessible, the majority of the ground motion

recorded values fall within the 2.5th - 97.5th percentiles interval of the predictive distribution (Fig. 5 and Fig. 10). This finding

suggests that ProbShakemap can be utilized to generate estimates of peak ground shaking and their associated uncertainties335

in regions where recorded data may be lacking. The resulting ground motion distributions can then be integrated with knowl-

edge about the vulnerabilities present in the affected areas, enabling the generation of impact assessments, an essential element

for disaster risk managers and civil protection authorities.

5 Future developments

We aim to automate the update of the ensemble scenarios probabilities used in ProbShakemap. In the context of UC ap-340

plications, this aspect is crucial, given that uncertainty about the source decreases as new information becomes available. To

address this, ProbShakemap will dynamically adjust ensemble scenario probabilities, refining ground motion predictions at

the POIs. A similar approach has already been developed for tsunami UC workflows (Cordrie et al., 2023).

Code and data availability. ProbShakemap is a stand-alone open-source software, available on GitHub (https://github.com/INGV/ProbShakemap)

and Zenodo (https://doi.org/10.5281/zenodo.10654186). In the context of the European project eflows4HPC (https://eflows4hpc.eu/urgent-computing/),345

it will be integrated within UCIS4EQ (Urgent Computing Integrated Services for EarthQuakes), a HPC-based urgent seismic simulation

workflow for physics-based short-time probabilistic forecast of an earthquake’s impact (de la Puente et al., 2020). Regarding the 30 October

2016 Mw 6.5 Norcia earthquake, ShakeMap products (stationlist.json, uncertainty.xml, and grid.xml) were downloaded

from http://shakemap.ingv.it/shake4/downloadPage.html?eventid=8863681. Similarly, for the 6 February 2023 Mw 7.8 Pazarcik earthquake,

the corresponding ShakeMap products were downloaded from http://shakemapeu.ingv.it/downloadPage.html?eventid=20230206_0000008.350

ProbShakemap relies on the INGV shakemap4 configuration, available via Docker at https://github.com/INGV/shakemap/releases/tag/

v4.1.3.
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