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Abstract

In the nightside region of Earth’s magnetosphere, buoyancy modes have been associated with low entropy bubbles. These

bubbles form in the plasma sheet, particularly during substorm expansion, and move rapidly earthward and come to rest in the

inner plasma sheet or inner magnetosphere. They often exhibit damped oscillations with periods of a few minutes and have

been associated with Pi2 pulsations. In previous work, we used the thin filament approximation to compare the frequencies

and modes of buoyancy waves using three approaches: magnetohydrodynamic (MHD) ballooning theory, classic interchange

theory, and an idealized formula. Interchange oscillations differ from the more general MHD oscillations in that they assume a

constant pressure on each magnetic field line. It was determined that the buoyancy and interchange modes are very similar for

field lines that extend into the plasma sheet but differ for field lines that map to the inner magnetosphere. In this paper, we

create a small region of entropy depletion in an otherwise stable entropy background profile of the magnetotail to represent the

presence of a plasma bubble and determine the properties of the buoyancy modes using the same 3 approaches. In the bubble

region, we find that in some regions the interchange and buoyancy modes overlap resulting in frequencies that are much lower

than the background. In other regions within the bubble, we find interchange unstable modes while in other locations MHD

normal mode predicts an MHD slow mode wave solution which is not found in the pure interchange solution.
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Key Points: 6 

• We investigate the properties of buoyancy modes in a low entropy bubble in the Earth’s 7 
magnetosphere using a thin filament approach. 8 

• We compare the frequencies and modes of these waves using: MHD ballooning theory, 9 
classic interchange theory, and an idealized formula. 10 

• MHD ballooning theory finds 3 types of solutions in the bubble: interchange stable 11 
modes, unstable modes, and slow mode waves. 12 
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Abstract 14 

In the nightside region of Earth’s magnetosphere, buoyancy modes have been associated 15 
with low entropy bubbles. These bubbles form in the plasma sheet, particularly during 16 
substorm expansion, and move rapidly earthward and come to rest in the inner plasma sheet 17 
or inner magnetosphere. They often exhibit damped oscillations with periods of a few 18 
minutes and have been associated with Pi2 pulsations. In previous work, we used the thin 19 
filament approximation to compare the frequencies and modes of buoyancy waves using 20 
three approaches: magnetohydrodynamic (MHD) ballooning theory, classic interchange 21 
theory, and an idealized formula. Interchange oscillations differ from the more general 22 
MHD oscillations in that they assume a constant pressure on each magnetic field line. It was 23 
determined that the buoyancy and interchange modes are very similar for field lines that 24 
extend into the plasma sheet but differ for field lines that map to the inner magnetosphere. 25 
In this paper, we create a small region of entropy depletion in an otherwise stable entropy 26 
background profile of the magnetotail to represent the presence of a plasma bubble and 27 
determine the properties of the buoyancy modes using the same 3 approaches. In the bubble 28 
region, we find that in some regions the interchange and buoyancy modes overlap resulting 29 
in frequencies that are much lower than the background. In other regions within the bubble, 30 
we find interchange unstable modes while in other locations MHD normal mode predicts an 31 
MHD slow mode wave solution which is not found in the pure interchange solution. 32 

Plain Language Summary 33 

Low entropy plasma bubbles often form in the nightside region of the Earth’s 34 
magnetosphere which move rapidly earthward and come to rest near the Earth. These 35 
bubbles often exhibit damped buoyancy oscillations with periods of a few minutes. 36 
Buoyancy waves are analogous to neutral-atmospheric gravity waves, in which the buoyant 37 
force is gravity rather than magnetic tension. This work seeks to better understand the 38 
properties of these oscillations. We use a thin filament approximation that assumes that 39 
magnetic field lines can be approximated by thin magnetic filaments that can slip through 40 
the background. We use three approaches: MHD ballooning theory, classic interchange 41 
theory, and an idealized plasma sheet formula to examine the properties of a small region of 42 
entropy depletion in the magnetotail to represent the presence of a plasma bubble. In the 43 
bubble region, we find that in some regions the interchange and buoyancy modes overlap, 44 
resulting in frequencies that are much lower than the background. On the Earthward edge of 45 
the bubble, we find regions of instability while on other locations within the bubbler that is 46 
furthest from the Earth the MHD normal mode predicts an MHD slow mode wave solution. 47 

1 Introduction 48 

In recent years there has been a change in our understanding of how plasma is 49 
transported from the plasma sheet to the inner magnetosphere. In the past, it was believed 50 
that steady earthward convection was the major transport mechanism. However, Erickson 51 
and Wolf (1980) pointed out that steady convection can lead to the ‘pressure balance 52 
inconsistency’ where empirical models of the magnetic field are not consistent with the 53 
assumption of entropy constancy in the plasma sheet seen in many early theoretical models. 54 
The theoretical assumption of entropy constancy was based on the bounce-averaged drift 55 
theory, where entropy is conserved along a drift path for an isotropic distribution function 56 
with isotropy sustained by strong, elastic pitch-angle scattering. Later it was recognized that 57 
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this inconsistency could be resolved with the presence of sporadic, bursty flows that are 58 
associated with low entropy bubbles (Pontius and Wolf, 1990; Yang et al., 2014). The 59 
existence of these bursty bulk flows has substantial observational support (e.g., 60 
Angelopoulos et al., 1992, 1994; Sergeev et al., 1996; Apatenkov et al., 2007). Using 61 
empirically based magnetic field and pressure models, the entropy 𝑝𝑉! "⁄ , where p is the 62 
pressure and 𝑉 = ∫ 𝑑𝑠/𝐵 is the flux tube volume, 𝐵 is the magnitude of the magnetic field 63 
and 𝑠 is the coordinate along the field line, it is often found to be a smooth background 64 
function of xe, where xe is the distance in the equatorial plane and increases sunward (i.e., 65 
𝑑𝑝𝑉! "⁄ 𝑑𝑥$⁄ < 0). In general, however, the magnetosphere probably has more structured 66 
entropy profiles as a function of position than such models show. While direct 67 
measurements of the entropy are not possible, it is possible to estimate the entropy using a 68 
technique developed by Wolf et al. (2006) which suggests that there is a lot of structure on 69 
the entropy in the tail. (e.g., Yang et al., 2010; Dubyagin et al., 2011; Sergeev et al., 2014). 70 
Some global MHD simulations also exhibit much structure in the entropy profile (e.g., Hu et 71 
al., 2011; Pembroke et al., 2012; Wiltberger et al., 2015; Cramer et al., 2017; Sorathia et al., 72 
2021). The motivation of the work presented here is to examine the properties of MHD 73 
buoyancy waves when there is a localized reduction of the entropy. 74 

The occurrence of plasma flows as they reach their equilibrium location has been 75 
associated with magnetohydrodynamic (MHD) buoyancy waves which are a fundamental 76 
wave mode of the magnetosphere. A bubble is an entropy-depleted plasma-sheet filament; 77 
i.e., it has reduced 𝑝𝑉! "⁄ 	relative to surroundings. The bubble moves Earthward toward its 78 
equilibrium position, where its entropy matches that of the local background environment 79 
(Birn et al., 2004; Xing and Wolf, 2007). The bubble often overshoots its equilibrium 80 
position and oscillates a few times (Chen and Wolf, 1999) as a buoyancy wave (Wolf et al., 81 
2012; Toffoletto et al., 2020, 2022). Buoyancy waves are analogous to neutral-atmospheric 82 
gravity waves, in which the buoyant force is gravity rather than magnetic tension. 83 
Magnetospheric buoyancy waves are possibly related to Pi2 oscillations (Hsu and 84 
McPherron, 2007; Panov et al., 2010; Xing et al., 2015; Wang et al., 2020; Yadav et al. 85 
2023).  86 

To better understand the properties of low entropy bubbles, Chen and Wolf (1993, 87 
1999) developed an MHD thin filament model to investigate their properties. The thin 88 
filament approach represents a highly idealized approximation to the motion of a field line 89 
in a plasma sheet background at equilibrium. This total filament pressure 𝑝 + 𝐵% 2𝜇&⁄  90 
balances the background. The thin filament approximation can be expressed as the solution 91 
of 1-D MHD equations that can be accurately solved with little dissipation (Chen and Wolf, 92 
1999). In that work, it was found that a depleted filament overshoots its equilibrium point, 93 
where its entropy matches the background value, and undergoes damped oscillations about 94 
that location. In a follow-up study, Wolf et al. (2012) derived an approximate formula for 95 
the period of the fundamental oscillation frequency of a thin plasma sheet filament for a 2-D 96 
force-balanced tail model: 97 

𝜔! ≈ (0.074	𝑠"!) +
,𝑝𝑉# $⁄ /&

𝑝𝑉# $⁄ 0
'

,𝑇(,*'+/

𝐵,,'𝑉 31 +
5
6 〈𝛽〉;

	 (1) 98 

where 𝑇',)$* is the ion temperature in keV, 𝐵+,$ 	is the strength of the z-component of the 99 
magnetic field, and 〈𝛽〉 is the field line averaged plasma beta (𝛽 ≡ 2𝜇&𝑝 𝐵%)⁄ . The prime 100 
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denotes a radial derivative. Henceforth, we will denote equation 1 as Wolf2012. The 101 
averaging is weighted by the flux tube volume, so that the field line average of a quantity A 102 
is: 103 

〈𝐴〉 ≡
∫𝐴𝑑𝑠𝐵 	

∫ 𝑑𝑠𝐵
	. (2) 104 

Wolf2012, in agreement with much previous work on interchange stability (e.g, 105 
Bernstein et al., 1958), predicts that 𝜔% is proportional to the entropy gradient and that the 106 
system is interchange unstable if the gradient is negative (i.e., 𝑝𝑉! "⁄ 	decreases away from 107 
the Earth). Panov et al. (2013) compared the results from the Wolf2012 equation with 108 
periods measured for 20 flow burst braking-oscillation events and found reasonably good 109 
agreement. This interchange oscillation formula, although derived for a very simple case, 110 
appears to be useful far beyond the constraints assumed in its derivation. 111 

Toffoletto et al. (2020) used an MHD normal mode analysis to determine the 112 
buoyancy frequencies and eigenmodes of an oscillating thin filament. The approach was 113 
based on a linear approximation and assumed that the perturbations have time dependence 114 
of the form 𝑒,'-.. Infinite conductance boundary conditions were assumed at the 115 
ionospheric footprints. The resulting two coupled equations of motion for the perpendicular 116 
and parallel displacements of mass points along the filament were solved as an eigenvalue 117 
problem to obtain the associated eigenfrequencies and eigenmodes. This approach differed 118 
from other approaches that looked at both poloidal and toroidal Alfvén and slow mode 119 
waves (e.g., Ohtani et al., 1989; Xia et al., 2017; Petrashchuk et al., 2022) that assumed low 120 
plasma beta configurations (𝛽 < 1) and a dipolar magnetosphere. Toffoletto et al. (2020) 121 
used the MHD normal analysis to determine the lowest frequency poloidal modes that were 122 
symmetric about the equatorial plane. They found that for field lines that map deep into the 123 
plasma sheet (|𝑥$| > 15	𝑅/), these modes were buoyancy modes while field lines that 124 
mapped closer to the Earth (inside |𝑥$|~6	𝑅/) resembled slow mode waves. They also 125 
found that the predicted buoyancy frequencies were in surprisingly good agreement with the 126 
frequencies predicted by Wolf2012, even though this formula used a much less rigorous 127 
approach and was derived for the plasma sheet. 128 

To better understand the relationship between MHD buoyancy modes and 129 
interchange, Toffoletto et al. (2022) looked at pure interchange modes and compared them 130 
to the less constrained MHD normal mode analysis. Using an energy approach like that of 131 
Bernstein et al. (1958), a buoyancy frequency for the interchange modes was derived by 132 
assuming that the oscillations are the result of the exchange of two adjacent field lines. The 133 
frequency for pure interchange oscillation was obtained as: 134 

𝜔-.! =
𝑝
𝜌

C𝑝'
&

𝑝 +
5
3
𝑉'&
𝑉 EC

𝑉'&
𝑉 − 〈𝛽〉2

𝑝'&
𝑝 E

31 + 56 〈𝛽〉; 〈
𝜉/(𝑠)!
𝜉/(0)!

C1 + 𝜉∥(𝑠)!
𝜉∥(0)!

E〉
	 (3) 135 

where 𝜉0(𝑠) and 𝜉∥(𝑠)	are the perpendicular and parallel displacements of mass points with 136 
respect to the background field line because of interchange, and 𝜌 is the mass density. Other 137 
variables and conventions are as defined above. The “e” subscript indicates that a term is 138 
evaluated in the equatorial plane, equivalent to setting 𝑠 = 0 in the displacements. The first 139 
parenthetical term in the numerator is the entropy gradient evaluated at the equatorial plane, 140 
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while the second parenthetical term results from the Alfvenic-timescale pressure re-141 
equilibration of the filament to the local background pressure. The pressure and flux tube 142 
volume are constants for a field line under the interchange approximation, so do not need 143 
subscripts. The Wolf2012 formula was compared to the Toffoletto et al. (2020) normal 144 
analysis, modified to include zero ionospheric conductance as well as the pure interchange 145 
result (equation 3). They found that tail-like field lines that cross the equatorial plane in the 146 
plasma sheet (|𝑥$| > 15	𝑅/)	are where the interchange results are most consistent with 147 
MHD ballooning normal mode analysis. One requirement for pure interchange is that the 148 
resulting pressure perturbation is constant along a field line, which is not generically the 149 
case for the more general MHD buoyancy modes.  150 

This paper is a follow-up to the Toffoletto et al. (2022) paper, where we investigated 151 
the buoyancy properties inside a low entropy bubble. As before,w e use 3 approaches: (1) 152 
the Wolf2012 formula that depends on the entropy gradient, equation 1; (2) the MHD 153 
normal mode analysis described in Toffoletto et al. (2020) modified to use zero conductance 154 
ionospheric boundary conditions as in Toffoletto et al. (2022); (3) the pure interchange 155 
approached described in Toffoletto et al. (2022). The results are compared, including the 156 
predicted frequencies and associated normal mode and interchange perturbations. The rest 157 
of the paper describes the basic approach, including a brief description of the background 158 
equilibrium and how the low entropy perturbation was introduced. We show three examples 159 
and discuss the results. 160 

2 Approach 161 

2.1 Background Model of an Average Magnetosphere 162 

For this study, we started with the same background field model as in Toffoletto et 163 
al. (2020, 2022), which consists of a Kp = 2 Tsyganenko (1989) model magnetic field and 164 
the pressure profile derived by combining a quiet curve from Lui et al. (1987) for |𝑥$| <165 
	8	𝑅/ 	and Spence et al. (1989) for |𝑥$| > 	8	𝑅/ 	. The background field is relaxed to 166 
equilibrium in the x-z plane using a 2‐D, high‐resolution version of the friction code (Lemon 167 
et al., 2003). The density model is taken from the Kp = 2 Gallagher et al. (2000) model for 168 
|𝑥$| < 	8	𝑅/ merged smoothly to a Tsyganenko and Mukai (2003) model for |𝑥$| >169 
	10	𝑅/ .	The profile for this model along the x-axis is shown in Figure 1, which includes the 170 
pressure, magnetic field, and density model. 171 

2.2 Local Entropy Depletion 172 

To impose a change in entropy to simulate the presence of a bubble, we take the 173 
entropy profile from the background along the equatorial plane and impose an indentation 174 
(local entropy depletion) along the whole field line. This indentation is specified using four 175 
control points (𝑥2, 𝑥%, 𝑥", 𝑥3) and fitting three bicubic spline curves as illustrated in Figure 176 
2. The spline fits are set between the control points (𝑥' − 𝑥'42),	for	𝑖 = 1, 2, 3. At the 177 
endpoints (𝑥2	and	𝑥3) the value and derivative of 𝑝𝑉! "⁄  is matched to the original 178 
unmodified background, ensuring a smooth transition between regions. At the middle 179 
control points (𝑥%	and	𝑥") the value of 𝑝𝑉! "⁄ and its derivative of the fitted curve is 180 
specified. In the cases shown below, the derivative is set to zero for simplicity at these 181 
locations. By field line tracing from each grid point in the 2D region to the intersection point 182 
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on the equatorial plane, any grid point that is magnetically connected to this region between 183 
the endpoints has its pressure modified to match the specified value of	𝑝𝑉! "⁄ . This new 184 
configuration is then iterated to approximate force balance as before using a high-resolution 185 
version of a 2D friction code (Lemon et al., 2004), which results in a change in the entropy 186 
profile as the system relaxes to a new equilibrium now containing a localized entropy 187 
depletion. This equilibrium-setting process is important for the background to be suitable for 188 
linear stability analysis as the use of perturbation theory to perform an eigen-analysis 189 
presupposes an equilibrium background. In short, the relaxation procedure is necessary 190 
because the indentation procedure does not guarantee the preservation of pressure balance. 191 

 192 

Figure 1: Plot of background magnetosphere model used, showing the pressure, 𝐵+, and 193 
density along the tail axis in the equatorial plane as a function of equatorial distance. Note 194 
that the plasmapause at −5	𝑅/ is incorporated in the density background. 195 

Three cases are presented here: Case 1 represents a bubble near the Earth while 196 
Cases 2 and 3 represent a bubble further out in the plasma sheet. The parameters used are 197 
specified in Table 1. 198 
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 199 

Figure 2: Sketch of the entropy profile along the equatorial plane along with the entropy-200 
depleted region (in blue) showing the control points. 201 

Table 1: Specification of entropy indentation geometry for three cases. Distances are in RE 202 

and 𝑝𝑉! "5  in units of 𝑛𝑃𝑎	 R61
78
S
!
"5 . 203 

Case 𝑥2 𝑥% 𝑝𝑉! "⁄ (𝑥%) 𝑥" 𝑝𝑉! "⁄ (𝑥") 𝑥3 
1 -4 -4.5 0.001 -5.5 0.0012 -6 
2 -6 -6.5 0.008 -7.5 0.01 -8 
3 -8 -8.5 0.04 -8.5 0.06 -10 

 204 

Figures 3 through 5 show the resulting configuration before and after equilibration. 205 
The before plot includes the indentation but has not been restored to equilibriu, while the 206 
after plot shows the preservation of the indentation but is now at equilibrium. In all cases, 207 
the tailward portion of the bubble moves slightly earthward as the system relaxes to 208 
equilibrium, thus reducing the size of the entropy-depleted region. In Figures 4 and 5, which 209 
correspond to Case 2 and 3 respectively, the average plasma beta is higher, which results in 210 
a larger change in the magnetic field than for Case 1 and the resulting depleted region is 211 
smaller after equilibration. The entropy value at the control points 𝑥%,	and	𝑥"were chosen so 212 
as have a slight positive tailward gradient and thus avoid unstable modes in this region, but 213 
this does not preclude unstable modes between the control points 𝑥2	and 𝑥% at the Earthward 214 

X1

match entropy and derivative

specify pV5/3 
and zero derivative

x1 x4x2 x3x

match pV5/3 and derivativepV5/3
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end of the bubble. We do not include cases where the bubble was placed further tailward, as 215 
it resulted in a dramatic reconfiguration of the tail during the equilibration process and a 216 
collapse of the bubble. As can be seen in Figure 1, the background magnetic field had a 𝐵+ 217 
minimum centered at around 𝑥$ 	= 	−16	𝑅/ , and the resulting magnetic field with a tailward 218 
bubble further reduced the minimum.  219 

 220 

Figure 3: Top panel shows 𝑝𝑉
2
3 in units of 𝑛𝑃𝑎 R61

78
S
2
3 and field line average plasma beta 221 

(equation 2) before and after equilibration for Case 1 where the indentation is placed 222 
between 𝑥$ = −4𝑅/ and −6	𝑅/. The bottom panel shows 𝐵+(in nT) and pressure (in nPa). 223 

 224 
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 225 

 226 

Figure 4: Same format as Figure 3 for Case 2 where the indentation is placed between 𝑥$ =227 
−6	𝑅/ 	and −8	𝑅/. 228 

 229 

Figure 5: Same format as Figure 3 for Case 3 where the indentation is placed between 𝑥$ =230 
−8	𝑅/and −10	𝑅/. Note the larger change in the magnetic field after equilibrium than the 231 
other two cases. 232 

 233 
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3.0 Results 234 

Equatorial 
Footprint 
Location 
(RE) 

Background 
Frequency 
(Hz) from 
MHD 
Normal 
Mode 

Bubble 
Frequency 
(Hz) from 
MHD 
Normal 
Mode 

Background 
Pressure 
Standard 
Deviation 
(nPa) 

Bubble 
Pressure 
Standard 
Deviation 
(nPa) 

MHD Mode 

-6.0 0.0105 0.0150 0.981 0.854  
-5.5 0.0107 0.0087 1.362 0.895 slow mode 
-5.2 0.0109 0.0027 1.711 0.133 pure interchange 
-5.0 0.0112 0.0033 2.026 0.063 pure interchange 
-4.8 0.0082 0.0025 2.427 0.092 pure interchange 
-4.6 0.0057 0.0010 2.934 0.149 pure interchange 
-4.4 0.0053 0.0060i 3.674 0.856 unstable 
-4.2 0.0050 0.0081i 4.390 2.532 unstable 
-4.0 0.0048 0.0035 5.428 2.225  

Table 2: Summary of the results for Case 1. Column 1 shows the sampling location in the 235 
equatorial plane, the second and third column frequency of the normal mode oscillation 236 
from the background and the bubble frequency respectively, the third and fourth column 237 
show the standard deviation of the isotropic pressure perturbation for the background and 238 
bubble, and the fifth column is the mode produced by the MHD normal mode analysis. 239 

3.1 Case 1 240 

The first case is the indentation is the closest to the Earth of all three cases. Table 2 241 
lists the results on some sampled field lines inside the bubble. The solid line in the top panel 242 
of Figure 6 is a plot of the entropy profile for both the unperturbed background (blue) and 243 
the indented profile (orange), and the dashed line is the corresponding flux tube volume 244 
averaged plasma beta (see equation 2 for our definition of flux tube volume average). Note 245 
that the profiles are slightly different even outside the control region because of the 246 
equilibration process. Also, the values of the entropy are slightly different from the specified 247 
values for the same reason. The second panel of Figure 6 shows the z-component of the 248 
magnetic field and pressure along the x-axis (in the equatorial plane) for both the 249 
background field and the bubble indentation. The third panel of Figure 6 shows the 250 
computed buoyancy frequencies for the background field and bubbles using three different 251 
techniques, the curves labeled MHD correspond to the normal mode calculation; the curves 252 
labeled “Wolf” are from the Wolf2012 approximate plasma sheet while the curves labeled 253 
“PI” are from the pure interchange calculation (equation 3). These frequencies are scaled to 254 
the background density profile shown in Figure 1, as described above and in Toffoletto et al. 255 
(2020). Since the eigenvalues can in principle be imaginary, both real and imaginary parts 256 
are included, where the imaginary components are shown as a dashed line with a shaded 257 
background and indicate regions of instability. The change in frequency at around 𝑥$ 	=258 
	−5	𝑅/ corresponds to the plasmapause location in the Gallagher (2000) model.  259 

For this case, Figure 8 and Table 2 shows that there is an overlap of the MHD 260 
normal modes and the pure interchange results at the locations 𝑥$ 	= 	−	4.6, −4.8, −5.0,  261 
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and −5.2	𝑅/.  In Figure 9 and Table 2 the normalized pressure perturbation from the MHD 262 
normal mode analysis as a function of distance s along the field line (from the equator) for 263 
the background field is a solid line and a dashed line for Case 1 bubble. The standard 264 
deviation of pressure along the field line (in nPa) for the background and bubble is also 265 
shown. For this case, the pressure perturbation at 𝑥$ 	= 	−4.6, −4.8, −5.0 and −5.2	𝑅/  is 266 
approximately constant along the field line, as can be seen in the reduction in the standard 267 
deviation of the pressure perturbation compared to the background. This is consistent with 268 
the modes at these locations being pure interchange. All displacements are normalized by 269 
the maximum displacement of all the modes (Toffoletto et al. 2020). 270 

The computed frequency at these locations is much lower than the ones obtained in 271 
the background case with no bubble, and all three approaches give quite consistent results at 272 
these locations. This would imply that the buoyancy frequencies inside a low entropy bubble 273 
with a small entropy gradient would be small and closer to the values one would expect for 274 
the plasmasheet rather than the inner magnetosphere. For 𝑥$ 	= 	−4.2 and −4.4	𝑅/ the 275 
solution is imaginary, indicating instability. The large value of the frequency tailward of the 276 
region of instability (between 𝑥$ 	= 	−5 and −6	𝑅/) is a result of a large negative gradient 277 
in 𝑝𝑉! "⁄  as its value returns to the background value outside the bubble. The MHD normal 278 
modes for 𝑥$ = −5.5	𝑅/ indicate slow mode solutions as the parallel displacement is much 279 
larger than the perpendicular displacement. For this location, the MHD normal mode 280 
predicts a much lower frequency than the pure interchange and Wolf2012 result.  281 

 282 
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Figure 6: The is the result for Case 1. The solid line in the top panel shows 𝑝𝑉
2
3and the 283 

dashed line is the field line average plasma beta. for both the background and perturbed 284 

configuration. The units for 𝑝𝑉! "5 are	𝑛𝑃𝑎	(𝑅/ 𝑛𝑇⁄ )! "5 . The second panel shows the 285 
magnetic field (𝐵+) in nT and pressure in nPa. The third panel shows the computed 286 
frequencies (in Hz) for the unperturbed field using the MHD normal mode approach (blue), 287 
pure interchange (red) and the Wolf2012 formula (orange). The solid lines are for real 288 
values, the dashed lines imaginary. In this case, all frequencies are real. The bottom panel 289 
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shows the computed frequencies for the perturbed background, showing a shaded region of 290 
imaginary frequencies between 𝑥$ 	= 	−4.1 and −4.4	𝑅/. 291 

 292 

Figure 7: Comparison of wave modes from the MHD normal mode (blue line) and classic 293 
interchange analysis (red line) for the background field as a function of distance s along the 294 
field line from the equator. The solid curves represent the perpendicular displacement and 295 
the dashed line is the parallel displacement. The associated MHD normal mode frequencies 296 
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are also shown. All results are normalized to the maximum displacement of the largest 297 
mode. 298 

 299 

Figure 8: Same format as Figure 7 for the bubble indentation field for Case 1. Note the 300 
overlap of the modes for 𝑥$ 	= 	−4.6, −4.8, −5.0  and −5.2	𝑅/. Note that for 𝑥$ 	= 	−4.2 301 
and −4.4	𝑅/ the solution is imaginary, indicating instability. The MHD normal modes for 302 
𝑥$ = −5.5	𝑅/ indicate slow mode solutions, as the parallel displacement is much larger than 303 
the perpendicular displacement. 304 

 305 
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 306 

Figure 9: Pressure normalized perturbation from the MHD normal mode analysis as a 307 
function of distance s along the field line (from the equator) for the background field is a 308 
solid line and a dashed line for Case 1 bubble. The standard deviation of pressure along the 309 
field line (in nPa) for the background and bubble is also shown. For this case, the pressure 310 
perturbation at 𝑥$ 	= 	−4.6, −4.8, −5.0		and −5.2	𝑅/ is approximately constant along the 311 
field line, as can be seen in the reduction in the standard deviation of the pressure 312 
perturbation compared to the background. 313 

 314 
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3.2 Case 2 315 

The results for Case 2 are shown in Figure 10 and summarized in Table 3. The 316 
ordinary (unindented) background and the bubble oscillation frequencies are quite different 317 
and vary noticeably between −6 and −8	𝑅/. Note that the eigenvalues are only purely real 318 
or imaginary as there is no dissipation in the system. In the case of the ordinary background 319 
fields, there are only real eigenvalues, indicating a stable equilibrium with no dissipation. 320 
The bottom panel shows the corresponding results for the bubble indentation. For this case, 321 
there is a shaded region of imaginary eigenvalues between approximately 𝑥$ 	= 	−6.1 and 322 
−6.3	𝑅/ 	where the gradient in 𝑝𝑉! "⁄  is positive (decreasing away from the Earth), as the 323 
chosen entropy value is set to allow a change in gradient at the earthward edge of the 324 
imposed bubble. The large value of the frequency tailward of the region of instability 325 
(between 𝑥$ 	= 	−7 and −8	𝑅/) is a result of a large negative gradient in 𝑝𝑉! "⁄  as its value 326 
returns to the background value outside the bubble. No such increase in frequency is seen in 327 
the MHD normal mode result. The reason for the difference can be seen in Figures 11 and 328 
12, which plot the normalized modes for both the pure interchange (solid line) and the MHD 329 
normal mode calculation. As before, the normalization is chosen relative to the maximum of 330 
all the modes (see Toffoletto et al., 2020 for a discussion of the normalization). Figure 11 is 331 
from the background field and Figure 12 for the imposed bubble indentation. In Figure 12, 332 
at 𝑥$ 	= 	−7.5	𝑅/, which corresponds to the location where there is a jump in the frequency 333 
in Figure 10, the parallel displacement for the MHD is larger than the perpendicular 334 
displacement, which is what would be expected from an MHD slow mode. These results 335 
suggest that to remain compatible with pure interchange assumptions at this location a much 336 
higher frequency is needed, while the MHD solution produces a lower frequency but as a 337 
slow mode. In other words, the assumptions underlying the pure interchange calculation 338 
prevent the slow mode observed in the MHD results from showing up. In addition, as can be 339 
seen in Figure 12, at 𝑥$ 	= 	−	6.5	𝑅/ the pure interchange solution closely resembles the 340 
MHD solution, which implies the MHD solution is closer to being a pure interchange mode 341 
at this location. This can be confirmed by the pressure perturbation, which is shown in 342 
Figure 13, which shows a reduction in the standard deviation of the pressure along the field 343 
line from 0.759 to 0.154 nPa. We see similar behavior at 𝑥$ 	= 	−7.2	𝑅/ .	Unstable modes 344 
are also shown in Figure 13 at 𝑥$ 	= 	−6.0 and −6.2	𝑅/. At the sampling locations at 𝑥$ 	=345 
	−6.4, −6.5	and – 7.2	𝑅/ shows a good overlap between the MHD normal mode and pure 346 
interchange and the pressure perturbation is approximately constant along the field lines. 347 
Outside the bubble region, tailward of 𝑥$ 	= 	−8	𝑅/ and earthward of 𝑥$ 	= 	−6	𝑅/, the 348 
solutions are close to the background field; i.e., the frequency curves in the middle and 349 
lower panels of Figures 11 and 12 are almost identical. Any difference between them is due 350 
to the equilibration of the tail after the bubble indentation was introduced. 351 

 352 

 353 

 354 

 355 
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 356 

Figure 10: This shows the results for Case 2, the solid line in the top panel shows 𝑝𝑉
2
3and 357 

the dashed line is the field line average plasma beta. for both the background and perturbed 358 

configuration. The units for 𝑝𝑉! "5 are 𝑛𝑃𝑎	 R61
78
S
!
"5 . The second panel shows the magnetic 359 

field (𝐵+) in nT and pressure in nPa. The third panel shows the computed frequencies (in 360 
Hz) for the unperturbed field using the MHD normal mode approach (blue), pure 361 
interchange (red) and the Wolf2012 formula (orange). The solid lines are for real solutions, 362 
the dashed lines are imaginary solutions. In this case, all frequencies are real. The bottom 363 
panel shows the computed frequencies for the perturbed background, showing a shaded 364 
region of imaginary frequencies between 𝑥$ 	= 	−	6.0	and −	6.2	𝑅/. 365 
 366 

 367 
Equatorial 
Footprint 
Location 
(RE) 

Background 
Frequency 
(Hz) from 
MHD 
Normal 
Mode 

Bubble 
Frequency 
(Hz) from 
MHD 
Normal 
Mode 

Background 
Pressure 
Standard 
Deviation 
(nPa) 

Bubble 
Pressure 
Standard 
Deviation 
(nPa) 

MHD Mode 

-9.0 0.0118 0.0150 0.289 0.272  
-8.0 0.0114 0.0087 0.414 0.370  
-7.5 0.0112 0.0027 0.499 0.501 slow mode 
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-7.2 0.0110 0.0033 0.560 0.119 pure 
interchange 

-6.5 0.0107 0.0025 0.759 0.154 pure 
interchange 

-6.4 0.0106 0.0010 0.792 0.217 pure 
interchange 

-6.2 0.0106 0.0060i 0.877 0.627 unstable 
-6.0 0.0105 0.0081i 0.981 0.578 unstable 
-5.0 0.0122 0.0035 2.026 2.049  

Table 3: Summary of the results for Case 2. Column 1 shows the sampling location in the 368 
equatorial plane, the second and third column frequency of the normal mode oscillation 369 
from the background and the bubble frequency respectively, the third and fourth column 370 
show the standard deviation of the pressure perturbation for the background and bubble, and 371 
the fifth column is the mode produced by the MHD normal mode analysis. 372 

 373 



manuscript submitted to Journal of Geophysical Research – Space Physics 

 19 

 374 

Figure 11: Comparison of wave modes from the MHD normal mode pure (blue line) and 375 
interchange analysis (red line) for the background field as a function of distance s along the 376 
field line from the equator. The solid curves represent the perpendicular displacement and 377 
the dashed line is the parallel displacement. The associated MHD normal mode frequencies 378 
are also shown. 379 

 380 
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 381 

Figure 12: Same format as Figure 7 for the bubble indentation field for Case 2. Note the 382 
overlap of the modes for 𝑥$ 	= 	−6.4,−6.5 and −7.2	𝑅/. Note that for 𝑥$ 	= 	−	6.0 and 383 
−6.2	𝑅/ the solution is imaginary, indicating instability. At 𝑥$ 	= 	−7.5	𝑅/ we see slow 384 
mode waves in the MHD normal mode solution, where motion is dominated by parallel 385 
displacement.  386 

 387 
 388 
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 389 

Figure 13: Pressure normalized perturbation from the MHD normal mode analysis as a 390 
function of distance s along the field line (from the equator) for the background field is a 391 
solid line and a dashed line for Case 2 bubble. The standard deviation of pressure along the 392 
field line (in nPa) for the background and bubble is also shown. 393 
 394 



manuscript submitted to Journal of Geophysical Research – Space Physics 

 22 

3.3 Case 3 395 

For this case, the indentation corresponds to an entropy bubble that is further out in 396 
the plasma sheet. Figure 14 shows the configuration and resulting buoyancy frequency 397 
results for this case and is summarized in Table 4. The bubble was set in the range 𝑥$ 	=398 

	−8 to −10	𝑅/. The perturbation in 𝑝𝑉! "5  was set by specifying the pressure, but the 399 
resulting equilibration relaxes the pressure closer to the background while changing the 400 
magnetic field. Such a resetting of the pressure was not seen in Case 1, likely because the 401 
background plasma beta is lower in Case 1. These results indicated instability on the 402 

tailward portion of the bubble front around 𝑥$ 	= 	−8.2	𝑅/ where the derivative of 𝑝𝑉! "5  403 
reverses sign. The MHD normal mode results most closely resemble the pure interchange 404 
results for a field line that crosses the equatorial plane at 𝑥$ 	= 	−8.4	𝑅/. This can be seen in 405 
the overlap of the modes in Figure 15, as well as the pressure perturbation plot in Figure 16, 406 
although the pressure for this case is only approximately constant along the field line. As in 407 
Case 1, there is a difference in the predicted modes at around 𝑥$ 	= 	−8.7 and −9.0	𝑅/, the 408 
Wolf2012 (equation 1) formula predicts a higher frequency than the MHD normal mode, 409 
while the pure interchange frequencies (equation 3) are closer to the MHD result, and both 410 
are closer to the background result (e.g., Figures 15 and 16, 𝑥$ 	= 	−10	𝑅/). The MHD 411 
normal mode results are, as in Case 1, slow mode waves where the parallel displacement is 412 
significantly larger than the perpendicular displacement, as can be seen in Figure 16. The 413 
pressure perturbation is approximately constant for a field line that crosses the equatorial 414 
plane at 𝑥	 = 	−8.4	𝑅/, with a standard deviation of 0.086 nPa, compared to the unperturbed 415 
value of 0.359 nPa. 416 

I 417 
Equatorial 
Footprint 
Location 
(RE) 

Background 
Frequency 
(Hz) from 
MHD 
Normal 
Mode 

Bubble 
Frequency 
(Hz) from 
MHD 
Normal 
Mode 

Background 
Pressure 
Standard 
Deviation 
(nPa) 

Bubble 
Pressure 
Standard 
Deviation 
(nPa) 

MHD Mode 

-11.0 0.0085 0.0074 0.060 0.028  
-10.0 0.0109 0.0096 0.166 0.035  
-9.5 0.0116 0.0123 0.239 0.264  
-9.0 0.0118 0.0115 0.289 0.266  
-8.7 0.0118 0.0120 0.322 0.345 slow mode 
-8.4 0.0117 0.0028 0.359 0.086 pure interchange 
-8.2 0.0116 0.0154i 0.385 0.303 unstable 
-8.0 0.0114 0.0094 0.414 0.281  
-7.0 0.0109 0.0110 0.606 0.619  

Table 4: Summary of the results for Case 3. Column 1 shows the sampling location in the 418 
equatorial plane, the second and third column frequency of the normal mode oscillation 419 
from the background and the bubble frequency respectively, the third and fourth column 420 
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show the standard deviation of the pressure perturbation for the background and bubble, and 421 
the fifth column is the mode produced by the MHD normal mode analysis. 422 

 423 
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Figure 14: Same format as Figure 6 for Case 3. The shaded region indicates where the 424 
modes are unstable. 425 

 426 
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Figure 15: Same format as in Figure 7 for the background field for comparison for Case 3. 427 

 428 

Figure 16: Same as Figure 8 for Case 3.. Note the overlap in modes for the field line that 429 
crosses the equatorial plane at 𝑥$ 	= 	−6.5	and −7.2	𝑅/  , 𝑥$ =	−6.2 and −6.4	𝑅/ are 430 
unstable modes. 431 
 432 
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 433 

Figure 17: Same as Figure 9 for the background for comparison for Case 3. Note the 434 
pressure is approximately constant along the field lines that have crossing points at 𝑥$ 	=435 
	−6.5	𝑅/, and are approximately consistent with these modes being an interchange mode. 436 

4.0 Discussion  437 

The thin filament approximation, while limited in many ways, has proven to be a 438 
useful approach to looking at the properties and motion of entropy-depleted field lines in a 439 
background medium. The approach follows a one-dimensional field line, neglecting the 440 
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motion of the field lines transverse to the noon-midnight meridional (x-z) plane. However, 441 
for the interchange of two field lines to occur, they must move past one another in such a 442 
way that both cannot remain in-plane. In addition, the MHD thin filament code neglects 443 
feedback from the background and any other filament while this coupling is explicitly 444 
included in the interchange derivation. The coupling to the other filaments should be 445 
included to properly compare some features of the MHD thin filament model to the classic 446 
interchange model. This work is a follow-up to the previous study looking at buoyancy 447 
modes where the entropy has been modified relative to the ordinary background to include a 448 
bubble, all within the framework of the MHD thin filament approximation (Chen and Wolf, 449 
1999; Wolf et al. 2012). After imposing entropy modifications at three locations on the 450 
nightside magnetosphere, we used three different approaches to infer the properties and 451 
frequencies of buoyancy modes within these entropy-depleted regions. Our methodology 452 
(average background, indentation-relaxation, eigen-analysis) presupposes that the bubble 453 
can be treated quasi-statically on the timescales of the oscillations. The three approaches 454 
used in this study are: 455 

1. MHD normal mode calculation, the basic procedure is described in Toffoletto et al. 456 
(2020) except that the ionospheric boundary condition is replaced with a zero 457 
conductance, to be consistent with the interchange assumption. The modifications to the 458 
boundary conditions are described in Toffoletto et al. (2022).  459 

2. Pure interchange (equation 3) as described by Toffoletto et al. (2022), used an energy 460 
argument to deduce the modes and frequencies that one would expect when the 461 
assumptions of the classic interchange theory is applied. This assumption entails that 462 
both the background pressure and associated pressure perturbation that arises from 463 
interchange is constant along a field line. 464 

3. The Wolf2012 (equation 1) formula is based on simplifying assumptions of interchange 465 
in a tail-like background equilibrium magnetic field. 466 

Three cases are examined: 467 

Case 1 involves an entropy depletion (bubble) centered at x = -7 RE where it is 468 
found that the frequency of the interchange mode is much lower than a typical field line 469 
would be than a background field line at that location. Some of field lines resembled pure 470 
interchange modes, as shown in Figure 8 and Table 2a for the field line crossing the 471 
equatorial plane at 𝑥$ 	= 	−6.4 and −6.5	𝑅/, where the pure interchange mode and the 472 
MHD normal mode overlap quite closely and the pressure perturbation from the MHD result 473 
is approximately constant along the field line. The analysis also reveals the existence of 474 
unstable modes between 𝑥$ 	= 	−6.4 to −7.2	𝑅/ where the entropy gradient changes sign to 475 
decreasing tailward. All three approaches predict a very similar buoyancy frequency with 476 
the normal mode and interchange analysis having the closest agreement. It is surprising how 477 
well the Wolf2012 estimate works given that it is an approximate formula that was 478 
developed for a tail-like background. On the tailward edge of the bubble, the MHD normal 479 
mode results disagree with the pure interchange and the Wolf2012 estimate. The MHD 480 
result predicts slow mode waves (𝑥$ 	= 	−7.5	𝑅/ in Figure 8 and Table 2) with lower 481 
frequencies, while the pure interchange and the Wolf2012 formula predict a larger 482 
frequency. Since the MHD result is more general and does not restrict itself to any 483 
interchange assumptions, one would expect that this result is likely more physically 484 
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reasonable. Nevertheless, except for this tailward region of the bubble, it is remarkable how 485 
well the three approaches agree, in particular regarding the frequencies.  486 

Case 2 represents a bubble that is further out in the tail and resulted in a small region 487 
of unstable modes as in Case 1 and also lower frequencies inside the bubble, however, the 488 
modes are less like pure interchange modes than in Case 1. In both cases, we find that the 489 
buoyancy frequencies are lower in the bubble, and on the field lines that crosses the equator 490 
at 𝑥$ 	= 	−6.4, −6.5, and −7.2	𝑅/ the MHD result resembles pure interchange modes where 491 
pressure perturbation is approximately constant along the field line (see Figure 13, Table 3). 492 
We also find that on the tailward portion of the bubble, the buoyancy mode results disagree, 493 
the MHD normal mode solution finds a lower frequency solution than pure interchange and 494 
Wolf2012 and produces a slow mode wave with motion dominated by the parallel 495 
displacements of mass points lining the filament. Nevertheless, it is surprising how well the 496 
frequencies arrived at using very different methods agree given that the simplifying 497 
assumptions implicit in the MHD thin filament code. 498 

Finally, Case 3 is for a bubble even further out in the tail. The indentation-relaxation 499 
procedure results in a larger disruption of the tail equilibrium outside the indentation region 500 
that produces a deeper Bz minimum in the tail, likely due to the greater plasma 𝛽 on 501 
stretched field lines. We see a region of slow mode dominated behavior in the MHD 502 
solution tailward of the instability region as in the other cases. A smaller region of obvious 503 
pure interchange modes within the bubble are seen in this case, as shown for the field line 504 
the crosses the equatorial plane at 𝑥$ 	= 	−8.4	𝑅/.  505 

Now, we discuss our implicit interpretation of disagreement between the two 506 
methods under consideration (MHD vs. pure interchange). In some sense, the pure 507 
interchange approach is a “more constrained” approach in virtue of the additional 508 
assumption of pressure constancy along a field line. For this reason, we interpret a 509 
disagreement between the results of the interchange approach and the MHD approach as a 510 
violation of the additional assumptions behind pure interchange. In short, we imply that the 511 
ideal MHD is closer to ground truth. However, there is reason to approach such an 512 
assumption with caution. It may be that the conditions of the magnetotail are such as to 513 
violate MHD while producing kinetic effects that substantiate a pure interchange treatment. 514 

MHD treatments presuppose that interactions between the plasma and 515 
electromagnetic fields occurs locally, which requires that the frequencies be much slower 516 
than the gyrofrequency and wavelengths much later than gyroradius. However, when the 517 
magnetosphere is stressed, the near Earth plasma sheet (NEPS) undergoes thinning, the 518 
plasma 𝛽 increases and the local field line curvature increases. When the field line curvature 519 
becomes comparable to the local gyroradius, the ion orbits become stochastic, undergoing 520 
stochastic (non-adiabatic) pitch-angle scattering each time it crosses the equatorial plane. 521 
This violate bounce invariance, since its motion is largely adiabatic away from the 522 
equatorial plane, meaning that one should in such cases perform a bounce-averaging. These 523 
arguments are considered in great detail in Hurricane (1994 a,b), where a linear kinetic 524 
Vlasov theory for ballooning-interchange modes is developed to capture NEPS dynamics. 525 
The paper also provides support for performing flux tube (field line) averaging (bounce 526 
averaging and pitch angle averaging) of drift frequencies in cases of high stochasticity, since 527 
the individual particles will explore most of the flux tube volume in a small number of 528 
bounces.  529 
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The main implication of these points is that it may be more realistic in the NEPS to 530 
entertain the validity of the interchange assumption over MHD, which allows greater 531 
flexibility in the pressure adjustments. In short, where the results of the interchange analysis 532 
deviate from the MHD analysis above, it is not obvious that the MHD results are the more 533 
trustworthy. Perhaps we should remain open to the question of which conditions are more 534 
well-satisfied in the NEPS. For example, we were unable to find any observational data 535 
pertaining to slow modes towards the tailward region of flow bursts. Observational data 536 
could either find such modes near the bubble’s tailward edge or fail to, in which case some 537 
empirical support would be provided for the greater applicability of either the MHD 538 
approach or the interchange approach, respectively. 539 

5.0 Conclusion 540 

Using empirically based magnetic field and pressure models, the entropy 𝑝𝑉! "⁄  is 541 
generally found to be a smooth background function of xe, where xe is the distance in the 542 
equatorial plane and increases sunward. Additionally, 𝜕(𝑝𝑉! "⁄ )/𝜕𝑥$ is normally negative 543 
for xe < 0. In the present paper, we let 	𝜕(𝑝𝑉! "⁄ )/𝜕𝑥$ vary substantially in a limited region. 544 
We find that, if 𝜕(𝑝𝑉! "⁄ )/𝜕𝑥$ varies in that region but remains negative everywhere, then 545 
the buoyancy frequency can vary substantially but remains real (indicating a stable 546 
configuration). If 𝜕(𝑝𝑉! "⁄ )/𝜕𝑥$ is positive in a small region, then the buoyancy frequency 547 
can be imaginary, indicating a local instability. If	𝜕(𝑝𝑉! "⁄ )/𝜕𝑥$ is small but negative, then 548 
the buoyancy frequency agrees with interchange calculations, even in the inner 549 
magnetosphere. Except for some notable locations inside the bubble, the three approaches 550 
agree in their prediction of the buoyancy frequencies. 551 

A main result suggested by our findings is that in the presence of bubbles, which 552 
frequently show up in the region during any substorm expansion phase, the agreement 553 
between the MHD and the pure interchange treatment is restored where previous average 554 
magnetosphere results showed a disparity. Our interpretation of these results is that the pure 555 
interchange treatment is more reasonable in the inner plasma sheet and inner magnetosphere 556 
when the magnetotail is disturbed, as compared to an average quiet-time magnetosphere. 557 
 558 
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Abstract 14 

In the nightside region of Earth’s magnetosphere, buoyancy modes have been associated 15 
with low entropy bubbles. These bubbles form in the plasma sheet, particularly during 16 
substorm expansion, and move rapidly earthward and come to rest in the inner plasma sheet 17 
or inner magnetosphere. They often exhibit damped oscillations with periods of a few 18 
minutes and have been associated with Pi2 pulsations. In previous work, we used the thin 19 
filament approximation to compare the frequencies and modes of buoyancy waves using 20 
three approaches: magnetohydrodynamic (MHD) ballooning theory, classic interchange 21 
theory, and an idealized formula. Interchange oscillations differ from the more general 22 
MHD oscillations in that they assume a constant pressure on each magnetic field line. It was 23 
determined that the buoyancy and interchange modes are very similar for field lines that 24 
extend into the plasma sheet but differ for field lines that map to the inner magnetosphere. 25 
In this paper, we create a small region of entropy depletion in an otherwise stable entropy 26 
background profile of the magnetotail to represent the presence of a plasma bubble and 27 
determine the properties of the buoyancy modes using the same 3 approaches. In the bubble 28 
region, we find that in some regions the interchange and buoyancy modes overlap resulting 29 
in frequencies that are much lower than the background. In other regions within the bubble, 30 
we find interchange unstable modes while in other locations MHD normal mode predicts an 31 
MHD slow mode wave solution which is not found in the pure interchange solution. 32 

Plain Language Summary 33 

Low entropy plasma bubbles often form in the nightside region of the Earth’s 34 
magnetosphere which move rapidly earthward and come to rest near the Earth. These 35 
bubbles often exhibit damped buoyancy oscillations with periods of a few minutes. 36 
Buoyancy waves are analogous to neutral-atmospheric gravity waves, in which the buoyant 37 
force is gravity rather than magnetic tension. This work seeks to better understand the 38 
properties of these oscillations. We use a thin filament approximation that assumes that 39 
magnetic field lines can be approximated by thin magnetic filaments that can slip through 40 
the background. We use three approaches: MHD ballooning theory, classic interchange 41 
theory, and an idealized plasma sheet formula to examine the properties of a small region of 42 
entropy depletion in the magnetotail to represent the presence of a plasma bubble. In the 43 
bubble region, we find that in some regions the interchange and buoyancy modes overlap, 44 
resulting in frequencies that are much lower than the background. On the Earthward edge of 45 
the bubble, we find regions of instability while on other locations within the bubbler that is 46 
furthest from the Earth the MHD normal mode predicts an MHD slow mode wave solution. 47 

1 Introduction 48 

In recent years there has been a change in our understanding of how plasma is 49 
transported from the plasma sheet to the inner magnetosphere. In the past, it was believed 50 
that steady earthward convection was the major transport mechanism. However, Erickson 51 
and Wolf (1980) pointed out that steady convection can lead to the ‘pressure balance 52 
inconsistency’ where empirical models of the magnetic field are not consistent with the 53 
assumption of entropy constancy in the plasma sheet seen in many early theoretical models. 54 
The theoretical assumption of entropy constancy was based on the bounce-averaged drift 55 
theory, where entropy is conserved along a drift path for an isotropic distribution function 56 
with isotropy sustained by strong, elastic pitch-angle scattering. Later it was recognized that 57 
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this inconsistency could be resolved with the presence of sporadic, bursty flows that are 58 
associated with low entropy bubbles (Pontius and Wolf, 1990; Yang et al., 2014). The 59 
existence of these bursty bulk flows has substantial observational support (e.g., 60 
Angelopoulos et al., 1992, 1994; Sergeev et al., 1996; Apatenkov et al., 2007). Using 61 
empirically based magnetic field and pressure models, the entropy 𝑝𝑉! "⁄ , where p is the 62 
pressure and 𝑉 = ∫ 𝑑𝑠/𝐵 is the flux tube volume, 𝐵 is the magnitude of the magnetic field 63 
and 𝑠 is the coordinate along the field line, it is often found to be a smooth background 64 
function of xe, where xe is the distance in the equatorial plane and increases sunward (i.e., 65 
𝑑𝑝𝑉! "⁄ 𝑑𝑥$⁄ < 0). In general, however, the magnetosphere probably has more structured 66 
entropy profiles as a function of position than such models show. While direct 67 
measurements of the entropy are not possible, it is possible to estimate the entropy using a 68 
technique developed by Wolf et al. (2006) which suggests that there is a lot of structure on 69 
the entropy in the tail. (e.g., Yang et al., 2010; Dubyagin et al., 2011; Sergeev et al., 2014). 70 
Some global MHD simulations also exhibit much structure in the entropy profile (e.g., Hu et 71 
al., 2011; Pembroke et al., 2012; Wiltberger et al., 2015; Cramer et al., 2017; Sorathia et al., 72 
2021). The motivation of the work presented here is to examine the properties of MHD 73 
buoyancy waves when there is a localized reduction of the entropy. 74 

The occurrence of plasma flows as they reach their equilibrium location has been 75 
associated with magnetohydrodynamic (MHD) buoyancy waves which are a fundamental 76 
wave mode of the magnetosphere. A bubble is an entropy-depleted plasma-sheet filament; 77 
i.e., it has reduced 𝑝𝑉! "⁄ 	relative to surroundings. The bubble moves Earthward toward its 78 
equilibrium position, where its entropy matches that of the local background environment 79 
(Birn et al., 2004; Xing and Wolf, 2007). The bubble often overshoots its equilibrium 80 
position and oscillates a few times (Chen and Wolf, 1999) as a buoyancy wave (Wolf et al., 81 
2012; Toffoletto et al., 2020, 2022). Buoyancy waves are analogous to neutral-atmospheric 82 
gravity waves, in which the buoyant force is gravity rather than magnetic tension. 83 
Magnetospheric buoyancy waves are possibly related to Pi2 oscillations (Hsu and 84 
McPherron, 2007; Panov et al., 2010; Xing et al., 2015; Wang et al., 2020; Yadav et al. 85 
2023).  86 

To better understand the properties of low entropy bubbles, Chen and Wolf (1993, 87 
1999) developed an MHD thin filament model to investigate their properties. The thin 88 
filament approach represents a highly idealized approximation to the motion of a field line 89 
in a plasma sheet background at equilibrium. This total filament pressure 𝑝 + 𝐵% 2𝜇&⁄  90 
balances the background. The thin filament approximation can be expressed as the solution 91 
of 1-D MHD equations that can be accurately solved with little dissipation (Chen and Wolf, 92 
1999). In that work, it was found that a depleted filament overshoots its equilibrium point, 93 
where its entropy matches the background value, and undergoes damped oscillations about 94 
that location. In a follow-up study, Wolf et al. (2012) derived an approximate formula for 95 
the period of the fundamental oscillation frequency of a thin plasma sheet filament for a 2-D 96 
force-balanced tail model: 97 

𝜔! ≈ (0.074	𝑠"!) +
,𝑝𝑉# $⁄ /&

𝑝𝑉# $⁄ 0
'

,𝑇(,*'+/

𝐵,,'𝑉 31 +
5
6 〈𝛽〉;

	 (1) 98 

where 𝑇',)$* is the ion temperature in keV, 𝐵+,$ 	is the strength of the z-component of the 99 
magnetic field, and 〈𝛽〉 is the field line averaged plasma beta (𝛽 ≡ 2𝜇&𝑝 𝐵%)⁄ . The prime 100 
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denotes a radial derivative. Henceforth, we will denote equation 1 as Wolf2012. The 101 
averaging is weighted by the flux tube volume, so that the field line average of a quantity A 102 
is: 103 

〈𝐴〉 ≡
∫𝐴𝑑𝑠𝐵 	

∫ 𝑑𝑠𝐵
	. (2) 104 

Wolf2012, in agreement with much previous work on interchange stability (e.g, 105 
Bernstein et al., 1958), predicts that 𝜔% is proportional to the entropy gradient and that the 106 
system is interchange unstable if the gradient is negative (i.e., 𝑝𝑉! "⁄ 	decreases away from 107 
the Earth). Panov et al. (2013) compared the results from the Wolf2012 equation with 108 
periods measured for 20 flow burst braking-oscillation events and found reasonably good 109 
agreement. This interchange oscillation formula, although derived for a very simple case, 110 
appears to be useful far beyond the constraints assumed in its derivation. 111 

Toffoletto et al. (2020) used an MHD normal mode analysis to determine the 112 
buoyancy frequencies and eigenmodes of an oscillating thin filament. The approach was 113 
based on a linear approximation and assumed that the perturbations have time dependence 114 
of the form 𝑒,'-.. Infinite conductance boundary conditions were assumed at the 115 
ionospheric footprints. The resulting two coupled equations of motion for the perpendicular 116 
and parallel displacements of mass points along the filament were solved as an eigenvalue 117 
problem to obtain the associated eigenfrequencies and eigenmodes. This approach differed 118 
from other approaches that looked at both poloidal and toroidal Alfvén and slow mode 119 
waves (e.g., Ohtani et al., 1989; Xia et al., 2017; Petrashchuk et al., 2022) that assumed low 120 
plasma beta configurations (𝛽 < 1) and a dipolar magnetosphere. Toffoletto et al. (2020) 121 
used the MHD normal analysis to determine the lowest frequency poloidal modes that were 122 
symmetric about the equatorial plane. They found that for field lines that map deep into the 123 
plasma sheet (|𝑥$| > 15	𝑅/), these modes were buoyancy modes while field lines that 124 
mapped closer to the Earth (inside |𝑥$|~6	𝑅/) resembled slow mode waves. They also 125 
found that the predicted buoyancy frequencies were in surprisingly good agreement with the 126 
frequencies predicted by Wolf2012, even though this formula used a much less rigorous 127 
approach and was derived for the plasma sheet. 128 

To better understand the relationship between MHD buoyancy modes and 129 
interchange, Toffoletto et al. (2022) looked at pure interchange modes and compared them 130 
to the less constrained MHD normal mode analysis. Using an energy approach like that of 131 
Bernstein et al. (1958), a buoyancy frequency for the interchange modes was derived by 132 
assuming that the oscillations are the result of the exchange of two adjacent field lines. The 133 
frequency for pure interchange oscillation was obtained as: 134 

𝜔-.! =
𝑝
𝜌

C𝑝'
&

𝑝 +
5
3
𝑉'&
𝑉 EC

𝑉'&
𝑉 − 〈𝛽〉2

𝑝'&
𝑝 E

31 + 56 〈𝛽〉; 〈
𝜉/(𝑠)!
𝜉/(0)!

C1 + 𝜉∥(𝑠)!
𝜉∥(0)!

E〉
	 (3) 135 

where 𝜉0(𝑠) and 𝜉∥(𝑠)	are the perpendicular and parallel displacements of mass points with 136 
respect to the background field line because of interchange, and 𝜌 is the mass density. Other 137 
variables and conventions are as defined above. The “e” subscript indicates that a term is 138 
evaluated in the equatorial plane, equivalent to setting 𝑠 = 0 in the displacements. The first 139 
parenthetical term in the numerator is the entropy gradient evaluated at the equatorial plane, 140 
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while the second parenthetical term results from the Alfvenic-timescale pressure re-141 
equilibration of the filament to the local background pressure. The pressure and flux tube 142 
volume are constants for a field line under the interchange approximation, so do not need 143 
subscripts. The Wolf2012 formula was compared to the Toffoletto et al. (2020) normal 144 
analysis, modified to include zero ionospheric conductance as well as the pure interchange 145 
result (equation 3). They found that tail-like field lines that cross the equatorial plane in the 146 
plasma sheet (|𝑥$| > 15	𝑅/)	are where the interchange results are most consistent with 147 
MHD ballooning normal mode analysis. One requirement for pure interchange is that the 148 
resulting pressure perturbation is constant along a field line, which is not generically the 149 
case for the more general MHD buoyancy modes.  150 

This paper is a follow-up to the Toffoletto et al. (2022) paper, where we investigated 151 
the buoyancy properties inside a low entropy bubble. As before,w e use 3 approaches: (1) 152 
the Wolf2012 formula that depends on the entropy gradient, equation 1; (2) the MHD 153 
normal mode analysis described in Toffoletto et al. (2020) modified to use zero conductance 154 
ionospheric boundary conditions as in Toffoletto et al. (2022); (3) the pure interchange 155 
approached described in Toffoletto et al. (2022). The results are compared, including the 156 
predicted frequencies and associated normal mode and interchange perturbations. The rest 157 
of the paper describes the basic approach, including a brief description of the background 158 
equilibrium and how the low entropy perturbation was introduced. We show three examples 159 
and discuss the results. 160 

2 Approach 161 

2.1 Background Model of an Average Magnetosphere 162 

For this study, we started with the same background field model as in Toffoletto et 163 
al. (2020, 2022), which consists of a Kp = 2 Tsyganenko (1989) model magnetic field and 164 
the pressure profile derived by combining a quiet curve from Lui et al. (1987) for |𝑥$| <165 
	8	𝑅/ 	and Spence et al. (1989) for |𝑥$| > 	8	𝑅/ 	. The background field is relaxed to 166 
equilibrium in the x-z plane using a 2‐D, high‐resolution version of the friction code (Lemon 167 
et al., 2003). The density model is taken from the Kp = 2 Gallagher et al. (2000) model for 168 
|𝑥$| < 	8	𝑅/ merged smoothly to a Tsyganenko and Mukai (2003) model for |𝑥$| >169 
	10	𝑅/ .	The profile for this model along the x-axis is shown in Figure 1, which includes the 170 
pressure, magnetic field, and density model. 171 

2.2 Local Entropy Depletion 172 

To impose a change in entropy to simulate the presence of a bubble, we take the 173 
entropy profile from the background along the equatorial plane and impose an indentation 174 
(local entropy depletion) along the whole field line. This indentation is specified using four 175 
control points (𝑥2, 𝑥%, 𝑥", 𝑥3) and fitting three bicubic spline curves as illustrated in Figure 176 
2. The spline fits are set between the control points (𝑥' − 𝑥'42),	for	𝑖 = 1, 2, 3. At the 177 
endpoints (𝑥2	and	𝑥3) the value and derivative of 𝑝𝑉! "⁄  is matched to the original 178 
unmodified background, ensuring a smooth transition between regions. At the middle 179 
control points (𝑥%	and	𝑥") the value of 𝑝𝑉! "⁄ and its derivative of the fitted curve is 180 
specified. In the cases shown below, the derivative is set to zero for simplicity at these 181 
locations. By field line tracing from each grid point in the 2D region to the intersection point 182 
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on the equatorial plane, any grid point that is magnetically connected to this region between 183 
the endpoints has its pressure modified to match the specified value of	𝑝𝑉! "⁄ . This new 184 
configuration is then iterated to approximate force balance as before using a high-resolution 185 
version of a 2D friction code (Lemon et al., 2004), which results in a change in the entropy 186 
profile as the system relaxes to a new equilibrium now containing a localized entropy 187 
depletion. This equilibrium-setting process is important for the background to be suitable for 188 
linear stability analysis as the use of perturbation theory to perform an eigen-analysis 189 
presupposes an equilibrium background. In short, the relaxation procedure is necessary 190 
because the indentation procedure does not guarantee the preservation of pressure balance. 191 

 192 

Figure 1: Plot of background magnetosphere model used, showing the pressure, 𝐵+, and 193 
density along the tail axis in the equatorial plane as a function of equatorial distance. Note 194 
that the plasmapause at −5	𝑅/ is incorporated in the density background. 195 

Three cases are presented here: Case 1 represents a bubble near the Earth while 196 
Cases 2 and 3 represent a bubble further out in the plasma sheet. The parameters used are 197 
specified in Table 1. 198 
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 199 

Figure 2: Sketch of the entropy profile along the equatorial plane along with the entropy-200 
depleted region (in blue) showing the control points. 201 

Table 1: Specification of entropy indentation geometry for three cases. Distances are in RE 202 

and 𝑝𝑉! "5  in units of 𝑛𝑃𝑎	 R61
78
S
!
"5 . 203 

Case 𝑥2 𝑥% 𝑝𝑉! "⁄ (𝑥%) 𝑥" 𝑝𝑉! "⁄ (𝑥") 𝑥3 
1 -4 -4.5 0.001 -5.5 0.0012 -6 
2 -6 -6.5 0.008 -7.5 0.01 -8 
3 -8 -8.5 0.04 -8.5 0.06 -10 

 204 

Figures 3 through 5 show the resulting configuration before and after equilibration. 205 
The before plot includes the indentation but has not been restored to equilibriu, while the 206 
after plot shows the preservation of the indentation but is now at equilibrium. In all cases, 207 
the tailward portion of the bubble moves slightly earthward as the system relaxes to 208 
equilibrium, thus reducing the size of the entropy-depleted region. In Figures 4 and 5, which 209 
correspond to Case 2 and 3 respectively, the average plasma beta is higher, which results in 210 
a larger change in the magnetic field than for Case 1 and the resulting depleted region is 211 
smaller after equilibration. The entropy value at the control points 𝑥%,	and	𝑥"were chosen so 212 
as have a slight positive tailward gradient and thus avoid unstable modes in this region, but 213 
this does not preclude unstable modes between the control points 𝑥2	and 𝑥% at the Earthward 214 

X1

match entropy and derivative

specify pV5/3 
and zero derivative

x1 x4x2 x3x

match pV5/3 and derivativepV5/3
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end of the bubble. We do not include cases where the bubble was placed further tailward, as 215 
it resulted in a dramatic reconfiguration of the tail during the equilibration process and a 216 
collapse of the bubble. As can be seen in Figure 1, the background magnetic field had a 𝐵+ 217 
minimum centered at around 𝑥$ 	= 	−16	𝑅/ , and the resulting magnetic field with a tailward 218 
bubble further reduced the minimum.  219 

 220 

Figure 3: Top panel shows 𝑝𝑉
2
3 in units of 𝑛𝑃𝑎 R61

78
S
2
3 and field line average plasma beta 221 

(equation 2) before and after equilibration for Case 1 where the indentation is placed 222 
between 𝑥$ = −4𝑅/ and −6	𝑅/. The bottom panel shows 𝐵+(in nT) and pressure (in nPa). 223 

 224 
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 225 

 226 

Figure 4: Same format as Figure 3 for Case 2 where the indentation is placed between 𝑥$ =227 
−6	𝑅/ 	and −8	𝑅/. 228 

 229 

Figure 5: Same format as Figure 3 for Case 3 where the indentation is placed between 𝑥$ =230 
−8	𝑅/and −10	𝑅/. Note the larger change in the magnetic field after equilibrium than the 231 
other two cases. 232 

 233 
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3.0 Results 234 

Equatorial 
Footprint 
Location 
(RE) 

Background 
Frequency 
(Hz) from 
MHD 
Normal 
Mode 

Bubble 
Frequency 
(Hz) from 
MHD 
Normal 
Mode 

Background 
Pressure 
Standard 
Deviation 
(nPa) 

Bubble 
Pressure 
Standard 
Deviation 
(nPa) 

MHD Mode 

-6.0 0.0105 0.0150 0.981 0.854  
-5.5 0.0107 0.0087 1.362 0.895 slow mode 
-5.2 0.0109 0.0027 1.711 0.133 pure interchange 
-5.0 0.0112 0.0033 2.026 0.063 pure interchange 
-4.8 0.0082 0.0025 2.427 0.092 pure interchange 
-4.6 0.0057 0.0010 2.934 0.149 pure interchange 
-4.4 0.0053 0.0060i 3.674 0.856 unstable 
-4.2 0.0050 0.0081i 4.390 2.532 unstable 
-4.0 0.0048 0.0035 5.428 2.225  

Table 2: Summary of the results for Case 1. Column 1 shows the sampling location in the 235 
equatorial plane, the second and third column frequency of the normal mode oscillation 236 
from the background and the bubble frequency respectively, the third and fourth column 237 
show the standard deviation of the isotropic pressure perturbation for the background and 238 
bubble, and the fifth column is the mode produced by the MHD normal mode analysis. 239 

3.1 Case 1 240 

The first case is the indentation is the closest to the Earth of all three cases. Table 2 241 
lists the results on some sampled field lines inside the bubble. The solid line in the top panel 242 
of Figure 6 is a plot of the entropy profile for both the unperturbed background (blue) and 243 
the indented profile (orange), and the dashed line is the corresponding flux tube volume 244 
averaged plasma beta (see equation 2 for our definition of flux tube volume average). Note 245 
that the profiles are slightly different even outside the control region because of the 246 
equilibration process. Also, the values of the entropy are slightly different from the specified 247 
values for the same reason. The second panel of Figure 6 shows the z-component of the 248 
magnetic field and pressure along the x-axis (in the equatorial plane) for both the 249 
background field and the bubble indentation. The third panel of Figure 6 shows the 250 
computed buoyancy frequencies for the background field and bubbles using three different 251 
techniques, the curves labeled MHD correspond to the normal mode calculation; the curves 252 
labeled “Wolf” are from the Wolf2012 approximate plasma sheet while the curves labeled 253 
“PI” are from the pure interchange calculation (equation 3). These frequencies are scaled to 254 
the background density profile shown in Figure 1, as described above and in Toffoletto et al. 255 
(2020). Since the eigenvalues can in principle be imaginary, both real and imaginary parts 256 
are included, where the imaginary components are shown as a dashed line with a shaded 257 
background and indicate regions of instability. The change in frequency at around 𝑥$ 	=258 
	−5	𝑅/ corresponds to the plasmapause location in the Gallagher (2000) model.  259 

For this case, Figure 8 and Table 2 shows that there is an overlap of the MHD 260 
normal modes and the pure interchange results at the locations 𝑥$ 	= 	−	4.6, −4.8, −5.0,  261 
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and −5.2	𝑅/.  In Figure 9 and Table 2 the normalized pressure perturbation from the MHD 262 
normal mode analysis as a function of distance s along the field line (from the equator) for 263 
the background field is a solid line and a dashed line for Case 1 bubble. The standard 264 
deviation of pressure along the field line (in nPa) for the background and bubble is also 265 
shown. For this case, the pressure perturbation at 𝑥$ 	= 	−4.6, −4.8, −5.0 and −5.2	𝑅/  is 266 
approximately constant along the field line, as can be seen in the reduction in the standard 267 
deviation of the pressure perturbation compared to the background. This is consistent with 268 
the modes at these locations being pure interchange. All displacements are normalized by 269 
the maximum displacement of all the modes (Toffoletto et al. 2020). 270 

The computed frequency at these locations is much lower than the ones obtained in 271 
the background case with no bubble, and all three approaches give quite consistent results at 272 
these locations. This would imply that the buoyancy frequencies inside a low entropy bubble 273 
with a small entropy gradient would be small and closer to the values one would expect for 274 
the plasmasheet rather than the inner magnetosphere. For 𝑥$ 	= 	−4.2 and −4.4	𝑅/ the 275 
solution is imaginary, indicating instability. The large value of the frequency tailward of the 276 
region of instability (between 𝑥$ 	= 	−5 and −6	𝑅/) is a result of a large negative gradient 277 
in 𝑝𝑉! "⁄  as its value returns to the background value outside the bubble. The MHD normal 278 
modes for 𝑥$ = −5.5	𝑅/ indicate slow mode solutions as the parallel displacement is much 279 
larger than the perpendicular displacement. For this location, the MHD normal mode 280 
predicts a much lower frequency than the pure interchange and Wolf2012 result.  281 

 282 
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Figure 6: The is the result for Case 1. The solid line in the top panel shows 𝑝𝑉
2
3and the 283 

dashed line is the field line average plasma beta. for both the background and perturbed 284 

configuration. The units for 𝑝𝑉! "5 are	𝑛𝑃𝑎	(𝑅/ 𝑛𝑇⁄ )! "5 . The second panel shows the 285 
magnetic field (𝐵+) in nT and pressure in nPa. The third panel shows the computed 286 
frequencies (in Hz) for the unperturbed field using the MHD normal mode approach (blue), 287 
pure interchange (red) and the Wolf2012 formula (orange). The solid lines are for real 288 
values, the dashed lines imaginary. In this case, all frequencies are real. The bottom panel 289 
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shows the computed frequencies for the perturbed background, showing a shaded region of 290 
imaginary frequencies between 𝑥$ 	= 	−4.1 and −4.4	𝑅/. 291 

 292 

Figure 7: Comparison of wave modes from the MHD normal mode (blue line) and classic 293 
interchange analysis (red line) for the background field as a function of distance s along the 294 
field line from the equator. The solid curves represent the perpendicular displacement and 295 
the dashed line is the parallel displacement. The associated MHD normal mode frequencies 296 
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are also shown. All results are normalized to the maximum displacement of the largest 297 
mode. 298 

 299 

Figure 8: Same format as Figure 7 for the bubble indentation field for Case 1. Note the 300 
overlap of the modes for 𝑥$ 	= 	−4.6, −4.8, −5.0  and −5.2	𝑅/. Note that for 𝑥$ 	= 	−4.2 301 
and −4.4	𝑅/ the solution is imaginary, indicating instability. The MHD normal modes for 302 
𝑥$ = −5.5	𝑅/ indicate slow mode solutions, as the parallel displacement is much larger than 303 
the perpendicular displacement. 304 

 305 
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 306 

Figure 9: Pressure normalized perturbation from the MHD normal mode analysis as a 307 
function of distance s along the field line (from the equator) for the background field is a 308 
solid line and a dashed line for Case 1 bubble. The standard deviation of pressure along the 309 
field line (in nPa) for the background and bubble is also shown. For this case, the pressure 310 
perturbation at 𝑥$ 	= 	−4.6, −4.8, −5.0		and −5.2	𝑅/ is approximately constant along the 311 
field line, as can be seen in the reduction in the standard deviation of the pressure 312 
perturbation compared to the background. 313 

 314 
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3.2 Case 2 315 

The results for Case 2 are shown in Figure 10 and summarized in Table 3. The 316 
ordinary (unindented) background and the bubble oscillation frequencies are quite different 317 
and vary noticeably between −6 and −8	𝑅/. Note that the eigenvalues are only purely real 318 
or imaginary as there is no dissipation in the system. In the case of the ordinary background 319 
fields, there are only real eigenvalues, indicating a stable equilibrium with no dissipation. 320 
The bottom panel shows the corresponding results for the bubble indentation. For this case, 321 
there is a shaded region of imaginary eigenvalues between approximately 𝑥$ 	= 	−6.1 and 322 
−6.3	𝑅/ 	where the gradient in 𝑝𝑉! "⁄  is positive (decreasing away from the Earth), as the 323 
chosen entropy value is set to allow a change in gradient at the earthward edge of the 324 
imposed bubble. The large value of the frequency tailward of the region of instability 325 
(between 𝑥$ 	= 	−7 and −8	𝑅/) is a result of a large negative gradient in 𝑝𝑉! "⁄  as its value 326 
returns to the background value outside the bubble. No such increase in frequency is seen in 327 
the MHD normal mode result. The reason for the difference can be seen in Figures 11 and 328 
12, which plot the normalized modes for both the pure interchange (solid line) and the MHD 329 
normal mode calculation. As before, the normalization is chosen relative to the maximum of 330 
all the modes (see Toffoletto et al., 2020 for a discussion of the normalization). Figure 11 is 331 
from the background field and Figure 12 for the imposed bubble indentation. In Figure 12, 332 
at 𝑥$ 	= 	−7.5	𝑅/, which corresponds to the location where there is a jump in the frequency 333 
in Figure 10, the parallel displacement for the MHD is larger than the perpendicular 334 
displacement, which is what would be expected from an MHD slow mode. These results 335 
suggest that to remain compatible with pure interchange assumptions at this location a much 336 
higher frequency is needed, while the MHD solution produces a lower frequency but as a 337 
slow mode. In other words, the assumptions underlying the pure interchange calculation 338 
prevent the slow mode observed in the MHD results from showing up. In addition, as can be 339 
seen in Figure 12, at 𝑥$ 	= 	−	6.5	𝑅/ the pure interchange solution closely resembles the 340 
MHD solution, which implies the MHD solution is closer to being a pure interchange mode 341 
at this location. This can be confirmed by the pressure perturbation, which is shown in 342 
Figure 13, which shows a reduction in the standard deviation of the pressure along the field 343 
line from 0.759 to 0.154 nPa. We see similar behavior at 𝑥$ 	= 	−7.2	𝑅/ .	Unstable modes 344 
are also shown in Figure 13 at 𝑥$ 	= 	−6.0 and −6.2	𝑅/. At the sampling locations at 𝑥$ 	=345 
	−6.4, −6.5	and – 7.2	𝑅/ shows a good overlap between the MHD normal mode and pure 346 
interchange and the pressure perturbation is approximately constant along the field lines. 347 
Outside the bubble region, tailward of 𝑥$ 	= 	−8	𝑅/ and earthward of 𝑥$ 	= 	−6	𝑅/, the 348 
solutions are close to the background field; i.e., the frequency curves in the middle and 349 
lower panels of Figures 11 and 12 are almost identical. Any difference between them is due 350 
to the equilibration of the tail after the bubble indentation was introduced. 351 

 352 

 353 

 354 

 355 
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 356 

Figure 10: This shows the results for Case 2, the solid line in the top panel shows 𝑝𝑉
2
3and 357 

the dashed line is the field line average plasma beta. for both the background and perturbed 358 

configuration. The units for 𝑝𝑉! "5 are 𝑛𝑃𝑎	 R61
78
S
!
"5 . The second panel shows the magnetic 359 

field (𝐵+) in nT and pressure in nPa. The third panel shows the computed frequencies (in 360 
Hz) for the unperturbed field using the MHD normal mode approach (blue), pure 361 
interchange (red) and the Wolf2012 formula (orange). The solid lines are for real solutions, 362 
the dashed lines are imaginary solutions. In this case, all frequencies are real. The bottom 363 
panel shows the computed frequencies for the perturbed background, showing a shaded 364 
region of imaginary frequencies between 𝑥$ 	= 	−	6.0	and −	6.2	𝑅/. 365 
 366 

 367 
Equatorial 
Footprint 
Location 
(RE) 

Background 
Frequency 
(Hz) from 
MHD 
Normal 
Mode 

Bubble 
Frequency 
(Hz) from 
MHD 
Normal 
Mode 

Background 
Pressure 
Standard 
Deviation 
(nPa) 

Bubble 
Pressure 
Standard 
Deviation 
(nPa) 

MHD Mode 

-9.0 0.0118 0.0150 0.289 0.272  
-8.0 0.0114 0.0087 0.414 0.370  
-7.5 0.0112 0.0027 0.499 0.501 slow mode 
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-7.2 0.0110 0.0033 0.560 0.119 pure 
interchange 

-6.5 0.0107 0.0025 0.759 0.154 pure 
interchange 

-6.4 0.0106 0.0010 0.792 0.217 pure 
interchange 

-6.2 0.0106 0.0060i 0.877 0.627 unstable 
-6.0 0.0105 0.0081i 0.981 0.578 unstable 
-5.0 0.0122 0.0035 2.026 2.049  

Table 3: Summary of the results for Case 2. Column 1 shows the sampling location in the 368 
equatorial plane, the second and third column frequency of the normal mode oscillation 369 
from the background and the bubble frequency respectively, the third and fourth column 370 
show the standard deviation of the pressure perturbation for the background and bubble, and 371 
the fifth column is the mode produced by the MHD normal mode analysis. 372 

 373 
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 374 

Figure 11: Comparison of wave modes from the MHD normal mode pure (blue line) and 375 
interchange analysis (red line) for the background field as a function of distance s along the 376 
field line from the equator. The solid curves represent the perpendicular displacement and 377 
the dashed line is the parallel displacement. The associated MHD normal mode frequencies 378 
are also shown. 379 

 380 
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 381 

Figure 12: Same format as Figure 7 for the bubble indentation field for Case 2. Note the 382 
overlap of the modes for 𝑥$ 	= 	−6.4,−6.5 and −7.2	𝑅/. Note that for 𝑥$ 	= 	−	6.0 and 383 
−6.2	𝑅/ the solution is imaginary, indicating instability. At 𝑥$ 	= 	−7.5	𝑅/ we see slow 384 
mode waves in the MHD normal mode solution, where motion is dominated by parallel 385 
displacement.  386 

 387 
 388 



manuscript submitted to Journal of Geophysical Research – Space Physics 

 21 

 389 

Figure 13: Pressure normalized perturbation from the MHD normal mode analysis as a 390 
function of distance s along the field line (from the equator) for the background field is a 391 
solid line and a dashed line for Case 2 bubble. The standard deviation of pressure along the 392 
field line (in nPa) for the background and bubble is also shown. 393 
 394 
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3.3 Case 3 395 

For this case, the indentation corresponds to an entropy bubble that is further out in 396 
the plasma sheet. Figure 14 shows the configuration and resulting buoyancy frequency 397 
results for this case and is summarized in Table 4. The bubble was set in the range 𝑥$ 	=398 

	−8 to −10	𝑅/. The perturbation in 𝑝𝑉! "5  was set by specifying the pressure, but the 399 
resulting equilibration relaxes the pressure closer to the background while changing the 400 
magnetic field. Such a resetting of the pressure was not seen in Case 1, likely because the 401 
background plasma beta is lower in Case 1. These results indicated instability on the 402 

tailward portion of the bubble front around 𝑥$ 	= 	−8.2	𝑅/ where the derivative of 𝑝𝑉! "5  403 
reverses sign. The MHD normal mode results most closely resemble the pure interchange 404 
results for a field line that crosses the equatorial plane at 𝑥$ 	= 	−8.4	𝑅/. This can be seen in 405 
the overlap of the modes in Figure 15, as well as the pressure perturbation plot in Figure 16, 406 
although the pressure for this case is only approximately constant along the field line. As in 407 
Case 1, there is a difference in the predicted modes at around 𝑥$ 	= 	−8.7 and −9.0	𝑅/, the 408 
Wolf2012 (equation 1) formula predicts a higher frequency than the MHD normal mode, 409 
while the pure interchange frequencies (equation 3) are closer to the MHD result, and both 410 
are closer to the background result (e.g., Figures 15 and 16, 𝑥$ 	= 	−10	𝑅/). The MHD 411 
normal mode results are, as in Case 1, slow mode waves where the parallel displacement is 412 
significantly larger than the perpendicular displacement, as can be seen in Figure 16. The 413 
pressure perturbation is approximately constant for a field line that crosses the equatorial 414 
plane at 𝑥	 = 	−8.4	𝑅/, with a standard deviation of 0.086 nPa, compared to the unperturbed 415 
value of 0.359 nPa. 416 

I 417 
Equatorial 
Footprint 
Location 
(RE) 

Background 
Frequency 
(Hz) from 
MHD 
Normal 
Mode 

Bubble 
Frequency 
(Hz) from 
MHD 
Normal 
Mode 

Background 
Pressure 
Standard 
Deviation 
(nPa) 

Bubble 
Pressure 
Standard 
Deviation 
(nPa) 

MHD Mode 

-11.0 0.0085 0.0074 0.060 0.028  
-10.0 0.0109 0.0096 0.166 0.035  
-9.5 0.0116 0.0123 0.239 0.264  
-9.0 0.0118 0.0115 0.289 0.266  
-8.7 0.0118 0.0120 0.322 0.345 slow mode 
-8.4 0.0117 0.0028 0.359 0.086 pure interchange 
-8.2 0.0116 0.0154i 0.385 0.303 unstable 
-8.0 0.0114 0.0094 0.414 0.281  
-7.0 0.0109 0.0110 0.606 0.619  

Table 4: Summary of the results for Case 3. Column 1 shows the sampling location in the 418 
equatorial plane, the second and third column frequency of the normal mode oscillation 419 
from the background and the bubble frequency respectively, the third and fourth column 420 
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show the standard deviation of the pressure perturbation for the background and bubble, and 421 
the fifth column is the mode produced by the MHD normal mode analysis. 422 

 423 
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Figure 14: Same format as Figure 6 for Case 3. The shaded region indicates where the 424 
modes are unstable. 425 

 426 
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Figure 15: Same format as in Figure 7 for the background field for comparison for Case 3. 427 

 428 

Figure 16: Same as Figure 8 for Case 3.. Note the overlap in modes for the field line that 429 
crosses the equatorial plane at 𝑥$ 	= 	−6.5	and −7.2	𝑅/  , 𝑥$ =	−6.2 and −6.4	𝑅/ are 430 
unstable modes. 431 
 432 
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 433 

Figure 17: Same as Figure 9 for the background for comparison for Case 3. Note the 434 
pressure is approximately constant along the field lines that have crossing points at 𝑥$ 	=435 
	−6.5	𝑅/, and are approximately consistent with these modes being an interchange mode. 436 

4.0 Discussion  437 

The thin filament approximation, while limited in many ways, has proven to be a 438 
useful approach to looking at the properties and motion of entropy-depleted field lines in a 439 
background medium. The approach follows a one-dimensional field line, neglecting the 440 
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motion of the field lines transverse to the noon-midnight meridional (x-z) plane. However, 441 
for the interchange of two field lines to occur, they must move past one another in such a 442 
way that both cannot remain in-plane. In addition, the MHD thin filament code neglects 443 
feedback from the background and any other filament while this coupling is explicitly 444 
included in the interchange derivation. The coupling to the other filaments should be 445 
included to properly compare some features of the MHD thin filament model to the classic 446 
interchange model. This work is a follow-up to the previous study looking at buoyancy 447 
modes where the entropy has been modified relative to the ordinary background to include a 448 
bubble, all within the framework of the MHD thin filament approximation (Chen and Wolf, 449 
1999; Wolf et al. 2012). After imposing entropy modifications at three locations on the 450 
nightside magnetosphere, we used three different approaches to infer the properties and 451 
frequencies of buoyancy modes within these entropy-depleted regions. Our methodology 452 
(average background, indentation-relaxation, eigen-analysis) presupposes that the bubble 453 
can be treated quasi-statically on the timescales of the oscillations. The three approaches 454 
used in this study are: 455 

1. MHD normal mode calculation, the basic procedure is described in Toffoletto et al. 456 
(2020) except that the ionospheric boundary condition is replaced with a zero 457 
conductance, to be consistent with the interchange assumption. The modifications to the 458 
boundary conditions are described in Toffoletto et al. (2022).  459 

2. Pure interchange (equation 3) as described by Toffoletto et al. (2022), used an energy 460 
argument to deduce the modes and frequencies that one would expect when the 461 
assumptions of the classic interchange theory is applied. This assumption entails that 462 
both the background pressure and associated pressure perturbation that arises from 463 
interchange is constant along a field line. 464 

3. The Wolf2012 (equation 1) formula is based on simplifying assumptions of interchange 465 
in a tail-like background equilibrium magnetic field. 466 

Three cases are examined: 467 

Case 1 involves an entropy depletion (bubble) centered at x = -7 RE where it is 468 
found that the frequency of the interchange mode is much lower than a typical field line 469 
would be than a background field line at that location. Some of field lines resembled pure 470 
interchange modes, as shown in Figure 8 and Table 2a for the field line crossing the 471 
equatorial plane at 𝑥$ 	= 	−6.4 and −6.5	𝑅/, where the pure interchange mode and the 472 
MHD normal mode overlap quite closely and the pressure perturbation from the MHD result 473 
is approximately constant along the field line. The analysis also reveals the existence of 474 
unstable modes between 𝑥$ 	= 	−6.4 to −7.2	𝑅/ where the entropy gradient changes sign to 475 
decreasing tailward. All three approaches predict a very similar buoyancy frequency with 476 
the normal mode and interchange analysis having the closest agreement. It is surprising how 477 
well the Wolf2012 estimate works given that it is an approximate formula that was 478 
developed for a tail-like background. On the tailward edge of the bubble, the MHD normal 479 
mode results disagree with the pure interchange and the Wolf2012 estimate. The MHD 480 
result predicts slow mode waves (𝑥$ 	= 	−7.5	𝑅/ in Figure 8 and Table 2) with lower 481 
frequencies, while the pure interchange and the Wolf2012 formula predict a larger 482 
frequency. Since the MHD result is more general and does not restrict itself to any 483 
interchange assumptions, one would expect that this result is likely more physically 484 
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reasonable. Nevertheless, except for this tailward region of the bubble, it is remarkable how 485 
well the three approaches agree, in particular regarding the frequencies.  486 

Case 2 represents a bubble that is further out in the tail and resulted in a small region 487 
of unstable modes as in Case 1 and also lower frequencies inside the bubble, however, the 488 
modes are less like pure interchange modes than in Case 1. In both cases, we find that the 489 
buoyancy frequencies are lower in the bubble, and on the field lines that crosses the equator 490 
at 𝑥$ 	= 	−6.4, −6.5, and −7.2	𝑅/ the MHD result resembles pure interchange modes where 491 
pressure perturbation is approximately constant along the field line (see Figure 13, Table 3). 492 
We also find that on the tailward portion of the bubble, the buoyancy mode results disagree, 493 
the MHD normal mode solution finds a lower frequency solution than pure interchange and 494 
Wolf2012 and produces a slow mode wave with motion dominated by the parallel 495 
displacements of mass points lining the filament. Nevertheless, it is surprising how well the 496 
frequencies arrived at using very different methods agree given that the simplifying 497 
assumptions implicit in the MHD thin filament code. 498 

Finally, Case 3 is for a bubble even further out in the tail. The indentation-relaxation 499 
procedure results in a larger disruption of the tail equilibrium outside the indentation region 500 
that produces a deeper Bz minimum in the tail, likely due to the greater plasma 𝛽 on 501 
stretched field lines. We see a region of slow mode dominated behavior in the MHD 502 
solution tailward of the instability region as in the other cases. A smaller region of obvious 503 
pure interchange modes within the bubble are seen in this case, as shown for the field line 504 
the crosses the equatorial plane at 𝑥$ 	= 	−8.4	𝑅/.  505 

Now, we discuss our implicit interpretation of disagreement between the two 506 
methods under consideration (MHD vs. pure interchange). In some sense, the pure 507 
interchange approach is a “more constrained” approach in virtue of the additional 508 
assumption of pressure constancy along a field line. For this reason, we interpret a 509 
disagreement between the results of the interchange approach and the MHD approach as a 510 
violation of the additional assumptions behind pure interchange. In short, we imply that the 511 
ideal MHD is closer to ground truth. However, there is reason to approach such an 512 
assumption with caution. It may be that the conditions of the magnetotail are such as to 513 
violate MHD while producing kinetic effects that substantiate a pure interchange treatment. 514 

MHD treatments presuppose that interactions between the plasma and 515 
electromagnetic fields occurs locally, which requires that the frequencies be much slower 516 
than the gyrofrequency and wavelengths much later than gyroradius. However, when the 517 
magnetosphere is stressed, the near Earth plasma sheet (NEPS) undergoes thinning, the 518 
plasma 𝛽 increases and the local field line curvature increases. When the field line curvature 519 
becomes comparable to the local gyroradius, the ion orbits become stochastic, undergoing 520 
stochastic (non-adiabatic) pitch-angle scattering each time it crosses the equatorial plane. 521 
This violate bounce invariance, since its motion is largely adiabatic away from the 522 
equatorial plane, meaning that one should in such cases perform a bounce-averaging. These 523 
arguments are considered in great detail in Hurricane (1994 a,b), where a linear kinetic 524 
Vlasov theory for ballooning-interchange modes is developed to capture NEPS dynamics. 525 
The paper also provides support for performing flux tube (field line) averaging (bounce 526 
averaging and pitch angle averaging) of drift frequencies in cases of high stochasticity, since 527 
the individual particles will explore most of the flux tube volume in a small number of 528 
bounces.  529 
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The main implication of these points is that it may be more realistic in the NEPS to 530 
entertain the validity of the interchange assumption over MHD, which allows greater 531 
flexibility in the pressure adjustments. In short, where the results of the interchange analysis 532 
deviate from the MHD analysis above, it is not obvious that the MHD results are the more 533 
trustworthy. Perhaps we should remain open to the question of which conditions are more 534 
well-satisfied in the NEPS. For example, we were unable to find any observational data 535 
pertaining to slow modes towards the tailward region of flow bursts. Observational data 536 
could either find such modes near the bubble’s tailward edge or fail to, in which case some 537 
empirical support would be provided for the greater applicability of either the MHD 538 
approach or the interchange approach, respectively. 539 

5.0 Conclusion 540 

Using empirically based magnetic field and pressure models, the entropy 𝑝𝑉! "⁄  is 541 
generally found to be a smooth background function of xe, where xe is the distance in the 542 
equatorial plane and increases sunward. Additionally, 𝜕(𝑝𝑉! "⁄ )/𝜕𝑥$ is normally negative 543 
for xe < 0. In the present paper, we let 	𝜕(𝑝𝑉! "⁄ )/𝜕𝑥$ vary substantially in a limited region. 544 
We find that, if 𝜕(𝑝𝑉! "⁄ )/𝜕𝑥$ varies in that region but remains negative everywhere, then 545 
the buoyancy frequency can vary substantially but remains real (indicating a stable 546 
configuration). If 𝜕(𝑝𝑉! "⁄ )/𝜕𝑥$ is positive in a small region, then the buoyancy frequency 547 
can be imaginary, indicating a local instability. If	𝜕(𝑝𝑉! "⁄ )/𝜕𝑥$ is small but negative, then 548 
the buoyancy frequency agrees with interchange calculations, even in the inner 549 
magnetosphere. Except for some notable locations inside the bubble, the three approaches 550 
agree in their prediction of the buoyancy frequencies. 551 

A main result suggested by our findings is that in the presence of bubbles, which 552 
frequently show up in the region during any substorm expansion phase, the agreement 553 
between the MHD and the pure interchange treatment is restored where previous average 554 
magnetosphere results showed a disparity. Our interpretation of these results is that the pure 555 
interchange treatment is more reasonable in the inner plasma sheet and inner magnetosphere 556 
when the magnetotail is disturbed, as compared to an average quiet-time magnetosphere. 557 
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