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Abstract

The modern state of the mantle and its evolution on geological timescales is of widespread importance for the Earth sciences.

For instance, it is generally agreed that mantle flow is manifest in topographic and drainage network evolution, glacio-eustasy

and in the distribution of sediments. There now exists a variety of theoretical approaches to predict histories of mantle

convection and its impact on surface deflections. A general goal is to make use of observed deflections to identify Earth-like

simulations and constrain the history of mantle convection. Several important insights into roles of radial and non-radial

viscosity variations, gravitation, and the importance of shallow structure already exist. Here we seek to bring those insights

into a single framework to elucidate the relative importance of popular modelling choices on predicted instantaneous vertical

surface deflections. We start by comparing results from numeric and analytic approaches to solving the equations of motion

that are ostensibly parameterised to be as-similar-as-possible. Resultant deflections can vary by $\sim$10\%, increasing to

$\sim25$\% when viscosity is temperature-dependent. Including self-gravitation and gravitational potential of the deflected

surface are relatively small sources of discrepancy. However, spherical harmonic correlations between model predictions decrease

dramatically with the excision of shallow structure to increasing depths, and when radial viscosity structure is modified. The

results emphasise sensitivity of instantaneous surface deflections to density and viscosity anomalies in the upper mantle. They

reinforce the view that a detailed understanding of lithospheric structure is crucial for relating mantle convective history to

observations of vertical motions at Earth’s surface.
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Abstract18

The modern state of the mantle and its evolution on geological timescales is of widespread19

importance for the Earth sciences. For instance, it is generally agreed that mantle flow20

is manifest in topographic and drainage network evolution, glacio-eustasy and in the dis-21

tribution of sediments. There now exists a variety of theoretical approaches to predict22

histories of mantle convection and its impact on surface deflections. A general goal is to23

make use of observed deflections to identify Earth-like simulations and constrain the his-24

tory of mantle convection. Several important insights into the role of radial and non-radial25

viscosity variations, gravitation, and the importance of shallow structure already exist.26

Here we seek to bring those insights into a single framework to elucidate the relative im-27

portance of popular modelling choices on predicted instantaneous vertical surface deflec-28

tions. We start by comparing results from numeric and analytic approaches to solving29

the equations of motion that are ostensibly parameterised to be as-similar-as-possible.30

Resultant deflections can vary by ∼10%, increasing to ∼ 25% when viscosity is temperature-31

dependent. Including self-gravitation and gravitational potential of the deflected surface32

are relatively small sources of discrepancy. However, spherical harmonic correlations be-33

tween model predictions decrease dramatically with the excision of shallow structure to34

increasing depths, and when radial viscosity structure is modified. The results empha-35

sise sensitivity of instantaneous surface deflections to density and viscosity anomalies in36

the upper mantle. They reinforce the view that a detailed understanding of lithospheric37

structure is crucial for relating mantle convective history to observations of vertical mo-38

tions at Earth’s surface.39

Plain Language Summary40

Flow of rock within Earth’s interior plays a crucial role in evolving the planet. It41

moves heat and chemicals from deep depths to the surface, for instance. It also moves42

the lithosphere—the Earth’s outer rocky shell—which in turn impacts processes includ-43

ing mountain building, sea-level change, formation of volcanoes, river network evolution,44

and natural resource distribution. Consequently, we wish to understand the present state,45

and history, of flowing rock within Earth’s interior. Observations exist to address this46

problem, and mathematics and computing tools can also be used to predict histories of47

flow and their impact on Earth’s surface. We explore how assumptions incorporated into48

such numeric models can affect calculations of the vertical deflection of Earth’s surface.49

Predictions from different models are compared, with a view to identifying crucial mod-50

elling components. Surface sensitivity to deep flow is assessed, demonstrating how sur-51

face observations can enlighten flow histories.52

1 Introduction53

Mantle convection plays a crucial role in Earth’s evolution (e.g., Hager & Clayton,54

1989; Parsons & Daly, 1983; Pekeris, 1935). It is well understood, for instance, that flow55

in the mantle is fundamental in the transfer of heat and chemicals from the deep Earth56

to the surface, in driving horizontal and vertical lithospheric motions (thus tectonic pro-57

cesses), and in magnetism via interactions with the core (e.g., Biggin et al., 2012; Davies58

et al., 2023; Foley & Fischer, 2017; Hoggard et al., 2016; Holdt et al., 2022; Pekeris, 1935).59

In turn, many processes operating at or close to Earth’s surface are impacted, includ-60

ing glacio-eustasy, magmatism, climate, sediment routing, natural resource distribution,61

drainage network evolution, and development of biodiversity (e.g., Bahadori et al., 2022;62

Ball et al., 2021; Braun, 2010; Chang & Liu, 2021; Hazzard et al., 2022; O’Malley et al.,63

2021; Salles et al., 2017; Stanley et al., 2021). Clearly, understanding the physical and64

chemical evolution of the mantle has broad implications. An important goal is to deter-65

mine contributions to surface processes from the modern mantle and its history during,66

say, the last 100 million years.67
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Residual oceanic age-depth measurements, potential field data, seismic tomographic68

models and melting histories of young mafic rocks are providing increasingly coherent69

observational insights into the modern and recent state of the mantle (e.g., Ball et al.,70

2022; Davies et al., 2023; Fichtner et al., 2009, 2013; Fichtner & Villaseñor, 2015; French71

& Romanowicz, 2015; Hoggard et al., 2016; Holdt et al., 2022; Kaula, 1963; Lekić & Fis-72

cher, 2014; Priestley & McKenzie, 2013; F. D. Richards et al., 2021). Stratigraphic and73

geomorphic observations as well as magmatic histories provide clues about the history74

of mantle convection on geologic timescales (e.g., Al-Hajri et al., 2009; Czarnota et al.,75

2013; Flament et al., 2015; Fernandes et al., 2019; Fernandes & Roberts, 2021; Galloway76

et al., 2011; Gunnell & Burke, 2008; Gurnis et al., 2000; Hoggard et al., 2021; Lambeck77

et al., 1998; Morris et al., 2020; O’Malley et al., 2021; Stanley et al., 2021). Despite these78

advances, observations providing information about the history of mantle convection are79

sparse in places, especially within continental interiors and back in time (see e.g., Hog-80

gard et al., 2021). Moreover, disentangling contributions from crustal, lithospheric and81

sub-lithospheric processes to surface deflections remains challenging and controversial82

(see e.g. Hoggard et al., 2021; Wang et al., 2022).83

Theoretical approaches that retrodict histories of mantle convection can, in prin-84

ciple, be used to fill in spatio-temporal gaps in the observational record and disentan-85

gle contributions to surface observables from different geologic processes (e.g., Baumgard-86

ner, 1985; Bunge & Baumgardner, 1995; Davies et al., 2013; Flament et al., 2015; Ghe-87

lichkhan et al., 2021; Hager et al., 1985; Moucha & Forte, 2011; Steinberger & Antret-88

ter, 2006). Increasingly realistic geodynamic simulations incorporating, for instance, plate89

motions, gravitation and deflection of gravitational potential fields, complex rheologies,90

viscosity laws that can include temperature, pressure, composition, grain size and strain91

rate dependence, and assimilation of seismic tomographic information into flow solutions,92

result in a diverse array of retrodicted flow histories. Mineralogical phase changes, com-93

pressibility, different surface and core-mantle boundary slip conditions (e.g., no-slip, free-94

slip), chemical and thermal buoyancy, and plate motion constraints on mantle structure95

can also generate diverse predictions of mantle convection and resultant surface deflec-96

tions (e.g., Baumgardner, 1985; Bunge et al., 2002, 2003; Corrieu et al., 1995; Crameri97

et al., 2012; Dannberg et al., 2017; “Topographic asymmetry of the South Atlantic from98

global models of mantle flow and lithospheric stretching”, 2014; Forte, 2007; Ghosh &99

Holt, 2012; Glǐsović & Forte, 2016; Hager & Clayton, 1989; Heister et al., 2017; Liu &100

Gurnis, 2008; Panasyuk et al., 1996; Ribe, 2007; Ricard, 2007; Tackley et al., 1993; Zhong101

et al., 2008; Zhou et al., 2018). Aside from the fundamental choice of governing equa-102

tions and parameterizations underpinning simulations, mathematical and computational103

approaches to solve the equations of motion generate different predictions of surface de-104

flections. These approaches sit within two broad families: numeric simulations (e.g., AS-105

PECT, CitcomS, TERRA; Bangerth et al., 2023; Baumgardner, 1985; Zhong et al., 2000),106

and propagator-matrix-based, quasi-analytic techniques, that can be solved in two or three107

dimensions, and importantly for our purposes, spherically and spectrally (e.g., Colli et108

al., 2016; Hager & O’Connell, 1979; Parsons & Daly, 1983).109

A challenge then is to establish whether observed surface deflections can be used110

to discriminate between theoretical predictions of mantle convection, and, in turn, iden-111

tify models that generate realistic and testable retrodictions. In this study we are prin-112

cipally concerned with establishing similarities and sensitivities of predicted instanta-113

neous vertical surface deflections. We focus on vertical motions for two reasons. First,114

inventories of measurements of uplift and subsidence—on timescales of mantle convection—115

now exist for most continents and could be compared to predictions from global simu-116

lations in future work (e.g. Fernandes & Roberts, 2021, and references therein). Secondly,117

many geodynamic simulations incorporate horizontal motions of the lithosphere, which118

limits their use as a comparator.119
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From an observational perspective, it would be useful to establish rules-of-thumb120

that quantify sensitivity of surface deflections to choices made when predicting them.121

Many such rules are already well known from analytic and numeric solutions of the equa-122

tions of motion (e.g., Colli et al., 2016; Hager & O’Connell, 1979; Holdt et al., 2022; Lees123

et al., 2020; Parsons & Daly, 1983). For instance, a suite of benchmark studies exist that124

compare predictions from numeric mantle convection simulations with analytic solutions125

(see e.g., Bauer et al., 2019; Kramer et al., 2021; Zhong et al., 2008, and references therein).126

Those papers tend to focus on establishing the fidelity of numeric models. In contrast,127

our goals are to, first, understand how calculated deflections are impacted by the choice128

of methodology used to solve the equations of motion and, secondly, to establish sensi-129

tivities to popular assumptions incorporated into simulations. We want to know the ex-130

tent to which an improved fit between predictions and observations reflects a more Earth-131

like density and viscosity structure versus modelling choices. Our thesis is that perform-132

ing all tests in a self-consistent framework, as we do in this study, provides a straight-133

forward way to collate insights into the sensitivities of predicted surface deflections and134

to simplify the comparison of predictions from different suites of models.135

1.1 Our Approach and Paper Structure136

We start by exploring the consequences of solving the equations of motion numer-137

ically, using the TERRA software, and analytically, using Ghelichkhan et al. (2021)’s prop-138

agator matrix algorithms (see Figure 1 & Supporting Information). We make use of the139

flexibility of numeric approaches by incorporating a variety of assumptions and param-140

eterizations that are not amenable to analytic attack (e.g., temperature-dependent vis-141

cosity). All numeric simulations presented in this paper were driven by the plate mo-142

tion history of Merdith et al. (2021, see Figures 1g–h and S1). The models have a res-143

olution of 60 km at their surface (see Supporting Information for details of model setup144

and execution). We note that they do not directly assimilate information about the man-145

tle from tomographic models. Ensuring that numeric simulations are accurate and sta-146

ble means that computational burden is often considerable and hence systematic explo-147

ration of parameter space remains challenging. In contrast, analytic approaches can yield148

calculated surface deflections that are (mathematically) accurate, whilst including fea-149

tures such as radial gravitation, with much less computational cost. Consequently, we150

make use of propagator matrix techniques to explore parameter space, examine bench-151

marks, and reproduce results. We establish the sensitivity of solutions to different pa-152

rameterizations and approaches to solving the equations of motion.153

There are at least two important considerations when solving the equations of mo-154

tion analytically. First, solutions are only known to exist in the spherical harmonic do-155

main for fluid bodies with radial viscosity (i.e., no lateral variability in viscosity). Sec-156

ond, generating solutions in the spherical harmonic domain places practical limits on spa-157

tial resolution of solutions. Consider that the number of spherical harmonic coefficients158

per degree = 2l+1, where l is degree, so for a given maximum degree L, there are (L+159

1)2 coefficients in total. For instance, when L = 50 there are 2, 601 coefficients for each160

model. Consider also that spatial resolution increases approximately with the recipro-161

cal of l (see Section 2.2). Incorporating full resolution output from the numeric models162

(60 km at the surface) would require L ≈ 880, with 776, 161 coefficients, which is com-163

putationally cumbersome. Furthermore, observational constraints on mantle-related sur-164

face deflection are unlikely to be finer than the flexural wavelength of the overlying litho-165

sphere, l ≈ 50 (e.g., Holdt et al., 2022). With these limitations in mind, we compared166

surface deflections predicted using different approaches at the same resolution up to l =167

50 (see Supporting Information and Section 2.3).168

Most of the tests in this paper compare surface deflections calculated using the en-169

tirety of the model domains (i.e., from CMB to the surface). This approach simplifies170

like-for-like comparisons of model predictions and comparisons to increasingly complex171
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scenarios. However, amplitudes of calculated deflections will of course not reflect esti-172

mated amplitudes of dynamic topography. This approach purposefully avoids isolating173

passive or plate-driven surface deflections and sub-plate support from numeric simula-174

tions or analytic solutions. Since the central focus of this work is merely on quantify-175

ing contrasts that arise from choices made when simulating mantle convection, we wish176

to avoid incorporating additional modifications where possible. In subsequent tests we177

examine the consequences of simply removing shallow structure, a widely used approach178

for estimating dynamic support from simulations (see e.g., Flament et al., 2013; Flament,179

2018; Wang et al., 2022).180

With this framework in place we generate, compare and contrast predicted surface181

deflections. The first suite of tests are purposefully simple, e.g., incompressible, constant182

gravitational acceleration (no self-gravitation or radial variation in gravitation) and have183

radial viscosity independent of temperature. Results are compared to estimates of sub-184

plate support from oceanic age-depth residuals with a view to quantifying corrections185

necessary to convert predicted instantaneous surface deflections into estimates of sub-186

plate support. We then systematically examine the impact of incorporating radial vari-187

ations in gravitational acceleration, contribution to flow from deflection of the gravita-188

tional potential field, removal of shallow density structure, choice of surface and CMB189

slip conditions, inclusion of temperature-dependent viscosity, and amplification or reduc-190

tion of viscosity and density anomalies in the upper and lower mantle (Section 4; Tables191

1–2). A closed-loop modelling strategy is explored in which predicted surface deflections192

from these relatively complex models are compared to results from simpler reference mod-193

els. Finally, a methodology for assessing effective contributions to surface topography194

from mantle anomalies is presented.195

2 Numeric and Analytic Calculations of Surface Deflection196

The Supporting Information document summarises the formulations of Stokes’ equa-197

tions that are solved, model parameter values used and the numeric approach to calcu-198

lating mantle convection using the TERRA finite-element software. Here, we move straight199

to explaining how those simulations are used to calculate radial stresses, σrr, thence ver-200

tical deflections, h, at Earth’s surface (Figure 1). A methodology for representing model201

predictions in the spherical harmonic domain is then described. We then examine an-202

alytic solutions obtained using propagator matrix techniques.203

2.1 Deflections calculated using radial stresses from numeric simulation204

Following Parsons and Daly (1983), surface deformation is estimated from numeric205

simulations of mantle convection by making use of the requirement that normal stress206

is continuous across the upper boundary of the solid Earth (see also McKenzie, 1977; Ri-207

card, 2015). In other words, radial stresses generated by the solid Earth are required to208

be balanced by stresses generated by the overlying (oceanic or atmospheric) fluid. There209

are three contributions to normal stress at this boundary from the mantle: hydrostatic210

stress that would exist even in the absence of convection, dynamic stress arising from211

convection, and viscous stress which opposes fluid motion (see Equations 2–6 in Support-212

ing Information). To satisfy the continuity condition, these stresses must be balanced213

by those generated by the water (or air) column atop this boundary. If the pressure from214

the overlying column is hydrostatic, the resultant condition is215

ρwgsh = ρmgsh+ σrr, (1)

where σrr incorporates deviatoric viscous stresses generated by mantle convection and216

dynamic pressure (σrr = τrr − p), obtained by solving Equation 2 in Supporting In-217

formation. In practice, since values for this term are obtained by subtracting radial litho-218
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static stress from the total stress, values of σrr integrate to zero globally. gs is gravita-219

tional acceleration at Earth’s surface, ρm is the mean density for the surficial layer, and220

ρw is the density of the overlying fluid (see Table S1). Note that we do not impose ad-221

ditional oceanic plate cooling, e.g., due to hydrothermal circulation at ridges. Cooling222

and subsequent subsidence, as well as passive return flow at ridges, arise naturally from223

solution of the governing equations laid out in Section 2 of Supporting Information.224

Surface deflection arising in response to predicted convective flow, h, is approxi-225

mated by rearranging Equation 1,226

h ≈ − σrr

(ρm − ρw)gs
. (2)

Deflections are estimated from radial stresses at times of interest (e.g., the present-227

day) by re-running one time-step of the TERRA model. During that time-step, a free-228

slip boundary condition, for which analytic approximations for surface deflection exist,229

is imposed instead of the plate-slip condition prescribed during the main model run rou-230

tine (see Section 2.3; Ricard, 2015). The numeric models themselves apply a quasi-rigid231

condition at the surface, whereby flow is driven by estimates of real plate velocities (from232

Merdith et al., 2021), and so the surface layers behave as a series of rigid, laterally mo-233

bile plates rather than a single rigid shell. We assess the accuracy of modifying bound-234

ary conditions in this way by converting calculated deflections into the spherical harmonic235

domain and comparing them to predictions generated using the analytic propagator ma-236

trix approach. The consistent boundary flux (CBF) method provides an alternative means237

to accurately calculate normal stresses (Zhong et al., 1993). Previous benchmarking with238

TERRA has shown mean errors of a few percent or less for surface deflection predictions239

at low harmonic degrees, l ≤ 16 (Davies et al., 2013).240

2.2 Surface Deflections Calculated in the Spherical Harmonic Domain241

Transforming stress, or surface deflections, calculated using numeric approaches into242

the frequency domain provides straightforward means of comparing results to analytic243

solutions and of quantifying spectral power, i.e., the magnitude of contribution to the244

total signal from different wavelengths. Since the models that we investigate are global245

in scope, we do so using spherical harmonics. The methodology for calculating spher-246

ical harmonics and the definition of power adopted in this study are included as Sup-247

porting Information. Figure 2 shows an example of surface stresses calculated using the248

TERRA code, their spherical harmonic representation, calculated surface deflections in249

the spherical harmonic domain, and associated statistics and power spectra.250

Using the total power per degree convention, Hoggard et al. (2016) derived a rule-251

of-thumb for estimating the power spectrum of dynamic topography (see their Support-252

ing Information), PDT
l , using Kaula (1963)’s approximation for the long-wavelength grav-253

ity field of Earth as a function of l:254

PDT
l ≈

(
GM

ZR2

)2 (
2

l
− 3

l2
+

1

l4

)
, (3)

where G is the gravitational constant, M = 5.97 × 1024 kg is the mass of the Earth,255

R ≈ 6370 km is Earth’s radius. The value of low-degree admittance, Z, between grav-256

ity and topography varies as a function of viscosity, as well as the depth and wavelength257

of internal density anomalies (Colli et al., 2016). Hoggard et al. (2016) found that as-258

suming an average value of Z = 12 mGal km−1 provides a reasonable approximation259

of observed residual topographic trends, thus we make use of that value in the remain-260

der of the paper. Finally, it is useful to note that Jeans (1923) related spherical harmonic261

degree to wavelength λ, which at Earth’s surface can be approximated via λ ≈ 2πR/
√

l(l + 1).262
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2.3 Surface Deflections Calculated Analytically263

The second methodology used to calculate surface deflection in response to man-264

tle convection is the analytic propagator matrix technique (e.g., Craig & McKenzie, 1987;265

Gantmacher, 1959; Ghelichkhan et al., 2021; Parsons & Daly, 1983; M. A. Richards &266

Hager, 1984). The approach we take stems from the work of Hager and O’Connell (1981)267

who used Green’s functions to solve the equations of motion in the spherical harmonic268

domain. Those solutions are used to generate sensitivity kernels that straightforwardly269

relate, for example, density or temperature anomalies in the mantle to surface deflections.270

The kernels are generated in the frequency domain, and constructed such that surface271

deflection sensitivity to mantle (e.g., density) anomalies is calculated as a function of depth272

(or radius) and wavenumber. A global spherical harmonic implementation introduced273

by Hager et al. (1985) has been extended to include compressibility, the effect of warp-274

ing of the gravitational potential by subsurface density distributions, and radial grav-275

ity variations calculated using radial mean density values (Corrieu et al., 1995; Forte &276

Peltier, 1991; Hager & O’Connell, 1981; M. A. Richards & Hager, 1984; Thoraval et al.,277

1994).278

In this study, following Ghelichkhan et al. (2021), surface deflection for each spher-279

ical harmonic coefficient, hlm, is calculated in the spectral domain such that280

hlm =
1

(ρm − ρw)

∫ R

RCMB

Alδρlm(r) · dr. (4)

Products of the sensitivity kernel, Al, and density anomalies, δρlm, of spherical harmonic281

degree, l, and order, m, are integrated with respect to radius, r, between the core-mantle282

boundary and Earth’s surface radii, RCMB and R, respectively. The sensitivity kernel283

is given by284

Al = −
(

η0
RgR

)(
u1 +

ρw
ρ0

u3

)
, (5)

where un(r) represents a set of poloidal variables, which are posed for solution of the set285

of simultaneous equations by matrix manipulation, such that286

u(r) =
[
y1η0 y2η0Λ (y3 + ρ̄(r)y5)r y4rΛ y5rρ0Λ y6r

2ρ0
]T

, (6)

where Λ =
√
l(l + 1), and y1 to y6 represent the spherical harmonic coefficients of ra-287

dial velocity vr, lateral velocity vθ,ϕ, radial stress σrr, lateral stress σrθ,ϕ, gravitational288

potential V , and gravitational potential gradient ∂V/∂r, respectively (Hager & Clayton,289

1989; Panasyuk et al., 1996). ρ̄ is the layer mean (l = 0) density. The kernel Al includes290

both u1 and u3, two terms in the matrix solution to the governing equations that affect291

surface topography by directly exerting stress on the surface boundary (u1), and by chang-292

ing the gravitational potential at the surface (u3). The functional forms of calculated293

sensitivity kernels depend on chosen radial viscosity profiles and boundary conditions294

(e.g., free-slip or no-slip; Parsons & Daly, 1983).295

3 Spatial and Spectral Comparison of Model Predictions296

To quantify impacts of modelling assumptions and approaches used to solve the297

equations of motion we compare calculated surface deflections using the following met-298

rics.299
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3.1 Euclidean Comparisons of Amplitudes300

First, we calculate root-mean-squared difference, χ, between predicted surface de-301

flections in the spatial domain,302

χ =

√√√√ 1

N

N∑
n=1

wϕ (ha
n − hb

n)
2
, (7)

where ha
n and hb

n are predicted surface deflections from the two models being compared.303

N = number of points in the 1×1◦ gridded maps being compared (e.g., Figure 3b; N =304

65341). The prefactor wϕ is proportional to cosϕ, where ϕ is latitude, and is included305

to correct biases in cell size with latitude; mean wϕ = 1. This metric is closely asso-306

ciated with the mean vertical distance (L2-norm distance) between predicted and ref-307

erence surfaces, i.e., ∆h̄ = 1/N
∑N

n=1 wϕ|ha
n − hb

n|. These metrics are sensitive to dif-308

ferences in amplitudes and locations of surface deflections.309

3.2 Spectral Correlation Coefficients310

Second, we use pyshtools v4.10 to compute correlation coefficients, rl, between pre-311

dicted surface deflections in the spectral domain (Wieczorek & Meschede, 2018). Cor-312

relation coefficients as a function of degree l, adapted from Forte (2007), are calculated313

such that314

rl =

∑
f∗
1 f2√∑

f∗
1 f1

√∑
f∗
2 f2

, where
∑

=

+l∑
m=−l

, (8)

f1 and f2 are the spherical harmonic coefficients of the two fields (i.e., surface deflections)315

being compared, which vary as a function of order, m, and l; f = fm
l . ∗ indicates com-316

plex conjugation (see also Becker & Boschi, 2002; O’Connell, 1971). This metric is sen-317

sitive to the difference between predicted and reference surface deflection signals in the318

frequency domain, but not to their amplitudes. To summarize spectral similarity between319

models concisely, we later refer to the mean value of rl over every degree (0–50) as r̄l.320

We refer to the standard deviation of rl across degrees as sr.321

3.3 Comparing Calculated Power Spectra322

Lastly, to estimate closeness of fit between power spectra of surface deflections pre-323

dicted in this study and independent estimates, we calculate324

χp =

√√√√ 1

L

L∑
l=1

(
log10Pl − log10P

K
l

)2
+

√√√√ 1

L

L∑
l=1

(
log10Pl − log10P

H
l

)2
, (9)

where L = number of spherical harmonic degrees being compared (L = 50). Pl = power325

of predicted surface deflections generated in this study at degrees 1 ≤ l ≤ L (Equa-326

tion 11 in Supporting Information). PK
l = power of surface deflections estimated using327

Kaula’s law (Equation 3). PH
l = power of residual oceanic age-depth measurements from328

Holdt et al. (2022).329

4 Model Parameterizations330

The models examined in this paper are summarised in Table 1. In terms of assump-331

tions tested there are two families of models, those with viscosity independent of tem-332
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Table 1. Summary of mantle convection simulations. Column labeled ‘Method’ indicates

surface deflections calculated using either ‘Numeric’ (i.e., from surface normal stresses calculated

using TERRA) or ‘Analytic’ (i.e., propagator matrix) approaches; ‘Mixed’ indicates spherical

harmonic fitting of surface stresses calculated using numeric code, enabling comparison with so-

lutions to propagator matrix code. η(r) indicates models with radial viscosity (e.g. independent

of temperature; Models 1–10). η(r, T ) indicates models with temperature-dependent (therefore

laterally varying) viscosity (Models 11–20); note that analytic Models 12–20 incorporate radial

viscosity calculated using mean radial viscosity from Model 11a. †indicates with respect to Model

12. See Table 1, Section 4 and figures referred to in column 5 for details.

Model Method Viscosity Parameterizations Figures

1a Numeric η(r) Full resolution numeric model 1g-h, 2a-c, S1-2
1b Mixed η(r) Spherical harmonic fit to 1a 2d–i
2 Analytic η(r) Propagator matrix solutions 3, S3

3 Analytic η(r) Radial gravitation, g(r) 4a-c, S4
4 Analytic η(r) Gravitational potential terms 4d-e, S5

5 Analytic η(r) Removing upper 50 km of mantle 5a-b, S7a-d
6 Analytic η(r) Removing upper 100 km of mantle 5c-d, S7e-h
7 Analytic η(r) Removing upper 200 km of mantle 5e-f, S7i-l

8 Analytic η(r) No-slip surface, free CMB 6a-d
9 Analytic η(r) Free surface, no-slip CMB 6e-h
10 Analytic η(r) No-slip surface, no-slip CMB 6i-l

11a Numeric η(r, T ) Full resolution numeric model S8-S10, S12a-c
11b Mixed η(r, T ) Spherical harmonic fit to 11a 7, S8-10, S12d-g
12 Analytic η(r) Mean radial η(r, T ) from Model 11a 7, S11, S12h-k

13 Analytic η(r) Decrease† radial upper mantle η 8a-b, S13a-d
14 Analytic η(r) Increase† radial upper mantle η 8c-d, S13e-h
15 Analytic η(r) Increase† radial upper mantle η 8e-f, S13i-l
16 Analytic η(r) Constant radial η 8g-h, S13m-p

17 Analytic η(r) Upper mantle densities ×2† 8i, S14a-c
18 Analytic η(r) Upper mantle densities ×1/2† 8j, S14d-f
19 Analytic η(r) Lower mantle densities ×2† 8k, S14g-i
20 Analytic η(r) Lower mantle densities ×1/2† 8l, S14j-l

perature (Models 1–10), and those with temperature-dependent viscosity (Models 11–333

20). We note that Models 12-20 incorporate mean radial viscosity from the numeric Model334

11a in which viscosity depends on temperature. The two approaches used to solve the335

equations of motion are annotated ‘Numeric’ and ‘Analytic’ in Table 1, which refers to336

solutions from the TERRA and propagator matrix code, respectively. Viscosities and den-337

sities calculated using TERRA were used as input for the propagator matrix code and338

thus used to generate analytic estimates of surface deflection. Since analytic solutions339

are obtained by spherical harmonic expansion, surface deflections from TERRA were fit340

using spherical harmonics before predicted deflections were compared (annotated ‘Mixed’341

in Table 1; Section 2.2). We compare predicted deflections that arise from flow across342

entire model domains, i.e., from the CMB to the surface. Parameterizations of these mod-343

els and resultant surface deflections are discussed in the following sections, with sum-344

mary statistics given in Table 2.345
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346

4.1 Models with Viscosity Independent of Temperature347

4.1.1 Reference models348

Models 1 and 2 are the simplest explored in this paper. They were designed to be349

as similar as possible, with a view to quantifying differences and similarities arising solely350

from the choice of numeric or analytic methodology used to solve equations of motion351

and to calculate surface deflections. Model 1 was parameterized with the radial viscos-352

ity structure shown in Figure 2c. Radial viscosity used in other geodynamic studies are353

shown alongside for comparison (Ghelichkhan et al., 2021; Mitrovica & Forte, 2004; Stein-354

berger & Calderwood, 2006). Figure 2d shows spherical harmonic expansion of the sur-355

face stress field predicted by Model 1 at 0 Ma (cf. Figure 2a). We call this result Model356

1b. The original, full-resolution, numerical result is referred to as Model 1a.357

Model 2 is the analytic model parameterized to be as similar as possible to Model358

1. Its sensitivity kernel, generated assuming water loading (ρw = 1030 kg /m3), free-359

slip surface and CMB boundary conditions, and the radial viscosity profile shown in Fig-360

ure 2c, is shown in Figure 3a. Values of the other parameters used to generate these ker-361

nels are stated in Table S1. Similar to many previous studies, the kernel indicates that362

surface deflections will be especially sensitive (across all degrees incorporated, l ≤ 50)363

to density anomalies in the upper mantle (Parsons & Daly, 1983; Hager & Clayton, 1989;364

Ghelichkhan et al., 2021). Models 1 and 2 are used as points of reference for other more365

complex models explored in the remainder of this paper.366

4.1.2 Gravitation367

We start by incorporating more complex parameterizations of gravitation. The an-368

alytic Model 3 was parameterized in the same way as Model 2 with the addition of ra-369

dial gravitation (following Hager & Clayton, 1989; Panasyuk et al., 1996, see Equation370

5). The solid curve in Figure 4b shows the radial gravity function used to calculate sur-371

face deflections. It was generated using the density distribution produced by (the nu-372

merical) Model 1a (see Figure S1) by calculating373

g(r) =
4πG

r2

[∫ r

RCMB

ρ̄(r′) r′
2
dr′

]
+ Fcore, (10)

where ρ̄(r) is layer mean density and F is a factor chosen to account for core mass, and374

such that g = 9.8 m s−2 at the surface. This formulation is derived from Gauss’s law375

assuming spherically symmetric density, combined with Newton’s law of universal grav-376

itation (Turcotte & Schubert, 2002).377

The analytic Model 4 incorporates stress perturbations induced by deflections of378

the gravitational potential field. This model assumes g = 10 m s−2 everywhere, even379

within the deflected surface layer, as was the case for Models 1–2. Following Hager and380

Clayton (1989) and Panasyuk et al. (1996), when solving for surface deflection using prop-381

agator matrices, the effect on flow of perturbation of gravitational potential is included382

via the u3 term in Equation 6 (see also Ribe, 2007; Ricard, 2015). Sensitivity kernels for383

Models 3 and 4 are shown in Figure S6. TERRA simulations do not include this com-384

ponent in flow calculations (see Supporting Information).385

4.1.3 Discarding Shallow Structure386

The uppermost few hundred kilometers of geodynamic simulations are often not387

included in predictions of surface deflections (see e.g. Flament et al., 2013; Flament, 2018;388
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Davies et al., 2019, and references therein). To quantify the impact of discarding shal-389

low structure on our calculations, we examine differences in calculated deflections in the390

spatial and spherical harmonic domains. We present three tests, resulting in Models 5,391

6 and 7, where structure shallower than 50, 100 and 200 km is removed from Model 2.392

4.1.4 Changing Boundary Conditions393

Up to now, we have only considered instantaneous analytic and numeric solutions394

for surface deflection where both the surface and CMB have free-slip conditions imposed395

(i.e., vertical component of flow velocity ur = 0, horizontal components are allowed to396

freely vary). No gradient/Neumann constraint (e.g., on ∂u/∂z) is imposed. This con-397

dition is generally deemed appropriate for the surface of the convecting mantle, and CMB,398

since at both boundaries, cohesion within convecting mantle is thought to be much stronger399

than adhesion to the boundary. Analytic solutions for sensitivity kernels for propaga-400

tor matrices also exist for no-slip Dirichlet boundary conditions, where horizontal com-401

ponents of u = 0, which may be more appropriate when the Earth’s lithosphere is im-402

plicitly included in mantle convection models, as is the case here (Parsons & Daly, 1983;403

Thoraval & Richards, 1997). Therefore, we test the effect of changing the surface bound-404

ary condition to no-slip on predicted surface deflections (Model 8). Although there is lit-405

tle reason to believe the adhesion of the CMB would be strong, for completeness, we test406

scenarios in which no- and free-slip conditions are assumed for the CMB and the sur-407

face, respectively (Model 9), and both have no-slip conditions (Model 10).408

4.2 Models with Temperature-Dependent Viscosity409

We investigate the impact of including the temperature dependence of viscosity,410

η(r, T ), on predicted global mantle flow in numeric models, and on subsequent estimates411

of surface deflection. We do so by first generating the numeric Model 11, which is iden-412

tical to Model 1 in terms of all boundary conditions, initialization, and physical param-413

eters, except for the fact that viscosity depends on temperature in the manner described414

by Equation 7 in Supporting Information.415

The radial distribution of viscosity, but not its absolute value, plays a crucial role416

in determining sensitivity of instantaneous solutions for surface deflections to density (and417

thermal) anomalies in the mantle (e.g., Parsons & Daly, 1983; Hager, 1984). Consequently,418

to assess sensitivity of surface deflections to arbitrary changes to radial viscosity, η(r),419

we performed a suite of analytic tests. Since the analytic approaches require viscosity420

to only vary as a function of radius, we first test the impact of inserting layer-mean vis-421

cosity from the present-day 3D temperature-dependent viscosity structure predicted by422

numeric Model 11 (Figure S8). This parameterization is used to generate (the analytic)423

Model 12. The sensitivity kernel for Model 12 is shown in Figure S11a.424

We stress that in Models 3–10 analytic instantaneous solutions for surface deflec-425

tion, with adjusted parameters and boundary conditions, were simply compared with Model426

2; no new numeric models were generated using TERRA. In contrast, the additional tests427

examined here correspond to a new TERRA model (Model 11) in which temperature de-428

pendence of viscosity affects mantle flow across the entire run time.429

The sensitivity of surface deflections to arbitrary modification of upper and lower430

mantle viscosity and densities were then examined. Mean upper and lower mantle (ra-431

dial) temperature-dependent viscosity was decreased or increased by an order of mag-432

nitude from that used to generate Model 12 (see solid black curve in Figure 8). The re-433

sultant impact on calculated surface deflections (Models 13–16) was quantified by com-434

parison with results generated using reference Model 12 (Figure S11). Figures 8i–l and435

S14 show the amplitudes of density anomalies in the upper and lower mantle that were436

systematically increased or decreased to generate Models 17–20. Similar to the tests shown437
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in Figures 8a–h and S13, densities are amplified relative to Model 12. Radial viscosity438

is constant for each of these tests (black curve in Figure 8a; i.e., same as that used to439

generate Model 12).440

5 Results441

5.1 Models with Viscosity Independent of Temperature442

5.1.1 Reference Models: Comparing Numeric and Analytic Solutions443

We first compare solutions generated from numeric Model 1a, with its spherical har-444

monic representation (Model 1b), and analytic Model 2, which were designed to be as445

similar as possible. Figure 1g–h shows calculated densities that arise in Model 1a at 0446

and 100 Ma (see Figure S1 for extended results). The history of plate motions used to447

drive these models is also indicated on these figures. The resultant normal stresses, σrr,448

calculated at the surface of Model 1, and associated statistics are shown in Figure 2a–449

b. By convention, positive stresses imply compression and hence downward surface de-450

flection, which could be manifest as lithospheric drawdown, i.e., subsidence. Prominent451

regions of positive stress anomalies in this model include locations atop imposed colli-452

sion zones, where subduction naturally results, e.g., along the Pacific margin of South453

America. Negative stresses imply dilation and hence positive lithospheric support (i.e.,454

surface uplift). Figure 2a shows dilatational stresses beneath Southern Africa, for exam-455

ple, and along mid-oceanic ridges in the Indian and Atlantic Oceans.456

Surface stresses calculated by fitting radial stresses from Model 1a with a global457

spherical harmonic interpolation up to maximum degree l = 50, i.e., minimum wave-458

length of ≈ 800 km, is shown in Figure 2d–e. The resultant power spectrum in terms459

of total power at each degree is shown in Figure 2f. Aside from the lack of structure at460

degree 0, amplitudes decrease steadily with increasing degree (i.e., decreasing wavelength)461

and can be approximated by red noise. The spherical harmonic representation of deflec-462

tions calculated by converting stress using Equation 2, assuming water loading, are shown463

in Figures 2g and S2. A comparison of calculated power spectra, expected surface de-464

flection from Kaula’s rule (Equation 3), and spectra generated from observed residual465

ocean age-depth measurements is also included in Figures 2 and S2 (Kaula, 1963; Hog-466

gard et al., 2016; Holdt et al., 2022). For completeness, surface deflections calculated as-467

suming air loading are shown in Figure S2f-j.468

Surface deflections predicted by Model 2 and its associated sensitivity kernel are469

shown in Figure 3a-b. An expanded set of results including sensitivity kernels for wa-470

ter and air loading, and histograms of deflection and associate power spectra are included471

in Figure S3.472

Deflections predicted from these numeric and analytic models are visually similar473

(cf. Figures 2g & 3b). Absolute differences in amplitudes are greatest close to subduc-474

tion zones (e.g., in South America and Asia; Figure 3c). The differences are broadly nor-475

mally distributed and centred on 0 (Figure 3d). The spherical harmonic correlation be-476

tween these models is high (close to 1 for all degrees; cf. Forte, 2007, Figure 3e). The477

ratios between surface deflection values in these predictions indicate that analytic solu-478

tions tend to be damped compared to numeric solutions. This result is emphasized by479

the histogram shown in Figure 3g. Multiplying amplitudes of deflections from the prop-480

agator matrix solutions by a factor of 1.1 brings them in-line with the numeric solutions.481

These results indicate that the propagator matrix approach dampens solutions by ≈ 10%.482

We note that power spectral slopes between Model 1b and 2 are similar (cf. Figures 2i483

and S3d). These and all other results are discussed in Section 6.484
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5.1.2 Incorporating Self-Gravitation and Gravitational Potential of the485

Deflected Surface486

Differences in deflections predicted by Model 2, which assumes constant g = 10487

m s−2 across all radii, and Model 3, which incorporates self-consistently calculated ra-488

dial gravitation, are shown in Figure 4a and 4c. Deviations in predicted instantaneous489

deflections are ∼ 10% of maximum amplitudes predicted by Model 2 (see Table 2). Note490

that, for the viscosity structure used in these models, changing g in this way impacts sen-491

sitivity kernels most at low degrees l ≲ 10 in the mid-mantle (see Figures 2c, 3a and492

S6).493

We suggest that the broadly hemispherical differences in calculated deflections arise494

from three contributing factors. First, deviations in g between the two models are great-495

est in the mid-mantle, which, secondly, results in subtly different sensitivity kernels (see496

Figure S6). In general, surface deflection sensitivity to mid-mantle structure is highest497

at low degrees (l =1–3), and is almost negligible at higher degrees compared to contri-498

butions from the near-surface. Thus it seems likely that differences between these ker-499

nels would be manifest in low-degree (e.g. hemispherical) differences in surface deflec-500

tions. Third, in the final timestep, which is used to calculate deflections, there occurs501

a greater proportion of negative and positive deflections in the northern and southern502

hemispheres, respectively.503

We note that incorporating radially varying gravitation into numeric simulations,504

which is not trivial, might materially impact calculated mantle flow fields and hence pre-505

dictions of surface deflections. Our results are consistent with the rule of thumb outlined506

in Section 7.02.2.5.2 of Ricard (2015), whereby magnitudes of differences incurred by in-507

clusion of full self-gravitation, i.e., g(θ, ϕ, r), decay as a function of spherical harmonic508

degree, proportionately to 3/(2l + 1).509

As expected, induced differences in surface displacement predictions are much lower510

in magnitude when gravitational potential of the deflected surface is included compared511

to when radial gravitation is incorporated (cf. Figure 4a and 4d). We note that they are512

of the same order of magnitude as the geoid height anomalies predicted by these mod-513

els. The mean Euclidean distance between the two predicted surfaces in Models 2 and514

4 is only ∼110 m (compared to maximum amplitudes > 8 km), and the spherical har-515

monic correlation is very high across all degrees (see Table 2). Similar to the results for516

Model 3, the differences are concentrated at low spherical harmonic degree l. We stress517

that this test investigates the effect of the u3 term on instantaneous solution for surface518

deflection (Equation 5). It cannot be ruled out from this test that inclusion of the ef-519

fect of gravitational potential field perturbation would result in greater differences across520

the entire model run time of a numeric model, although it is unlikely (Zhong et al., 2008).521

5.1.3 Excising Shallow Structure522

As expected from examination of surface deflection sensitivity kernels (e.g., Fig-523

ure 3a), removal of shallow structure (Models 4–6) results in significantly reduced am-524

plitudes of surface deflections (Figure 5). Doing so results in amplitudes of power spec-525

tra that more closely align with independent estimates (Figure 5b, f, j). The reduction526

in differences is largely due to the fact that the reference Model 2 has surface deflections527

that are much larger than independent estimates of dynamic topographic power across528

all degrees. We note that power spectral slopes for predicted surface deflection from Model529

2 are close to those generated from Kaula’s rule, and observed oceanic residual depths530

(Figures 2i, S2 and S3). Removing shallow structure steepens spectral slopes (i.e., re-531

duces power at high degrees) beyond those expected from theoretical considerations (Kaula’s532

rule) or observed from oceanic residual depths, akin to results from other work that ex-533

cised shallow structure (e.g., Flament et al., 2013; Moucha et al., 2008; Steinberger, 2007).534

This result is emphasized by calculated spectral coherence, rl, between deflections with535
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and without shallow structure removed (cf. Figure 5b, d, f). While degree 1 and 2 struc-536

ture remains coherent, coherence across degrees ≳ 20 decreases from ∼ 0.9 to as low537

as 0.5, which are the largest discrepancies between any models examined in this study538

(Figure S7).539

5.1.4 Adjusting Boundary Conditions540

Figure 6a, e and i show predicted sensitivity kernels as a function of depth and de-541

gree, for no-slip/free-slip, free-slip/no-slip and no-slip/no-slip boundaries respectively,542

where the first condition is the surface slip condition, and the second the CMB slip con-543

dition. Differences to the sensitivity kernel for Model 2 (free-slip/free-slip; Figure 3a) are544

shown in panels b, f and j. Those panels, and panels c, g and k, demonstrate that when545

the surface boundary condition is ‘no-slip’, there is decreased sensitivity to short wave-546

length shallow structure, and increased sensitivity to long-wavelength (low degree) struc-547

ture across all depths. Figure 6d, h and l reveal that induced misfit in the spatial do-548

main is impacted to a greater degree than in tests of gravitation (Models 3 & 4), but not549

necessarily more severely than for removal of, say the upper 200 km of density structure550

from surface deflection calculations. Spectral correlation with Model 2 is most severely551

impacted when both surface and CMB boundaries are no-slip, which is probably phys-552

ically unrealistic (Model 7; see Table 2; Section 4.1.4).553

5.2 Adjusting Viscosity and Density Anomaly Amplitudes554

5.2.1 Temperature-Dependent Viscosity555

Slices through the three-dimensional viscosity and density structure of Model 11,556

which incorporated temperature-dependent viscosity, are shown in Figure 1a, c and e.557

Density anomalies in the models parameterized with temperature-dependent viscosity558

are more localised (‘sharper’) than in the models with viscosity independent of temper-559

ature (e.g., Model 1; see Figures 7 & S8–S10). This result is unsurprising since temperature-560

dependent viscosity provides stronger mechanical contrasts between cooler subducting561

regions and surrounding asthenosphere (cf. Figure 1g–h & S9; Zhong et al., 2000). Nonethe-562

less, power spectra of calculated surface deflections are very similar (cf. Figure S10j &563

2i). This result emphasises the relatively small impact incorporating temperature-dependent564

viscosity has on surface deflections compared to, say, excising shallow structure.565

Calculated power spectra from the analytic Model 12, which was generated using566

layer-mean (radial) viscosity from Model 11a, reinforces this view (cf. Figure S3a-d &567

Figure S11a-d). Similar to the results obtained for models without temperature-dependent568

viscosity (Figure 3), deflections calculated analytically are damped relative to numeric569

solutions (see Figure 7f). The best fit amplification factor to align propagator matrix570

and numeric solutions is 1.24 (24%). The effect is greater than that seen when compar-571

ing Models 1b and 2 because of increased short wavelength structure in Model 11 (see572

also Zhong et al., 2000). Nonetheless, spherical harmonic correlations, rl, are > 0.75 for573

all degrees examined (l ≤ 50), and > 0.85 for most degrees. Cell-to-cell differences in574

surface deflections are broadly normally distributed and centred on zero (Figure 7d).575

A summary of comparisons between models with and without temperature-dependent576

viscosity is shown in Figure S12. Discrepancies in cell-to-cell deflections are broadly nor-577

mally distributed and centred on zero, clustering along the 1:1 relationship with max-578

imum χ = 1.51 for full resolution (numeric) models (Figure S12b-c; see Table 2). Un-579

surprisingly, spherical harmonic fits and analytic results have tighter normal distribu-580

tions and lower χ values. Correlation coefficients are > 0.75 for nearly all degrees in all581

comparisons.582
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5.2.2 Sensitivity to Upper/Lower Mantle Viscosity and Density Anoma-583

lies584

In order to explore the consequences of modified viscosity and density on calculated585

deflections we also systematically increased and decreased contrasts in the upper and lower586

mantle (Models 13–20) with respect to Model 12. Figure 8 summarises the results, which587

include decreasing upper mantle viscosity by an order of magnitude and show the im-588

pact of using increasingly simple radial viscosity in analytic calculations. Calculated sen-589

sitivity kernels for the adjusted viscosity profiles demonstrate that decreasing upper man-590

tle viscosity reduces sensitivity of surface deflections to long-wavelength density struc-591

ture, especially in the lower mantle (Figures S13 & 8d, f, h). Models 13–16 have broad592

similarities with the reference Model 12 even when η(r) is drastically varied: average χ593

misfit = 0.17–0.38 km, and rl > 0.97 across all degrees. These results emphasize that594

the viscosity adjustments we examined exert a relatively minor control on the amplitudes595

of instantaneous surface deflection (Table 2, see, e.g., Ghosh et al., 2010; Moucha et al.,596

2007; Lu et al., 2020).597

In contrast, increasing (Model 17) or decreasing (Model 18) upper mantle densi-598

ties is much more impactful on amplitudes of calculated surface deflections (see Figure 8i–599

l, and S14). For instance, increasing or decreasing upper mantle densities by a factor of600

two (relative to Model 12) results in χ values of 0.97 and 0.48, respectively. Modifying601

lower mantle densities has a much smaller impact on amplitudes of deflection (Models602

18 & 19). Spherical harmonic correlation between models is approximately as good as603

for the radial viscosity tests (Models 13–16), which is to be expected since we do not vary604

locations of density anomalies here, only their amplitudes, and rl is insensitive to am-605

plitudes of the two results being compared. Significant is the fact that mean vertical dif-606

ferences between Models 17–20 and 12 (i.e., χ and ∆h̄) are higher than those calculated607

for Models 13–16 (in which viscosity is varied; see Table 2).608

These results emphasize the relative sensitivity of instantaneous surface deflections609

to upper mantle density anomalies compared to, say, radial viscosity or lower mantle den-610

sities. Even quite large uncertainties in lower mantle density anomalies have relatively611

little impact on instantaneous surface deflections. These results reinforce the view that612

accounting for shallow (e.g., lithospheric and asthenospheric) densities is crucial when613

estimating surface deflection, and dynamic topography, from mantle convection simu-614

lations (e.g., Colli et al., 2016; Flament et al., 2013; Holdt et al., 2022; Wang et al., 2022).615

616

6 Discussion617

6.1 Similarities of Analytic and Numeric Solutions618

In this paper we compare numeric and analytic predictions of instantaneous sur-619

face deflections generated by mantle convection simulations. First, we simply compared620

predictions from numeric and analytic approaches parameterised to be as similar as pos-621

sible. In this test, the models were purposefully simple: viscosity is radial, models are622

incompressible, and they do not include self-gravitation, or radial variation in g. Numeric623

solutions were transformed into the frequency (spherical harmonic) domain so that they624

could be compared with analytic solutions, and so that power spectra could be directly625

compared at appropriate scales. The results show that, for as-similar-as-possible param-626

eterizations, amplitudes of analytic solutions are ≈ 10% lower than numeric solutions627

(Figure 3). If the numeric model incorporates temperature-dependent viscosity, this dis-628

crepancy increases to 25% (Figure 7). We interpret these results in two ways. First, once629

armed with viscosity and density fields, numeric and analytic approaches broadly yield630
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Table 2. Inter-model comparison of predicted surface deflections. Models being

compared are summarised in Table 1. Metrics: root-mean-squared difference (χ, km), mean

Euclidean (L2-norm) difference in predicted deflection (∆h̄, km), and mean spherical harmonic

correlation between models (r̄l). Standard deviation of rl distribution across degrees (sr) is also

stated: note that rl ≤ 1. All spherical harmonic representations of output from numeric code and

generated by the propagator matrix code are expanded up to maximum degree, l = 50. See body

text, figures referred to in column 6, and Table 1 for details.

Models χ ∆h̄ r̄l sr Figures

1b & 2 0.95 0.69 0.97 0.02 3

2 & 3 0.57 0.47 0.99 4× 10−4 4
2 & 4 0.13 0.11 0.99 2× 10−5 4

2 & 5 0.67 0.48 0.93 0.04 5a-b
2 & 6 1.03 0.74 0.87 0.06 5c-d
2 & 7 1.57 1.12 0.63 0.15 5e-f

2 & 8 1.26 1.04 0.99 1× 10−3 6a-d
2 & 9 1.09 0.97 0.99 0.04 6e-h
2 & 10 1.00 0.74 0.96 0.28 6i-l

1a & 11a 1.51 1.04 — — S12a-c
1b & 11b 1.44 0.98 0.79 0.26 S12d-g
11b & 12 1.20 0.80 0.95 0.02 7
2 & 12 0.92 0.64 0.85 0.27 S12h-k

12 & 13 0.31 0.20 0.99 9× 10−3 8a-b, S13a-d
12 & 14 0.17 0.10 0.99 3× 10−3 8c-d, S13e-h
12 & 15 0.32 0.20 0.98 0.01 8e-f, S13i-l
12 & 16 0.38 0.23 0.98 0.01 8g-h, S13m-p

12 & 17 0.97 0.64 0.98 7× 10−3 8i, S14a-c
12 & 18 0.48 0.32 0.98 6× 10−3 8j, S14d-f
12 & 19 0.43 0.29 0.99 3× 10−3 8k, S14g-i
12 & 20 0.22 0.14 0.99 1× 10−3 8l, S14j-l
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similar estimates of surface deflections. Second, the relatively damped analytic solutions631

are a consequence of smoothing steps in the propagator matrix approach.632

The smoothness of analytic solutions, and subsequent damping of topographic am-633

plitudes, is perhaps surprising, given the fact that they are being compared with numeric634

models expanded into the spherical harmonic domain to the same maximum degree, l =635

50. However, the surface stresses used to generate Model 1a have full horizontal reso-636

lution (≈ 45 km) across depths, and only the surface layer is smoothed by spherical har-637

monic fitting, to generate Model 1b. Therefore, Model 1b inherently contains some con-638

tribution from degrees ≥ 50, in the sense that finer-resolution density structure at depth639

could affect longer-wavelength flow nearer the surface. In contrast, to generate the an-640

alytic solution (Model 2), the density structure of each layer of the model is smoothed,641

by expansion to maximum l = 50, before integration of their contributions to surface642

deflection. The analytic solution would provide a better match to stress estimates from643

numeric models if such estimates were calculated using density structure smoothed to644

the same maximum l across all depths, which is currently challenging (see Section 1.1).645

Nonetheless, the similarity of results indicates that the relatively low-cost propa-646

gator matrix approach can be used to explore consequences of including additional model647

complexity. A systematic sweep of parameters, including radial gravitation (Figure 4a-648

c) and gravitational potential field effects (Figure 4d-e) indicates that their effects on sur-649

face deflection are relatively modest. A useful rule of thumb is that self-gravitation per-650

turbs instantaneous surface deflections by O(1–10)% when compared to models with con-651

stant gravitational acceleration, and even less difference is observed at high degree (e.g.,652

Ricard, 2015, their Section 7.02.2.5.2). Incorporating the effect of deflections of gravi-653

tational potential field on flow has a modest impact on amplitudes of surface deflections654

at degrees 1–2, but overall it contributes even less than radial variation in g to surface655

deflections across the scales of interest. We note that incorporating full 3-D self-gravitation656

into numeric simulations is currently challenging. Nonetheless, establishing its impact657

on the flow field over time, and resultant impact on surface deflections, may be impor-658

tant future work.659

6.2 Importance of Viscosity and Shallow Density Anomalies for Isolat-660

ing Dynamic Support661

Figure 8 demonstrates that even quite large (order of magnitude) variations in vis-662

cosity do not have much impact on instantaneous surface deflections when compared to,663

say, modified upper mantle density anomalies, which appears to agree with the results664

of Davies et al. (2019) (see also Flament, 2019; Steinberger et al., 2019). Assuming no-665

slip boundary conditions at Earth’s surface may be appropriate for driving near-surface666

(lithospheric) flow throughout the main model run time, but it less clear whether no-667

or free-slip boundary conditions are most appropriate for calculating instantaneous dy-668

namic topography (see, e.g., Forte & Peltier, 1994; Thoraval & Richards, 1997). Nonethe-669

less, all calculated sensitivity kernels in this study indicate that shallow density anoma-670

lies make significant contributions to surface topography regardless of viscosity profile671

or boundary conditions chosen (e.g., Figure 3a; see also Colli et al., 2016; Parsons & Daly,672

1983).673

It is well known that disentangling contributions to Earth’s surface topography from674

mantle convection, lithospheric isostasy and flexure is important but not trivial (see, e.g.,675

Davies et al., 2019; Cao & Liu, 2021; Fernandes & Roberts, 2021; Hoggard et al., 2021;676

Steinberger, 2016; Stephenson et al., 2021; Zhou & Liu, 2019; Wang et al., 2022). Pre-677

vious studies simulating mantle convection have addressed this issue by discarding den-678

sity anomalies in radial shells shallower than specified depths before calculating surface679

stresses (e.g., Spasojevic & Gurnis, 2012; Flament et al., 2013; Molnar et al., 2015). Sim-680

ilarly, analytic approaches have isolated contributions from the convecting mantle by only681
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incorporating information from deep shells (e.g., Colli et al., 2018). This method has the682

advantage of effectively removing the effect of lithospheric cooling through time from sur-683

face deflection estimates. It also avoids the need to incorporate, say, realistic crustal or684

depleted lithospheric layers within the viscous flow parameterization. However, uncer-685

tain oceanic and continental lithospheric thicknesses mean that choosing appropriate cut-686

off depths is not simple.687

Out of all the tests performed in this study, removing shallow structure resulted688

in the largest impact on predicted surface deflections. It modifies amplitudes of deflec-689

tions, locations of uplift and subsidence, and degrees over which they are resolved, and690

hence modifies power spectral scalings (Table 2, Figure 5). Making quantitative predic-691

tions of dynamic topography from such an approach is fraught for at least two reasons.692

First, if the chosen depth is shallower than the lithosphere-asthenosphere boundary in693

places, plate and sub-plate contributions to topography will be entangled. Second, dis-694

carding deeper layers to ensure that all plate contribution is definitely avoided means695

that some contributions from asthenospheric flow will be missed. Thus, such a step is696

unlikely to be desirable if mantle flow models are to be used to understand, say, litho-697

spheric vertical motions, or vice versa (see e.g., Figure 3a; Davies et al., 2019; Hoggard698

et al., 2016). Given the calculated sensitivity kernels, excising layers in the upper few699

100 km is likely to result in predictions of surface deflections that are especially inaccu-700

rate at short wavelengths, i.e., high spherical harmonic degree. An alternative approach,701

which may be fruitful future work, is removal of structure based on appropriately cal-702

ibrated plate models, or globally averaged age-dependent density trends (e.g., F. D. Richards703

et al., 2020, 2023).704

6.3 Assessing ‘Effective’ Contributions to Instantaneous Deflections705

The results emphasise the importance of considering sensitivities of instantaneous706

vertical surface deflections to the location and scale of flow in the mantle. Taking inspi-707

ration from Hager and O’Connell (1981) and Parsons and Daly (1983), we calculate the708

net contributions from density anomaly structure to deflections, as a function of radius,709

latitude and longitude across all spherical harmonic degrees considered (i.e., l = 1 to710

50). Contributions to deflections from densities at particular radii r, across all spheri-711

cal harmonic degrees and orders, for each latitude and longitude, (θ, ϕ), are calculated712

such that713

he(θ, ϕ, r) =

L∑
l=1

m=l∑
m=−l

[Ylm(θ, ϕ) · δρlm(r) ·Al(r) ·∆r] , (11)

where ∆r is the radial width of the spherical shell included in the calculation (≈ 45 km714

for all shells from the surface to the CMB; see Supporting Information) and Ylm are spher-715

ical harmonic coefficients. Mean density anomalies, δρlm, within each shell at each lat-716

itude and longitude, and sensitivities Al at the top of each shell are used to calculate he717

(see Section 2.3). Contributions at specific locations to surface deflections as a function718

of latitude and longitude, and spherical shell depth are shown in Figure 9 for Model 12,719

for 1 ≤ l ≤ 50. Results for lower maximum degrees are shown in Supporting Infor-720

mation. Panels a-d show slices through effective density in the upper (at 45, 135, 360721

km) and lower mantle (1445 km). A 180◦ cross-section showing effective densities from722

the core-mantle-boundary to the surface beneath the Pacific to the Indian Ocean encom-723

passing South America and southern Africa (the same transect as shown in Figure 1)724

is shown in panel e. This figure again emphasizes the contribution of density anomalies725

in the upper mantle to surface deflections, and the risks associated with discarding shal-726

low structure when predicting dynamic topography.727
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6.4 Summary and Future Work728

Encouragingly, although predicted instantaneous surface deflections are sensitive729

to different parameterizations, broadly coherent patterns emerge in all models tested.730

Moreover, calculated deflections are relatively insensitive to the methodologies used to731

solve the equations of motion. For instance, incorporation of gravitational potential of732

deflected surfaces, self-gravitation and viscosity anomalies each generate subtly differ-733

ent surface deflections. Choosing to solve the equations of motion analytically or numer-734

ically changes calculated deflections by < 25%, even when temperature-dependent vis-735

cosity is included throughout the duration of a simulation.736

In contrast, removal of shallow structure produces much larger discrepancies be-737

tween predicted deflections. For instance, surface deflections calculated using the entire738

modelling domain (core-mantle boundary to surface) have spectral slopes consistent with739

those of oceanic age-depth residuals, however amplitudes are over-predicted by 1–2 or-740

ders of magnitude. In contrast, by not including the shallowest 200 km, calculated power741

spectra more closely match observed amplitudes, especially at spherical harmonic de-742

grees > 10 (Figure 5). However, the spectral slopes of predicted deflections are redder743

than for the oceanic residuals, which implies that a different approach to removing the744

contribution of lithospheric structure is required.745

An obvious necessary next step for accurately predicting modern dynamic support746

from mantle convection simulations is to incorporate accurate information about litho-747

spheric structure from, for instance, tomographic models (e.g., Priestley & McKenzie,748

2013; F. D. Richards et al., 2020). Another useful next step is to establish sensitivity of749

surface deflections to time-dependent parameters that impact predicted flow histories,750

including plate motions. The results in this paper indicate that comparing predicted and751

observed surface deflections, combined with knowledge of lithospheric structure, could752

be used to identify optimal models.753

Finally, the body of geologic and geomorphologic observations that could be used754

to test predicted histories of surface deflections from mantle convection simulations has755

grown substantially in the last decade (e.g., uplift and subsidence histories; Section 1;756

see, e.g., Hoggard et al., 2021, and references therein). A suite of other geologic and geo-757

physical observables are also predicted by, or can be derived from, such simulations (e.g.,758

mantle temperatures, heat flux, geoid, seismic velocities, true polar wander). Using them759

alongside histories of surface deflections to identify optimal simulations is an obvious av-760

enue for future work (e.g., Ball et al., 2021; Lau et al., 2017; Panton et al., 2023; F. D. Richards761

et al., 2023). Using such data and the methodologies explored in this paper may be a762

fruitful way of identifying optimal simulations from the considerable inventory that al-763

ready exists.764

7 Conclusions765

This study is concerned with quantifying sensitivities and uncertainties of Earth’s766

surface deflections that arise in simulations of mantle convection. Calculated sensitiv-767

ities of instantaneous deflection of Earth’s surface to mantle density structure empha-768

sise the importance of accurate mapping of the upper mantle. Surface deflections are some-769

what sensitive to the distribution of viscosity throughout the mantle, but especially to770

the locations and scales of density anomalies in the upper mantle. The largest discrep-771

ancies between predicted deflections seen in this study are generated when upper man-772

tle structure is excised or altered. Doing so changes both the amplitude and distribu-773

tion of calculated deflections, modifying their power spectral slopes. These results em-774

phasise the importance of incorporating accurate models of lithospheric structure into775

calculation of sub-plate support of topography, and also the need to accurately deter-776

mine plate contributions to topography. In contrast, the choice of methodology to es-777
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timate surface deflections—analytic or numeric—or boundary conditions are relatively778

small sources of uncertainty. Similarly, assumed gravitational profiles and temperature779

dependence of viscosity are relatively minor contributors to uncertainty given reason-780

able, Earth-like, parameterizations. Nonetheless, these parameterizations may impact781

surface deflections through their role in determining how upper mantle flow evolves through782

geologic time. A fruitful next step could be to use the approaches developed in this pa-783

per, in combination with careful isolation of plate cooling signatures from surface deflec-784

tion predictions, to test mantle convection simulations using the existing and growing785

body of geologic, geomorphologic and geophysical observations.786
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Figure 1. Examples of mantle densities and viscosity used to calculate stresses

and surface deflections numerically and analytically. (a) Great-circle slice (180°) through
full-resolution, present-day, density ρ, predicted by numeric model TERRA with temperature

dependent viscosity (Model 11a; see Table 1 and body text); see globe to left for location. White

circles = 20° intervals; filled black circle indicates orientation of cross section; dashed line =

660 km depth contour; dotted line = 1038 km depth contour, at which depth ρ is plotted on

globe; white-black curve = numeric prediction of surface normal stress σrr from Model 11a. (b)

As (a) but slice is through spherical harmonic expansion of density structure, to maximum degree

l = 50 (λ ≈ 792 km; Model 11b); black-white curve = surface deflection h, calculated using

(analytic) propagator matrix approach (Model 12). (c) As (a) but for slice through full-resolution

viscosity structure of numeric model. (d) As (c) but for mean (radial) viscosity structure, used

along with the density structure shown in (b) to generate analytic solution for surface deflection

shown by black-white curve atop (b). (e–f) As (c–d) but viscosity is expressed as a percentage

anomaly with respect to the layer (radial) mean. (g–h) Predicted densities at 270 km depth at

0 and 100 Ma from numeric model with viscosity independent of temperature (Model 1a). Ex-

tended results are shown in Figure S1. Plate motions and paleo-coastlines are from Merdith et al.

(2021).
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Figure 2. Surface stresses and deflections from numeric simulation of mantle con-

vection with spherical harmonic expansion up to degree 50. (a) Predicted present-day

surface radial stress, σrr (Model 1a). (b) Histogram of values shown in (a). (c) Black line = ra-

dial viscosity structure used to drive Model 1a and thus produce grid shown in panel (a). Gray

dashed lines = alternative viscosity profiles of (from darkest to lightest) Mitrovica and Forte

(2004), Steinberger and Calderwood (2006), and µ1, µ2 from Ghelichkhan et al. (2021). (d)

Model 1b: Spherical harmonic fit to Model 1a (panel a) up to maximum degree l = 50 (minimum

wavelength λ ≈ 792 km). (e) Histogram of values shown in panel (d). (f) Power spectrum—total

power per degree—of stress field shown in panel (d). (g) Spherical harmonic fit to surface de-

flections (Model 1b; up to degree l = 50). (h) Histogram of values shown in panel (g). (i) Black

curve = power spectrum of calculated water-loaded surface deflections (panel g); gray line and

band = expected dynamic topography from Kaula’s rule using admittance Z = 12 ± 3 mGal

km−1 (Kaula, 1963). Orange dashed line = expected power spectrum for water-loaded residual

topography (from Holdt et al., 2022) via analytic solution of special case of Equation 15. χp =

root-mean-squared difference between calculated (black) and independent (orange & grey) surface

deflection power (see Equation 20). All histograms are weighted by latitude to correct to equal-

area. Figure S2 shows extended results including air-loaded deflections.

–29–



manuscript submitted to Geochemistry, Geophysics, Geosystems

Figure 3. Comparisons of numeric (Model 1b) and analytic (Model 2) estimation

of surface deflections from models with identical parameterization. (a) Surface de-

flection sensitivity kernel Al as a function of spherical harmonic degree, l, and depth (Model 2).

(b) Propagator matrix (analytic) solution for water-loaded surface deflection calculated using

sensitivity kernel shown in panel (a). Figure S3 shows extended results including power spec-

tra and air-loaded deflections. (c) Difference, ∆h, of surface deflections in Models 1b and 2.

(d) Histogram of difference values shown in (c). (e) Spectral correlation coefficient, rl, between

Models 1b and 2; Equation 8. (f) Comparison of predicted surface deflections; χ = root-mean-

squared difference between predictions (Equation 7); gray dashed line = 1:1 ratio. (g) Black bars

= histogram of ratios between analytic:numeric solutions for surface deflection as in (f). Gray

dashed line = 1 (i.e., identical values). Gray bars = as black bars, but for propagator matrix

solution amplitudes scaled up by optimal factor to fit numeric solution (=10%). All histograms

are weighted by latitude to correct to equal-area.
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Figure 4. Impact of self-gravitation (a–c) and gravitational potential of deflected

surfaces (d–e) on surface deflections calculated analytically. In these tests surface de-

flections from models with different gravity parameterizations are compared to predictions from

Model 2. (a) Difference between water-loaded surface deflections calculated using the propagator

matrix technique incorporating self-gravitation (Model 3; black curve in panel b) and g = 10 m

s−2 (dashed line in panel b; Model 2). (c) Histogram of values in panel (a). (d–e) Differences in

surface deflection from models with (Model 4) and without (Model 2) stress perturbations in-

duced by gravitational potential of the deflected surface. All histograms are weighted by latitude

to correct to equal-area, they show the full extent of the results. Figures S4–S5 show extended

results including maps of calculated surface deflections.
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Figure 5. Effect of removing shallow structure on surface deflections calculated

analytically. Surface deflections in models with shallow structure removed are compared to

those predicted by Model 2. (a) Black line = Power spectra of predicted water-loaded surface

deflection from propagator matrix solution for Model 2 (Figure 3b), but with effect of upper 50

km of density anomaly structure ignored in calculation (Model 5). Gray line and band = ex-

pected dynamic topography from Kaula’s rule using admittance Z = 12 ± 3 mGal km−1 (Kaula,

1963). Orange dashed line = expected power spectrum for water-loaded residual topography from

Holdt et al. (2022), via analytic solution of special case of Equation 15. χp = root-mean-squared

difference between calculated (black) and independent (orange & grey) surface deflection power

(see Equation 20). (b) Spectral correlation coefficient, rl, of surface deflections in Models 5 and 2

(see Equation 19). Inset χ = root-mean-squared difference in surface deflections of Models 5 and

2 (see Equation 18). (c–d) and (e–f) as (a–b) but for depth cut-offs of 100 (Model 6) and 200 km

(Model 7), respectively. Figure S7 show extended results including maps of calculated surface

deflections and differences with Model 2.
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Figure 6. Impact of free- and no-slip surface and core-mantle boundary boundary

conditions on surface deflections. This figure shows comparisons of surface deflections from

models with different assumed boundary conditions and Model 2. (a) Water-loaded surface de-

flection sensitivity kernel Al, for Model 8, which has a no-slip surface boundary condition, but

otherwise is parameterised the same as Model 2. (b) Sensitivity kernel of Model 8 minus sensi-

tivity kernel of Model 2. Note, positive difference implies reduced sensitivity compared to Model

2, and vice versa, since Al is negative. (c) Predicted water-loaded surface deflection for Model

8. (d) Difference between surface deflection predictions for Model 8 and Model 2. (e–h) as (a–d)

but for Model 9: free-slip surface boundary, no-slip CMB. (i–l) as (a–d) but for Model 10: no-slip

surface and CMB boundaries.
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Figure 7. Comparison of surface deflections calculated numerically (Model 11b)

and analytically (Model 12) using results from simulation with temperature de-

pendent viscosity. (a) Model 11b: Spherical harmonic expansion of predicted present-day

water-loaded surface deflection converted from stress output from numeric model TERRA (Model

11a), to maximum degree l = 50. (b) Model 12: As (a) but for prediction made using propagator

matrix method. (c) Difference, ∆h, between Models 11b and 12 (panels a and b). (d) Histogram

of difference values shown in (c), weighted by latitude to correct to equal-area. (e) Spectral cor-

relation coefficient, rl, between predictions shown in panels (a) and (b); Equation 8. (f) Numeric

(Model 11b) versus analytic (Model 12) predictions of surface deflection; χ = root-mean-squared

difference between predictions, Equation 7; gray dashed line = 1:1 ratio. (g) Histogram of ratios

between analytic:numeric solutions for surface deflection as in (f), weighted by latitude. Gray

dashed line = 1 (i.e., identical values). Gray bars = as black bars, but for propagator matrix

solution amplitudes scaled up by optimal factor to fit numeric solution (24%).

–34–



manuscript submitted to Geochemistry, Geophysics, Geosystems

–35–



manuscript submitted to Geochemistry, Geophysics, Geosystems

Figure 8. Sensitivity of calculated analytic surface deflection to adjusted radial

viscosity (a–h) and density anomalies (i–l). This figure shows comparisons of surface de-

flections calculated in models with modified viscosity and density to the results from Model 12

(see Table 1). (a) Black curve = unadjusted prediction of present-day radial mean viscosity from

Model 11; red line = adjusted radial profile with viscosity decreased by a factor of 10 between

depths of ∼ 300–500 km (Model 13); gray dashed lines = viscosity profiles used in other studies

(see Figure 2). (b) Sensitivity kernel for the viscosity profile indicated by the red curve in panel

a. Value of root-mean-squared difference, χ, between calculated surface deflections for unadjusted

and adjusted viscosity is stated (see Equation 7). (c–h) Results from testing alternative radial

viscosity (Models 14–16). Figure S13 shows extended results including maps of surface deflections

and their differences. (i-l) Density anomalies (red line) adjusted by directly scaling spherical

harmonic coefficients (l > 0) up or down by a factor of 2 (Models 17 & 19: panels e & g) or 1
2

(Models 18 & 20: f & h). Viscosity structure applied in each case is same as that used to gener-

ate Figure 7b. Sensitivity kernels for surface deflections are not shown since they are invariant

with respect to density anomalies, ∆ρ, depending only on viscosity structure. Figure S14 shows

extended results including maps of surface deflections and their differences.
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Figure 9. Effective density; contributions from density anomalies to surface deflec-

tion. (a–d) Maps of net contribution to present-day water-loaded surface deflection calculated

using propagator matrix approach (Model 12; see body text for details). Depth slices at 45, 135,

360 and 1445 km depth incorporating all spherical harmonic degrees l and orders m, up to l =

50. (e) Great-circle slice (180°) showing contributions to surface deflection; globe to right shows

transect location and calculated surface deflection (Model 12). White circles = 20° intervals; note
filled black circle for orientation; dashed line = 660 km depth contour. (f) White-black curve =

total surface deflection along transect shown atop globe in panel (e); abscissa aligned with panel

g; orange dashed line = same but for maximum l = 10 (see Supporting Information Figure S18);

red dashed curve = surface deflection from Model 2. (g) Cartesian version of panel (e); ordinate

aligned with panel (h). (h) Grey dashed curve = mean absolute value of density anomalies in

Model 12—see top axis for values. Black curve = global mean amplitude (modulus) of contribu-

tion from density structure in Model 12 to total surface deflection h, across all l and m; orange

line = same but for maximum l = 10; red dashed line = results for Model 2 (see Section 6.3). See

Figures S15–S19 for extended results, demonstrating sensitivity of surface deflections to maxi-

mum spherical harmonic degree.
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Abstract18

The modern state of the mantle and its evolution on geological timescales is of widespread19

importance for the Earth sciences. For instance, it is generally agreed that mantle flow20

is manifest in topographic and drainage network evolution, glacio-eustasy and in the dis-21

tribution of sediments. There now exists a variety of theoretical approaches to predict22

histories of mantle convection and its impact on surface deflections. A general goal is to23

make use of observed deflections to identify Earth-like simulations and constrain the his-24

tory of mantle convection. Several important insights into the role of radial and non-radial25

viscosity variations, gravitation, and the importance of shallow structure already exist.26

Here we seek to bring those insights into a single framework to elucidate the relative im-27

portance of popular modelling choices on predicted instantaneous vertical surface deflec-28

tions. We start by comparing results from numeric and analytic approaches to solving29

the equations of motion that are ostensibly parameterised to be as-similar-as-possible.30

Resultant deflections can vary by ∼10%, increasing to ∼ 25% when viscosity is temperature-31

dependent. Including self-gravitation and gravitational potential of the deflected surface32

are relatively small sources of discrepancy. However, spherical harmonic correlations be-33

tween model predictions decrease dramatically with the excision of shallow structure to34

increasing depths, and when radial viscosity structure is modified. The results empha-35

sise sensitivity of instantaneous surface deflections to density and viscosity anomalies in36

the upper mantle. They reinforce the view that a detailed understanding of lithospheric37

structure is crucial for relating mantle convective history to observations of vertical mo-38

tions at Earth’s surface.39

Plain Language Summary40

Flow of rock within Earth’s interior plays a crucial role in evolving the planet. It41

moves heat and chemicals from deep depths to the surface, for instance. It also moves42

the lithosphere—the Earth’s outer rocky shell—which in turn impacts processes includ-43

ing mountain building, sea-level change, formation of volcanoes, river network evolution,44

and natural resource distribution. Consequently, we wish to understand the present state,45

and history, of flowing rock within Earth’s interior. Observations exist to address this46

problem, and mathematics and computing tools can also be used to predict histories of47

flow and their impact on Earth’s surface. We explore how assumptions incorporated into48

such numeric models can affect calculations of the vertical deflection of Earth’s surface.49

Predictions from different models are compared, with a view to identifying crucial mod-50

elling components. Surface sensitivity to deep flow is assessed, demonstrating how sur-51

face observations can enlighten flow histories.52

1 Introduction53

Mantle convection plays a crucial role in Earth’s evolution (e.g., Hager & Clayton,54

1989; Parsons & Daly, 1983; Pekeris, 1935). It is well understood, for instance, that flow55

in the mantle is fundamental in the transfer of heat and chemicals from the deep Earth56

to the surface, in driving horizontal and vertical lithospheric motions (thus tectonic pro-57

cesses), and in magnetism via interactions with the core (e.g., Biggin et al., 2012; Davies58

et al., 2023; Foley & Fischer, 2017; Hoggard et al., 2016; Holdt et al., 2022; Pekeris, 1935).59

In turn, many processes operating at or close to Earth’s surface are impacted, includ-60

ing glacio-eustasy, magmatism, climate, sediment routing, natural resource distribution,61

drainage network evolution, and development of biodiversity (e.g., Bahadori et al., 2022;62

Ball et al., 2021; Braun, 2010; Chang & Liu, 2021; Hazzard et al., 2022; O’Malley et al.,63

2021; Salles et al., 2017; Stanley et al., 2021). Clearly, understanding the physical and64

chemical evolution of the mantle has broad implications. An important goal is to deter-65

mine contributions to surface processes from the modern mantle and its history during,66

say, the last 100 million years.67
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Residual oceanic age-depth measurements, potential field data, seismic tomographic68

models and melting histories of young mafic rocks are providing increasingly coherent69

observational insights into the modern and recent state of the mantle (e.g., Ball et al.,70

2022; Davies et al., 2023; Fichtner et al., 2009, 2013; Fichtner & Villaseñor, 2015; French71

& Romanowicz, 2015; Hoggard et al., 2016; Holdt et al., 2022; Kaula, 1963; Lekić & Fis-72

cher, 2014; Priestley & McKenzie, 2013; F. D. Richards et al., 2021). Stratigraphic and73

geomorphic observations as well as magmatic histories provide clues about the history74

of mantle convection on geologic timescales (e.g., Al-Hajri et al., 2009; Czarnota et al.,75

2013; Flament et al., 2015; Fernandes et al., 2019; Fernandes & Roberts, 2021; Galloway76

et al., 2011; Gunnell & Burke, 2008; Gurnis et al., 2000; Hoggard et al., 2021; Lambeck77

et al., 1998; Morris et al., 2020; O’Malley et al., 2021; Stanley et al., 2021). Despite these78

advances, observations providing information about the history of mantle convection are79

sparse in places, especially within continental interiors and back in time (see e.g., Hog-80

gard et al., 2021). Moreover, disentangling contributions from crustal, lithospheric and81

sub-lithospheric processes to surface deflections remains challenging and controversial82

(see e.g. Hoggard et al., 2021; Wang et al., 2022).83

Theoretical approaches that retrodict histories of mantle convection can, in prin-84

ciple, be used to fill in spatio-temporal gaps in the observational record and disentan-85

gle contributions to surface observables from different geologic processes (e.g., Baumgard-86

ner, 1985; Bunge & Baumgardner, 1995; Davies et al., 2013; Flament et al., 2015; Ghe-87

lichkhan et al., 2021; Hager et al., 1985; Moucha & Forte, 2011; Steinberger & Antret-88

ter, 2006). Increasingly realistic geodynamic simulations incorporating, for instance, plate89

motions, gravitation and deflection of gravitational potential fields, complex rheologies,90

viscosity laws that can include temperature, pressure, composition, grain size and strain91

rate dependence, and assimilation of seismic tomographic information into flow solutions,92

result in a diverse array of retrodicted flow histories. Mineralogical phase changes, com-93

pressibility, different surface and core-mantle boundary slip conditions (e.g., no-slip, free-94

slip), chemical and thermal buoyancy, and plate motion constraints on mantle structure95

can also generate diverse predictions of mantle convection and resultant surface deflec-96

tions (e.g., Baumgardner, 1985; Bunge et al., 2002, 2003; Corrieu et al., 1995; Crameri97

et al., 2012; Dannberg et al., 2017; “Topographic asymmetry of the South Atlantic from98

global models of mantle flow and lithospheric stretching”, 2014; Forte, 2007; Ghosh &99

Holt, 2012; Glǐsović & Forte, 2016; Hager & Clayton, 1989; Heister et al., 2017; Liu &100

Gurnis, 2008; Panasyuk et al., 1996; Ribe, 2007; Ricard, 2007; Tackley et al., 1993; Zhong101

et al., 2008; Zhou et al., 2018). Aside from the fundamental choice of governing equa-102

tions and parameterizations underpinning simulations, mathematical and computational103

approaches to solve the equations of motion generate different predictions of surface de-104

flections. These approaches sit within two broad families: numeric simulations (e.g., AS-105

PECT, CitcomS, TERRA; Bangerth et al., 2023; Baumgardner, 1985; Zhong et al., 2000),106

and propagator-matrix-based, quasi-analytic techniques, that can be solved in two or three107

dimensions, and importantly for our purposes, spherically and spectrally (e.g., Colli et108

al., 2016; Hager & O’Connell, 1979; Parsons & Daly, 1983).109

A challenge then is to establish whether observed surface deflections can be used110

to discriminate between theoretical predictions of mantle convection, and, in turn, iden-111

tify models that generate realistic and testable retrodictions. In this study we are prin-112

cipally concerned with establishing similarities and sensitivities of predicted instanta-113

neous vertical surface deflections. We focus on vertical motions for two reasons. First,114

inventories of measurements of uplift and subsidence—on timescales of mantle convection—115

now exist for most continents and could be compared to predictions from global simu-116

lations in future work (e.g. Fernandes & Roberts, 2021, and references therein). Secondly,117

many geodynamic simulations incorporate horizontal motions of the lithosphere, which118

limits their use as a comparator.119
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From an observational perspective, it would be useful to establish rules-of-thumb120

that quantify sensitivity of surface deflections to choices made when predicting them.121

Many such rules are already well known from analytic and numeric solutions of the equa-122

tions of motion (e.g., Colli et al., 2016; Hager & O’Connell, 1979; Holdt et al., 2022; Lees123

et al., 2020; Parsons & Daly, 1983). For instance, a suite of benchmark studies exist that124

compare predictions from numeric mantle convection simulations with analytic solutions125

(see e.g., Bauer et al., 2019; Kramer et al., 2021; Zhong et al., 2008, and references therein).126

Those papers tend to focus on establishing the fidelity of numeric models. In contrast,127

our goals are to, first, understand how calculated deflections are impacted by the choice128

of methodology used to solve the equations of motion and, secondly, to establish sensi-129

tivities to popular assumptions incorporated into simulations. We want to know the ex-130

tent to which an improved fit between predictions and observations reflects a more Earth-131

like density and viscosity structure versus modelling choices. Our thesis is that perform-132

ing all tests in a self-consistent framework, as we do in this study, provides a straight-133

forward way to collate insights into the sensitivities of predicted surface deflections and134

to simplify the comparison of predictions from different suites of models.135

1.1 Our Approach and Paper Structure136

We start by exploring the consequences of solving the equations of motion numer-137

ically, using the TERRA software, and analytically, using Ghelichkhan et al. (2021)’s prop-138

agator matrix algorithms (see Figure 1 & Supporting Information). We make use of the139

flexibility of numeric approaches by incorporating a variety of assumptions and param-140

eterizations that are not amenable to analytic attack (e.g., temperature-dependent vis-141

cosity). All numeric simulations presented in this paper were driven by the plate mo-142

tion history of Merdith et al. (2021, see Figures 1g–h and S1). The models have a res-143

olution of 60 km at their surface (see Supporting Information for details of model setup144

and execution). We note that they do not directly assimilate information about the man-145

tle from tomographic models. Ensuring that numeric simulations are accurate and sta-146

ble means that computational burden is often considerable and hence systematic explo-147

ration of parameter space remains challenging. In contrast, analytic approaches can yield148

calculated surface deflections that are (mathematically) accurate, whilst including fea-149

tures such as radial gravitation, with much less computational cost. Consequently, we150

make use of propagator matrix techniques to explore parameter space, examine bench-151

marks, and reproduce results. We establish the sensitivity of solutions to different pa-152

rameterizations and approaches to solving the equations of motion.153

There are at least two important considerations when solving the equations of mo-154

tion analytically. First, solutions are only known to exist in the spherical harmonic do-155

main for fluid bodies with radial viscosity (i.e., no lateral variability in viscosity). Sec-156

ond, generating solutions in the spherical harmonic domain places practical limits on spa-157

tial resolution of solutions. Consider that the number of spherical harmonic coefficients158

per degree = 2l+1, where l is degree, so for a given maximum degree L, there are (L+159

1)2 coefficients in total. For instance, when L = 50 there are 2, 601 coefficients for each160

model. Consider also that spatial resolution increases approximately with the recipro-161

cal of l (see Section 2.2). Incorporating full resolution output from the numeric models162

(60 km at the surface) would require L ≈ 880, with 776, 161 coefficients, which is com-163

putationally cumbersome. Furthermore, observational constraints on mantle-related sur-164

face deflection are unlikely to be finer than the flexural wavelength of the overlying litho-165

sphere, l ≈ 50 (e.g., Holdt et al., 2022). With these limitations in mind, we compared166

surface deflections predicted using different approaches at the same resolution up to l =167

50 (see Supporting Information and Section 2.3).168

Most of the tests in this paper compare surface deflections calculated using the en-169

tirety of the model domains (i.e., from CMB to the surface). This approach simplifies170

like-for-like comparisons of model predictions and comparisons to increasingly complex171
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scenarios. However, amplitudes of calculated deflections will of course not reflect esti-172

mated amplitudes of dynamic topography. This approach purposefully avoids isolating173

passive or plate-driven surface deflections and sub-plate support from numeric simula-174

tions or analytic solutions. Since the central focus of this work is merely on quantify-175

ing contrasts that arise from choices made when simulating mantle convection, we wish176

to avoid incorporating additional modifications where possible. In subsequent tests we177

examine the consequences of simply removing shallow structure, a widely used approach178

for estimating dynamic support from simulations (see e.g., Flament et al., 2013; Flament,179

2018; Wang et al., 2022).180

With this framework in place we generate, compare and contrast predicted surface181

deflections. The first suite of tests are purposefully simple, e.g., incompressible, constant182

gravitational acceleration (no self-gravitation or radial variation in gravitation) and have183

radial viscosity independent of temperature. Results are compared to estimates of sub-184

plate support from oceanic age-depth residuals with a view to quantifying corrections185

necessary to convert predicted instantaneous surface deflections into estimates of sub-186

plate support. We then systematically examine the impact of incorporating radial vari-187

ations in gravitational acceleration, contribution to flow from deflection of the gravita-188

tional potential field, removal of shallow density structure, choice of surface and CMB189

slip conditions, inclusion of temperature-dependent viscosity, and amplification or reduc-190

tion of viscosity and density anomalies in the upper and lower mantle (Section 4; Tables191

1–2). A closed-loop modelling strategy is explored in which predicted surface deflections192

from these relatively complex models are compared to results from simpler reference mod-193

els. Finally, a methodology for assessing effective contributions to surface topography194

from mantle anomalies is presented.195

2 Numeric and Analytic Calculations of Surface Deflection196

The Supporting Information document summarises the formulations of Stokes’ equa-197

tions that are solved, model parameter values used and the numeric approach to calcu-198

lating mantle convection using the TERRA finite-element software. Here, we move straight199

to explaining how those simulations are used to calculate radial stresses, σrr, thence ver-200

tical deflections, h, at Earth’s surface (Figure 1). A methodology for representing model201

predictions in the spherical harmonic domain is then described. We then examine an-202

alytic solutions obtained using propagator matrix techniques.203

2.1 Deflections calculated using radial stresses from numeric simulation204

Following Parsons and Daly (1983), surface deformation is estimated from numeric205

simulations of mantle convection by making use of the requirement that normal stress206

is continuous across the upper boundary of the solid Earth (see also McKenzie, 1977; Ri-207

card, 2015). In other words, radial stresses generated by the solid Earth are required to208

be balanced by stresses generated by the overlying (oceanic or atmospheric) fluid. There209

are three contributions to normal stress at this boundary from the mantle: hydrostatic210

stress that would exist even in the absence of convection, dynamic stress arising from211

convection, and viscous stress which opposes fluid motion (see Equations 2–6 in Support-212

ing Information). To satisfy the continuity condition, these stresses must be balanced213

by those generated by the water (or air) column atop this boundary. If the pressure from214

the overlying column is hydrostatic, the resultant condition is215

ρwgsh = ρmgsh+ σrr, (1)

where σrr incorporates deviatoric viscous stresses generated by mantle convection and216

dynamic pressure (σrr = τrr − p), obtained by solving Equation 2 in Supporting In-217

formation. In practice, since values for this term are obtained by subtracting radial litho-218
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static stress from the total stress, values of σrr integrate to zero globally. gs is gravita-219

tional acceleration at Earth’s surface, ρm is the mean density for the surficial layer, and220

ρw is the density of the overlying fluid (see Table S1). Note that we do not impose ad-221

ditional oceanic plate cooling, e.g., due to hydrothermal circulation at ridges. Cooling222

and subsequent subsidence, as well as passive return flow at ridges, arise naturally from223

solution of the governing equations laid out in Section 2 of Supporting Information.224

Surface deflection arising in response to predicted convective flow, h, is approxi-225

mated by rearranging Equation 1,226

h ≈ − σrr

(ρm − ρw)gs
. (2)

Deflections are estimated from radial stresses at times of interest (e.g., the present-227

day) by re-running one time-step of the TERRA model. During that time-step, a free-228

slip boundary condition, for which analytic approximations for surface deflection exist,229

is imposed instead of the plate-slip condition prescribed during the main model run rou-230

tine (see Section 2.3; Ricard, 2015). The numeric models themselves apply a quasi-rigid231

condition at the surface, whereby flow is driven by estimates of real plate velocities (from232

Merdith et al., 2021), and so the surface layers behave as a series of rigid, laterally mo-233

bile plates rather than a single rigid shell. We assess the accuracy of modifying bound-234

ary conditions in this way by converting calculated deflections into the spherical harmonic235

domain and comparing them to predictions generated using the analytic propagator ma-236

trix approach. The consistent boundary flux (CBF) method provides an alternative means237

to accurately calculate normal stresses (Zhong et al., 1993). Previous benchmarking with238

TERRA has shown mean errors of a few percent or less for surface deflection predictions239

at low harmonic degrees, l ≤ 16 (Davies et al., 2013).240

2.2 Surface Deflections Calculated in the Spherical Harmonic Domain241

Transforming stress, or surface deflections, calculated using numeric approaches into242

the frequency domain provides straightforward means of comparing results to analytic243

solutions and of quantifying spectral power, i.e., the magnitude of contribution to the244

total signal from different wavelengths. Since the models that we investigate are global245

in scope, we do so using spherical harmonics. The methodology for calculating spher-246

ical harmonics and the definition of power adopted in this study are included as Sup-247

porting Information. Figure 2 shows an example of surface stresses calculated using the248

TERRA code, their spherical harmonic representation, calculated surface deflections in249

the spherical harmonic domain, and associated statistics and power spectra.250

Using the total power per degree convention, Hoggard et al. (2016) derived a rule-251

of-thumb for estimating the power spectrum of dynamic topography (see their Support-252

ing Information), PDT
l , using Kaula (1963)’s approximation for the long-wavelength grav-253

ity field of Earth as a function of l:254

PDT
l ≈

(
GM

ZR2

)2 (
2

l
− 3

l2
+

1

l4

)
, (3)

where G is the gravitational constant, M = 5.97 × 1024 kg is the mass of the Earth,255

R ≈ 6370 km is Earth’s radius. The value of low-degree admittance, Z, between grav-256

ity and topography varies as a function of viscosity, as well as the depth and wavelength257

of internal density anomalies (Colli et al., 2016). Hoggard et al. (2016) found that as-258

suming an average value of Z = 12 mGal km−1 provides a reasonable approximation259

of observed residual topographic trends, thus we make use of that value in the remain-260

der of the paper. Finally, it is useful to note that Jeans (1923) related spherical harmonic261

degree to wavelength λ, which at Earth’s surface can be approximated via λ ≈ 2πR/
√

l(l + 1).262
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2.3 Surface Deflections Calculated Analytically263

The second methodology used to calculate surface deflection in response to man-264

tle convection is the analytic propagator matrix technique (e.g., Craig & McKenzie, 1987;265

Gantmacher, 1959; Ghelichkhan et al., 2021; Parsons & Daly, 1983; M. A. Richards &266

Hager, 1984). The approach we take stems from the work of Hager and O’Connell (1981)267

who used Green’s functions to solve the equations of motion in the spherical harmonic268

domain. Those solutions are used to generate sensitivity kernels that straightforwardly269

relate, for example, density or temperature anomalies in the mantle to surface deflections.270

The kernels are generated in the frequency domain, and constructed such that surface271

deflection sensitivity to mantle (e.g., density) anomalies is calculated as a function of depth272

(or radius) and wavenumber. A global spherical harmonic implementation introduced273

by Hager et al. (1985) has been extended to include compressibility, the effect of warp-274

ing of the gravitational potential by subsurface density distributions, and radial grav-275

ity variations calculated using radial mean density values (Corrieu et al., 1995; Forte &276

Peltier, 1991; Hager & O’Connell, 1981; M. A. Richards & Hager, 1984; Thoraval et al.,277

1994).278

In this study, following Ghelichkhan et al. (2021), surface deflection for each spher-279

ical harmonic coefficient, hlm, is calculated in the spectral domain such that280

hlm =
1

(ρm − ρw)

∫ R

RCMB

Alδρlm(r) · dr. (4)

Products of the sensitivity kernel, Al, and density anomalies, δρlm, of spherical harmonic281

degree, l, and order, m, are integrated with respect to radius, r, between the core-mantle282

boundary and Earth’s surface radii, RCMB and R, respectively. The sensitivity kernel283

is given by284

Al = −
(

η0
RgR

)(
u1 +

ρw
ρ0

u3

)
, (5)

where un(r) represents a set of poloidal variables, which are posed for solution of the set285

of simultaneous equations by matrix manipulation, such that286

u(r) =
[
y1η0 y2η0Λ (y3 + ρ̄(r)y5)r y4rΛ y5rρ0Λ y6r

2ρ0
]T

, (6)

where Λ =
√
l(l + 1), and y1 to y6 represent the spherical harmonic coefficients of ra-287

dial velocity vr, lateral velocity vθ,ϕ, radial stress σrr, lateral stress σrθ,ϕ, gravitational288

potential V , and gravitational potential gradient ∂V/∂r, respectively (Hager & Clayton,289

1989; Panasyuk et al., 1996). ρ̄ is the layer mean (l = 0) density. The kernel Al includes290

both u1 and u3, two terms in the matrix solution to the governing equations that affect291

surface topography by directly exerting stress on the surface boundary (u1), and by chang-292

ing the gravitational potential at the surface (u3). The functional forms of calculated293

sensitivity kernels depend on chosen radial viscosity profiles and boundary conditions294

(e.g., free-slip or no-slip; Parsons & Daly, 1983).295

3 Spatial and Spectral Comparison of Model Predictions296

To quantify impacts of modelling assumptions and approaches used to solve the297

equations of motion we compare calculated surface deflections using the following met-298

rics.299
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3.1 Euclidean Comparisons of Amplitudes300

First, we calculate root-mean-squared difference, χ, between predicted surface de-301

flections in the spatial domain,302

χ =

√√√√ 1

N

N∑
n=1

wϕ (ha
n − hb

n)
2
, (7)

where ha
n and hb

n are predicted surface deflections from the two models being compared.303

N = number of points in the 1×1◦ gridded maps being compared (e.g., Figure 3b; N =304

65341). The prefactor wϕ is proportional to cosϕ, where ϕ is latitude, and is included305

to correct biases in cell size with latitude; mean wϕ = 1. This metric is closely asso-306

ciated with the mean vertical distance (L2-norm distance) between predicted and ref-307

erence surfaces, i.e., ∆h̄ = 1/N
∑N

n=1 wϕ|ha
n − hb

n|. These metrics are sensitive to dif-308

ferences in amplitudes and locations of surface deflections.309

3.2 Spectral Correlation Coefficients310

Second, we use pyshtools v4.10 to compute correlation coefficients, rl, between pre-311

dicted surface deflections in the spectral domain (Wieczorek & Meschede, 2018). Cor-312

relation coefficients as a function of degree l, adapted from Forte (2007), are calculated313

such that314

rl =

∑
f∗
1 f2√∑

f∗
1 f1

√∑
f∗
2 f2

, where
∑

=

+l∑
m=−l

, (8)

f1 and f2 are the spherical harmonic coefficients of the two fields (i.e., surface deflections)315

being compared, which vary as a function of order, m, and l; f = fm
l . ∗ indicates com-316

plex conjugation (see also Becker & Boschi, 2002; O’Connell, 1971). This metric is sen-317

sitive to the difference between predicted and reference surface deflection signals in the318

frequency domain, but not to their amplitudes. To summarize spectral similarity between319

models concisely, we later refer to the mean value of rl over every degree (0–50) as r̄l.320

We refer to the standard deviation of rl across degrees as sr.321

3.3 Comparing Calculated Power Spectra322

Lastly, to estimate closeness of fit between power spectra of surface deflections pre-323

dicted in this study and independent estimates, we calculate324

χp =

√√√√ 1

L

L∑
l=1

(
log10Pl − log10P

K
l

)2
+

√√√√ 1

L

L∑
l=1

(
log10Pl − log10P

H
l

)2
, (9)

where L = number of spherical harmonic degrees being compared (L = 50). Pl = power325

of predicted surface deflections generated in this study at degrees 1 ≤ l ≤ L (Equa-326

tion 11 in Supporting Information). PK
l = power of surface deflections estimated using327

Kaula’s law (Equation 3). PH
l = power of residual oceanic age-depth measurements from328

Holdt et al. (2022).329

4 Model Parameterizations330

The models examined in this paper are summarised in Table 1. In terms of assump-331

tions tested there are two families of models, those with viscosity independent of tem-332
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Table 1. Summary of mantle convection simulations. Column labeled ‘Method’ indicates

surface deflections calculated using either ‘Numeric’ (i.e., from surface normal stresses calculated

using TERRA) or ‘Analytic’ (i.e., propagator matrix) approaches; ‘Mixed’ indicates spherical

harmonic fitting of surface stresses calculated using numeric code, enabling comparison with so-

lutions to propagator matrix code. η(r) indicates models with radial viscosity (e.g. independent

of temperature; Models 1–10). η(r, T ) indicates models with temperature-dependent (therefore

laterally varying) viscosity (Models 11–20); note that analytic Models 12–20 incorporate radial

viscosity calculated using mean radial viscosity from Model 11a. †indicates with respect to Model

12. See Table 1, Section 4 and figures referred to in column 5 for details.

Model Method Viscosity Parameterizations Figures

1a Numeric η(r) Full resolution numeric model 1g-h, 2a-c, S1-2
1b Mixed η(r) Spherical harmonic fit to 1a 2d–i
2 Analytic η(r) Propagator matrix solutions 3, S3

3 Analytic η(r) Radial gravitation, g(r) 4a-c, S4
4 Analytic η(r) Gravitational potential terms 4d-e, S5

5 Analytic η(r) Removing upper 50 km of mantle 5a-b, S7a-d
6 Analytic η(r) Removing upper 100 km of mantle 5c-d, S7e-h
7 Analytic η(r) Removing upper 200 km of mantle 5e-f, S7i-l

8 Analytic η(r) No-slip surface, free CMB 6a-d
9 Analytic η(r) Free surface, no-slip CMB 6e-h
10 Analytic η(r) No-slip surface, no-slip CMB 6i-l

11a Numeric η(r, T ) Full resolution numeric model S8-S10, S12a-c
11b Mixed η(r, T ) Spherical harmonic fit to 11a 7, S8-10, S12d-g
12 Analytic η(r) Mean radial η(r, T ) from Model 11a 7, S11, S12h-k

13 Analytic η(r) Decrease† radial upper mantle η 8a-b, S13a-d
14 Analytic η(r) Increase† radial upper mantle η 8c-d, S13e-h
15 Analytic η(r) Increase† radial upper mantle η 8e-f, S13i-l
16 Analytic η(r) Constant radial η 8g-h, S13m-p

17 Analytic η(r) Upper mantle densities ×2† 8i, S14a-c
18 Analytic η(r) Upper mantle densities ×1/2† 8j, S14d-f
19 Analytic η(r) Lower mantle densities ×2† 8k, S14g-i
20 Analytic η(r) Lower mantle densities ×1/2† 8l, S14j-l

perature (Models 1–10), and those with temperature-dependent viscosity (Models 11–333

20). We note that Models 12-20 incorporate mean radial viscosity from the numeric Model334

11a in which viscosity depends on temperature. The two approaches used to solve the335

equations of motion are annotated ‘Numeric’ and ‘Analytic’ in Table 1, which refers to336

solutions from the TERRA and propagator matrix code, respectively. Viscosities and den-337

sities calculated using TERRA were used as input for the propagator matrix code and338

thus used to generate analytic estimates of surface deflection. Since analytic solutions339

are obtained by spherical harmonic expansion, surface deflections from TERRA were fit340

using spherical harmonics before predicted deflections were compared (annotated ‘Mixed’341

in Table 1; Section 2.2). We compare predicted deflections that arise from flow across342

entire model domains, i.e., from the CMB to the surface. Parameterizations of these mod-343

els and resultant surface deflections are discussed in the following sections, with sum-344

mary statistics given in Table 2.345
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346

4.1 Models with Viscosity Independent of Temperature347

4.1.1 Reference models348

Models 1 and 2 are the simplest explored in this paper. They were designed to be349

as similar as possible, with a view to quantifying differences and similarities arising solely350

from the choice of numeric or analytic methodology used to solve equations of motion351

and to calculate surface deflections. Model 1 was parameterized with the radial viscos-352

ity structure shown in Figure 2c. Radial viscosity used in other geodynamic studies are353

shown alongside for comparison (Ghelichkhan et al., 2021; Mitrovica & Forte, 2004; Stein-354

berger & Calderwood, 2006). Figure 2d shows spherical harmonic expansion of the sur-355

face stress field predicted by Model 1 at 0 Ma (cf. Figure 2a). We call this result Model356

1b. The original, full-resolution, numerical result is referred to as Model 1a.357

Model 2 is the analytic model parameterized to be as similar as possible to Model358

1. Its sensitivity kernel, generated assuming water loading (ρw = 1030 kg /m3), free-359

slip surface and CMB boundary conditions, and the radial viscosity profile shown in Fig-360

ure 2c, is shown in Figure 3a. Values of the other parameters used to generate these ker-361

nels are stated in Table S1. Similar to many previous studies, the kernel indicates that362

surface deflections will be especially sensitive (across all degrees incorporated, l ≤ 50)363

to density anomalies in the upper mantle (Parsons & Daly, 1983; Hager & Clayton, 1989;364

Ghelichkhan et al., 2021). Models 1 and 2 are used as points of reference for other more365

complex models explored in the remainder of this paper.366

4.1.2 Gravitation367

We start by incorporating more complex parameterizations of gravitation. The an-368

alytic Model 3 was parameterized in the same way as Model 2 with the addition of ra-369

dial gravitation (following Hager & Clayton, 1989; Panasyuk et al., 1996, see Equation370

5). The solid curve in Figure 4b shows the radial gravity function used to calculate sur-371

face deflections. It was generated using the density distribution produced by (the nu-372

merical) Model 1a (see Figure S1) by calculating373

g(r) =
4πG

r2

[∫ r

RCMB

ρ̄(r′) r′
2
dr′

]
+ Fcore, (10)

where ρ̄(r) is layer mean density and F is a factor chosen to account for core mass, and374

such that g = 9.8 m s−2 at the surface. This formulation is derived from Gauss’s law375

assuming spherically symmetric density, combined with Newton’s law of universal grav-376

itation (Turcotte & Schubert, 2002).377

The analytic Model 4 incorporates stress perturbations induced by deflections of378

the gravitational potential field. This model assumes g = 10 m s−2 everywhere, even379

within the deflected surface layer, as was the case for Models 1–2. Following Hager and380

Clayton (1989) and Panasyuk et al. (1996), when solving for surface deflection using prop-381

agator matrices, the effect on flow of perturbation of gravitational potential is included382

via the u3 term in Equation 6 (see also Ribe, 2007; Ricard, 2015). Sensitivity kernels for383

Models 3 and 4 are shown in Figure S6. TERRA simulations do not include this com-384

ponent in flow calculations (see Supporting Information).385

4.1.3 Discarding Shallow Structure386

The uppermost few hundred kilometers of geodynamic simulations are often not387

included in predictions of surface deflections (see e.g. Flament et al., 2013; Flament, 2018;388
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Davies et al., 2019, and references therein). To quantify the impact of discarding shal-389

low structure on our calculations, we examine differences in calculated deflections in the390

spatial and spherical harmonic domains. We present three tests, resulting in Models 5,391

6 and 7, where structure shallower than 50, 100 and 200 km is removed from Model 2.392

4.1.4 Changing Boundary Conditions393

Up to now, we have only considered instantaneous analytic and numeric solutions394

for surface deflection where both the surface and CMB have free-slip conditions imposed395

(i.e., vertical component of flow velocity ur = 0, horizontal components are allowed to396

freely vary). No gradient/Neumann constraint (e.g., on ∂u/∂z) is imposed. This con-397

dition is generally deemed appropriate for the surface of the convecting mantle, and CMB,398

since at both boundaries, cohesion within convecting mantle is thought to be much stronger399

than adhesion to the boundary. Analytic solutions for sensitivity kernels for propaga-400

tor matrices also exist for no-slip Dirichlet boundary conditions, where horizontal com-401

ponents of u = 0, which may be more appropriate when the Earth’s lithosphere is im-402

plicitly included in mantle convection models, as is the case here (Parsons & Daly, 1983;403

Thoraval & Richards, 1997). Therefore, we test the effect of changing the surface bound-404

ary condition to no-slip on predicted surface deflections (Model 8). Although there is lit-405

tle reason to believe the adhesion of the CMB would be strong, for completeness, we test406

scenarios in which no- and free-slip conditions are assumed for the CMB and the sur-407

face, respectively (Model 9), and both have no-slip conditions (Model 10).408

4.2 Models with Temperature-Dependent Viscosity409

We investigate the impact of including the temperature dependence of viscosity,410

η(r, T ), on predicted global mantle flow in numeric models, and on subsequent estimates411

of surface deflection. We do so by first generating the numeric Model 11, which is iden-412

tical to Model 1 in terms of all boundary conditions, initialization, and physical param-413

eters, except for the fact that viscosity depends on temperature in the manner described414

by Equation 7 in Supporting Information.415

The radial distribution of viscosity, but not its absolute value, plays a crucial role416

in determining sensitivity of instantaneous solutions for surface deflections to density (and417

thermal) anomalies in the mantle (e.g., Parsons & Daly, 1983; Hager, 1984). Consequently,418

to assess sensitivity of surface deflections to arbitrary changes to radial viscosity, η(r),419

we performed a suite of analytic tests. Since the analytic approaches require viscosity420

to only vary as a function of radius, we first test the impact of inserting layer-mean vis-421

cosity from the present-day 3D temperature-dependent viscosity structure predicted by422

numeric Model 11 (Figure S8). This parameterization is used to generate (the analytic)423

Model 12. The sensitivity kernel for Model 12 is shown in Figure S11a.424

We stress that in Models 3–10 analytic instantaneous solutions for surface deflec-425

tion, with adjusted parameters and boundary conditions, were simply compared with Model426

2; no new numeric models were generated using TERRA. In contrast, the additional tests427

examined here correspond to a new TERRA model (Model 11) in which temperature de-428

pendence of viscosity affects mantle flow across the entire run time.429

The sensitivity of surface deflections to arbitrary modification of upper and lower430

mantle viscosity and densities were then examined. Mean upper and lower mantle (ra-431

dial) temperature-dependent viscosity was decreased or increased by an order of mag-432

nitude from that used to generate Model 12 (see solid black curve in Figure 8). The re-433

sultant impact on calculated surface deflections (Models 13–16) was quantified by com-434

parison with results generated using reference Model 12 (Figure S11). Figures 8i–l and435

S14 show the amplitudes of density anomalies in the upper and lower mantle that were436

systematically increased or decreased to generate Models 17–20. Similar to the tests shown437
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in Figures 8a–h and S13, densities are amplified relative to Model 12. Radial viscosity438

is constant for each of these tests (black curve in Figure 8a; i.e., same as that used to439

generate Model 12).440

5 Results441

5.1 Models with Viscosity Independent of Temperature442

5.1.1 Reference Models: Comparing Numeric and Analytic Solutions443

We first compare solutions generated from numeric Model 1a, with its spherical har-444

monic representation (Model 1b), and analytic Model 2, which were designed to be as445

similar as possible. Figure 1g–h shows calculated densities that arise in Model 1a at 0446

and 100 Ma (see Figure S1 for extended results). The history of plate motions used to447

drive these models is also indicated on these figures. The resultant normal stresses, σrr,448

calculated at the surface of Model 1, and associated statistics are shown in Figure 2a–449

b. By convention, positive stresses imply compression and hence downward surface de-450

flection, which could be manifest as lithospheric drawdown, i.e., subsidence. Prominent451

regions of positive stress anomalies in this model include locations atop imposed colli-452

sion zones, where subduction naturally results, e.g., along the Pacific margin of South453

America. Negative stresses imply dilation and hence positive lithospheric support (i.e.,454

surface uplift). Figure 2a shows dilatational stresses beneath Southern Africa, for exam-455

ple, and along mid-oceanic ridges in the Indian and Atlantic Oceans.456

Surface stresses calculated by fitting radial stresses from Model 1a with a global457

spherical harmonic interpolation up to maximum degree l = 50, i.e., minimum wave-458

length of ≈ 800 km, is shown in Figure 2d–e. The resultant power spectrum in terms459

of total power at each degree is shown in Figure 2f. Aside from the lack of structure at460

degree 0, amplitudes decrease steadily with increasing degree (i.e., decreasing wavelength)461

and can be approximated by red noise. The spherical harmonic representation of deflec-462

tions calculated by converting stress using Equation 2, assuming water loading, are shown463

in Figures 2g and S2. A comparison of calculated power spectra, expected surface de-464

flection from Kaula’s rule (Equation 3), and spectra generated from observed residual465

ocean age-depth measurements is also included in Figures 2 and S2 (Kaula, 1963; Hog-466

gard et al., 2016; Holdt et al., 2022). For completeness, surface deflections calculated as-467

suming air loading are shown in Figure S2f-j.468

Surface deflections predicted by Model 2 and its associated sensitivity kernel are469

shown in Figure 3a-b. An expanded set of results including sensitivity kernels for wa-470

ter and air loading, and histograms of deflection and associate power spectra are included471

in Figure S3.472

Deflections predicted from these numeric and analytic models are visually similar473

(cf. Figures 2g & 3b). Absolute differences in amplitudes are greatest close to subduc-474

tion zones (e.g., in South America and Asia; Figure 3c). The differences are broadly nor-475

mally distributed and centred on 0 (Figure 3d). The spherical harmonic correlation be-476

tween these models is high (close to 1 for all degrees; cf. Forte, 2007, Figure 3e). The477

ratios between surface deflection values in these predictions indicate that analytic solu-478

tions tend to be damped compared to numeric solutions. This result is emphasized by479

the histogram shown in Figure 3g. Multiplying amplitudes of deflections from the prop-480

agator matrix solutions by a factor of 1.1 brings them in-line with the numeric solutions.481

These results indicate that the propagator matrix approach dampens solutions by ≈ 10%.482

We note that power spectral slopes between Model 1b and 2 are similar (cf. Figures 2i483

and S3d). These and all other results are discussed in Section 6.484
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5.1.2 Incorporating Self-Gravitation and Gravitational Potential of the485

Deflected Surface486

Differences in deflections predicted by Model 2, which assumes constant g = 10487

m s−2 across all radii, and Model 3, which incorporates self-consistently calculated ra-488

dial gravitation, are shown in Figure 4a and 4c. Deviations in predicted instantaneous489

deflections are ∼ 10% of maximum amplitudes predicted by Model 2 (see Table 2). Note490

that, for the viscosity structure used in these models, changing g in this way impacts sen-491

sitivity kernels most at low degrees l ≲ 10 in the mid-mantle (see Figures 2c, 3a and492

S6).493

We suggest that the broadly hemispherical differences in calculated deflections arise494

from three contributing factors. First, deviations in g between the two models are great-495

est in the mid-mantle, which, secondly, results in subtly different sensitivity kernels (see496

Figure S6). In general, surface deflection sensitivity to mid-mantle structure is highest497

at low degrees (l =1–3), and is almost negligible at higher degrees compared to contri-498

butions from the near-surface. Thus it seems likely that differences between these ker-499

nels would be manifest in low-degree (e.g. hemispherical) differences in surface deflec-500

tions. Third, in the final timestep, which is used to calculate deflections, there occurs501

a greater proportion of negative and positive deflections in the northern and southern502

hemispheres, respectively.503

We note that incorporating radially varying gravitation into numeric simulations,504

which is not trivial, might materially impact calculated mantle flow fields and hence pre-505

dictions of surface deflections. Our results are consistent with the rule of thumb outlined506

in Section 7.02.2.5.2 of Ricard (2015), whereby magnitudes of differences incurred by in-507

clusion of full self-gravitation, i.e., g(θ, ϕ, r), decay as a function of spherical harmonic508

degree, proportionately to 3/(2l + 1).509

As expected, induced differences in surface displacement predictions are much lower510

in magnitude when gravitational potential of the deflected surface is included compared511

to when radial gravitation is incorporated (cf. Figure 4a and 4d). We note that they are512

of the same order of magnitude as the geoid height anomalies predicted by these mod-513

els. The mean Euclidean distance between the two predicted surfaces in Models 2 and514

4 is only ∼110 m (compared to maximum amplitudes > 8 km), and the spherical har-515

monic correlation is very high across all degrees (see Table 2). Similar to the results for516

Model 3, the differences are concentrated at low spherical harmonic degree l. We stress517

that this test investigates the effect of the u3 term on instantaneous solution for surface518

deflection (Equation 5). It cannot be ruled out from this test that inclusion of the ef-519

fect of gravitational potential field perturbation would result in greater differences across520

the entire model run time of a numeric model, although it is unlikely (Zhong et al., 2008).521

5.1.3 Excising Shallow Structure522

As expected from examination of surface deflection sensitivity kernels (e.g., Fig-523

ure 3a), removal of shallow structure (Models 4–6) results in significantly reduced am-524

plitudes of surface deflections (Figure 5). Doing so results in amplitudes of power spec-525

tra that more closely align with independent estimates (Figure 5b, f, j). The reduction526

in differences is largely due to the fact that the reference Model 2 has surface deflections527

that are much larger than independent estimates of dynamic topographic power across528

all degrees. We note that power spectral slopes for predicted surface deflection from Model529

2 are close to those generated from Kaula’s rule, and observed oceanic residual depths530

(Figures 2i, S2 and S3). Removing shallow structure steepens spectral slopes (i.e., re-531

duces power at high degrees) beyond those expected from theoretical considerations (Kaula’s532

rule) or observed from oceanic residual depths, akin to results from other work that ex-533

cised shallow structure (e.g., Flament et al., 2013; Moucha et al., 2008; Steinberger, 2007).534

This result is emphasized by calculated spectral coherence, rl, between deflections with535
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and without shallow structure removed (cf. Figure 5b, d, f). While degree 1 and 2 struc-536

ture remains coherent, coherence across degrees ≳ 20 decreases from ∼ 0.9 to as low537

as 0.5, which are the largest discrepancies between any models examined in this study538

(Figure S7).539

5.1.4 Adjusting Boundary Conditions540

Figure 6a, e and i show predicted sensitivity kernels as a function of depth and de-541

gree, for no-slip/free-slip, free-slip/no-slip and no-slip/no-slip boundaries respectively,542

where the first condition is the surface slip condition, and the second the CMB slip con-543

dition. Differences to the sensitivity kernel for Model 2 (free-slip/free-slip; Figure 3a) are544

shown in panels b, f and j. Those panels, and panels c, g and k, demonstrate that when545

the surface boundary condition is ‘no-slip’, there is decreased sensitivity to short wave-546

length shallow structure, and increased sensitivity to long-wavelength (low degree) struc-547

ture across all depths. Figure 6d, h and l reveal that induced misfit in the spatial do-548

main is impacted to a greater degree than in tests of gravitation (Models 3 & 4), but not549

necessarily more severely than for removal of, say the upper 200 km of density structure550

from surface deflection calculations. Spectral correlation with Model 2 is most severely551

impacted when both surface and CMB boundaries are no-slip, which is probably phys-552

ically unrealistic (Model 7; see Table 2; Section 4.1.4).553

5.2 Adjusting Viscosity and Density Anomaly Amplitudes554

5.2.1 Temperature-Dependent Viscosity555

Slices through the three-dimensional viscosity and density structure of Model 11,556

which incorporated temperature-dependent viscosity, are shown in Figure 1a, c and e.557

Density anomalies in the models parameterized with temperature-dependent viscosity558

are more localised (‘sharper’) than in the models with viscosity independent of temper-559

ature (e.g., Model 1; see Figures 7 & S8–S10). This result is unsurprising since temperature-560

dependent viscosity provides stronger mechanical contrasts between cooler subducting561

regions and surrounding asthenosphere (cf. Figure 1g–h & S9; Zhong et al., 2000). Nonethe-562

less, power spectra of calculated surface deflections are very similar (cf. Figure S10j &563

2i). This result emphasises the relatively small impact incorporating temperature-dependent564

viscosity has on surface deflections compared to, say, excising shallow structure.565

Calculated power spectra from the analytic Model 12, which was generated using566

layer-mean (radial) viscosity from Model 11a, reinforces this view (cf. Figure S3a-d &567

Figure S11a-d). Similar to the results obtained for models without temperature-dependent568

viscosity (Figure 3), deflections calculated analytically are damped relative to numeric569

solutions (see Figure 7f). The best fit amplification factor to align propagator matrix570

and numeric solutions is 1.24 (24%). The effect is greater than that seen when compar-571

ing Models 1b and 2 because of increased short wavelength structure in Model 11 (see572

also Zhong et al., 2000). Nonetheless, spherical harmonic correlations, rl, are > 0.75 for573

all degrees examined (l ≤ 50), and > 0.85 for most degrees. Cell-to-cell differences in574

surface deflections are broadly normally distributed and centred on zero (Figure 7d).575

A summary of comparisons between models with and without temperature-dependent576

viscosity is shown in Figure S12. Discrepancies in cell-to-cell deflections are broadly nor-577

mally distributed and centred on zero, clustering along the 1:1 relationship with max-578

imum χ = 1.51 for full resolution (numeric) models (Figure S12b-c; see Table 2). Un-579

surprisingly, spherical harmonic fits and analytic results have tighter normal distribu-580

tions and lower χ values. Correlation coefficients are > 0.75 for nearly all degrees in all581

comparisons.582
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5.2.2 Sensitivity to Upper/Lower Mantle Viscosity and Density Anoma-583

lies584

In order to explore the consequences of modified viscosity and density on calculated585

deflections we also systematically increased and decreased contrasts in the upper and lower586

mantle (Models 13–20) with respect to Model 12. Figure 8 summarises the results, which587

include decreasing upper mantle viscosity by an order of magnitude and show the im-588

pact of using increasingly simple radial viscosity in analytic calculations. Calculated sen-589

sitivity kernels for the adjusted viscosity profiles demonstrate that decreasing upper man-590

tle viscosity reduces sensitivity of surface deflections to long-wavelength density struc-591

ture, especially in the lower mantle (Figures S13 & 8d, f, h). Models 13–16 have broad592

similarities with the reference Model 12 even when η(r) is drastically varied: average χ593

misfit = 0.17–0.38 km, and rl > 0.97 across all degrees. These results emphasize that594

the viscosity adjustments we examined exert a relatively minor control on the amplitudes595

of instantaneous surface deflection (Table 2, see, e.g., Ghosh et al., 2010; Moucha et al.,596

2007; Lu et al., 2020).597

In contrast, increasing (Model 17) or decreasing (Model 18) upper mantle densi-598

ties is much more impactful on amplitudes of calculated surface deflections (see Figure 8i–599

l, and S14). For instance, increasing or decreasing upper mantle densities by a factor of600

two (relative to Model 12) results in χ values of 0.97 and 0.48, respectively. Modifying601

lower mantle densities has a much smaller impact on amplitudes of deflection (Models602

18 & 19). Spherical harmonic correlation between models is approximately as good as603

for the radial viscosity tests (Models 13–16), which is to be expected since we do not vary604

locations of density anomalies here, only their amplitudes, and rl is insensitive to am-605

plitudes of the two results being compared. Significant is the fact that mean vertical dif-606

ferences between Models 17–20 and 12 (i.e., χ and ∆h̄) are higher than those calculated607

for Models 13–16 (in which viscosity is varied; see Table 2).608

These results emphasize the relative sensitivity of instantaneous surface deflections609

to upper mantle density anomalies compared to, say, radial viscosity or lower mantle den-610

sities. Even quite large uncertainties in lower mantle density anomalies have relatively611

little impact on instantaneous surface deflections. These results reinforce the view that612

accounting for shallow (e.g., lithospheric and asthenospheric) densities is crucial when613

estimating surface deflection, and dynamic topography, from mantle convection simu-614

lations (e.g., Colli et al., 2016; Flament et al., 2013; Holdt et al., 2022; Wang et al., 2022).615

616

6 Discussion617

6.1 Similarities of Analytic and Numeric Solutions618

In this paper we compare numeric and analytic predictions of instantaneous sur-619

face deflections generated by mantle convection simulations. First, we simply compared620

predictions from numeric and analytic approaches parameterised to be as similar as pos-621

sible. In this test, the models were purposefully simple: viscosity is radial, models are622

incompressible, and they do not include self-gravitation, or radial variation in g. Numeric623

solutions were transformed into the frequency (spherical harmonic) domain so that they624

could be compared with analytic solutions, and so that power spectra could be directly625

compared at appropriate scales. The results show that, for as-similar-as-possible param-626

eterizations, amplitudes of analytic solutions are ≈ 10% lower than numeric solutions627

(Figure 3). If the numeric model incorporates temperature-dependent viscosity, this dis-628

crepancy increases to 25% (Figure 7). We interpret these results in two ways. First, once629

armed with viscosity and density fields, numeric and analytic approaches broadly yield630
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Table 2. Inter-model comparison of predicted surface deflections. Models being

compared are summarised in Table 1. Metrics: root-mean-squared difference (χ, km), mean

Euclidean (L2-norm) difference in predicted deflection (∆h̄, km), and mean spherical harmonic

correlation between models (r̄l). Standard deviation of rl distribution across degrees (sr) is also

stated: note that rl ≤ 1. All spherical harmonic representations of output from numeric code and

generated by the propagator matrix code are expanded up to maximum degree, l = 50. See body

text, figures referred to in column 6, and Table 1 for details.

Models χ ∆h̄ r̄l sr Figures

1b & 2 0.95 0.69 0.97 0.02 3

2 & 3 0.57 0.47 0.99 4× 10−4 4
2 & 4 0.13 0.11 0.99 2× 10−5 4

2 & 5 0.67 0.48 0.93 0.04 5a-b
2 & 6 1.03 0.74 0.87 0.06 5c-d
2 & 7 1.57 1.12 0.63 0.15 5e-f

2 & 8 1.26 1.04 0.99 1× 10−3 6a-d
2 & 9 1.09 0.97 0.99 0.04 6e-h
2 & 10 1.00 0.74 0.96 0.28 6i-l

1a & 11a 1.51 1.04 — — S12a-c
1b & 11b 1.44 0.98 0.79 0.26 S12d-g
11b & 12 1.20 0.80 0.95 0.02 7
2 & 12 0.92 0.64 0.85 0.27 S12h-k

12 & 13 0.31 0.20 0.99 9× 10−3 8a-b, S13a-d
12 & 14 0.17 0.10 0.99 3× 10−3 8c-d, S13e-h
12 & 15 0.32 0.20 0.98 0.01 8e-f, S13i-l
12 & 16 0.38 0.23 0.98 0.01 8g-h, S13m-p

12 & 17 0.97 0.64 0.98 7× 10−3 8i, S14a-c
12 & 18 0.48 0.32 0.98 6× 10−3 8j, S14d-f
12 & 19 0.43 0.29 0.99 3× 10−3 8k, S14g-i
12 & 20 0.22 0.14 0.99 1× 10−3 8l, S14j-l
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similar estimates of surface deflections. Second, the relatively damped analytic solutions631

are a consequence of smoothing steps in the propagator matrix approach.632

The smoothness of analytic solutions, and subsequent damping of topographic am-633

plitudes, is perhaps surprising, given the fact that they are being compared with numeric634

models expanded into the spherical harmonic domain to the same maximum degree, l =635

50. However, the surface stresses used to generate Model 1a have full horizontal reso-636

lution (≈ 45 km) across depths, and only the surface layer is smoothed by spherical har-637

monic fitting, to generate Model 1b. Therefore, Model 1b inherently contains some con-638

tribution from degrees ≥ 50, in the sense that finer-resolution density structure at depth639

could affect longer-wavelength flow nearer the surface. In contrast, to generate the an-640

alytic solution (Model 2), the density structure of each layer of the model is smoothed,641

by expansion to maximum l = 50, before integration of their contributions to surface642

deflection. The analytic solution would provide a better match to stress estimates from643

numeric models if such estimates were calculated using density structure smoothed to644

the same maximum l across all depths, which is currently challenging (see Section 1.1).645

Nonetheless, the similarity of results indicates that the relatively low-cost propa-646

gator matrix approach can be used to explore consequences of including additional model647

complexity. A systematic sweep of parameters, including radial gravitation (Figure 4a-648

c) and gravitational potential field effects (Figure 4d-e) indicates that their effects on sur-649

face deflection are relatively modest. A useful rule of thumb is that self-gravitation per-650

turbs instantaneous surface deflections by O(1–10)% when compared to models with con-651

stant gravitational acceleration, and even less difference is observed at high degree (e.g.,652

Ricard, 2015, their Section 7.02.2.5.2). Incorporating the effect of deflections of gravi-653

tational potential field on flow has a modest impact on amplitudes of surface deflections654

at degrees 1–2, but overall it contributes even less than radial variation in g to surface655

deflections across the scales of interest. We note that incorporating full 3-D self-gravitation656

into numeric simulations is currently challenging. Nonetheless, establishing its impact657

on the flow field over time, and resultant impact on surface deflections, may be impor-658

tant future work.659

6.2 Importance of Viscosity and Shallow Density Anomalies for Isolat-660

ing Dynamic Support661

Figure 8 demonstrates that even quite large (order of magnitude) variations in vis-662

cosity do not have much impact on instantaneous surface deflections when compared to,663

say, modified upper mantle density anomalies, which appears to agree with the results664

of Davies et al. (2019) (see also Flament, 2019; Steinberger et al., 2019). Assuming no-665

slip boundary conditions at Earth’s surface may be appropriate for driving near-surface666

(lithospheric) flow throughout the main model run time, but it less clear whether no-667

or free-slip boundary conditions are most appropriate for calculating instantaneous dy-668

namic topography (see, e.g., Forte & Peltier, 1994; Thoraval & Richards, 1997). Nonethe-669

less, all calculated sensitivity kernels in this study indicate that shallow density anoma-670

lies make significant contributions to surface topography regardless of viscosity profile671

or boundary conditions chosen (e.g., Figure 3a; see also Colli et al., 2016; Parsons & Daly,672

1983).673

It is well known that disentangling contributions to Earth’s surface topography from674

mantle convection, lithospheric isostasy and flexure is important but not trivial (see, e.g.,675

Davies et al., 2019; Cao & Liu, 2021; Fernandes & Roberts, 2021; Hoggard et al., 2021;676

Steinberger, 2016; Stephenson et al., 2021; Zhou & Liu, 2019; Wang et al., 2022). Pre-677

vious studies simulating mantle convection have addressed this issue by discarding den-678

sity anomalies in radial shells shallower than specified depths before calculating surface679

stresses (e.g., Spasojevic & Gurnis, 2012; Flament et al., 2013; Molnar et al., 2015). Sim-680

ilarly, analytic approaches have isolated contributions from the convecting mantle by only681
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incorporating information from deep shells (e.g., Colli et al., 2018). This method has the682

advantage of effectively removing the effect of lithospheric cooling through time from sur-683

face deflection estimates. It also avoids the need to incorporate, say, realistic crustal or684

depleted lithospheric layers within the viscous flow parameterization. However, uncer-685

tain oceanic and continental lithospheric thicknesses mean that choosing appropriate cut-686

off depths is not simple.687

Out of all the tests performed in this study, removing shallow structure resulted688

in the largest impact on predicted surface deflections. It modifies amplitudes of deflec-689

tions, locations of uplift and subsidence, and degrees over which they are resolved, and690

hence modifies power spectral scalings (Table 2, Figure 5). Making quantitative predic-691

tions of dynamic topography from such an approach is fraught for at least two reasons.692

First, if the chosen depth is shallower than the lithosphere-asthenosphere boundary in693

places, plate and sub-plate contributions to topography will be entangled. Second, dis-694

carding deeper layers to ensure that all plate contribution is definitely avoided means695

that some contributions from asthenospheric flow will be missed. Thus, such a step is696

unlikely to be desirable if mantle flow models are to be used to understand, say, litho-697

spheric vertical motions, or vice versa (see e.g., Figure 3a; Davies et al., 2019; Hoggard698

et al., 2016). Given the calculated sensitivity kernels, excising layers in the upper few699

100 km is likely to result in predictions of surface deflections that are especially inaccu-700

rate at short wavelengths, i.e., high spherical harmonic degree. An alternative approach,701

which may be fruitful future work, is removal of structure based on appropriately cal-702

ibrated plate models, or globally averaged age-dependent density trends (e.g., F. D. Richards703

et al., 2020, 2023).704

6.3 Assessing ‘Effective’ Contributions to Instantaneous Deflections705

The results emphasise the importance of considering sensitivities of instantaneous706

vertical surface deflections to the location and scale of flow in the mantle. Taking inspi-707

ration from Hager and O’Connell (1981) and Parsons and Daly (1983), we calculate the708

net contributions from density anomaly structure to deflections, as a function of radius,709

latitude and longitude across all spherical harmonic degrees considered (i.e., l = 1 to710

50). Contributions to deflections from densities at particular radii r, across all spheri-711

cal harmonic degrees and orders, for each latitude and longitude, (θ, ϕ), are calculated712

such that713

he(θ, ϕ, r) =

L∑
l=1

m=l∑
m=−l

[Ylm(θ, ϕ) · δρlm(r) ·Al(r) ·∆r] , (11)

where ∆r is the radial width of the spherical shell included in the calculation (≈ 45 km714

for all shells from the surface to the CMB; see Supporting Information) and Ylm are spher-715

ical harmonic coefficients. Mean density anomalies, δρlm, within each shell at each lat-716

itude and longitude, and sensitivities Al at the top of each shell are used to calculate he717

(see Section 2.3). Contributions at specific locations to surface deflections as a function718

of latitude and longitude, and spherical shell depth are shown in Figure 9 for Model 12,719

for 1 ≤ l ≤ 50. Results for lower maximum degrees are shown in Supporting Infor-720

mation. Panels a-d show slices through effective density in the upper (at 45, 135, 360721

km) and lower mantle (1445 km). A 180◦ cross-section showing effective densities from722

the core-mantle-boundary to the surface beneath the Pacific to the Indian Ocean encom-723

passing South America and southern Africa (the same transect as shown in Figure 1)724

is shown in panel e. This figure again emphasizes the contribution of density anomalies725

in the upper mantle to surface deflections, and the risks associated with discarding shal-726

low structure when predicting dynamic topography.727
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6.4 Summary and Future Work728

Encouragingly, although predicted instantaneous surface deflections are sensitive729

to different parameterizations, broadly coherent patterns emerge in all models tested.730

Moreover, calculated deflections are relatively insensitive to the methodologies used to731

solve the equations of motion. For instance, incorporation of gravitational potential of732

deflected surfaces, self-gravitation and viscosity anomalies each generate subtly differ-733

ent surface deflections. Choosing to solve the equations of motion analytically or numer-734

ically changes calculated deflections by < 25%, even when temperature-dependent vis-735

cosity is included throughout the duration of a simulation.736

In contrast, removal of shallow structure produces much larger discrepancies be-737

tween predicted deflections. For instance, surface deflections calculated using the entire738

modelling domain (core-mantle boundary to surface) have spectral slopes consistent with739

those of oceanic age-depth residuals, however amplitudes are over-predicted by 1–2 or-740

ders of magnitude. In contrast, by not including the shallowest 200 km, calculated power741

spectra more closely match observed amplitudes, especially at spherical harmonic de-742

grees > 10 (Figure 5). However, the spectral slopes of predicted deflections are redder743

than for the oceanic residuals, which implies that a different approach to removing the744

contribution of lithospheric structure is required.745

An obvious necessary next step for accurately predicting modern dynamic support746

from mantle convection simulations is to incorporate accurate information about litho-747

spheric structure from, for instance, tomographic models (e.g., Priestley & McKenzie,748

2013; F. D. Richards et al., 2020). Another useful next step is to establish sensitivity of749

surface deflections to time-dependent parameters that impact predicted flow histories,750

including plate motions. The results in this paper indicate that comparing predicted and751

observed surface deflections, combined with knowledge of lithospheric structure, could752

be used to identify optimal models.753

Finally, the body of geologic and geomorphologic observations that could be used754

to test predicted histories of surface deflections from mantle convection simulations has755

grown substantially in the last decade (e.g., uplift and subsidence histories; Section 1;756

see, e.g., Hoggard et al., 2021, and references therein). A suite of other geologic and geo-757

physical observables are also predicted by, or can be derived from, such simulations (e.g.,758

mantle temperatures, heat flux, geoid, seismic velocities, true polar wander). Using them759

alongside histories of surface deflections to identify optimal simulations is an obvious av-760

enue for future work (e.g., Ball et al., 2021; Lau et al., 2017; Panton et al., 2023; F. D. Richards761

et al., 2023). Using such data and the methodologies explored in this paper may be a762

fruitful way of identifying optimal simulations from the considerable inventory that al-763

ready exists.764

7 Conclusions765

This study is concerned with quantifying sensitivities and uncertainties of Earth’s766

surface deflections that arise in simulations of mantle convection. Calculated sensitiv-767

ities of instantaneous deflection of Earth’s surface to mantle density structure empha-768

sise the importance of accurate mapping of the upper mantle. Surface deflections are some-769

what sensitive to the distribution of viscosity throughout the mantle, but especially to770

the locations and scales of density anomalies in the upper mantle. The largest discrep-771

ancies between predicted deflections seen in this study are generated when upper man-772

tle structure is excised or altered. Doing so changes both the amplitude and distribu-773

tion of calculated deflections, modifying their power spectral slopes. These results em-774

phasise the importance of incorporating accurate models of lithospheric structure into775

calculation of sub-plate support of topography, and also the need to accurately deter-776

mine plate contributions to topography. In contrast, the choice of methodology to es-777
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timate surface deflections—analytic or numeric—or boundary conditions are relatively778

small sources of uncertainty. Similarly, assumed gravitational profiles and temperature779

dependence of viscosity are relatively minor contributors to uncertainty given reason-780

able, Earth-like, parameterizations. Nonetheless, these parameterizations may impact781

surface deflections through their role in determining how upper mantle flow evolves through782

geologic time. A fruitful next step could be to use the approaches developed in this pa-783

per, in combination with careful isolation of plate cooling signatures from surface deflec-784

tion predictions, to test mantle convection simulations using the existing and growing785

body of geologic, geomorphologic and geophysical observations.786
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Figure 1. Examples of mantle densities and viscosity used to calculate stresses

and surface deflections numerically and analytically. (a) Great-circle slice (180°) through
full-resolution, present-day, density ρ, predicted by numeric model TERRA with temperature

dependent viscosity (Model 11a; see Table 1 and body text); see globe to left for location. White

circles = 20° intervals; filled black circle indicates orientation of cross section; dashed line =

660 km depth contour; dotted line = 1038 km depth contour, at which depth ρ is plotted on

globe; white-black curve = numeric prediction of surface normal stress σrr from Model 11a. (b)

As (a) but slice is through spherical harmonic expansion of density structure, to maximum degree

l = 50 (λ ≈ 792 km; Model 11b); black-white curve = surface deflection h, calculated using

(analytic) propagator matrix approach (Model 12). (c) As (a) but for slice through full-resolution

viscosity structure of numeric model. (d) As (c) but for mean (radial) viscosity structure, used

along with the density structure shown in (b) to generate analytic solution for surface deflection

shown by black-white curve atop (b). (e–f) As (c–d) but viscosity is expressed as a percentage

anomaly with respect to the layer (radial) mean. (g–h) Predicted densities at 270 km depth at

0 and 100 Ma from numeric model with viscosity independent of temperature (Model 1a). Ex-

tended results are shown in Figure S1. Plate motions and paleo-coastlines are from Merdith et al.

(2021).
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Figure 2. Surface stresses and deflections from numeric simulation of mantle con-

vection with spherical harmonic expansion up to degree 50. (a) Predicted present-day

surface radial stress, σrr (Model 1a). (b) Histogram of values shown in (a). (c) Black line = ra-

dial viscosity structure used to drive Model 1a and thus produce grid shown in panel (a). Gray

dashed lines = alternative viscosity profiles of (from darkest to lightest) Mitrovica and Forte

(2004), Steinberger and Calderwood (2006), and µ1, µ2 from Ghelichkhan et al. (2021). (d)

Model 1b: Spherical harmonic fit to Model 1a (panel a) up to maximum degree l = 50 (minimum

wavelength λ ≈ 792 km). (e) Histogram of values shown in panel (d). (f) Power spectrum—total

power per degree—of stress field shown in panel (d). (g) Spherical harmonic fit to surface de-

flections (Model 1b; up to degree l = 50). (h) Histogram of values shown in panel (g). (i) Black

curve = power spectrum of calculated water-loaded surface deflections (panel g); gray line and

band = expected dynamic topography from Kaula’s rule using admittance Z = 12 ± 3 mGal

km−1 (Kaula, 1963). Orange dashed line = expected power spectrum for water-loaded residual

topography (from Holdt et al., 2022) via analytic solution of special case of Equation 15. χp =

root-mean-squared difference between calculated (black) and independent (orange & grey) surface

deflection power (see Equation 20). All histograms are weighted by latitude to correct to equal-

area. Figure S2 shows extended results including air-loaded deflections.
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Figure 3. Comparisons of numeric (Model 1b) and analytic (Model 2) estimation

of surface deflections from models with identical parameterization. (a) Surface de-

flection sensitivity kernel Al as a function of spherical harmonic degree, l, and depth (Model 2).

(b) Propagator matrix (analytic) solution for water-loaded surface deflection calculated using

sensitivity kernel shown in panel (a). Figure S3 shows extended results including power spec-

tra and air-loaded deflections. (c) Difference, ∆h, of surface deflections in Models 1b and 2.

(d) Histogram of difference values shown in (c). (e) Spectral correlation coefficient, rl, between

Models 1b and 2; Equation 8. (f) Comparison of predicted surface deflections; χ = root-mean-

squared difference between predictions (Equation 7); gray dashed line = 1:1 ratio. (g) Black bars

= histogram of ratios between analytic:numeric solutions for surface deflection as in (f). Gray

dashed line = 1 (i.e., identical values). Gray bars = as black bars, but for propagator matrix

solution amplitudes scaled up by optimal factor to fit numeric solution (=10%). All histograms

are weighted by latitude to correct to equal-area.
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Figure 4. Impact of self-gravitation (a–c) and gravitational potential of deflected

surfaces (d–e) on surface deflections calculated analytically. In these tests surface de-

flections from models with different gravity parameterizations are compared to predictions from

Model 2. (a) Difference between water-loaded surface deflections calculated using the propagator

matrix technique incorporating self-gravitation (Model 3; black curve in panel b) and g = 10 m

s−2 (dashed line in panel b; Model 2). (c) Histogram of values in panel (a). (d–e) Differences in

surface deflection from models with (Model 4) and without (Model 2) stress perturbations in-

duced by gravitational potential of the deflected surface. All histograms are weighted by latitude

to correct to equal-area, they show the full extent of the results. Figures S4–S5 show extended

results including maps of calculated surface deflections.
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Figure 5. Effect of removing shallow structure on surface deflections calculated

analytically. Surface deflections in models with shallow structure removed are compared to

those predicted by Model 2. (a) Black line = Power spectra of predicted water-loaded surface

deflection from propagator matrix solution for Model 2 (Figure 3b), but with effect of upper 50

km of density anomaly structure ignored in calculation (Model 5). Gray line and band = ex-

pected dynamic topography from Kaula’s rule using admittance Z = 12 ± 3 mGal km−1 (Kaula,

1963). Orange dashed line = expected power spectrum for water-loaded residual topography from

Holdt et al. (2022), via analytic solution of special case of Equation 15. χp = root-mean-squared

difference between calculated (black) and independent (orange & grey) surface deflection power

(see Equation 20). (b) Spectral correlation coefficient, rl, of surface deflections in Models 5 and 2

(see Equation 19). Inset χ = root-mean-squared difference in surface deflections of Models 5 and

2 (see Equation 18). (c–d) and (e–f) as (a–b) but for depth cut-offs of 100 (Model 6) and 200 km

(Model 7), respectively. Figure S7 show extended results including maps of calculated surface

deflections and differences with Model 2.
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Figure 6. Impact of free- and no-slip surface and core-mantle boundary boundary

conditions on surface deflections. This figure shows comparisons of surface deflections from

models with different assumed boundary conditions and Model 2. (a) Water-loaded surface de-

flection sensitivity kernel Al, for Model 8, which has a no-slip surface boundary condition, but

otherwise is parameterised the same as Model 2. (b) Sensitivity kernel of Model 8 minus sensi-

tivity kernel of Model 2. Note, positive difference implies reduced sensitivity compared to Model

2, and vice versa, since Al is negative. (c) Predicted water-loaded surface deflection for Model

8. (d) Difference between surface deflection predictions for Model 8 and Model 2. (e–h) as (a–d)

but for Model 9: free-slip surface boundary, no-slip CMB. (i–l) as (a–d) but for Model 10: no-slip

surface and CMB boundaries.
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Figure 7. Comparison of surface deflections calculated numerically (Model 11b)

and analytically (Model 12) using results from simulation with temperature de-

pendent viscosity. (a) Model 11b: Spherical harmonic expansion of predicted present-day

water-loaded surface deflection converted from stress output from numeric model TERRA (Model

11a), to maximum degree l = 50. (b) Model 12: As (a) but for prediction made using propagator

matrix method. (c) Difference, ∆h, between Models 11b and 12 (panels a and b). (d) Histogram

of difference values shown in (c), weighted by latitude to correct to equal-area. (e) Spectral cor-

relation coefficient, rl, between predictions shown in panels (a) and (b); Equation 8. (f) Numeric

(Model 11b) versus analytic (Model 12) predictions of surface deflection; χ = root-mean-squared

difference between predictions, Equation 7; gray dashed line = 1:1 ratio. (g) Histogram of ratios

between analytic:numeric solutions for surface deflection as in (f), weighted by latitude. Gray

dashed line = 1 (i.e., identical values). Gray bars = as black bars, but for propagator matrix

solution amplitudes scaled up by optimal factor to fit numeric solution (24%).
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Figure 8. Sensitivity of calculated analytic surface deflection to adjusted radial

viscosity (a–h) and density anomalies (i–l). This figure shows comparisons of surface de-

flections calculated in models with modified viscosity and density to the results from Model 12

(see Table 1). (a) Black curve = unadjusted prediction of present-day radial mean viscosity from

Model 11; red line = adjusted radial profile with viscosity decreased by a factor of 10 between

depths of ∼ 300–500 km (Model 13); gray dashed lines = viscosity profiles used in other studies

(see Figure 2). (b) Sensitivity kernel for the viscosity profile indicated by the red curve in panel

a. Value of root-mean-squared difference, χ, between calculated surface deflections for unadjusted

and adjusted viscosity is stated (see Equation 7). (c–h) Results from testing alternative radial

viscosity (Models 14–16). Figure S13 shows extended results including maps of surface deflections

and their differences. (i-l) Density anomalies (red line) adjusted by directly scaling spherical

harmonic coefficients (l > 0) up or down by a factor of 2 (Models 17 & 19: panels e & g) or 1
2

(Models 18 & 20: f & h). Viscosity structure applied in each case is same as that used to gener-

ate Figure 7b. Sensitivity kernels for surface deflections are not shown since they are invariant

with respect to density anomalies, ∆ρ, depending only on viscosity structure. Figure S14 shows

extended results including maps of surface deflections and their differences.
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Figure 9. Effective density; contributions from density anomalies to surface deflec-

tion. (a–d) Maps of net contribution to present-day water-loaded surface deflection calculated

using propagator matrix approach (Model 12; see body text for details). Depth slices at 45, 135,

360 and 1445 km depth incorporating all spherical harmonic degrees l and orders m, up to l =

50. (e) Great-circle slice (180°) showing contributions to surface deflection; globe to right shows

transect location and calculated surface deflection (Model 12). White circles = 20° intervals; note
filled black circle for orientation; dashed line = 660 km depth contour. (f) White-black curve =

total surface deflection along transect shown atop globe in panel (e); abscissa aligned with panel

g; orange dashed line = same but for maximum l = 10 (see Supporting Information Figure S18);

red dashed curve = surface deflection from Model 2. (g) Cartesian version of panel (e); ordinate

aligned with panel (h). (h) Grey dashed curve = mean absolute value of density anomalies in

Model 12—see top axis for values. Black curve = global mean amplitude (modulus) of contribu-

tion from density structure in Model 12 to total surface deflection h, across all l and m; orange

line = same but for maximum l = 10; red dashed line = results for Model 2 (see Section 6.3). See

Figures S15–S19 for extended results, demonstrating sensitivity of surface deflections to maxi-

mum spherical harmonic degree.

–37–



GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS

Supporting Information for “Reconciling Surface1

Deflections From Simulations of Global Mantle2

Convection”3

Conor P. B. O’Malley1,2, Gareth G. Roberts1, James Panton3, Fred D.

Richards1, J. Huw Davies3, Victoria M. Fernandes1,4, Siavash Ghelichkhan5

1Department of Earth Science & Engineering, Imperial College London, London SW7 2BP, UK4

2now at Cathie Group, 2-4 Hanover Square, Newcastle upon Tyne NE1 3NP, UK5

3School of Earth & Environmental Sciences, University of Cardiff, Park Place, Cardiff CF10 3AT, UK6

4now at Section 4.6 Geomorphology, GFZ Potsdam, Telegrafenberg, 14473 Potsdam, Germany7

5Research School of Earth Sciences, Australian National University, 142 Mills Road, Acton, ACT 0200, Australia8

Contents of this file9

1. Equations of motion and description of numerical approach to solving them.10

2. Table summarising model parameters.11

3. Summary of spherical harmonic expansion used to estimate surface deflections.12

4. Figures S1 to S19.13

Corresponding authors: C. P. O’Malley or G. G. Roberts, Department of Earth Science

& Engineering, Imperial College London, London SW7 2BP, UK. (c omalley1@msn.com or

gareth.roberts@imperial.ac.uk)

March 22, 2024, 1:46pm



X - 2 O’MALLEY ET AL.: RECONCILING MANTLE CONVECTION SIMULATIONS

1. Introduction

This Supporting Information document includes an extended description of the equa-14

tions of motion solved to predict mantle convection. It summarises the numeric approach15

adopted to solve them using the TERRA code, the spherical harmonic expansion and16

model parameters. The approaches used to calculate surface deflections are included with17

the main manuscript.18

19

This document also includes nineteen figures in three groups. First, Figures S1–S220

summarise the setup of the numerical simulations, and show examples of results and21

resultant surface deflections. They expand upon the results shown in Figures 1–2 in22

the main manuscript. Secondly, Figures S3–S7 show surface deflections and sensitivity23

kernels calculated by solving the equations of motion analytically using the propagator24

matrix approach and associated statistics. They show results for models that include self-25

consistent radial gravitation and removal of shallow structure, expanding upon the results26

shown in Figures 3–5 in the main manuscript. Figures S8–S14 show calculated vertical27

surface deflections from models in which viscosity and density are modified. These fig-28

ures includes comparisons of surface deflections calculated using the different approaches29

(numeric and analytic) and model parametrizations. They extend the results shown in30

Figures 7–8 in the main manuscript. Figures S15–S19 show effective contributions from31

density anomalies in the mantle to instantaneous surface deflections. In the main text,32

we show spherical harmonic solutions up to a maximum spherical harmonic degree l = 5033

(see Figure 9). Here, results are presented for maximum degrees 40, 30, 20, 10 and 5. The34
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results demonstrate the importance of contributions from short wavelength (high degree)35

density structure to surface deflections, especially at shallow depths.36

37

2. Equations Governing Predicted Mantle Convection

In the main manuscript we explore how calculated surface deflections are impacted by38

the choice of methodology and assumptions used in solving equations of motion for mantle39

convection. This section expands on the numeric approach used to solve the equations.40

The analytic approach is discussed in the main manuscript.41

42

Theoretical predictions of surface displacements from mantle convection arise from the43

application of physical laws that take the form of conservation equations for mass, mo-44

mentum and energy (see, e.g., Hager & O’Connell, 1981; Parsons & Daly, 1983). Here, we45

solve those equations across a 3D spherical domain using the finite element code TERRA46

(Baumgardner, 1985; Bunge & Baumgardner, 1995, etc.). Under this formulation, the-47

oretical convection in an incompressible fluid can be expressed by the following three48

dimensionless equations (e.g., Baumgardner, 1985; Davies et al., 2013; McKenzie et al.,49

1974; Parsons & Daly, 1983). First, the continuity condition for conservation of mass,50

∇ · u = 0, (1)

where u is the fluid velocity vector. Since the Prandtl number is likely to always be51

extremely large in this system—mantle viscosity is expected to be many orders of mag-52
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nitude larger than the product of density and thermal diffusivity—inertial terms can be53

neglected (e.g., Parsons & Daly, 1983). Second, the equation of motion,54

∇σ = −ρ′g, (2)

where55

ρ′ = −αρ0(T − Tref). (3)

σ is the 3×3 stress tensor where the (radial) hydrostatic component balancing the reference56

density structure has been subtracted, ρ′ is the density difference due to temperature, α is57

the coefficient of thermal expansion, T is temperature, Tref is a radially varying reference58

temperature structure, which has a constant value in the mid-mantle and joins to a cold59

thermal boundary layer near the surface and a hot one at the CMB, reaching the surface,60

Ts, and core mantle boundary, TCMB temperatures at the respective boundaries, and61

g is gravitational acceleration acting radially (see Table S1). This stress tensor σij is62

decomposed into deviatoric and lithostatic components:63

σij = τij − pδij, (4)

where τij is the deviatoric stress tensor, p is dynamic pressure and δij is the Kronecker64

delta function. The deviatoric stress tensor and the strain-rate tensor, ϵ̇ij, are related by:65

τij = 2ηϵ̇ij = η

(
∂ui

∂xj

+
∂uj

∂xi

)
, (5)
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where η is viscosity, and ∂/∂xi is the spatial partial derivative. By combining equations66

2, 4 and 5 we solve the equation of motion:67

∂(ηϵij)

∂xj

− ∂p

∂xi

= −ρ′gδir, (6)

where g is the scalar value of g and δir is the Kronecker delta selecting the radial direction r.68

69

We first examine predictions from models in which viscosity varies only with depth,70

i.e., η = η0 × ηr, where η0 is reference viscosity (see Table S1), and ηr is a scaling factor71

dependent only on radius, plotted with model results as appropriate throughout this72

manuscript. We then include temperature dependence of viscosity, i.e., η = η0 × ηr × ηT ,73

where74

ηT = exp(z′ − 2T ′). (7)

Dimensionless depth, z′ = z/d, where d = zsurface−zCMB = 2890 km, and dimensionless75

temperature T ′ = (T − Ts)/(TCMB − Ts), where TCMB − Ts = 2700 K.76

77

Finally, the heat transport equation is solved to ensure conservation of energy:78

∂T

∂t
+ u · ∇T = κ∇2T +

H

Cp

, (8)

where κ is thermal diffusivity, H is internal heat generation and Cp is specific heat capacity.79

See Table S1 for parameter values and units. Heat generation within the mantle depends80

on the distribution of radiogenic isotopes (e.g., Ricard, 2015). Concentrations of such81
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elements can be tracked in TERRA, using particles, varying as a consequence of flow and82

melting (see, e.g., Panton et al., 2023; van Heck et al., 2016, for full explanation). The83

bulk composition field, C, which varies between 0 and 1, is also tracked on particles84

and calculated for each of the finite elements in the model. The end-members represent85

completely depleted/harzburgitic material (C = 0), and fully enriched/basaltic material86

(C = 1). As a result, radiogenic heat production across the whole mantle volume varies,87

being ≈ 24 TW (5.8× 10−12 W kg−1) at 1.2 Ga, and ∼ 18 TW (4.5× 10−12 W kg−1) by88

0 Ma. Simulations are initialised such that the average mantle composition is C = 0.2089

(Panton et al., 2023), and composition obeys the conservation equation:90

∂C

∂t
= −∇ · (Cu). (9)

2.1. Numerical Modelling Strategy

The Stokes equations described above are solved by the finite element method on a91

series of stacked spherical shells composed of nodes based on a subdivision of a regular92

icosahedron, with an identical geometry for each shell when projected onto the CMB93

(see, e.g., Figure 1 of Baumgardner, 1985). The radial spacing of consecutive shells is94

45 km, which is the same as the mean horizontal spacing of the elements across the en-95

tire model domain. The stacking of identically partitioned shells leads to a finer mean96

horizontal resolution of ≈ 33 km at the CMB, and a coarser resolution of ≈ 60 km at97

the surface. The surfaces of the uppermost elements in the shallowest shell lie at zero98

depth. To enable estimates of stress from these models to be directly compared with an-99

alytical solutions obtained from Green’s functions across layer boundaries, the predicted100
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values of deviatoric stress were calculated using the calculated velocities from the near-101

est shells using the interpolating linear shape functions of the underlying finite elements,102

while the dynamic pressure is calculated directly at the surface (see the main manuscript).103

104

Each numerical model presented in this paper has two computational stages: ‘spin-up’,105

which is used to initialize the model, and the geologically more realistic ‘main’ stage, from106

which we generate predictions of surface deflections. The spin-up stage includes 2.2 billion107

years of model run-time. It has the following conditions imposed to avoid sharp veloc-108

ity and temperature gradients, and sudden reorganization of mantle flow when the main109

model starts. First, a free-slip condition is imposed at the surface. Second, an initial,110

random white noise temperature field generated with power across spherical harmonic111

degrees 1-19, is inserted. Mean mantle temperature is initially 2000 K. Mantle convection112

arises naturally over the first two billion years of model run-time. A fixed-slip surface113

velocity condition is then applied to the surface for 200 Ma. These velocities are set to114

be equal to those at 1 Ga extracted from the reconstructions of Merdith et al. (2021); the115

vertical component of slip is zero. The resultant mantle structure is used as the initial116

condition for the main model.117

118

The main model routine predicts flow from 1 Ga to the present-day (0 Ma). It includes119

an isothermal condition imposed at the surface, Ts = 300 K. A fixed-slip condition is120

imposed such that the vertical component of u is zero. Horizontal slip is prescribed using121

the plate reconstructions of Merdith et al. (2021); these are applied in 1 Ma long stages.122

As such, stirring by plate drift and slab sinking play a role in driving mantle flow in these123
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models. An isothermal condition is also imposed at the core-mantle boundary such that124

TCMB = 3000 K. A free-slip velocity boundary condition is imposed there, so the radial125

component of the mantle flow velocity (ur) = 0. While this radial velocity boundary con-126

dition is of the Dirichlet type, in a free-slip boundary condition no tangential restriction is127

imposed on the flow velocity but rather on the tangential deviatoric stresses acting on the128

boundary (τrθ, τrϕ where r, θ and ϕ are the radial and two tangential directions respec-129

tively), which are zero. Horizontal components of slip are allowed to naturally emerge and130

evolve subject to lowermost mantle flow. Plume behaviour is not artificially suppressed131

or instigated.132

133

To ensure numerical stability and computational accuracy in these simulations, the ref-134

erence viscosity, η0, is set to 4× 1021 Pa s. This value is probably an order of magnitude135

greater than the viscosity of the actual upper mantle (e.g., Forte, 2007; Ghelichkhan et136

al., 2021; Mitrovica & Forte, 2004, and references therein). Consequently, flow velocities137

in the simulations are likely to be significantly slower than in actuality. An obvious cause138

for concern is that using actual (comparatively fast) plate velocities as surface boundary139

conditions atop a relatively slowly convecting ‘mantle’ is likely to induce unrealistic flow.140

To address this issue, imposed plate velocities are scaled such that the root-mean squared141

(RMS) values of the actual applied velocities (≈ 5 cm yr−1 unscaled) match RMS values142

of surface velocities (≈ 2.5 cm yr−1) calculated during the spin-up phase (before plate143

velocities are imposed on the model) when the model mantle is convecting naturally and144

not being driven by surface velocities. The applied surface plate velocities are therefore145

scaled by a factor of 0.5 (i.e., 2.5/5) in the simulations examined in this study. To ensure146
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that volumetric fluxes through ridges and subduction zones are realistic, simulation run147

times are increased by a factor of 2; i.e., the 1 Myr long plate stages are run for twice148

their elapsed time (2 Myr), but at half the speed. All times stated throughout the rest of149

this manuscript refer to times re-scaled for real-world comparison; i.e., the actual age of150

the respective plate stage.151

152

For the reference case (Model 1), these conditions lead to the density distributions shown153

in Figure S1. Surface layer density anomalies occur only as a result of predicted com-154

positional variation, since the surface temperature, Ts, is constant globally. This model155

represents the first of two reference numerical models examined in this contribution. It156

has the radial viscosity structure shown in Figure 2c of the main manuscript. Later, in157

the main manuscript, we investigate a second numerical model incorporating temperature-158

dependent viscosity (Equation 7). In the main manuscript we describe numeric and an-159

alytic approaches that use output from these models to calculate instantaneous surface160

deflections. Both approaches make use of spherical harmonics.161

3. Spherical Harmonics

Any real, square-integrable function over the surface of the Earth can be described as

a function of longitude θ and latitude ϕ by a linear combination of spherical harmonics

of degree l and order m,

f(θ, ϕ) =
L∑
l=1

l∑
m=−l

flmYlm(θ, ϕ). (10)

The spherical harmonic functions Ylm are the natural orthogonal set of basis functions162

on the sphere, and flm are the spherical harmonic coefficients. As an example, Figure 2d163
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in the main manuscript shows spherical harmonic expansion of the surface stress field164

predicted by Model 1 at 0 Ma (cf. Figure 2a in the main manuscript). We call this result165

Model 1b, and the original, full-resolution numerical result is referred to as Model 1a.166

The fidelity of the spherical harmonic expansion is demonstrated by the similarity of the167

maps and histograms shown in panels a–b and d–e of Figure 2 in the main manuscript.168

Pl =
l∑

m=−l

f 2
lm (11)

gives the total power across all spherical harmonics of a given degree l. Average power169

for each mode m within degree l, P̂l = Pl/(2l + 1), since there are 2l + 1 modes (orders)170

per degree—we do not explore this definition of power in this contribution, and present171

only total power per degree (see, e.g., Hoggard et al., 2016; Holdt et al., 2022).172

March 22, 2024, 1:46pm



O’MALLEY ET AL.: RECONCILING MANTLE CONVECTION SIMULATIONS X - 11

References

Baumgardner, J. R. (1985). Three-dimensional treatment of convective flow in the earth’s173

mantle. Journal of Statistical Physics , 39 (5-6), 501–511. doi: 10.1007/BF01008348174

Bunge, H.-P., & Baumgardner, J. R. (1995). Mantle convection modeling on parallel175

virtual machines. Computers in Physics , 9 (2), 207–215. doi: 10.1063/1.168525176

Davies, D. R., Davies, J. H., Bollada, P. C., Hassan, O., Morgan, K., & Nithiarasu, P.177

(2013). A hierarchical mesh refinement technique for global 3-D spherical mantle178

convection modelling. Geoscientific Model Development , 6 (4), 1095–1107. doi: 10179

.5194/gmd-6-1095-2013180

Forte, A. M. (2007). Constraints on Seismic Models from Other Disciplines - Implications181

for Mantle Dynamics and Composition. In B. Romanowicz & A. Dziewonski (Eds.),182

Seismology and the structure of the earth (pp. 805–858). Elsevier B.V. doi: 10.1016/183

B978-044452748-6.00027-4184

Ghelichkhan, S., Bunge, H.-P., & Oeser, J. (2021). Global mantle flow retrodictions for185

the early Cenozoic using an adjoint method: Evolving dynamic topographies, deep186

mantle structures, flow trajectories and sublithospheric stresses. Geophysical Journal187

International , 226 (2), 1432–1460. doi: 10.1093/gji/ggab108188

Hager, B. H., & O’Connell, R. J. (1981). A Simple Global Model of Plate Dynamics189

and Mantle Convection. Journal of Geophysical Research, 86 (B6), 4843–4867. doi:190

10.1029/JB086iB06p04843191

Hoggard, M. J., White, N., & Al-Attar, D. (2016). Global dynamic topography observa-192

tions reveal limited influence of large-scale mantle flow. Nature Geoscience, 9 (May),193

1–8. doi: 10.1038/ngeo2709194

March 22, 2024, 1:46pm



X - 12 O’MALLEY ET AL.: RECONCILING MANTLE CONVECTION SIMULATIONS

Holdt, M. C., White, N. J., Stephenson, S. N., & Conway-Jones, B. W. (2022). Densely195

Sampled Global Dynamic Topographic Observations and Their Significance. Journal196

of Geophysical Research: Solid Earth, 127 , 1–32.197

McKenzie, D. P., Roberts, J. M., &Weiss, N. O. (1974). Convection in the earth’s mantle:198

Towards a numerical simulation. Journal of Fluid Mechanics , 62 (3), 465–538. doi:199

10.1017/S0022112074000784200

Merdith, A. S., Williams, S. E., Collins, A. S., Tetley, M. G., Mulder, J. A., Blades, M. L.,201

. . . Müller, R. D. (2021). Extending full-plate tectonic models into deep time: Linking202

the Neoproterozoic and the Phanerozoic. Earth-Science Reviews , 214 (103477), 1–44.203

doi: 10.1016/j.earscirev.2020.103477204

Mitrovica, J. X., & Forte, A. M. (2004). A new inference of mantle viscosity based205

upon joint inversion of convection and glacial isostatic adjustment data. Earth and206

Planetary Science Letters , 225 (1-2), 177–189. doi: 10.1016/j.epsl.2004.06.005207

Panton, J., Davies, J. H., & Myhill, R. (2023). The Stability of Dense Oceanic Crust208

Near the Core-Mantle Boundary. Journal of Geophysical Research: Solid Earth, 128 ,209

1–21. doi: 10.1029/2022JB025610210

Parsons, B., & Daly, S. (1983). The relationship between surface topography, gravity211

anomalies and temperature structure of convection. Journal of Geophysical Research,212

88 (B2), 1129–1144. doi: 10.1029/JB088iB02p01129213

Ricard, Y. (2015). Physics of Mantle Convection. In G. Schubert (Ed.), Treatise on214

geophysics (pp. 23–71). doi: 10.1016/B978-044452748-6.00115-2215

van Heck, H. J., Davies, J. H., Elliott, T., & Porcelli, D. (2016). Global-scale modelling216

of melting and isotopic evolution of Earth’s mantle: Melting modules for TERRA.217

March 22, 2024, 1:46pm



O’MALLEY ET AL.: RECONCILING MANTLE CONVECTION SIMULATIONS X - 13

Geoscientific Model Development , 9 , 1399–1411. doi: 10.5194/gmd-9-1399-2016218

March 22, 2024, 1:46pm



X - 14 O’MALLEY ET AL.: RECONCILING MANTLE CONVECTION SIMULATIONS

Table S1. Summary of Model Parameters.

Parameter Symbol Value Units

Surface temperature Ts 300 K

Core-mantle boundary temperature TCMB 3000 K

Internal heating rate H See text. W kg−1

Thermal expansivity α 2.5× 10−5 K−1

Thermal conductivity K 4 W m−1K−1

Thermal diffusivity κ 8.08 ×10−7 m2s−1

Specific heat capacity Cp 1100 J kg−1K−1

Reference viscosity η0 4× 1021 Pa s

Reference density ρ0 4500 kg m−3

Overlying fluid density ρw 1 or 1030 kg m−3

March 22, 2024, 1:46pm



O’MALLEY ET AL.: RECONCILING MANTLE CONVECTION SIMULATIONS X - 15

Figure S1. Model 1: Densities predicted from numerical simulation of mantle

convection. (a) Predicted present-day density ρ, at surface (z=0), from TERRA model with

viscosity independent of temperature (Model 1a), plotted at grid resolution of 1 degree. (b)

Histogram of values shown in (a), weighted by latitude to correct to equal-area. (c–d) As (a–b)

but for densities at a depth of 270 km. (e–h) As (a–d) but for time slice at 10 Ma; paleo-coastlines

generated from Phanerozoic plate rotation history of Merdith et al. (2021). (i–l) As (a–d) but

for time slice at 100 Ma.
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Figure S2. Model 1: Predicted water- and air-loaded surface deflections. (a) Water-

loaded, present day, surface deflection predicted by Model 1a. Figure S2a shows normal stress,

σ, used with Equation 2 in the main manuscript to calculate surface deflections, h; ρw = 1030 kg

m−3. (b) Spherical harmonic fit (Model 1b) up to degree l = 50 of grid shown in (a), calculated

using the approach of Hoggard et al. (2016). (c–d) Histogram of values shown in (a) and (b)

respectively, weighted by latitude to correct to equal-area. (e) Black line = power spectrum in

terms of total power per degree, from spherical harmonic expansion shown in (b); gray line and

band = expected dynamic topography from Kaula’s rule using admittance Z = 12 ± 3 mGal

km−1 (Kaula, 1963). Orange dashed line = expected power spectrum for water-loaded residual

topography from Holdt et al. (2022) via analytical solution of special case of Equation 4 of the

main manuscript. χp = total root-mean-squared difference between distribution of modeled and

theoretical surface deflection power (see Equation 9 in the main manuscript). (f–j) As (a–e) but

for air-loaded surface deflection; ρw = 1 kg m−3.
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Figure S3. Model 2: Propagator matrix solution for surface deflection with as-

sociated sensitivity kernels. (a) Surface deflection sensitivity kernel Al, as a function of

spherical harmonic degree, l, and depth, calculated for the radial viscosity structure (and other

parameters) which were used to generate Model 1; see Equation 5 in the main manuscript.

(b) Present-day predicted water-loaded surface deflection, calculated using propagator matrix

method, from spherical harmonic expansion (to maximum degree l = 50) of density structure

(e.g., Figure S1) and radial viscosity structure (e.g., Figure 2c; Corrieu et al., 1995; Hager et al.,

1985; Parsons & Daly, 1983). Note that for comparison with numeric calculations shown in Fig-

ure 3, no terms related to flow-related perturbation of gravitational potential terms are included

(see Equations 5 and 6 in the main manuscript), and gravitational acceleration g = 10 m s−2

everywhere. (c) Histogram of values shown in (b), weighted by latitude to correct to equal-area.

(d) Black line = power spectrum in terms of total power per degree, from surface deflection

prediction shown in (a); gray line and band = expected dynamic topography from Kaula’s rule

using admittance Z = 12± 3 mGal km−1 (Kaula, 1963). Orange dashed line = power spectrum

of water-loaded residual topography from Holdt et al. (2022), via analytical solution of special

case of Equation 4 in the main manuscript. χp = total root-mean-squared difference between

distribution of modeled and theoretical surface deflection power (see Equation 9 in the main

manuscript). (e–h) As (a–d) but for air-loaded surface deflection; ρw = 1 kg m−3.
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Figure S4. Model 3: Predicted surface deflection from mantle convection in pres-

ence of radial gravitation. (a) Predicted present-day water-loaded surface deflection calcu-

lated using propagator matrix method, incorporating radial gravitation i.e., g(r), black curve in

(b).(b) Black curve = profile of gravitational acceleration as a function of radius, given density

distribution predicted by Model 1a; gray dashed line = constant value of g = 10 m s−2 used

within TERRA model runs and in previous figures. (c) As (a) but calculated using g = 10 m s−2

everywhere, i.e., same as Figure S3a–d (see dashed line in panel b). Associated sensitivity kernels

are shown in Figure S6. (d) Difference between surface deflections predicted by Models 3 and 2

(panels a and c). (e) Histogram of values in (d), weighted by latitude to correct to equal-area.
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Figure S5. Model 4: Comparing predicted surface deflections with and without

stress perturbations induced by gravitational potential of deflected surface. (a) Pre-

dicted present-day water-loaded surface deflection calculated using propagator matrix method,

with g = 10 m s−2 everywhere, including terms describing stress perturbation due to change

in gravitational potential (i.e., u3 term in Equation 5 in the main manuscript). (b) As (a) but

calculated excluding u3 term, i.e., same as Figure S3a. See Figure S6 for associated sensitivity

kernels. (c) Difference between Models 4 and 2 (panels a and b). Note same colour scales are used

as in Figure S4. (d) Histogram of values in (d), weighted by latitude to correct to equal-area.

March 22, 2024, 1:46pm



O’MALLEY ET AL.: RECONCILING MANTLE CONVECTION SIMULATIONS X - 23

Figure S6. Comparison of sensitivity kernels generated with different treatment of

gravitation. (a–c) Sensitivity kernels of Models 2 (M2; g = 10 m s−2), 3 (M3; g = g(r)) and

4 (M4; gravitational potential of perturbed surface is included and g = 10 m s−2); see Figures

3–4 & S3–S5. (d) Comparison of sensitivity kernels from Models 2 and 3; Model 3 kernel is

subtracted from Model 2 kernel. (e–f) Comparisons of kernels from Models 2 & 4, and 3 & 4.

March 22, 2024, 1:46pm



X - 24 O’MALLEY ET AL.: RECONCILING MANTLE CONVECTION SIMULATIONS

Figure S7. Models 5–7: Effect of removing shallow structure from analytic sur-

face deflection calculations. (a) Model 5: Predicted water-loaded surface deflection from

propagator matrix solution for Model 2, i.e., as Figure S3b, but with effect of upper 50 km of

density anomaly structure ignored in calculation. (b) Black line = power spectrum of surface

deflection shown in (a); gray line and band = expected dynamic topography from Kaula’s rule

using admittance Z = 12± 3 mGal km−1 (Kaula, 1963). Orange dashed line = expected power

spectrum for water-loaded residual topography from Holdt et al. (2022), via analytical solution

of special case of Equation 4 in the main manuscript. χp = total root-mean-squared difference

between distribution of modeled and theoretical surface deflection power (see Equation 9 in the

main manuscript). (c) Difference between Models 5 and 2, i.e., between panel (a) and original

propagator matrix solution, Model 2, shown in Figure S3b. (d) Spectral correlation coefficient,

rl, between Model 5 and 2; Equation 8 in the main manuscript. (e–h) and (i–l) as (a–d) but for

depth cut-offs of 100 (Model 6) and 200 km (Model 7), respectively.
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Figure S8. Model 11: Numerical simulation of mantle convection with temperature

dependent viscosity, η, and spherical harmonic representation. (a) Present-day viscosity

at surface from Model 11a, expressed as percentage deviation from layer mean, δη, plotted at

grid resolution of 1 degree. (b) Histogram of values shown in (a), weighted by latitude to correct

to equal-area. (c) Black line and gray band = global mean and extreme viscosity values as a

function of depth; pink band = depth slice shown in (a). (d) Model 11b: Spherical harmonic fit

up to degree l = 50 of grid shown in (a), using inverse approach of Hoggard et al. (2016). (e–h)

As (a–d) but for depth slice at 271 km below surface. (i–l) and (m–p) 587 km and 2032 km

depth slices.
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Figure S9. Model 11: Densities predicted by numerical simulation with

temperature-dependent viscosity. (a) Predicted present-day density ρ, at surface (z=0),

from TERRA model. (b) Histogram of values shown in (a), weighted by latitude. (c–d) As panels

(a–b) but for densities at 270 km depth. (e–h) and (i–l) As panels (a–d) for time slices at 10

and 100 Ma (see caption of Figure S1 for expanded description; Figure S8 for viscosity structure;

Equation 7 of this document).
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Figure S10. Model 11: Predictions of surface stresses and deflections from sim-

ulations with temperature dependent viscosity. (a) Predicted present-day surface radial

stress, σrr from numerical TERRA model (Model 11a), plotted at grid resolution of 1 degree. (b)

Model 11b: Spherical harmonic representation of Model 11a up to degree l = 50. (c) Histogram

of values shown in (a), weighted by latitude to correct to equal-area. (d) Histogram of values

shown in panel (b). (e) Power spectrum of surface stresses. (f–i) Calculated water-loaded surface

deflections and associated histograms for full resolution numerical solutions (f, h) and spherical

harmonic representation (g, i). (j) Power spectrum (black) of water-loaded surface deflection

(panel g), Kaula’s rule (grey curve and band), and water-loaded residual topography (orange);

see Figure S2 for expanded description.
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Figure S11. Model 12: Analytical (propagator matrix) predictions of surface de-

flections from simulations with temperature dependent viscosity. Radial viscosity is

calculated using mean (radial) values from numerical model with temperature-dependent viscos-

ity (i.e., Model 11a; Figure S10). (a–d) Present-day, water-loaded, surface deflection calculated

analytically using propagator matrix solution; see Figure S3 for expanded description of panels.

(e–h) Air-loaded deflection and associated metrics.
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Figure S12. Comparing surface deflections calculated using normal stresses from

numeric simulations (Models 1 and 11) and analytic estimates (Models 2 and 12)

with and without temperature dependent viscosity. (a) Difference in predicted sur-

face deflection, ∆h, between numerical simulations with (Model 11a) and without (Model 1a)

temperature-dependent viscosity. Full-resolution surface radial stresses are converted into sur-

face deflections, h, using Equation 2 of the main manuscript. (b) Histogram of values shown

in (a). (c) Pixel-wise comparison of predicted surface deflection between the two models; χ =

root-mean-squared difference between predictions, see Equation 7 of the main manuscript; gray

dashed line = 1:1 ratio. (d–f) as (a–c) but for surface deflection calculated using spherical har-

monic expansion of surface radial stresses (Model 1b vs. 11b). (g) Spectral correlation coefficient,

rl, between model predictions (with and without temperature dependent viscosity; see Equation 8

of the main manuscript). (h–k) as (d–g) but for surface deflections calculated for each model

using the propagator matrix approach (Model 2 vs. 12).
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Figure S13. Models 13–16: Sensitivity of calculated analytic surface deflection

to adjusted radial viscosity. (a) Model 13: Black curve = prediction of present-day radial

mean viscosity from Model 11; red line = adjusted radial profile with viscosity decreased by a

factor of 10 between depths of ∼ 300–500 km; gray dashed lines = viscosity profiles used in

other studies (see Figure 2c). (b) Sensitivity kernel generated using adjusted viscosity shown

in (a). (c) Surface deflection calculated using propagator matrix approach parameterised using

adjusted viscosity profile (red curve in panel a), and resulting sensitivity kernel shown in panel (b).

(d) Difference between propagator matrix solutions generated using adjusted and un-adjusted

viscosity profiles, i.e., panel (c) minus Figure 7b (Model 13 vs. 12). Value of root-mean-squared

difference, χ, (between calculated surface deflections for un-adjusted and adjusted viscosity) is

stated (see Equation 7 of the main manuscript). (e–h) Model 14: As (a–d) but applying an

increase in viscosity of a factor of 10 between ∼ 300–500 km. (i–l) Model 15: As (a–d) but

applying an increase in viscosity of a factor of 100 between ∼ 300–500 km. (m–p) Model 16:

As (a–d) but applying an constant viscosity of ≈ 7.5 × 1022 Pa s (i.e., the mean value of the

reference profile) across all depths.
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Figure S14. Models 17–20: Sensitivity of calculated analytic surface deflection

to adjusted density anomalies. Annotation is as for Figure S13 but for adjusted density

anomalies (red lines in left panels), by directly scaling spherical harmonic coefficients (l > 0) up

or down by a factor of 2 (Models 17 & 19, panels a–c & g–i, respectively) or 1
2
(Models 18 & 20:

d–f & j–l ). Viscosity structure applied in each case is same as that used to generate Figure 7b.

Sensitivity kernels for surface deflection are not shown since they are invariant with respect to

density anomalies, ∆ρ, depending only on viscosity structure.
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Figure S15. Surface deflections and effective densities up to maximum degree 40.

(a–d) Net contribution to present-day water-loaded surface deflection calculated using analytical

approach with maximum l = 40. Depth slices at 45, 135, 360 and 1445 km depth. (e) Great-circle

slice (180°) showing contributions to surface deflection; globe to right shows transect location

and calculated surface deflection, up to maximum l = 40. White circles = 20° intervals; filled

black circle is for orientation; dashed line = 660 km depth contour. (f) White-black curve =

surface deflection along transect shown atop globe in panel (e); red dashed curve = surface

deflection from Model 2. (g) Cartesian version of panel (e). (h) Grey dashed curve = mean

absolute value of density anomalies in Model 12—see top axis for values. Black curve = global

mean amplitude (modulus) of contribution from density structure up to maximum l = 40 to total

surface deflection h.
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Figure S16. Surface deflections and effective densities up to maximum degree 30.

As Figure S15, but for maximum spherical harmonic degree l = 30.
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Figure S17. Surface deflections and effective densities up to maximum degree 20.

As Figure S15, but for maximum spherical harmonic degree l = 20.
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Figure S18. Surface deflections and effective densities up to maximum degree 10.

As Figure S15, but for maximum spherical harmonic degree l = 10.
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Figure S19. Surface deflections and effective densities up to maximum degree 5.

As Figure S15, but for maximum spherical harmonic degree l = 5.
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