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Abstract

We analyze the large-scale statistically meaningful patterns (LSMPs), also called large-scale meteorological patterns, that

precede extreme precipitation (PEx) events over Northern California (NorCal). We find LSMPs by applying k-means clustering

to the two leading principal components of daily 500hPa geopotential height anomalies persisting two days before the onset.

A statistical significance test based on the Monte Carlo simulations suggests the existence of a minimum of four statistically

distinguished LSMP clusters. The four LSMP clusters are characterized as the NW continental negative height anomaly, the

Eastward positive “PNA”, the Westward negative “PNA”, and the Prominent Alaskan ridge. These four clusters, shown in

multiple atmospheric and oceanic variables, evolve very differently and have distant links to the Arctic and tropical Pacific

regions. Using binary forecast skill measures and a new copula-based framework for predicting PEx events, we show that

the LSMP indices are useful predictors of NorCal PEx events, with the moisture-based variables being the best predictors of

PEx events at least six days before the onset, and the lower atmospheric variables being better than their upper atmospheric

counterparts any day in advance.
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Abstract16

We analyze the large-scale statistically meaningful patterns (LSMPs), also called large-17

scale meteorological patterns, that precede extreme precipitation (PEx) events over North-18

ern California (NorCal). We find LSMPs by applying k-means clustering to the two lead-19

ing principal components of daily 500hPa geopotential height anomalies persisting two20

days before the onset. A statistical significance test based on the Monte Carlo simula-21

tions suggests the existence of a minimum of four statistically distinguished LSMP clus-22

ters. The four LSMP clusters are characterized as the NW continental negative height23

anomaly, the Eastward positive “PNA”, the Westward negative “PNA”, and the Promi-24

nent Alaskan ridge. These four clusters, shown in multiple atmospheric and oceanic vari-25

ables, evolve very differently and have distant links to the Arctic and tropical Pacific re-26

gions. Using binary forecast skill measures and a new copula-based framework for pre-27

dicting PEx events, we show that the LSMP indices are useful predictors of NorCal PEx28

events, with the moisture-based variables being the best predictors of PEx events at least29

six days before the onset, and the lower atmospheric variables being better than their30

upper atmospheric counterparts any day in advance.31

Plain Language Summary32

Like many other weather extremes, extreme precipitation events can be organized33

and triggered by large-scale circulation patterns (horizontal span > 1000 km). Often,34

these circulation patterns evolve in more than one way. In this work, we determine that35

there are a minimum of four distinct clusters of large-scale circulation patterns that evolve36

to cause extreme precipitation over Northern California. Although the four clusters have37

a common low-pressure system persisting near Northern California, they are distinguished38

from each other in the orientation and spatial extent of low and high-pressure systems39

over a much larger region. Clusters have different links to properties in distant regions40

such as: the tropical Pacific Ocean and Alaska as well as regions in between. We con-41

structed indices from statistically significant and commonly-occurring parts of these clus-42

ters. Such indices are useful predictors of extreme precipitation events, atmospheric moisture-43

based variables being the best predictors.44

1 Introduction45

Extreme precipitation (PEx) over California is marked by a large interannual vari-46

ability (Dettinger et al., 2011). For example, record rainfall during the winter of 2016-47

17 was followed by record dry conditions in the fall and winter of 2017-18 (Gershunov48

et al., 2017). Such a large variability in rainfall is a concern from both drought (Swain49

et al., 2014; Shukla et al., 2015) and flood perspectives (e.g., Feb 2017 Oroville Dam dis-50

aster; White et al., 2019). Projections of future precipitation suggest an increase in high-51

intensity precipitation extremes and a further enhancement in interannual variability (Swain52

et al., 2018; Polade et al., 2017; Rhoades et al., 2020). Since changes in PEx over Cal-53

ifornia have severe impacts on activities such as water management, dam protection, agri-54

culture, it is important to understand both the large and small-scale patterns associated55

with PEx over California. While small-scale local features (e.g., local orography, mois-56

ture ascent) pose problems for climate models due to limitations such as inadequate hor-57

izontal and vertical resolutions, imperfect parameterizations, cloud microphysics, large-58

scale circulation mechanisms are largely reproduced in climate model simulations (e.g.,59

Boroneant et al., 2006; Gutowski et al., 2003; DeAngelis et al., 2013; Agel & Barlow, 2020).60

This study explores the large-scale circulation patterns associated with PEx events over61

Northern California (NorCal).62

Large-scale meteorological patterns, also called Large-scale Statistically Meaning-63

ful Patterns (LSMPs), associated with extreme events are the synoptic-to-large-scale at-64

mospheric and surface conditions that precede the events (e.g., PEx or temperature events,65
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or cold-air outbreaks). LSMPs are different from teleconnections (e.g., the El Niño South-66

ern Oscillation) in several ways. First, LSMPs can be high-frequency patterns based on67

instantaneous data (as in this report). Second, LSMPs are the specific meteorological68

patterns that occur in connection with an extreme event type, whereas teleconnections69

are recurring, slowly-evolving, persistent, large-scale patterns (also known as low-frequency70

modes of variability) that can be defined without any reference to extremes (Barlow et71

al., 2019). While local factors such as lifting, static stability, and moisture availability72

control the intensity and duration of PEx (e.g., Neiman et al., 2002; Moore et al., 2020),73

LSMPs that determine or control these factors vary with season, region, and definition74

of an extreme event.75

As outlined in Grotjahn et al. (2016), multiple methods can identify large-scale cir-76

culation features associated with an extreme event. A common method is the construc-77

tion of composited maps of meteorological variables conditioned on the occurrence of an78

extreme event type (Grotjahn & Faure, 2008; DeAngelis et al., 2013; Gao et al., 2014;79

Collow et al., 2016, 2020). Compositing-based studies show that the precipitation days80

over NorCal are locally associated with a low-pressure system and associated extratrop-81

ical cyclones in the Northern Pacific off the west coast of the United States (e.g., Grot-82

jahn & Faure, 2008; Neiman et al., 2008; Gao et al., 2014). These weather systems act83

to channel winds and moisture into narrow structures called atmospheric rivers (Ralph84

et al., 2006) that are directed towards the coast to produce precipitation over land (Smith85

et al., 2010). Another strong feature of these large-scale patterns is the zonally elongated86

jet over the North Pacific further extended towards the west coast of the United States87

(Payne & Magnusdottir, 2014).88

However, when looking at large scales, locally persistent low-pressure systems are89

found to be embedded in different circulation patterns, suggesting that there could be90

more than one large-scale pattern that can be associated with PEx events over NorCal.91

Popular methods that can identify these different circulation features are: empirical or-92

thogonal function (EOF) analysis (Guirguis et al., 2018, 2020), self-organizing maps (SOMs;93

Loikith et al., 2017; Guirguis et al., 2019), and clustering analysis (Agel et al., 2018; Zhao94

et al., 2019; Moore et al., 2021). Loikith et al. (2017) demonstrated that the majority95

of the PEx days over the western United States occur with their SOM node 1, identi-96

fied by a surface low pressure centered to the northwest of the northwestern continen-97

tal United States, a 500mb geopotential height (Z500) trough axis offshore, and the main98

axis of the 250mb jet zonally oriented over central California. Guirguis et al. (2020), us-99

ing SOM analysis, demonstrated that wet and dry conditions over California result from100

interactions between four North Pacific circulation regimes (their NP4 regimes) on daily101

timescales. D. Chen et al. (2021) found that the third principal component of the Z500102

field has a strong positive correlation with the Z500 anomalies existing off the northwest-103

ern United States coast during PEx events that occur in California. Guirguis et al. (2019)104

applied SOMs to Z500 anomalies to find nine nodes associated with peak atmospheric105

river (AR) days at 40°N impacting NorCal. They showed that these nodes occur dur-106

ing different phases of large-scale teleconnection patterns such as El Niño-Southern os-107

cillation (ENSO), Pacific decadal oscillation (PDO), and Pacific North American (PNA)108

pattern. Moore et al. (2021) found four categories of large-scale atmospheric patterns109

for long-duration (> 7 days) heavy precipitation events over the West Coast of the United110

States. Out of these four categories, two are identified by a strong zonal jet stream over111

the eastern North Pacific, and the two other patterns are identified by atmospheric block-112

ing over the central North Pacific and the Bering Sea–Alaska region, respectively.113

These studies provide useful information about how PEx forms over NorCal. Nonethe-114

less, there are five aspects of research methodology to consider. First, there is a mis-115

conception about what constitutes an LSMP. As elaborated in Grotjahn (2011), an LSMP116

of a relevant variable, often meteorological (e.g., 500 mb geopotential height anomaly117

field) is more than some aggregate field; it also must indicate what is important in the118
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field. Therefore, an LSMP includes two additional integral features: significance and con-119

sistency. The significance establishes if an anomalous pattern (e.g., sea surface temper-120

ature anomaly) statistically differs from what occurs by chance. Consistency, as the name121

suggests, refers to how often an anomaly of the same sign occurs at a grid point or lo-122

cation. Previous studies showing aggregate patterns often overlook the consistency as-123

sessment. We argue that significance and consistency are integral parts of an LSMP for124

two reasons: a) high significance does not guarantee high consistency (e.g. Grotjahn and125

Faure (2008) and b) any future changes in either significance or consistency may sug-126

gest dynamical changes impacting the occurrences of extremes. Second, a majority of127

previous studies have considered a small spatial domain around NorCal. However, as the128

name suggests, LSMPs are large-scale patterns (and may show far teleconnections, too)129

that may not be fully captured by such small domains. Third, what is the minimum num-130

ber of LSMP clusters necessary to best describe northern California’s PEx events? This131

question has direct relevance for climate model evaluation, as any model expected to rea-132

sonably simulate PEx should be able to reproduce the spatial pattern and frequency of133

each observed clustered pattern. Fourth, most studies use concurrent meteorological con-134

ditions (same day) for identifying and clustering large-scale patterns associated with PEx135

events (e.g., Barlow et al., 2019). Analogous to NorCal heat waves, which have a sim-136

ilar pattern at their onset that is arrived upon from two different synoptic evolutions (Lee137

& Grotjahn, 2016), NorCal PEx events might also be arrived at by more than one syn-138

optic evolution. Indeed, Figure 6 in (Grotjahn & Faure, 2008) implies more than one pat-139

tern as individual events have a highly significant Alaskan ridge while other events have140

a deep trough over Alaska. From causal and predictability perspectives, the relevant LSMPs141

should be identified from the meteorological conditions persisting before the event. Fifth,142

although a limited number of studies have shown the predictability of PEx events us-143

ing LSMPs as predictors (e.g., Gao & Mathur, 2021), a comprehensive approach for prob-144

abilistic predictions of precipitation using LSMPs as predictors is missing.145

In this work, we examine the LSMPs associated with PEx over NorCal to address146

the limitations mentioned above. A PEx event is defined here as the 24-hour precipita-147

tion total of more than the 95th percentile of the daily precipitation averaged over a re-148

gion of NorCal. We also present a copula-based framework for making probabilistic pre-149

dictions of precipitation. Broadly, our main objectives are:150

1. identify clusters of LSMPs that persist before the onset of the PEx over NorCal;151

2. statistically estimate the minimum number of distinguishable LSMP clusters lead-152

ing to PEx events over NorCal;153

3. examine the evolution of a comprehensive list of meteorological LSMPs leading154

to the PEx event onset;155

4. use a copula-based framework to make a probabilistic prediction of PEx events156

over NorCal using LSMP indices as predictors.157

The LSMP clusters are identified by applying the k-means clustering algorithm to158

the two leading principal components of the 500hPa daily geopotential height anoma-159

lies (Z500) two days before the onset (lag 2). Along with the Z500, we show the evolu-160

tion of LSMPs associated with the other related quantities such as 850hPa and 200hPa161

velocity fields, streamfunctions at 200 and 850mb, surface temperature, integrated va-162

por transport (IVT), and surface pressure.163

This paper strongly complements the paper by Moore et al. (2021), which focused164

on synoptic dynamics during 7-day-long PEx events impacting NorCal. Here, we focus165

on predictability, remote connections, and the creation of 1-day or longer PEx events im-166

pacting the same region. While they include all events, we include only the largest pre-167

cipitation day in a multi precipitation day event and exclude “mixed” events which can-168

not be clearly assigned to a single cluster. We do this to have more distinct clusters and169

are enabled to do so because we have larger sample sizes. Our patterns are sharper be-170
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cause we are combining “instantaneous” fields, not time averaging, during which mul-171

tiple weather systems move across the domain. We also employ a rigorous test to see the172

minimum number of clusters needed for them to be significantly different. We search for173

LSMPs over a larger region and, in so doing, find distant connections not found within174

their original focus region. While they present the significant parts of patterns, we ap-175

ply a true LSMP analysis and also measure consistency since it is critical for assessing176

predictability. Following this introduction, the data and methods are discussed in sec-177

tion 2, results in section 3, and an overall summary is in section 4.178

2 Data and Method179

In this study, we use daily 0.25◦ × 0.25◦ precipitation data over 1948-2015 from180

the National Oceanic and Atmospheric Administration Climate Prediction Center (CPC)181

Unified CONUS dataset (CPC; Xie et al., 2007; M. Chen et al., 2008) to identify PEx182

events over the NorCal region. The gridded CPC data are constructed from the quality-183

controlled station data using the optimal interpolation (OI) algorithm, which exhibits184

relatively small degradation in performance statistics over regions covered by fewer gauges.185

To identify extreme precipitation events, we first calculate the 24-hour spatially aver-186

aged precipitation P̄ by taking the mean of 24-hour non-zero precipitation values (i.e.,187

P > 0 mm/day) at each grid point across the NorCal region defined as 124.5◦W to 119.25◦W188

and 38.69◦N to 43.17◦N. A PEx event is identified if a 24-hour P̄ magnitude exceeds the189

95th percentile of P̄ values over 1948-2015. This criterion identifies a total of 489 daily190

precipitation events. However, some of these events are on consecutive days. Since such191

events on consecutive days are not exclusively independent, we pick the largest precip-192

itation day in a 3-day period. This procedure reduces the total number of exclusive events193

to 311.194

For the LSMP analysis, we use the NOAA–CIRES–DOE Twentieth Century Re-195

analysis version 3 (20CRv3; Slivinski et al., 2019). The 20CRv3 uses an Earth system196

model to assimilate surface pressure observations with prescribed lower boundary con-197

ditions from observed sea surface temperature and sea-ice concentrations and bounded198

by prescribed radiative forcing to generate a four-dimensional global reanalysis product.199

Compared to its predecessor, 20CRv2c, the 20CRv3 uses upgraded assimilation meth-200

ods, including an adaptive inflation algorithm, a higher resolution forecast model and201

a larger set of pressure observations. These improvements remove spin-up effects in the202

precipitation fields, reduce sea-level pressure bias, and improve the representation of storm203

intensity in the reanalysis product (Slivinski et al., 2019).204

In this study, we analyze the following variables from 20CRv3: surface pressure (Ps),205

surface temperature (Ts), integrated vapor transport (IV T ), horizontal and vertical ve-206

locity fields (U, V, ω ), atmospheric temperature (T ), geopotential height (Z) and stream-207

function (ψ) at 200, 500 and 850hPa levels. We compute the daily anomalies of these208

variables by simultaneously regressing out the annual cycle and linear trend from the daily209

data over the period 1948-2015. Though not shown here, this approach of removing the210

annual cycle and trend from the data ensures that no residual trend or annual cycle re-211

mains present in the final anomaly product.212

2.1 Clustering Procedure213

For the clustering analysis, we apply a k-means clustering algorithm to the two lead-214

ing principal components (PCs) of the 500hPa geopotential height anomalies two days215

before (lag 2) (Za500l2 ) the event onset. The cluster domain is 180◦W to 100◦W and 25◦N216

to 75◦N. The two leading PCs explain around 54% of the variance. We estimate the sig-217

nificance of clusters using a Monte Carlo procedure following Straus (2018), described218

as follows. For each chosen number of clusters (k = 1, 2, 3 . . . etc.), we compute the vari-219

ance ratio (R = ∆/S) for the first two PCs of Za500l2 , where, ∆ is the spread among the220
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cluster centroids (also called between-sum-of-squares) and S is the spread within clus-221

ters (also called total-within-sum-of-squares). In cluster analysis, we seek to minimize222

the spread within clusters, S. A maximum of the variance ratio R corresponds to a min-223

imum of S. We repeat the above-mentioned procedure 100 times with synthetic datasets.224

The synthetic datasets are generated from the multivariate Gaussian distribution com-225

puted using the same mean and covariance as in the data (here, the two leading PCs).226

For each iteration, we compute Rsample = ∆/S. Finally, the 99th percentile of the 100227

Rsample values, (Rsig) is computed. If R > Rsig for a particular k, the clusters are de-228

clared significant and different from those occurring by chance. This procedure is repeated229

for k = 1 : 7. A similar procedure is also applied in Amini and Straus (2019). This230

process leads us to identify 4 significant clusters of Za500l2 . For simplicity, we call the clus-231

ters LZl2 to indicate that the clusters are formed from Za500 fields at lag 2. For each232

cluster, the cluster centroid (LZ
c

l2) is computed by taking the mean of all cluster mem-233

bers 1 . . . nc:234

LZ
c

l2 =

nc∑
n=1

Za500l2,n

nc
, (1)

where,
∑

denotes summation over all cluster members, n = 1 . . . nc, in a cluster c.235

2.2 Construction of LSMP indices236

We construct a daily LSMP index (LSMPi) for each meteorological variable mainly237

to make probabilistic predictions of precipitation. First, we choose a spatial domain that238

captures the highly significant and consistent regions for the LSMPs. A large domain239

was used to ensure that we capture the full spatiotemporal extent of the LSMPs. For240

the LSMPi, unimportant regions are excluded and the domain is smaller: 180◦ to 100◦W241

and 25◦N to 75◦N. Then we divide the years under consideration into training (NDJFM242

of 1948-1982) and verification years (NDJFM of 1982-2015). Corresponding to the train-243

ing and verification periods, we divide all meteorological fields (Y ) into training (Y T )244

and verification (Y V ) sets. Then, we construct “training” LSMPs for a variable Y T , LY
c,T

l∗245

for each cluster c as in Eqn. 1, where ∗ denotes lags 0-6. The LSMPi for a meteorolog-246

ical variable (Y T ) in the training period T is constructed by projecting LY
c,T

l∗ onto the247

corresponding daily (Y T ) timeseries,248

LSMPic,TY =
(WLY

c,T

l∗ )(WY T )

[WLY
c,T

l∗ ]2
, (2)

where W is the weight assigned to each grid point based on both the normalized sign249

count and areal weighting accounting for the convergence of meridians: LSMPic,TY is the250

daily product having dimensions of lon × lat for each cluster. The final daily LSMPi251

(LSMPiTY ) is chosen by taking the maximum of the 4 LSMPic,TY .252

Similarly, the LSMPi for a meteorological variable (Y V ) in the verification period253

V is constructed by projecting LY
c,T

l∗ onto the corresponding daily Y V time series,254

LSMPic,VY =
(WLY

c,T

l∗ )(WY V )

[WLY
c,T

l∗ ]2
, (3)

The final daily LSMPi (LSMPiVY ) is constructed by taking the maximum of the255

four LSMPic,VY . We use the same training LSMP LY
c,T

l∗ to compute LSMPi for train-256

ing and verification datasets. The daily LSMPi measures how similar a given day is to257

a specific cluster mean LSMP.258

–6–



manuscript submitted to JGR: Atmospheres

2.3 Probabilistic prediction of precipitation events using LSMP indices259

We now show that the daily LSMPi of meteorological variables are skillful predic-260

tors of PEx events. The LSMPi for each variable is constructed as described in section261

2.2. To find useful predictors, we use quantile regression to predict the 95th percentile262

of P using LSMPi as predictors. The fitness of each LSMPi predictor is estimated us-263

ing a model selection criterion called the Akaike information criterion (AIC; Akaike, 1974).264

We also use a combination of two or more predictor variables to estimate if it produces265

a lower AIC than the individual AIC values. A suite of measures for assessing the pre-266

diction skill of LSMPi is used and associated with different meteorological variables. These267

measures of prediction skill are described in Table 1.268

Table 1: Contingency table and measures of prediction skills. The observed and forecasted
events are PEx > 95th percentile.

(a) Contingency Table

Forecast
Observed

Marginal Total
Yes No

Yes (a) Hit (b) False Alarm a+b
No (c) Miss (d) Correct Negative c+d
Marginal Total a+c b+d a+b+c+d

(b) Prediction Measures

a∗ = (a+b)(a+c)
(a+b+c+d)

Measures Formula Range [poor – good]

Probability of Detection (POD) a
(a+c) [0,1]

False Alarm Ratio (FAR) b
(a+b) [1,0]

Threat Score (TS) a
(a+b+c) [0,1]

Gilbert Skill Score (GSS) (a−a∗)
(a−a∗+b+c) [− 1

3 ,1]; no skill = 0

Pierce Skill Score (PSS) (ad−bc)
(a+c)(b+d) [-1,1]; no skill = 0

Of the atmospheric variables tested, we find that IVT at lag 2 is the best predic-269

tor of a PEx event, and adding any other variable to IVT does not significantly reduce270

the AIC. Therefore, we use LSMPi for IVT from the training and verification sets to make271

probabilistic predictions of precipitation. We use a copula framework to make a prob-272

abilistic prediction of PEx events. Copulas are mathematical functions that define the273

joint distributions of two or more random variables independent of their marginal dis-274

tributions (AghaKouchak et al., 2010; Hao & AghaKouchak, 2013; Shojaeezadeh et al.,275

2018). We use a copula to define the conditional probability density of precipitation us-276

ing the marginal distributions of an LSMPi and the joint distribution of the LSMPi and277

daily precipitation, as summarized below:278

If F (p) = y and F (l) = x are marginal conditional distribution functions (CDFs)279

of daily precipitation (P ) and an LSMPi (l), then there exists a copula function (C) that280

defines their joint CDF,281

F (p, l) = C(F (p), F (l)) = C(y, x). (4)

The copula probability density function c(*) can be defined as:282
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c(y, x) =
∂2C(y, x)

∂y∂x
. (5)

From (4) and (5), the conditional probability of precipitation (P ) conditioned on the LSMPi283

(l) is defined as284

f(p|l) = c(y, x)f(l), (6)

where f(l) is the PDF of the LSMPi(l).285

3 Results286

3.1 Indentifying minimum number of clusters using k-means clustering287

As mentioned in the methods section, we apply a k-means clustering (kmc) algo-288

rithm to the 2 leading PCs of Za500l2 and compute the variance ratio as described in the289

methods section. The resulting variance ratio R for 1 to 7 clusters is shown as a black290

curve in Fig. 1(a). We also compute the variance ratio for the synthetic data as described291

in the methods section; the 99th percentile of which (Rsig) is shown as the red dashed292

curve. A cluster number is considered significant at the 99% level if R > Rsig (i.e., where293

a black circle is above the red line in Fig. 1a). The figure suggests that a set of 3 clus-294

ters or more is statistically significant at the 99% significance level. To find the minimum295

number of robust clusters, we also perform a series of sensitivity tests to varying event296

detection criteria (e.g., varying precipitation threshold) and multiple spatial domain sizes.297

We find that a minimum of 4 clusters is statistically significant and robust. In addition298

to the significance and sensitivity tests, we also visually examined the cluster mean Za500299

patterns for k=3, 4, and 5 as depicted using map plots in Fig. 1(b). In the figure, the300

patterns for k=3 are as follows. The first pattern is identified by a northwest-to-southeast301

oriented wavetrain with a large positive height anomaly centered over the Aleutian Is-302

lands and adjacent ocean. The second cluster is identified by a large negative anomaly303

centered over Alaska and along the west coast of North America, plus positive anoma-304

lies to the southwest and east. The third cluster has a roughly North-South-oriented pat-305

tern of positive anomaly over Alaska, negative over the eastern North Pacific, and a weak306

positive extending from the subtropical eastern Pacific to Baja California. To identify307

each pattern for different k clusters, we label each with a colored oval: solid yellow, long-308

dashed blue, small dashed orange clusters, respectively. As we go down a row to larger309

k, we must add a new cluster, and that new cluster is often a subset of a cluster iden-310

tified from the row above. When going from k=3 to 4, we can find the solid yellow, long-311

dashed blue, small-dashed orange clusters again. However, the second cluster seems to312

be different, so we give it a new color, dot-dashed pink. As we go to 4 clusters from 3,313

we can see that several clusters, such as the small-dashed orange one, have a more sharply314

defined pattern than their counterparts when k=3, including larger sign counts. There-315

fore, we posit that k=4 is an improvement over what we have for k=3. When we go from316

k=4 to 5, we observe some similar patterns again, with a combination of long-dashed blue,317

dot-dashed pink, solid yellow and small-dashed orange k-clusters. However, we have a318

new pattern (i.e., the second cluster). A close visual inspection reveals that the new clus-319

ter is very similar in characteristics (i.e., Za500 magnitude, sign, and gradients) to the320

dot-dashed pink and long-dashed blue clusters. Thus, we assume that going from clus-321

ter numbers 3 to 4, we gained value since we identified stronger cluster members. But,322

in going from k=4 to 5, the “new member” does not provide a distinctly different me-323

teorological pattern and thus does not add significant value to our understanding. There-324

fore, we make a subjective, but justified decision to stop at 4 clusters. From this anal-325

ysis, we conclude that a minimum of 4 cluster patterns can contain compactly all the326

possible meteorological patterns associated with the NorCal precipitation extremes. Any327

additional cluster (say, k=5) produces a pattern that is not sufficiently different from pre-328

vious clusters and is less informative than for k=4.329
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Figure 1: (a): Significance of Za500l2 clusters for cluster numbers 1 to 7. The X-axis shows
the number of clusters for which the variance ratio (R) on the Y-axis is computed. The
black curve shows variance ratio R computed from Za500l2 . The red curve shows the 99th

percentile (Rsig) of the variance ratio computed from synthetic data generated using the
Monte Carlo procedure. A cluster number is considered significant if R > Rsig. (b):
Clustering of 500hPa geopotential height anomalies, Za500l2 at lag 2. Top row: k=3, Mid-
dle row: k=4, Bottom row: k=5. Shaded contours are plotted where significant at the
95% level. The small square over Northern California on each panel is the NorCal region
where the PEx occurs two days later. The ratio in the lower right corner of each panel
shows the number of events in that cluster divided by the total number of events. Line
contours show consistency via sign counts, where green equals 0.6 (meaning 80% of the
ensemble members have the same sign at that point). Purple is 0.75 (87.5%) and yellow
is 0.9 (95%). The colored ovals indicate the most similar pattern across different rows.
However, three of the panels on the bottom row seem subjectively to mix two patterns on
the middle row. In the top-left panel, the navy-colored rectangle shows the domain used
for the clustering analysis.
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The k-means clustering was applied to 311 events and the result is in Fig. 1(b). The330

k-means clustering is a hard clustering method, in that each member is entirely assigned331

to a cluster. However, events may resemble more than one cluster. In such cases, the mem-332

bership of that event is not unequivocally defined. In an iterative procedure, we iden-333

tified those mixed cases and removed them from the final clustering. This procedure fur-334

ther reduces the events from 311 to 243. The final cluster mean patterns in Za500 us-335

ing 243 events are shown in Fig. 2. The k-means clustering divides the 243 precipita-336

tion events into 4 clusters of roughly equal sizes. Clusters 1-4 have 71, 70, 61, and 41 mem-337

bers, respectively. Moore et al. (2021) applied fuzzy clustering to identify clusters of me-338

teorological variables associated with Northern California PEx events. Fuzzy clustering339

assigns probability values to each member of the cluster. This allows any individual mem-340

ber to belong to more than one cluster. Our procedure ensures that only those members341

that have similar probabilities of being in more than one cluster are removed from the342

final set of clusters.343

The LSMP patterns shown here are similar to patterns shown in Moore et al. (2021).344

Using two EOFs of Za500l2 , they find four patterns, as well. However, their patterns are345

derived from time averages of the first five days of long-duration PEx events. Here, we346

show patterns two days prior to PEx event onset and include many more shorter-duration347

events. Noting these differences, our four clusters have analogs with their four clusters.348

Specifically, our clusters 1-4 are most similar to their clusters C2, C1, C3, and C4, re-349

spectively. Our names for the patterns differ from those used by Moore et al. (2021) be-350

cause: a) we examine the patterns over a larger domain and b) we emphasize the prop-351

erties of the field used to define the clusters.352

Our four identified clusters are as follows. (For comparison, Moore et al. (2021) names353

are in parentheses.)354

1. Northwest continental negative height anomaly (Poleward-shifted zonal jet) Clus-355

ter 1 has a large negative Za500 that extends over Alaska and the west coast of356

North America. Southwest of it, a positive anomaly occupies the midlatitude Pa-357

cific. Also present is a faint but significant positive anomaly over northeast North358

America. However, the latter positive anomaly has a low consistency from the sign359

count.360

2. Eastward positive “PNA” (Equatorward-shifted zonal jet) Cluster 2 has a large361

negative geopotential anomaly centered over the northern Pacific co-occurring with362

a positive Za500 to the south over the central tropical Pacific (between 20◦N and363

20◦S). Also present are significant, weak, low sign count positive central Canadian364

and negative SE USA anomalies. Together the four anomalies look somewhat sim-365

ilar to the Pacific-North American (PNA; Wallace & Gutzler, 1981; Barnston &366

Livezey, 1987; Leathers et al., 1991) loading pattern, except that it has been phase367

shifted eastward. “PNA” in the cluster label is purely descriptive of the pattern368

and not intended to be equal to the actual PNA pattern. The pattern elements369

are a north-south anomaly pair in the Pacific and a wavetrain extending eastwards370

then southwards from that negative, strong, NE Pacific negative anomaly.371

3. Westward negative “PNA” (Midlatitude blocking) Cluster 3 has a Northwest-Southeast372

wavetrain with a very strong positive anomaly centered over the Aleutian region373

with a strong negative anomaly near the Canadian west coast. Also co-occurring374

is a low in the central subtropical Pacific and a weak, low sign count, positive anomaly375

over southeastern North America. These four anomaly centers have some simi-376

larity to the PNA pattern (with a negative sign), though parts of this cluster av-377

erage are shifted westward relative to the actual PNA loading pattern. Again, “PNA”378

in the label is purely descriptive. This pattern is very similar to the California cold379

air outbreak (CAO) pattern (Grotjahn & Zhang, 2017) two days before the CAO,380

but here shifted ∼ 10 degrees west.381
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4. Prominent Alaskan ridge (High-latitude blocking) Cluster 4 has a prominent pos-382

itive anomaly over Alaska and the adjacent Arctic Ocean. To the south-southeast,383

lies a negative anomaly and further south-southeast a weak positive anomaly ex-384

tending across much of the tropical Pacific to subtropical Baja California.385

Figure 2: LSMP clusters of Za500l2 (unit: m) two days prior to the PEx onset in a format
similar to individual panels of Figure 1(b). Events identified as “mixed” have now been
removed from the analysis leaving 243 events tracked. The ratio in the lower right corner
of each panel shows the number of events in that cluster divided by the total number of
events tracked. Line contours show consistency via sign counts, where green means 80%
of the ensemble members have the same sign at that point, purple is 87.5%, and yellow is
95%. The navy-colored large rectangle shows the domain used for the clustering analysis.
The small black rectangle indicates the NorCal region. A dashed line marks the equator.

Three broad conclusions can be drawn to this point. First, several prior works listed386

in the introduction looked at a smaller region, and all find a low pressure centered off387

the California coast. We also find an anomalous low pressure just off the coast in all of388

our PEx events. But, this low differs greatly in shape between the clusters. Second, this389

low is part of a much larger-scale pattern that can be grouped into four clusters. The390

spatial patterns associated with the PEx clusters extend over much of the North Amer-391

ican continent and northern Pacific, even across the equatorial Pacific. Significant pat-392

terns over the tropical Pacific suggesting a tropical connection to rainfall extremes over393

Northern California. Third, each cluster mean in Fig. 2 has patterns that are statisti-394

cally significant (shading) and highly consistent (contours), making the patterns true LSMPs.395

396

3.2 Evolution of Clusters397

How do these LSMPs form and evolve? This subsection describes the concurrent398

evolution of cluster mean meteorological fields during the fortnight before PEx onset.399
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Notably, some clusters can be traced backward in time much longer than other clusters.400

The figure descriptions are included to identify important features from which general-401

izations will be drawn. There are multiple potential uses for these LSMP details, such402

as: dynamical analysis, model assessment, model projections, and predictability. Prob-403

abilistic prediction is explored in section 3.3.404

To sample LSMP properties the following figures are discussed. Fig 3 shows 500405

hPa streamfunction anomalies (Ψa500); this field captures the patterns of atmospheric406

highs and lows and consequent flow, but is preferable to geopotential height for depict-407

ing flow patterns in the tropical and equatorial regions. The upper-level jet evolution408

is shown, with a focus on the zonal component at 200 hPa (Ua200, Fig. 4) supplemented409

by information from the meridional wind anomaly component (V a200) in Fig. S1. We410

show the evolution of vertically-integrated water vapor transport, IVTa in Fig. 5. Local411

minima in mean sea level pressure anomaly (SLPa, Fig. 6) are used to indicate the po-412

sition of cyclones (Wernli & Schwierz, 2006), which guide low-level water vapor fluxes413

towards NorCal. We also show the evolution of lower tropospheric temperature in Fig.414

7. This field is often used for statistical downscaling of precipitation and therefore may415

be a potential predictor of PEx events.416

3.2.1 Evolution of 500hPa streamfunction anomalies (Ψa500)417

The evolution of 500hPa streamfunction anomalies (Ψa500) for the four clusters is418

shown in Fig. 3. Ψa200 and Ψa850 are similar to that for Ψa500, and hence are not shown.419

The cluster 1 pattern starts with a central North Pacific ridge anomaly roughly a420

half dozen days before the event onset. This ridge anomaly extends throughout the at-421

mospheric column (being visible at 200 and 850 hPa levels). Northeast of it, a trough422

builds over Alaska and beyond: from NorCal northwestward to the Bering Strait. This423

low anomaly is very large and mainly over the continent, hence our label of NW conti-424

nental negative anomaly. That huge trough anomaly is strongest the last two days be-425

fore onset. At onset, a weak ridge anomaly forms over southwestern North America. This426

combination of anomalies, trough northwest and ridge southeast of the PEx region, sup-427

ports a strong onshore flow over the PEx region.428

Cluster 2 has a pair of anomalies: a mid-latitude trough centered near 50◦N and429

a subtropical ridge near 20◦N that emerge in the North Pacific almost two weeks before430

PEx onset. Both anomalies grow in size and strength over a fortnight, with the slight431

eastward movement of the ridge-trough pattern. The orientation and location of the ridge-432

trough pattern in cluster 2 both differ from cluster 1, such that the trough anomaly in433

cluster 2 is located further south, over the North Pacific Ocean and partly over south-434

western Canada. This trough anomaly is strongest two days before onset. Also, the trough-435

ridge pattern in cluster 2 is oriented more N-S than in cluster 1.436

In cluster 3, a stationary Aleutian ridge anomaly is observed in the 200, 500, and437

850 hPa Ψa fields more than a week before onset, steadily strengthening until peak anomaly438

amplitude two days before onset. Two Ψa500 troughs develop, one to the south and the439

other to the east of the Aleutian ridge anomaly around a week before the onset. A sec-440

ondary ridge in Ψa500 forms over northern Mexico and Southern CONUS a few days be-441

fore the onset. This secondary anomalous ridge is much stronger and wider than in the442

two prior clusters. The four strong anomaly centers are superficially similar to the PNA443

pattern, but the whole pattern is shifted west by >20 degrees of longitude, thus prompt-444

ing our label of Westward negative “PNA”.445

For cluster 4, a high anomaly Ψa500 starts developing over northern Alaska about446

8 days before PEx onset. This ridge prompts our cluster label: Prominent Alaskan ridge.447

This ridge anomaly expands westward until the onset, but it reaches peak amplitude over448

northern Alaska two days before onset. A low forms over the central North Pacific a few449
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Figure 3: Evolution of 500hPa streamfunction anomalies (unit:106m2/s). Shaded areas
show anomalies significant at the 5% level. Contours show the consistency of the anomaly
pattern. Green, magenta and yellow contours show that at least 80%, 87.5%, and 95% of
the cluster members have the same sign of anomalies, respectively. Solid black contours
(contour interval: 10 × 106m2/s) in the top row show the climatological total streamfunc-
tion. The ratio in the lower-left corner of each top row panel shows the number of events
in that cluster divided by the total number of events. The black rectangle indicates the
NorCal region. A dashed line marks the equator.
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days later, which expands eastward across the North American west coast, forming a band450

of low pressure anomaly extending from the tropical Pacific Ocean across to north-central451

Canada. A secondary ridge anomaly is again centered over northern Mexico 2 days prior452

to the onset and appears to extend southwestward to Papua New Guinea. Together, the453

anomalies form a ridge-trough-ridge pattern along the North American west coast.454

In all four clusters, the most prominent and distinguishing features of each LSMP455

reach peak amplitude, significance, and consistency two days before onset . Furthermore,456

the cluster means differ less at onset than two days before; therefore, the best time for457

defining an LSMPi that separates the clusters is two days before onset.458

3.2.2 Evolution of Upper-level jet (Ua200)459

The evolution of 200hPa zonal wind anomaly field (Ua200) is shown in Fig. 4. The460

meridional component wind anomaly at 200 hPa (V a200) is shown in the supplemental461

material Fig. S1.462

Figure 4: Same as Fig. 3 but for the evolution of 200hPa zonal wind anomalies (unit:
m/s). Solid black contours (contour interval: 10 m/s) in the top rows show the climato-
logical total zonal wind.
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For cluster 1, beginning about 5-7 days prior to onset, there is a prominent dipole463

across much of the North Pacific. This dipole is centered mainly on the downstream end464

of the Asian subtropical jet. The effect of the dipole is to build the north side and re-465

duce the south side of the jet, mid-Pacific. As onset approaches, another negative anomaly466

(over northwest North America) appears. That negative anomaly along with the increas-467

ing amplitude and eastward extension of the positive anomaly results in a narrowing and468

dramatic strengthening of the jet over our NorCal focus region. Onshore zonal winds ex-469

ceed 25 m/s at the focus region with an orientation that is from the southwest. The V a200470

pattern (supplemental material Fig. S1) shows comparable southerlies at and north of471

the NorCal region, giving the jet a SW-NE orientation there. The LSMPs are approx-472

imately equivalent-barotropic. Hence, the anomaly pattern for a wind anomaly compo-473

nent is similar at all levels from 850 through 200hPa.474

In cluster 2 the 200hPa streamfunction of Fig. 3, shows the NorCal region is sand-475

wiched between a deep low to the north and a narrow ridge to the south at the onset.476

Hence, zonally-elongated 200hPa zonal wind anomalies are oriented southwest-northeast477

up to two days before onset. A tripolar pattern by day 2 is similar to that in cluster 1,478

except the meridional spread is larger. A result is the positive anomaly of cluster 2 is479

nearly at the same latitude as a negative anomaly in cluster 1. Also unlike cluster 1, these480

anomalies are apparent 10-11 days prior to onset. These anomalies: move the mid-Pacific481

jet axis southward, then extend the jet eastward (at about 35◦N), narrow the latitude482

spread, and strengthen the jet stream over the eastern North Pacific. At onset, the pos-483

itive zonal wind anomaly is strongly onshore, and the jet has a southwest orientation at484

the NorCal region, locally similar to but stronger than cluster 1.485

In cluster 3 a tripolar zonal wind anomaly appears more than a week before on-486

set. This tripolar pattern looks superficially similar to that in cluster 2 except with the487

opposite sign. A key difference is: the centers are roughly 25 degrees longitude further488

west. Starting about six days before onset, a dipole appears over western North Amer-489

ica, including a positive westerly anomaly over NorCal. The main negative anomaly is490

centered on the climatological subtropical jet, causing it to broaden in latitude. As on-491

set approaches, the two southern positive anomalies join, suggesting a flow from lower492

latitudes than the prior two clusters. The meridional wind component (supplemental ma-493

terial Fig. S1) has strong southerlies centered over Kamchatka and the NorCal region,494

with northerlies in between (Gulf of Alaska). So, the jet stream winds at NorCal are again495

southwesterly.496

In cluster 4, longitudinally broad bands of zonal wind anomalies appear 5 days be-497

fore onset. Westerlies are enhanced in the subtropics and over the Arctic Ocean. A large498

negative anomaly covers much of the middle latitudes, especially two days before onset.499

In the mid-Pacific, the climatological position of the subtropical jet is centered midway500

between the negative anomaly and the southern positive anomaly. The net effect of the501

anomalies is to build the subtropical jet on its equatorward side. Downwind the anomaly502

curls northward creating strong southwesterly flow at the NorCal region. (The merid-503

ional component is again strongly positive at the North American west coast.)504

While the pattern of strong westerly flow (from a southwesterly orientation) at the505

NorCal region is locally very similar in all four clusters, how that local pattern is cre-506

ated differs greatly elsewhere, especially over the North Pacific.507

3.2.3 Evolution of integrated vapor transport anomalies (IVTa)508

Climatological total IVT has two major positive bands: eastward flux oriented WSW509

to ENE across the North Pacific (from 30-40◦N) and a tropical band of westward IVT510

centered at 15◦N in the western Pacific. There is a relative minimum along the Baja coast.511

Each cluster mean has strong onshore flow from the SW at NorCal. So, IVTa for each512
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cluster must be large over the NorCal region to overcome the climatological low IVT.513

Fig. 5 shows IVTa and 850 hPa horizontal wind anomaly vectors.514

In cluster 1, a pair of zonal bands of positive IVTa form in the Pacific consistent515

with a positive streamfunction anomaly centered at 30◦N. During the two days before516

PEx onset, the northern positive anomaly is driven towards the NorCal coast by the in-517

tensifying low pressure along the Canadian coast. This positive anomaly becomes con-518

fined close to the North American west coast and IVTa peaks over the NorCal region519

with a SW to NE orientation at onset. Negative IVTa covers a very large region north-520

west of NorCal, including all of Alaska. This large negative area is consistent with cold521

air advection as presumed from the northeasterly flow (850 hPa wind vectors). In turn,522

the cold advection supports the large negative 500 hPa streamfunction in Fig. 3.523

Figure 5: Same as Fig. 3 but for the evolution of integrated vapor transport (IVT)
anomalies (shading; unit: kg/m-s). Solid black contours (contour interval: 100 kg/m-s
in the top rows show the climatological total IVT. The vectors show the 850 hPa wind
anomalies (unit: m/s). The bottom color bar pertains to the IVT anomalies, and the
vertical color bar to the 850 hPa wind anomalies.

In cluster 2, a roughly zonal band of strongly positive IVTa develops along 35◦N524

more than a week before the onset date, consistent with the cyclonic circulation visible525

in Fig. 3. This band looks similar to cluster 1 but its peak values are further east and526

moving more slowly during the two days before onset. The IVTa further intensifies and527

bends northeastward along the continental coast. Total IVT is shown in supplemental528

material Fig. S2. Similar to cluster 1, the moisture travels >70◦ longitude across the529

North Pacific. As with cluster 1, the local IVTa is again strongest and oriented SW-NE530
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over NorCal. There is negative IVTa northwest of the NorCal region but it is less ex-531

tensive and south of the location in cluster 1. The associated northeasterly flow brings532

cold air off Alaska, supporting the negative streamfunction anomaly there.533

Cluster 3 IVTa develops broad, significant, and consistent areas a week before on-534

set. Somewhat opposite to cluster 2, a positive anomaly develops near the Aleutians. To535

the south and east a large negative anomaly forms, along 35-40◦N arcing poleward into536

Canada. These two anomalies may be anticipated from flow around the equivalent-barotropic537

anomalies of Ψa500 (and SLPa shown next). Unlike opposite-signed anomalies in clus-538

ter 2, these two anomalies stay in place, consistent with other variables, such as Fig. 3.539

Also consistent with prior figures, an intense positive IVTa develops close to the Cali-540

fornia coast (as well as a notable positive area in the tropics) only within two days be-541

fore onset. Hence, while clusters 2 and 3 look like the “PNA” pattern shifted east and542

west respectively, positive IVTa at NorCal is present >5 days before onset in cluster 2,543

but only a day before onset in cluster 3. Also, while all clusters have positive IVTa at544

and adjacent to the CONUS coast, IVTa is negative to the west and southwest of that545

area in this cluster. In contrast with cluster 2, where a large positive IVTa anomaly trav-546

els eastward from beyond the dateline, the moisture source now is much closer to and547

southwest of NorCal, reflecting how this LSMP develops in place.548

The moisture transport anomaly pattern in cluster 4 has similarities intermediate549

to those in clusters 2 and 3. Visible from day T-5 to onset, cluster 4 has a positive anomaly550

like cluster 2 that moves eastward several days before onset except is it now 5◦ further551

south. Cluster 4 is like cluster 3 in having a persistent negative anomaly where clima-552

tological IVT is the largest along the Canadian coast. Also like cluster 3, a large pos-553

itive anomaly off Baja California occurs and extends across the equator. However, the554

enhanced transport crossing the California coast has its origin just north of Hawaii about555

5 days before onset.556

Notably, the local pattern of IVTa at onset is very similar in all clusters over the557

NorCal region: sign count locally largest and have a SW to NE orientation. As with other558

variables, the LSMP properties elsewhere differ markedly, especially 2 days before on-559

set. Where cluster 2 and cluster 1 (a bit further north for the latter) have positive anomaly560

mid-Pacific, cluster 3 (and to some extent cluster 4) have negative anomaly there. Clus-561

ters 3 and 4 appear to have an obvious connection to subtropical latitudes while mois-562

ture transport in cluster 1 is more zonal at a much higher latitude. These differences563

between the patterns are less visible at the onset.564

3.2.4 Evolution of sea level pressure anomalies (SLPa)565

Fig. 6 shows SLPa evolution. The LSMPs are similar to Fig. 3 due to the equivalent-566

barotropic nature of the LSMPs. However, there are notable differences.567

In cluster 1, a positive SLPa develops in the subtropical mid-Pacific around a week568

before the onset. This anomaly slowly expands eastward. A few days before onset, a569

low pressure anomaly over Alaska and western Canada forms in essentially the same lo-570

cation as at 500hPa. The low pressure anomaly moves southeastward to become 20◦ east571

of the 500 hPa location at onset. Southwesterly flow around that trough drives surface572

air onshore over NorCal.573

The cluster 2 SLPa LSMP has a large low anomaly south of Alaska, much like the574

streamfunction anomaly in the mid and upper atmosphere. But unlike the upper air pat-575

terns (e.g. Fig. 3) the prominent high anomaly in the subtropics is missing. The neg-576

ative SLPa low forms on the southeastern quadrant of the climatological atmospheric577

trough in the North Pacific. This low develops 11 days before onset. It subsequently strength-578

ens and moves eastward until the anomaly is centered over the Canadian and NW USA579

west coast at onset, about 5◦ east of the 500hPa position. While cluster 1 has a simi-580
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Figure 6: Same as Fig. 3 but for the evolution of sea level pressure anomaly (unit: hPa).
Solid black contours (contour interval: 10 hPa) in the top rows show the climatological
total sea level pressure.
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lar low at onset, the time of formation is >10 days earlier and movement of the anomaly581

is eastward (instead of southeastward) for cluster 2. As with cluster 1, the anomaly fos-582

ters onshore surface flow over the NorCal region.583

The cluster 3 LSMP is dominated by high SLPa centered just south of the Aleu-584

tians >10 days before onset. This anomaly is stationary, strengthens until day T-2 then585

wanes; it occurs through the depth of the troposphere. By day T-6, a stationary, weak586

low appears west of Hawaii, near the dateline, much weaker than its upper air counter-587

part. Only two days before onset the trough NW of NorCal appears, ∼5◦ SE of the up-588

per troposphere trough. As in clusters 1 and 2, this anomaly would drive onshore sur-589

face winds, but this trough has a much smaller footprint. High SLP from the Great Lakes590

to Hudson Bay appears at onset; it is ∼10◦ east and much weaker than its upper air ana-591

log.592

Cluster 4 has two dominant features. (i) A strong, large SLPa high over Alaska and593

NW Canada develops from day T-7 to day T-2, then diminishes by onset. (ii) A trough594

in the subtropical eastern Pacific strengthens as it moves northeastward from day T-5595

to onset; it moves onshore ∼10◦ SE of the upper level trough at onset. This SLPa trough596

has a different orientation than other clusters in that it has a trailing portion extend-597

ing SW into the subtropics. So, as with other variables, the pattern near the NorCal re-598

gion at onset is similar in all four clusters, but elsewhere the patterns are quite differ-599

ent and especially strong at day T-2.600

3.2.5 Evolution of 850hPa and other temperature anomalies601

The evolution of the 850 hPa air temperature anomalies (Ta850) for each of the four602

clusters is shown in Fig. 7. Climatologically, lower and middle tropospheric temperature603

contours are approximately zonally-oriented with deviations due to relatively warmer air604

off the west coast and colder air at the east coast of the continents. Higher up, at 200605

hPa, the meridional temperature gradient is much weaker with cold anomalies centered606

over the NW US and central northern Asia regions (supplemental material Fig. S3). Ta850607

is our archetype though the anomalies at other levels are plotted in the supplemental ma-608

terials. Notably, the most prominent features in Ta200 generally have opposite sign, but609

similar location to the corresponding features in Ta850. The evolution of skin temper-610

ature (SkT ) differs from Ta850 by minimizing anomalies over the ocean. However, SkT611

has warm and cold anomalies over the tropical Pacific for clusters 2 and 3, respectively;612

but their possible links to ENSO are beyond the scope of this work.613

Cluster 1 LSMP has three parts: 1) a warm anomaly largely confined to North Amer-614

ica east of ∼120◦E, 2) a cold anomaly from Alaska southeastward to just NW of Nor-615

Cal, and 3) a mid-Pacific warm anomaly between 30-40◦N. These three anomalies are616

present only two days before onset and occur throughout the troposphere. At 200 hPa617

(supplemental material Fig. S3) only a warm anomaly along the northern North Amer-618

ica west coast is present; and as expected it has opposite sign to levels below (e.g. 500hPa,619

supplemental material Fig. S4). The primary cold anomaly near Alaska splits; the west-620

ern portion remains over the Bering Sea while the eastern portion migrates along the Cana-621

dian west coast. Both motions can be anticipated from the expansion of the Aleutian622

low (e.g. Figs. 6 and 3) and advection by low level flow (e.g. supplemental material Fig.623

S2. The continental warm anomaly can be similarly explained by southwesterly flow over624

that broad region. The mid-Pacific anomaly is also consistent with low level southeast-625

erly flow. Both warm anomalies create upper level height anomalies shown in Fig. 3.626

Cluster 2 has two anomalies in the troposphere: a warm anomaly arcing from Hawaii627

across the western CONUS into central Canada and a cold anomaly to the west. The628

most consistent part of the cold anomaly travels eastward by 30-50◦ degrees longitude629

in the two days leading up to onset. The western part of the warm anomaly initially has630

two parts at T-5 days: a part over Alaska and a part in the mid to eastern subtropical631
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Figure 7: Same as Fig. 3 but for the evolution of the 850 hPa air temperature anomaly
(unit: K). Solid black contours (contour interval: 5 K) in the top rows show the climato-
logical 850 hPa air temperature.
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Pacific centered at ∼60◦N and ∼20◦N, respectively. The northern warm anomaly moves632

eastward to form the aforementioned arc. Both warm anomalies merging to form an arc633

is largely explainable from advection around the huge primary tropospheric low pressure634

anomaly along with enhanced pressure closer to the equator, visible in Figs. 3 and 6. The635

subtropical warm anomaly from Hawaii eastward sits where westerly IVT, characteris-636

tic of the midlatitudes, is unusually far south (∼25◦N) where other clusters have east-637

erlies (clusters 1 and 3) or weak westerlies (cluster 4). This flow arises from the increased638

pressure gradient created by pressure and height anomalies that are: negative unusually639

far south but positive even further south, near 15-20◦N, visible in previous figures. Skin640

temperatures (supplemental material Fig. S5) are also consistently warm there as well641

as along the equatorial Pacific from the dateline to Peru. Although it does not meet642

our consistency threshold (except a small area of Peru) the warm anomaly across the east-643

ern equatorial Pacific is similar to the sea surface temperature pattern during an El Niño.644

Furthermore, the warm anomaly over the ocean along the west coast of North America645

that is accompanied by a cold anomaly in the central North Pacific resembles the pos-646

itive phase of the Pacific decadal oscillation (PDO) pattern. Having this pattern, even647

though the ocean resists temperature changes, might suggest a preference for this clus-648

ter during positive PDO and El Nino. At 200 hPa a large warm anomaly is centered above649

the cold anomaly at 500 hPa.650

In cluster 3, the 850 hPa temperature anomaly pattern has three parts that largely651

follow from flow around the two SLPa anomalies (Fig. 6). The west side of the huge pres-652

sure ridge drives subtropical air northward warming the northern Pacific and Bering Sea.653

Between that ridge and the low pressure at the NW CONUS cold air is driven south-654

ward from western Canada, across the Gulf of Alaska to southwest of NorCal. Finally,655

just prior to onset, a warm anomaly develops over Mexico. Unlike the prior two clusters,656

all three anomalies are essentially stationary over a week. This tri-polar temperature anomaly657

pattern generates three of the anomalies seen in 500hPa streamfunction shown in Fig.658

3. The temperature anomalies at 500 hPa are similar to the lower elevation pattern ex-659

cept for a cold anomaly SW of Hawaii that matches 500hPa patterns in Figs. 2 and 3.660

The skin temperature (supplemental material Fig. S5) is somewhat similar to 850 hPa661

over the land masses but also has some notable oceanic anomalies: an intense warm anomaly662

south of the Aleutians and an equatorial eastern Pacific cold anomaly. The latter is sug-663

gestive of “La Niña” conditions. At 200 hPa, the anomalies are opposite-signed and largely664

coincident to those at 850 hPa, but with the addition of a warm anomaly above east-665

ern Siberia. A difference from other levels is the Aleutian and Mexican cold anomalies666

are connected at 200hPa. Of the levels discussed, these anomalies are most prominent667

at 500hPa, where they appear a week before onset.668

The key characteristic in cluster 4 in Fig. 7 is the deep, stationary, warm anomaly669

covering Alaska, Bering Sea, and much of the Arctic Ocean. The broad extent invites670

comparison with future climate simulations showing amplified Arctic warming, thereby671

suggesting that this cluster may become more common in the future. This anomaly is672

also quite strong at 500hPa and consistent with low-level flow implied by SLPa. Over673

western Canada, an intense cold anomaly in Ta850 (and SkT ) develops a few days be-674

fore onset. At 500 hPa, this cold anomaly is less prominent (supplemental material Fig.675

S4). Also developing shortly before onset is a highly consistent warm anomaly extend-676

ing from the PEx area southwestward into the subtropical Pacific as far as Hawaii. South677

of 40◦N, this latter warm anomaly has similar extent to cluster 2, except it is slightly678

further south over the ocean. Unlike cluster 2, this more southern warm anomaly only679

develops just before onset. The 200 hPa pattern (supplemental material Fig. S3) has a680

cold anomaly above Alaska and the adjacent ocean nearly a week before onset followed681

by a warm anomaly to the south that intensifies and rotates to the Canadian west coast682

at onset. Those two anomalies are explainable from the 200 hPa streamfunction, which683

has a positive anomaly between them and a negative anomaly to the west of them: the684

resultant flow creates these 200 hPa temperature anomalies from thermal advection. The685
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Ta850, Ta500, and SkT patterns north of ∼45◦N are strongest at T-2 and largely opposite-686

signed from cluster 1, though close to the PEx region at onset their temperature anoma-687

lies match.688

3.3 Probabalistic predictions of precipitation extremes using LSMPi as689

predictors690

This subsection shows some tests using individual LSMPi values, both at and prior691

to onset, to predict heavy precipitation values. As described in section 2.2, we construct692

LSMPs from two periods of data: training LSMPs LY
c,T

l∗ and verification LSMPs LY
c,V

l∗693

and do so for 0-6 days prior to onset. The training period is 1948-1982, while the ver-694

ification period is 1982-2015; both periods use NDJFM months. We find that the LSMP695

clusters in the training and verification data are similar in spatial pattern, significance696

and consistency, an example of which is shown in supplemental material Fig. S6. The697

strong resemblance between the training and verification LSMPs supports the robust-698

ness of the patterns irrespective of the different training and verification periods. Less699

important to the discussion here is that we find more variation in the frequency of each700

cluster type. The numbers in clusters 1 and 2 are similar in both periods, but there are701

fewer members in clusters 3 and 4 in the verification period. We do not explore climate702

change issues in this report.703

As described in section 2.3, we constructed training and verification LSMPis from704

daily anomalies of the atmospheric variables that show large-scale synoptic patterns prior705

to the PEx onset. The tested variables are anomalies of 500hPa geopotential height (Za500),706

500 and 850 hPa air temperatures (Ta500 and Ta850), 850 hPa zonal and meridional winds707

(Ua850 and V a850), sea level pressure (SLPa), skin temperature (Ts), precipitable wa-708

ter (PWa) and IV Ta. Our discussion of relative skill emphasizes metrics designed for709

binary predictions. While statistically valid, such measures are not ideal for this prob-710

lem because near misses are not distinguished from large misses. As noted in Grotjahn711

(2011) there is more forecast value in near misses than large misses.712

Supplemental materials Table S1 shows measures of prediction skills when using713

LSMPis as predictors of extreme precipitation at lag 0 (and lag 2, in parenthesis). It is714

apparent that for all these variables, hits exceed misses by a large margin, indicating that715

the LSMPis can capture occurrences of PEx events very well. Of course, the skill decreases716

as the lag increases. But the LSMPi do so well that even at two days lag; they forecast717

the event occurrence with high accuracy. For all the variables, the probability of detec-718

tion (POD) at lag 0 is 0.74 or more (0.52 at lag 2). The maximum POD is offered by719

IVT at lags 0 (0.89 for training and 0.78 for verification data). Notably, the false alarm720

ratio (FAR = FA/(hits + FA)) is comparable to the POD for each variable. How-721

ever, assessing the forecast skill by comparing POD with FAR may be misleading be-722

cause the predictands (extreme precipitation events) are rare by definition (occurring less723

than 5% of the time). As explained in Ebert and Milne (2022), the evaluation of fore-724

cast skill based upon proportion-correct measures is not appropriate for predicting rare725

events. The TS and GSS scores are much lower than the PSS values for each variable.726

Ebert and Milne (2022) highlight the discrepancy among different skill scores when mak-727

ing forecasts for rare events. They suggest that the Pierce skill score is the only skill score728

that meets all three adequacy constraints for a proper measure of skill in rare events. Also729

notable is that the forecast skills for training and verification data are comparable, and730

there is no drastic fall in forecast skills when LSMPi is constructed by projecting the train-731

ing LSMPs (constructed for the period NDJFM of 1948-1982) onto the daily meteoro-732

logical fields over an independent (verification) period (NDJFM of 1982-2015). IVT is733

superior in each of the metrics, which is perhaps unsurprising given that all the LSMPs734

show an atmospheric river-like pattern over the PEx Region. Similarly, other studies of735

the circulation close to the PEx region have strong IVT around the south side of a trough736

that is unusually far south (e.g., Grotjahn & Faure, 2008; D. Chen et al., 2021).737
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Figure 8: Prediction skill measures for combinations of LSMPi predictors. The x-axis
shows the cumulative number of predictors while the individual lines are for lags 0, 1,
2, 4, and 6. The LSMPi predictors (LSMPis) are combined using the order as shown in
Table 2. Training period: 1948-1982 ; verification period: 1982-2015.–23–
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Table 2: Cumulative ordering of variables (LSMPis) according to their fitness as predic-
tors of the PEx events at different lags in the training dataset. The predictors are added
cumulatively. The ordering shows the best predictor (or predictor combination), based
on AIC, each time a set of predictors is tested. Refer to the text for more details. The
variables shown are anomalies but the subscript ‘a’ has been removed for brevity here.

Cumulative
ordering based
on AIC

lag6 lag4 lag2 lag1 lag0

1 PW PW IVT IVT IVT
2 SLP U850 PW SLP U850
3 IVT V850 U850 PW PW
4 U850 IVT V850 U850 SLP
5 T850 SLP SLP V850 V850
6 V850 T850 T500 Z500 Z500
7 T500 Z500 Z500 Ts T500
8 T500 T500 Ts T500 T850
9 Ts Ts T850 T850 Ts

Table S1 includes the Akaike Information criteria (AIC), which is a measure of the738

fitness of a variable as a predictor of PEx events. When comparing two variables, a vari-739

able with a lower AIC is considered a better predictor. Table 2 indicates that the most740

skillful predictive combination of variables varies with lag. For example, for lag 0, IVT741

is the best single predictor, then the best combination for two predictors is IVT with U850.742

For three and four predictors, add PW then SLP in the training dataset. However, for743

lag 2, prediction is best when IVT is followed by PW (and then U850) when two (and744

then three) predictors are used, respectively, in the training dataset. Hence, IVT+U850+PW745

is the best combination of three variables at lag 0. These optimal combinations of pre-746

dictor variables, shown in Table 2, indicate that the best combination of predictors varies747

with lag time. That is, the set of predictor variables giving the best prediction of PEx748

events varies with the lag. How many predictor variables together can best predict the749

PEx events based on our binary metrics? Fig. 8 shows prediction skill metrics in the train-750

ing and verification time periods for different numbers of predictor variables at lags 0-751

6. The same combinations of predictor variables (Table 2) are used for predicting PEx752

events in the training and verification time periods. The criteria of the fitness of predic-753

tors, AIC, shows that for shorter lead times (0-2 days), AIC is minimum for a combi-754

nation of 3-4 predictor variables, suggesting that the combination of 3-4 of our predic-755

tor variables fits the prediction model best, and adding any more variable either adds756

no further improvement or possibly degrades the prediction. For longer lead time (4-6757

days), AIC varies little with the number of predictors, though some other metrics do best758

with at least 3 or 4 predictors. The forecast skill based upon PSS suggests that the fore-759

cast skill is best for a combination of 3 to 4 variables for lags 1-6. But, there is little im-760

provement in prediction skills when using more than one predictor for lag 0 in the ver-761

ification data. A comparison of the left and right columns in Fig. 8 suggests that the762

fitness of predictor variables degrades a bit when the combination of predictor variables763

based upon training data is used to predict PEx events in the verification set. Similarly,764

the prediction skills are slightly degraded for verification data. However, there is no dras-765

tic fall in prediction skill (PSS) when compared with the training data. Moisture-based766

variables such as IVT or PW are the best predictors at any lag. Also, lower-level atmo-767

spheric variables (e.g., U850) are better predictors than mid-level atmospheric variables768

(e.g., T500). Most notably, IVT is the best predictor until 2 days before the onset but769
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is the third best predictor nearly a week before the onset (lag 6). This analysis suggests770

that LSMPs do offer predictability of PEx events, but one must select the suitable vari-771

able depending on how far in advance one wants to make a prediction.772

Fig. 9(a) shows the probabilistic prediction of precipitation using IVT LSMPi as773

a predictor of PEx in the training dataset. The IVT LSMPi and PEx have a significant774

(at the 5% level) correlation of 0.43 based on Spearman’s rank correlation test. Out of775

the 23 copulas tested, we find that the Joe copula performs the best based on maximum776

likelihood estimates. Therefore, we use the Joe copula to make predictions of the pre-777

cipitation values. In the figure, the vertical color bars show the likelihood of predicted778

values, so the yellows indicate low likelihood, and blues indicate a high likelihood of the779

predicted precipitation values. The figure shows that LSMPi constructed from IVT can780

predict the observed precipitation values (red dots) with high likelihood as most of the781

observed precipitation values are within the highly likely region (likelihood ≥ 0.75). The782

uncertainties in these predictions are shown by the black dots, which show the 95% con-783

fidence interval of the predicted values. Almost all of the observed extreme precipita-784

tion values lie within the 95% confidence interval. Fig. 9(b) shows the predictions of PEx785

events based on the verification data. As might be expected from the previous figure,786

the predictions in the verification data are not quite as good as in the training data, but787

they remain comparable to those in the training data. This analysis shows that the LSMPis788

are skillful predictors of extreme precipitation values when evaluated on independent data.789

4 Discussion and Conclusions790

Previous studies show that there is more than one set of large-scale circulation pat-791

terns that create extreme precipitation (PEx) events over Northern California (NorCal).792

In some of the published works, the large-scale circulation patterns connected to PEx793

events (or any other extreme meteorological events) are loosely described as Large Scale794

Meteorological Patterns (LSMPs). However, a true LSMP, as defined by Grotjahn (2011),795

is more than a simple composite or aggregate, and it must indicate what is important796

in that composite or aggregate. What is important must pass both a significance test797

and a consistency test (like sign counts). To emphasize these statistical tests, we rename798

“LSMP” to be large-scale statistically meaningful patterns, here associated with PEx799

over NorCal. These have been our broad objectives: First, we establish what the min-800

imum number of LSMP clusters are for NorCal PEx events. Second, we identify what801

is consistent and significant in the LSMP clusters of meteorological variables leading to802

PEx events. Third, we present a framework for the probabilistic predictions of PEx events803

using LSMP-based indices (LSMPis) as predictors. Those aspects of the current study804

have never been examined before.805

We identified 311 PEx events, defined as the 24-hr precipitation averaged over the806

NorCal region (P ) greater than the 95th percentile of P over the 1948-2015 period from807

the CPC data. We apply k-means clustering analysis to the first two principal compo-808

nents of 500hPa geopotential height anomalies (Za500l2 ) two days before the 311 PEx on-809

set dates. The patterns are most strongly distinguishable two days before onset and that810

is why we chose that timeframe for the clustering. Our analysis, using both the statis-811

tical and heuristic methods, suggests that a minimum of four clusters can explain Nor-812

Cal PEx events. To analyze clusters whose members are distinct from members in other813

clusters, we removed PEx events identified as “mixed cases”. This procedure reduces the814

number of PEx events to 243. The four clusters are identified as 1) northwestern con-815

tinental negative height anomaly that has a large negative geopotential height anomaly816

extending over Alaska, western Canada, and the the NW CONUS, 2) eastward positive817

“PNA” that has a large negative Za500 centered over the northern Pacific co-existing818

with a positive Za500 to the south of it over the central tropical Pacific (between 20◦N819

and 20◦S) and a wavetrain to the east, 3) westward negative “PNA” pattern having a820

very strong positive Za500 centered over the Aleutian region with low heights to the south821
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Figure 9: Probabilistic prediction of the precipitation amount (mm/day) using a single
LSMP index (LSMPi) as a test. This test uses lag 2 data. Precipitation values are shown
(red dots) for each day that the IVT LSMPi value exceeds its 95% in the training (a) and
verification data (b). The black dots mark the 95% range of predicted precipitation for
that LSMPi value. The Y-axis uses a log-scale. The methods section provides details.
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over the subtropical Pacific and a wavetrain to the east that creates a strong Za500 near822

the Canadian west coast. 4) Prominent Alaskan ridge that has a prominent positive Za500823

over Alaska and the adjacent Arctic Ocean with a trough across the midlatitude Pacific824

arcing into the NW CONUS.825

The investigation of synoptic properties leading to PEx onset suggests that the LSMPs826

evolve differently from each other. The LSMP patterns near NorCal are essentially the827

same at PEx onset, but they have distinctly different patterns further away from the Nor-828

Cal region and leading up to onset. For example, as the names of the clusters suggest,829

the streamfunction (and geopotential) anomalies have distinct spatial signatures in all830

four clusters. Also, in two clusters a prominent part of the LSMP is present at least a831

week before onset while other clusters develop their LSMPs only a couple days before832

onset. Some clusters have nearly stationary anomalies that form the low pressure NW833

of NorCal while other clusters have multiple features that travel large horizontal distances.834

The source of the moisture varies: from west of the dateline in the midlatitude Pacific,835

to ocean >30◦ west of NorCal, to the tropical Pacific near Hawaii, and in between. Though836

IVT anomalies (IVTa) at the onset have the same southwestern to northeastern orien-837

tation near NorCal for all clusters, cluster 2 and cluster 1 have positive IVTa mid-Pacific,838

while clusters 3 and 4 have negative IVTa there. Cluster 4 has a distinct stationary, warm839

lower tropospheric temperature anomaly over Alaska and much of the Arctic Ocean, in840

contrast, cluster 1 has a cold anomaly over the northeastern Pacific and Alaska that de-841

velops by onset. We find evidence that the NorCal PEx events have tropical connections,842

such as significant and consistent Za500 south of 20◦N crossing the equator. Significant843

but not sufficiently consistent skin temperature anomalies hint at possible El Niño and844

La Niña influences on PEx events in clusters 2 and 3, respectively.845

We estimated the predictive skills of LSMPis constructed from the training and ver-846

ification periods. We constructed the LSMPi for a variable in the training and verifica-847

tion data by projecting the training LSMP onto the related daily variable in the train-848

ing and verification data, respectively. Simple binary forecast metrics (e.g., POD, FAR,849

PSS) show that the LSMPis have skill both capturing onset PEx as well as predicting850

PEx several days in advance. The best predictor tested was moisture-based with IVT851

being superior a day or two before onset. Also, lower-level variables we tested have su-852

perior prediction skill compared to middle or upper levels, at least up to 6 days before853

the onset. We tested the concept of using LSMPis to make probabilistic predictions of854

the amount of precipitation and found even one predictor has skill.855

This LSMP-based work provides a useful framework for the process-based evalu-856

ation of climate models by climate scientists and practitioners (e.g., water managers).857

Since LSMPs are synoptic-scale patterns, they can be detected in coarse-resolution cli-858

mate models. The LSMP patterns identified in this work can be used to evaluate climate859

models for applications such as model selection and weighting for future projections by860

stakeholders and scientists.861

Our work prompts further research. For example, as discussed in Reed et al. (2022)862

and shown by Palipane and Grotjahn (2018), LSMPs provide a useful metric for eval-863

uating model skill. Our work suggests tropical teleconnections to the NorCal PEx events864

that could be further explored. We demonstrated that probabilistic prediction is feasi-865

ble with LSMPis and the use of multiple LSMPis should be explored to improve such866

prediction, based on qualitative results in (Grotjahn, 2011). Decadal average precipita-867

tion slowly declines over NorCal during our study period but the number of PEx events868

first declines by half before rebounding over the decades, the fractions of PEx events by869

each cluster varies greatly, too; we hope to report on these trends in a future publica-870

tion. Potential future work could use the LSMP-based framework for model skill eval-871

uations over the NorCal region, investigating changes in LSMPs in response to global872

warming, understanding the tropical impact on the NorCal PEx events, and designing873

storyline-based simulations to understand the effect of climate change on the historical874
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large flood events over California (e.g., Rhoades et al., 2023). LSMPs in other time frames875

could be examined: Moore et al. (2021) find similar aggregates (not LSMPs) for 5-day876

averages that look similar to the LSMPs we show for 24-hour average PEx. LSMP anal-877

yses for PEx in other contexts could be explored such as rain versus snow-producing events.878

Finally, most of these questions could be explored for other regions of Earth.879
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Supplemental Material1158

Table S1: Prediction skills in capturing observed extreme precipitation events (> 95th per-
centile) using LSMP indices (LSMPis) as predictors constructed for daily meteorological
fields at lags 0 and 2 (in parenthesis). POD: probability of detection. FAR: false alarm
ratio. TS: threat score. GSS: Gilbert skill score. PSS: Pierce skill score. AIC: Akaike In-
formation Criteria. Training period: NDJFM of 1948-1982; verification period: NDJFM of
1982-2015. The variables shown are anomalies but the subscript ‘a’ has been removed for
brevity here.

Data hits misses FA CN POD FAR TS GSS PSS AIC

IVT

Training 217 (190) 27 (54) 762 (1387) 4136 (3509) 0.89 (0.78) 0.78 (0.88) 0.22 (0.12) 0.18 (0.07) 0.73 (0.5) 37373 (40789)
Verification 213 (196) 32 (49) 996 (1530) 3750 (3214) 0.87 (0.8) 0.82 (0.89) 0.17 (0.11) 0.13 (0.07) 0.66 (0.48) 36111 (38485)

PW

Training 217 (190) 27 (54) 998 (1419) 3900 (3477) 0.89 (0.78) 0.82 (0.88) 0.17 (0.11) 0.13 (0.07) 0.69 (0.49) 38523 (41323)
Verification 209 (167) 36 (78) 1227 (1524) 3519 (3220) 0.85 (0.68) 0.85 (0.9) 0.14 (0.09) 0.1 (0.05) 0.59 (0.36) 37280 (39505)

U850

Training 215 (188) 29 (56) 1128 (1510) 3770 (3386) 0.88 (0.77) 0.84 (0.89) 0.16 (0.11) 0.12 (0.06) 0.65 (0.46) 39329 (41166)
Verification 205 (189) 40 (56) 1241 (1462) 3505 (3282) 0.84 (0.77) 0.86 (0.89) 0.14 (0.11) 0.09 (0.07) 0.58 (0.46) 37505 (38621)

SLP

Training 209 (173) 35 (71) 1122 (1595) 3776 (3301) 0.86 (0.71) 0.84 (0.9) 0.15 (0.09) 0.11 (0.05) 0.63 (0.38) 39654 (42108)
Verificatio 204 (175) 41 (70) 1227 (1443) 3519 (3301) 0.83 (0.71) 0.86 (0.89) 0.14 (0.1) 0.1 (0.06) 0.57 (0.41) 37350 (39438)

Z500

Training 212 (175) 32 (69) 1261 (1649) 3637 (3247) 0.87 (0.72) 0.86 (0.9) 0.14 (0.09) 0.1 (0.05) 0.61 (0.38) 39895 (42154)
Verification 205 (181) 40 (64) 1276 (1556) 3470 (3188) 0.84 (0.74) 0.86 (0.9) 0.13 (0.1) 0.09 (0.06) 0.57 (0.41) 37623 (39415)

V850

Training 205 (186) 39 (58) 1121 (1529) 3777 (3367) 0.84 (0.76) 0.85 (0.89) 0.15 (0.1) 0.11 (0.06) 0.61 (0.45) 39949 (41751)
Verification 200 (170) 45 (75) 1368 (1569) 3378 (3175) 0.82 (0.69) 0.87 (0.9) 0.12 (0.09) 0.08 (0.05) 0.53 (0.36) 38219 (39377)

T500

Training 188 (154) 56 (90) 1431 (1732) 3467 (3164) 0.77 (0.63) 0.88 (0.92) 0.11 (0.08) 0.07 (0.03) 0.48 (0.28) 41175 (42732)
Verification 181 (155) 64 (90) 1793 (1939) 2953 (2805) 0.74 (0.63) 0.91 (0.93) 0.09 (0.07) 0.04 (0.03) 0.36 (0.22) 39368 (40430)

Ts

Training 186 (144) 58 (100) 1679 (1891) 3219 (3005) 0.76 (0.59) 0.9 (0.93) 0.1 (0.07) 0.05 (0.02) 0.42 (0.2) 41376 (43054)
Verification 194 (127) 51 (118) 1829 (1817) 2917 (2927) 0.79 (0.52) 0.9 (0.93) 0.09 (0.06) 0.05 (0.02) 0.41 (0.14) 39196 (40733)

T850

Training 186 (149) 58 (95) 1555 (1758) 3343 (3138) 0.76 (0.61) 0.89 (0.92) 0.1 (0.07) 0.06 (0.03) 0.44 (0.25) 41419 (42871)
Verification 196 (142) 49 (103) 1794 (2025) 2952 (2719) 0.8 (0.58) 0.9 (0.93) 0.1 (0.06) 0.05 (0.02) 0.42 (0.15) 39192 (40633)

–34–



manuscript submitted to JGR: Atmospheres

Figure S1: Evolution of 200hPa meridional wind anomalies (unit: m/s). Shaded areas
show anomalies significant at the 5% level. Contours show the consistency of the anomaly
pattern. Green, magenta, and yellow contours show that at least 80%, 87.5%, and 95% of
the cluster members have the same sign of anomalies, respectively. Solid black contours
(contour interval: 5 m/s) in the top rows show the climatological meridional wind. The
ratio in the lower-left corner in the top rows shows the number of events in that cluster
divided by the total number of events. The black rectangle indicates the NorCal region.
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Figure S2: Same as Fig. S1 but for the evolution of total integrated vapor transport
(shading; unit: kg/m-s). The vectors show the 850 hPa wind (unit: m/s). The bottom
color bar pertains to the IVT, and the vertical color bar to the 850 hPa wind.
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Figure S3: Same as Fig. S1 but for the evolution of the 200 hPa air temperature
anomaly (unit: K). Solid black contours (contour interval: 5 K) in the top rows show
the climatological 200 hPa air temperature anomaly.
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Figure S4: Same as Fig. S1 but for the evolution of the 500hPa air temperature anomaly
(unit: K). Solid black contours (contour interval: 5K) in the top rows show the climato-
logical 500 hPa air temperature anomaly.
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Figure S5: Same as Fig. S1 but for the evolution of the skin temperature anomalies
(unit: K). Solid black contours (contour interval: 10 K) in the top rows show the climato-
logical skin temperature anomalies.
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Figure S6: LSMP clusters for lag 0 500mb geopotential height anomalies during months
November-March. The left panel shows the LSMP for the training period (1948-1982) and
the right panel shows the LSMP for the verification period (1982-2015). Unit:m.
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Large-scale Statistically Meaningful Patterns (LSMPs)1

associated with precipitation extremes over Northern2

California3

Abhishekh Kumar Srivastava1∗, Richard Grotjahn1, Alan M. Rhoades2, Paul4
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5
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Key Points:9

• A significance test finds the minimum number of robust weather pattern clusters10

for extreme precipitation over Northern California is four.11

• How significant and consistent parts of the weather patterns (essential parts of LSMPs)12

evolve are shown for multiple atmospheric variables.13

• Binary forecast skill tests of LSMPs identify variables to use in a new copula-based14

framework for probabilistic prediction of PEx events.15
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Abstract16

We analyze the large-scale statistically meaningful patterns (LSMPs), also called large-17

scale meteorological patterns, that precede extreme precipitation (PEx) events over North-18

ern California (NorCal). We find LSMPs by applying k-means clustering to the two lead-19

ing principal components of daily 500hPa geopotential height anomalies persisting two20

days before the onset. A statistical significance test based on the Monte Carlo simula-21

tions suggests the existence of a minimum of four statistically distinguished LSMP clus-22

ters. The four LSMP clusters are characterized as the NW continental negative height23

anomaly, the Eastward positive “PNA”, the Westward negative “PNA”, and the Promi-24

nent Alaskan ridge. These four clusters, shown in multiple atmospheric and oceanic vari-25

ables, evolve very differently and have distant links to the Arctic and tropical Pacific re-26

gions. Using binary forecast skill measures and a new copula-based framework for pre-27

dicting PEx events, we show that the LSMP indices are useful predictors of NorCal PEx28

events, with the moisture-based variables being the best predictors of PEx events at least29

six days before the onset, and the lower atmospheric variables being better than their30

upper atmospheric counterparts any day in advance.31

Plain Language Summary32

Like many other weather extremes, extreme precipitation events can be organized33

and triggered by large-scale circulation patterns (horizontal span > 1000 km). Often,34

these circulation patterns evolve in more than one way. In this work, we determine that35

there are a minimum of four distinct clusters of large-scale circulation patterns that evolve36

to cause extreme precipitation over Northern California. Although the four clusters have37

a common low-pressure system persisting near Northern California, they are distinguished38

from each other in the orientation and spatial extent of low and high-pressure systems39

over a much larger region. Clusters have different links to properties in distant regions40

such as: the tropical Pacific Ocean and Alaska as well as regions in between. We con-41

structed indices from statistically significant and commonly-occurring parts of these clus-42

ters. Such indices are useful predictors of extreme precipitation events, atmospheric moisture-43

based variables being the best predictors.44

1 Introduction45

Extreme precipitation (PEx) over California is marked by a large interannual vari-46

ability (Dettinger et al., 2011). For example, record rainfall during the winter of 2016-47

17 was followed by record dry conditions in the fall and winter of 2017-18 (Gershunov48

et al., 2017). Such a large variability in rainfall is a concern from both drought (Swain49

et al., 2014; Shukla et al., 2015) and flood perspectives (e.g., Feb 2017 Oroville Dam dis-50

aster; White et al., 2019). Projections of future precipitation suggest an increase in high-51

intensity precipitation extremes and a further enhancement in interannual variability (Swain52

et al., 2018; Polade et al., 2017; Rhoades et al., 2020). Since changes in PEx over Cal-53

ifornia have severe impacts on activities such as water management, dam protection, agri-54

culture, it is important to understand both the large and small-scale patterns associated55

with PEx over California. While small-scale local features (e.g., local orography, mois-56

ture ascent) pose problems for climate models due to limitations such as inadequate hor-57

izontal and vertical resolutions, imperfect parameterizations, cloud microphysics, large-58

scale circulation mechanisms are largely reproduced in climate model simulations (e.g.,59

Boroneant et al., 2006; Gutowski et al., 2003; DeAngelis et al., 2013; Agel & Barlow, 2020).60

This study explores the large-scale circulation patterns associated with PEx events over61

Northern California (NorCal).62

Large-scale meteorological patterns, also called Large-scale Statistically Meaning-63

ful Patterns (LSMPs), associated with extreme events are the synoptic-to-large-scale at-64

mospheric and surface conditions that precede the events (e.g., PEx or temperature events,65
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or cold-air outbreaks). LSMPs are different from teleconnections (e.g., the El Niño South-66

ern Oscillation) in several ways. First, LSMPs can be high-frequency patterns based on67

instantaneous data (as in this report). Second, LSMPs are the specific meteorological68

patterns that occur in connection with an extreme event type, whereas teleconnections69

are recurring, slowly-evolving, persistent, large-scale patterns (also known as low-frequency70

modes of variability) that can be defined without any reference to extremes (Barlow et71

al., 2019). While local factors such as lifting, static stability, and moisture availability72

control the intensity and duration of PEx (e.g., Neiman et al., 2002; Moore et al., 2020),73

LSMPs that determine or control these factors vary with season, region, and definition74

of an extreme event.75

As outlined in Grotjahn et al. (2016), multiple methods can identify large-scale cir-76

culation features associated with an extreme event. A common method is the construc-77

tion of composited maps of meteorological variables conditioned on the occurrence of an78

extreme event type (Grotjahn & Faure, 2008; DeAngelis et al., 2013; Gao et al., 2014;79

Collow et al., 2016, 2020). Compositing-based studies show that the precipitation days80

over NorCal are locally associated with a low-pressure system and associated extratrop-81

ical cyclones in the Northern Pacific off the west coast of the United States (e.g., Grot-82

jahn & Faure, 2008; Neiman et al., 2008; Gao et al., 2014). These weather systems act83

to channel winds and moisture into narrow structures called atmospheric rivers (Ralph84

et al., 2006) that are directed towards the coast to produce precipitation over land (Smith85

et al., 2010). Another strong feature of these large-scale patterns is the zonally elongated86

jet over the North Pacific further extended towards the west coast of the United States87

(Payne & Magnusdottir, 2014).88

However, when looking at large scales, locally persistent low-pressure systems are89

found to be embedded in different circulation patterns, suggesting that there could be90

more than one large-scale pattern that can be associated with PEx events over NorCal.91

Popular methods that can identify these different circulation features are: empirical or-92

thogonal function (EOF) analysis (Guirguis et al., 2018, 2020), self-organizing maps (SOMs;93

Loikith et al., 2017; Guirguis et al., 2019), and clustering analysis (Agel et al., 2018; Zhao94

et al., 2019; Moore et al., 2021). Loikith et al. (2017) demonstrated that the majority95

of the PEx days over the western United States occur with their SOM node 1, identi-96

fied by a surface low pressure centered to the northwest of the northwestern continen-97

tal United States, a 500mb geopotential height (Z500) trough axis offshore, and the main98

axis of the 250mb jet zonally oriented over central California. Guirguis et al. (2020), us-99

ing SOM analysis, demonstrated that wet and dry conditions over California result from100

interactions between four North Pacific circulation regimes (their NP4 regimes) on daily101

timescales. D. Chen et al. (2021) found that the third principal component of the Z500102

field has a strong positive correlation with the Z500 anomalies existing off the northwest-103

ern United States coast during PEx events that occur in California. Guirguis et al. (2019)104

applied SOMs to Z500 anomalies to find nine nodes associated with peak atmospheric105

river (AR) days at 40°N impacting NorCal. They showed that these nodes occur dur-106

ing different phases of large-scale teleconnection patterns such as El Niño-Southern os-107

cillation (ENSO), Pacific decadal oscillation (PDO), and Pacific North American (PNA)108

pattern. Moore et al. (2021) found four categories of large-scale atmospheric patterns109

for long-duration (> 7 days) heavy precipitation events over the West Coast of the United110

States. Out of these four categories, two are identified by a strong zonal jet stream over111

the eastern North Pacific, and the two other patterns are identified by atmospheric block-112

ing over the central North Pacific and the Bering Sea–Alaska region, respectively.113

These studies provide useful information about how PEx forms over NorCal. Nonethe-114

less, there are five aspects of research methodology to consider. First, there is a mis-115

conception about what constitutes an LSMP. As elaborated in Grotjahn (2011), an LSMP116

of a relevant variable, often meteorological (e.g., 500 mb geopotential height anomaly117

field) is more than some aggregate field; it also must indicate what is important in the118
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field. Therefore, an LSMP includes two additional integral features: significance and con-119

sistency. The significance establishes if an anomalous pattern (e.g., sea surface temper-120

ature anomaly) statistically differs from what occurs by chance. Consistency, as the name121

suggests, refers to how often an anomaly of the same sign occurs at a grid point or lo-122

cation. Previous studies showing aggregate patterns often overlook the consistency as-123

sessment. We argue that significance and consistency are integral parts of an LSMP for124

two reasons: a) high significance does not guarantee high consistency (e.g. Grotjahn and125

Faure (2008) and b) any future changes in either significance or consistency may sug-126

gest dynamical changes impacting the occurrences of extremes. Second, a majority of127

previous studies have considered a small spatial domain around NorCal. However, as the128

name suggests, LSMPs are large-scale patterns (and may show far teleconnections, too)129

that may not be fully captured by such small domains. Third, what is the minimum num-130

ber of LSMP clusters necessary to best describe northern California’s PEx events? This131

question has direct relevance for climate model evaluation, as any model expected to rea-132

sonably simulate PEx should be able to reproduce the spatial pattern and frequency of133

each observed clustered pattern. Fourth, most studies use concurrent meteorological con-134

ditions (same day) for identifying and clustering large-scale patterns associated with PEx135

events (e.g., Barlow et al., 2019). Analogous to NorCal heat waves, which have a sim-136

ilar pattern at their onset that is arrived upon from two different synoptic evolutions (Lee137

& Grotjahn, 2016), NorCal PEx events might also be arrived at by more than one syn-138

optic evolution. Indeed, Figure 6 in (Grotjahn & Faure, 2008) implies more than one pat-139

tern as individual events have a highly significant Alaskan ridge while other events have140

a deep trough over Alaska. From causal and predictability perspectives, the relevant LSMPs141

should be identified from the meteorological conditions persisting before the event. Fifth,142

although a limited number of studies have shown the predictability of PEx events us-143

ing LSMPs as predictors (e.g., Gao & Mathur, 2021), a comprehensive approach for prob-144

abilistic predictions of precipitation using LSMPs as predictors is missing.145

In this work, we examine the LSMPs associated with PEx over NorCal to address146

the limitations mentioned above. A PEx event is defined here as the 24-hour precipita-147

tion total of more than the 95th percentile of the daily precipitation averaged over a re-148

gion of NorCal. We also present a copula-based framework for making probabilistic pre-149

dictions of precipitation. Broadly, our main objectives are:150

1. identify clusters of LSMPs that persist before the onset of the PEx over NorCal;151

2. statistically estimate the minimum number of distinguishable LSMP clusters lead-152

ing to PEx events over NorCal;153

3. examine the evolution of a comprehensive list of meteorological LSMPs leading154

to the PEx event onset;155

4. use a copula-based framework to make a probabilistic prediction of PEx events156

over NorCal using LSMP indices as predictors.157

The LSMP clusters are identified by applying the k-means clustering algorithm to158

the two leading principal components of the 500hPa daily geopotential height anoma-159

lies (Z500) two days before the onset (lag 2). Along with the Z500, we show the evolu-160

tion of LSMPs associated with the other related quantities such as 850hPa and 200hPa161

velocity fields, streamfunctions at 200 and 850mb, surface temperature, integrated va-162

por transport (IVT), and surface pressure.163

This paper strongly complements the paper by Moore et al. (2021), which focused164

on synoptic dynamics during 7-day-long PEx events impacting NorCal. Here, we focus165

on predictability, remote connections, and the creation of 1-day or longer PEx events im-166

pacting the same region. While they include all events, we include only the largest pre-167

cipitation day in a multi precipitation day event and exclude “mixed” events which can-168

not be clearly assigned to a single cluster. We do this to have more distinct clusters and169

are enabled to do so because we have larger sample sizes. Our patterns are sharper be-170
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cause we are combining “instantaneous” fields, not time averaging, during which mul-171

tiple weather systems move across the domain. We also employ a rigorous test to see the172

minimum number of clusters needed for them to be significantly different. We search for173

LSMPs over a larger region and, in so doing, find distant connections not found within174

their original focus region. While they present the significant parts of patterns, we ap-175

ply a true LSMP analysis and also measure consistency since it is critical for assessing176

predictability. Following this introduction, the data and methods are discussed in sec-177

tion 2, results in section 3, and an overall summary is in section 4.178

2 Data and Method179

In this study, we use daily 0.25◦ × 0.25◦ precipitation data over 1948-2015 from180

the National Oceanic and Atmospheric Administration Climate Prediction Center (CPC)181

Unified CONUS dataset (CPC; Xie et al., 2007; M. Chen et al., 2008) to identify PEx182

events over the NorCal region. The gridded CPC data are constructed from the quality-183

controlled station data using the optimal interpolation (OI) algorithm, which exhibits184

relatively small degradation in performance statistics over regions covered by fewer gauges.185

To identify extreme precipitation events, we first calculate the 24-hour spatially aver-186

aged precipitation P̄ by taking the mean of 24-hour non-zero precipitation values (i.e.,187

P > 0 mm/day) at each grid point across the NorCal region defined as 124.5◦W to 119.25◦W188

and 38.69◦N to 43.17◦N. A PEx event is identified if a 24-hour P̄ magnitude exceeds the189

95th percentile of P̄ values over 1948-2015. This criterion identifies a total of 489 daily190

precipitation events. However, some of these events are on consecutive days. Since such191

events on consecutive days are not exclusively independent, we pick the largest precip-192

itation day in a 3-day period. This procedure reduces the total number of exclusive events193

to 311.194

For the LSMP analysis, we use the NOAA–CIRES–DOE Twentieth Century Re-195

analysis version 3 (20CRv3; Slivinski et al., 2019). The 20CRv3 uses an Earth system196

model to assimilate surface pressure observations with prescribed lower boundary con-197

ditions from observed sea surface temperature and sea-ice concentrations and bounded198

by prescribed radiative forcing to generate a four-dimensional global reanalysis product.199

Compared to its predecessor, 20CRv2c, the 20CRv3 uses upgraded assimilation meth-200

ods, including an adaptive inflation algorithm, a higher resolution forecast model and201

a larger set of pressure observations. These improvements remove spin-up effects in the202

precipitation fields, reduce sea-level pressure bias, and improve the representation of storm203

intensity in the reanalysis product (Slivinski et al., 2019).204

In this study, we analyze the following variables from 20CRv3: surface pressure (Ps),205

surface temperature (Ts), integrated vapor transport (IV T ), horizontal and vertical ve-206

locity fields (U, V, ω ), atmospheric temperature (T ), geopotential height (Z) and stream-207

function (ψ) at 200, 500 and 850hPa levels. We compute the daily anomalies of these208

variables by simultaneously regressing out the annual cycle and linear trend from the daily209

data over the period 1948-2015. Though not shown here, this approach of removing the210

annual cycle and trend from the data ensures that no residual trend or annual cycle re-211

mains present in the final anomaly product.212

2.1 Clustering Procedure213

For the clustering analysis, we apply a k-means clustering algorithm to the two lead-214

ing principal components (PCs) of the 500hPa geopotential height anomalies two days215

before (lag 2) (Za500l2 ) the event onset. The cluster domain is 180◦W to 100◦W and 25◦N216

to 75◦N. The two leading PCs explain around 54% of the variance. We estimate the sig-217

nificance of clusters using a Monte Carlo procedure following Straus (2018), described218

as follows. For each chosen number of clusters (k = 1, 2, 3 . . . etc.), we compute the vari-219

ance ratio (R = ∆/S) for the first two PCs of Za500l2 , where, ∆ is the spread among the220
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cluster centroids (also called between-sum-of-squares) and S is the spread within clus-221

ters (also called total-within-sum-of-squares). In cluster analysis, we seek to minimize222

the spread within clusters, S. A maximum of the variance ratio R corresponds to a min-223

imum of S. We repeat the above-mentioned procedure 100 times with synthetic datasets.224

The synthetic datasets are generated from the multivariate Gaussian distribution com-225

puted using the same mean and covariance as in the data (here, the two leading PCs).226

For each iteration, we compute Rsample = ∆/S. Finally, the 99th percentile of the 100227

Rsample values, (Rsig) is computed. If R > Rsig for a particular k, the clusters are de-228

clared significant and different from those occurring by chance. This procedure is repeated229

for k = 1 : 7. A similar procedure is also applied in Amini and Straus (2019). This230

process leads us to identify 4 significant clusters of Za500l2 . For simplicity, we call the clus-231

ters LZl2 to indicate that the clusters are formed from Za500 fields at lag 2. For each232

cluster, the cluster centroid (LZ
c

l2) is computed by taking the mean of all cluster mem-233

bers 1 . . . nc:234

LZ
c

l2 =

nc∑
n=1

Za500l2,n

nc
, (1)

where,
∑

denotes summation over all cluster members, n = 1 . . . nc, in a cluster c.235

2.2 Construction of LSMP indices236

We construct a daily LSMP index (LSMPi) for each meteorological variable mainly237

to make probabilistic predictions of precipitation. First, we choose a spatial domain that238

captures the highly significant and consistent regions for the LSMPs. A large domain239

was used to ensure that we capture the full spatiotemporal extent of the LSMPs. For240

the LSMPi, unimportant regions are excluded and the domain is smaller: 180◦ to 100◦W241

and 25◦N to 75◦N. Then we divide the years under consideration into training (NDJFM242

of 1948-1982) and verification years (NDJFM of 1982-2015). Corresponding to the train-243

ing and verification periods, we divide all meteorological fields (Y ) into training (Y T )244

and verification (Y V ) sets. Then, we construct “training” LSMPs for a variable Y T , LY
c,T

l∗245

for each cluster c as in Eqn. 1, where ∗ denotes lags 0-6. The LSMPi for a meteorolog-246

ical variable (Y T ) in the training period T is constructed by projecting LY
c,T

l∗ onto the247

corresponding daily (Y T ) timeseries,248

LSMPic,TY =
(WLY

c,T

l∗ )(WY T )

[WLY
c,T

l∗ ]2
, (2)

where W is the weight assigned to each grid point based on both the normalized sign249

count and areal weighting accounting for the convergence of meridians: LSMPic,TY is the250

daily product having dimensions of lon × lat for each cluster. The final daily LSMPi251

(LSMPiTY ) is chosen by taking the maximum of the 4 LSMPic,TY .252

Similarly, the LSMPi for a meteorological variable (Y V ) in the verification period253

V is constructed by projecting LY
c,T

l∗ onto the corresponding daily Y V time series,254

LSMPic,VY =
(WLY

c,T

l∗ )(WY V )

[WLY
c,T

l∗ ]2
, (3)

The final daily LSMPi (LSMPiVY ) is constructed by taking the maximum of the255

four LSMPic,VY . We use the same training LSMP LY
c,T

l∗ to compute LSMPi for train-256

ing and verification datasets. The daily LSMPi measures how similar a given day is to257

a specific cluster mean LSMP.258
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2.3 Probabilistic prediction of precipitation events using LSMP indices259

We now show that the daily LSMPi of meteorological variables are skillful predic-260

tors of PEx events. The LSMPi for each variable is constructed as described in section261

2.2. To find useful predictors, we use quantile regression to predict the 95th percentile262

of P using LSMPi as predictors. The fitness of each LSMPi predictor is estimated us-263

ing a model selection criterion called the Akaike information criterion (AIC; Akaike, 1974).264

We also use a combination of two or more predictor variables to estimate if it produces265

a lower AIC than the individual AIC values. A suite of measures for assessing the pre-266

diction skill of LSMPi is used and associated with different meteorological variables. These267

measures of prediction skill are described in Table 1.268

Table 1: Contingency table and measures of prediction skills. The observed and forecasted
events are PEx > 95th percentile.

(a) Contingency Table

Forecast
Observed

Marginal Total
Yes No

Yes (a) Hit (b) False Alarm a+b
No (c) Miss (d) Correct Negative c+d
Marginal Total a+c b+d a+b+c+d

(b) Prediction Measures

a∗ = (a+b)(a+c)
(a+b+c+d)

Measures Formula Range [poor – good]

Probability of Detection (POD) a
(a+c) [0,1]

False Alarm Ratio (FAR) b
(a+b) [1,0]

Threat Score (TS) a
(a+b+c) [0,1]

Gilbert Skill Score (GSS) (a−a∗)
(a−a∗+b+c) [− 1

3 ,1]; no skill = 0

Pierce Skill Score (PSS) (ad−bc)
(a+c)(b+d) [-1,1]; no skill = 0

Of the atmospheric variables tested, we find that IVT at lag 2 is the best predic-269

tor of a PEx event, and adding any other variable to IVT does not significantly reduce270

the AIC. Therefore, we use LSMPi for IVT from the training and verification sets to make271

probabilistic predictions of precipitation. We use a copula framework to make a prob-272

abilistic prediction of PEx events. Copulas are mathematical functions that define the273

joint distributions of two or more random variables independent of their marginal dis-274

tributions (AghaKouchak et al., 2010; Hao & AghaKouchak, 2013; Shojaeezadeh et al.,275

2018). We use a copula to define the conditional probability density of precipitation us-276

ing the marginal distributions of an LSMPi and the joint distribution of the LSMPi and277

daily precipitation, as summarized below:278

If F (p) = y and F (l) = x are marginal conditional distribution functions (CDFs)279

of daily precipitation (P ) and an LSMPi (l), then there exists a copula function (C) that280

defines their joint CDF,281

F (p, l) = C(F (p), F (l)) = C(y, x). (4)

The copula probability density function c(*) can be defined as:282
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c(y, x) =
∂2C(y, x)

∂y∂x
. (5)

From (4) and (5), the conditional probability of precipitation (P ) conditioned on the LSMPi283

(l) is defined as284

f(p|l) = c(y, x)f(l), (6)

where f(l) is the PDF of the LSMPi(l).285

3 Results286

3.1 Indentifying minimum number of clusters using k-means clustering287

As mentioned in the methods section, we apply a k-means clustering (kmc) algo-288

rithm to the 2 leading PCs of Za500l2 and compute the variance ratio as described in the289

methods section. The resulting variance ratio R for 1 to 7 clusters is shown as a black290

curve in Fig. 1(a). We also compute the variance ratio for the synthetic data as described291

in the methods section; the 99th percentile of which (Rsig) is shown as the red dashed292

curve. A cluster number is considered significant at the 99% level if R > Rsig (i.e., where293

a black circle is above the red line in Fig. 1a). The figure suggests that a set of 3 clus-294

ters or more is statistically significant at the 99% significance level. To find the minimum295

number of robust clusters, we also perform a series of sensitivity tests to varying event296

detection criteria (e.g., varying precipitation threshold) and multiple spatial domain sizes.297

We find that a minimum of 4 clusters is statistically significant and robust. In addition298

to the significance and sensitivity tests, we also visually examined the cluster mean Za500299

patterns for k=3, 4, and 5 as depicted using map plots in Fig. 1(b). In the figure, the300

patterns for k=3 are as follows. The first pattern is identified by a northwest-to-southeast301

oriented wavetrain with a large positive height anomaly centered over the Aleutian Is-302

lands and adjacent ocean. The second cluster is identified by a large negative anomaly303

centered over Alaska and along the west coast of North America, plus positive anoma-304

lies to the southwest and east. The third cluster has a roughly North-South-oriented pat-305

tern of positive anomaly over Alaska, negative over the eastern North Pacific, and a weak306

positive extending from the subtropical eastern Pacific to Baja California. To identify307

each pattern for different k clusters, we label each with a colored oval: solid yellow, long-308

dashed blue, small dashed orange clusters, respectively. As we go down a row to larger309

k, we must add a new cluster, and that new cluster is often a subset of a cluster iden-310

tified from the row above. When going from k=3 to 4, we can find the solid yellow, long-311

dashed blue, small-dashed orange clusters again. However, the second cluster seems to312

be different, so we give it a new color, dot-dashed pink. As we go to 4 clusters from 3,313

we can see that several clusters, such as the small-dashed orange one, have a more sharply314

defined pattern than their counterparts when k=3, including larger sign counts. There-315

fore, we posit that k=4 is an improvement over what we have for k=3. When we go from316

k=4 to 5, we observe some similar patterns again, with a combination of long-dashed blue,317

dot-dashed pink, solid yellow and small-dashed orange k-clusters. However, we have a318

new pattern (i.e., the second cluster). A close visual inspection reveals that the new clus-319

ter is very similar in characteristics (i.e., Za500 magnitude, sign, and gradients) to the320

dot-dashed pink and long-dashed blue clusters. Thus, we assume that going from clus-321

ter numbers 3 to 4, we gained value since we identified stronger cluster members. But,322

in going from k=4 to 5, the “new member” does not provide a distinctly different me-323

teorological pattern and thus does not add significant value to our understanding. There-324

fore, we make a subjective, but justified decision to stop at 4 clusters. From this anal-325

ysis, we conclude that a minimum of 4 cluster patterns can contain compactly all the326

possible meteorological patterns associated with the NorCal precipitation extremes. Any327

additional cluster (say, k=5) produces a pattern that is not sufficiently different from pre-328

vious clusters and is less informative than for k=4.329
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Figure 1: (a): Significance of Za500l2 clusters for cluster numbers 1 to 7. The X-axis shows
the number of clusters for which the variance ratio (R) on the Y-axis is computed. The
black curve shows variance ratio R computed from Za500l2 . The red curve shows the 99th

percentile (Rsig) of the variance ratio computed from synthetic data generated using the
Monte Carlo procedure. A cluster number is considered significant if R > Rsig. (b):
Clustering of 500hPa geopotential height anomalies, Za500l2 at lag 2. Top row: k=3, Mid-
dle row: k=4, Bottom row: k=5. Shaded contours are plotted where significant at the
95% level. The small square over Northern California on each panel is the NorCal region
where the PEx occurs two days later. The ratio in the lower right corner of each panel
shows the number of events in that cluster divided by the total number of events. Line
contours show consistency via sign counts, where green equals 0.6 (meaning 80% of the
ensemble members have the same sign at that point). Purple is 0.75 (87.5%) and yellow
is 0.9 (95%). The colored ovals indicate the most similar pattern across different rows.
However, three of the panels on the bottom row seem subjectively to mix two patterns on
the middle row. In the top-left panel, the navy-colored rectangle shows the domain used
for the clustering analysis.
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The k-means clustering was applied to 311 events and the result is in Fig. 1(b). The330

k-means clustering is a hard clustering method, in that each member is entirely assigned331

to a cluster. However, events may resemble more than one cluster. In such cases, the mem-332

bership of that event is not unequivocally defined. In an iterative procedure, we iden-333

tified those mixed cases and removed them from the final clustering. This procedure fur-334

ther reduces the events from 311 to 243. The final cluster mean patterns in Za500 us-335

ing 243 events are shown in Fig. 2. The k-means clustering divides the 243 precipita-336

tion events into 4 clusters of roughly equal sizes. Clusters 1-4 have 71, 70, 61, and 41 mem-337

bers, respectively. Moore et al. (2021) applied fuzzy clustering to identify clusters of me-338

teorological variables associated with Northern California PEx events. Fuzzy clustering339

assigns probability values to each member of the cluster. This allows any individual mem-340

ber to belong to more than one cluster. Our procedure ensures that only those members341

that have similar probabilities of being in more than one cluster are removed from the342

final set of clusters.343

The LSMP patterns shown here are similar to patterns shown in Moore et al. (2021).344

Using two EOFs of Za500l2 , they find four patterns, as well. However, their patterns are345

derived from time averages of the first five days of long-duration PEx events. Here, we346

show patterns two days prior to PEx event onset and include many more shorter-duration347

events. Noting these differences, our four clusters have analogs with their four clusters.348

Specifically, our clusters 1-4 are most similar to their clusters C2, C1, C3, and C4, re-349

spectively. Our names for the patterns differ from those used by Moore et al. (2021) be-350

cause: a) we examine the patterns over a larger domain and b) we emphasize the prop-351

erties of the field used to define the clusters.352

Our four identified clusters are as follows. (For comparison, Moore et al. (2021) names353

are in parentheses.)354

1. Northwest continental negative height anomaly (Poleward-shifted zonal jet) Clus-355

ter 1 has a large negative Za500 that extends over Alaska and the west coast of356

North America. Southwest of it, a positive anomaly occupies the midlatitude Pa-357

cific. Also present is a faint but significant positive anomaly over northeast North358

America. However, the latter positive anomaly has a low consistency from the sign359

count.360

2. Eastward positive “PNA” (Equatorward-shifted zonal jet) Cluster 2 has a large361

negative geopotential anomaly centered over the northern Pacific co-occurring with362

a positive Za500 to the south over the central tropical Pacific (between 20◦N and363

20◦S). Also present are significant, weak, low sign count positive central Canadian364

and negative SE USA anomalies. Together the four anomalies look somewhat sim-365

ilar to the Pacific-North American (PNA; Wallace & Gutzler, 1981; Barnston &366

Livezey, 1987; Leathers et al., 1991) loading pattern, except that it has been phase367

shifted eastward. “PNA” in the cluster label is purely descriptive of the pattern368

and not intended to be equal to the actual PNA pattern. The pattern elements369

are a north-south anomaly pair in the Pacific and a wavetrain extending eastwards370

then southwards from that negative, strong, NE Pacific negative anomaly.371

3. Westward negative “PNA” (Midlatitude blocking) Cluster 3 has a Northwest-Southeast372

wavetrain with a very strong positive anomaly centered over the Aleutian region373

with a strong negative anomaly near the Canadian west coast. Also co-occurring374

is a low in the central subtropical Pacific and a weak, low sign count, positive anomaly375

over southeastern North America. These four anomaly centers have some simi-376

larity to the PNA pattern (with a negative sign), though parts of this cluster av-377

erage are shifted westward relative to the actual PNA loading pattern. Again, “PNA”378

in the label is purely descriptive. This pattern is very similar to the California cold379

air outbreak (CAO) pattern (Grotjahn & Zhang, 2017) two days before the CAO,380

but here shifted ∼ 10 degrees west.381
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4. Prominent Alaskan ridge (High-latitude blocking) Cluster 4 has a prominent pos-382

itive anomaly over Alaska and the adjacent Arctic Ocean. To the south-southeast,383

lies a negative anomaly and further south-southeast a weak positive anomaly ex-384

tending across much of the tropical Pacific to subtropical Baja California.385

Figure 2: LSMP clusters of Za500l2 (unit: m) two days prior to the PEx onset in a format
similar to individual panels of Figure 1(b). Events identified as “mixed” have now been
removed from the analysis leaving 243 events tracked. The ratio in the lower right corner
of each panel shows the number of events in that cluster divided by the total number of
events tracked. Line contours show consistency via sign counts, where green means 80%
of the ensemble members have the same sign at that point, purple is 87.5%, and yellow is
95%. The navy-colored large rectangle shows the domain used for the clustering analysis.
The small black rectangle indicates the NorCal region. A dashed line marks the equator.

Three broad conclusions can be drawn to this point. First, several prior works listed386

in the introduction looked at a smaller region, and all find a low pressure centered off387

the California coast. We also find an anomalous low pressure just off the coast in all of388

our PEx events. But, this low differs greatly in shape between the clusters. Second, this389

low is part of a much larger-scale pattern that can be grouped into four clusters. The390

spatial patterns associated with the PEx clusters extend over much of the North Amer-391

ican continent and northern Pacific, even across the equatorial Pacific. Significant pat-392

terns over the tropical Pacific suggesting a tropical connection to rainfall extremes over393

Northern California. Third, each cluster mean in Fig. 2 has patterns that are statisti-394

cally significant (shading) and highly consistent (contours), making the patterns true LSMPs.395

396

3.2 Evolution of Clusters397

How do these LSMPs form and evolve? This subsection describes the concurrent398

evolution of cluster mean meteorological fields during the fortnight before PEx onset.399

–11–



manuscript submitted to JGR: Atmospheres

Notably, some clusters can be traced backward in time much longer than other clusters.400

The figure descriptions are included to identify important features from which general-401

izations will be drawn. There are multiple potential uses for these LSMP details, such402

as: dynamical analysis, model assessment, model projections, and predictability. Prob-403

abilistic prediction is explored in section 3.3.404

To sample LSMP properties the following figures are discussed. Fig 3 shows 500405

hPa streamfunction anomalies (Ψa500); this field captures the patterns of atmospheric406

highs and lows and consequent flow, but is preferable to geopotential height for depict-407

ing flow patterns in the tropical and equatorial regions. The upper-level jet evolution408

is shown, with a focus on the zonal component at 200 hPa (Ua200, Fig. 4) supplemented409

by information from the meridional wind anomaly component (V a200) in Fig. S1. We410

show the evolution of vertically-integrated water vapor transport, IVTa in Fig. 5. Local411

minima in mean sea level pressure anomaly (SLPa, Fig. 6) are used to indicate the po-412

sition of cyclones (Wernli & Schwierz, 2006), which guide low-level water vapor fluxes413

towards NorCal. We also show the evolution of lower tropospheric temperature in Fig.414

7. This field is often used for statistical downscaling of precipitation and therefore may415

be a potential predictor of PEx events.416

3.2.1 Evolution of 500hPa streamfunction anomalies (Ψa500)417

The evolution of 500hPa streamfunction anomalies (Ψa500) for the four clusters is418

shown in Fig. 3. Ψa200 and Ψa850 are similar to that for Ψa500, and hence are not shown.419

The cluster 1 pattern starts with a central North Pacific ridge anomaly roughly a420

half dozen days before the event onset. This ridge anomaly extends throughout the at-421

mospheric column (being visible at 200 and 850 hPa levels). Northeast of it, a trough422

builds over Alaska and beyond: from NorCal northwestward to the Bering Strait. This423

low anomaly is very large and mainly over the continent, hence our label of NW conti-424

nental negative anomaly. That huge trough anomaly is strongest the last two days be-425

fore onset. At onset, a weak ridge anomaly forms over southwestern North America. This426

combination of anomalies, trough northwest and ridge southeast of the PEx region, sup-427

ports a strong onshore flow over the PEx region.428

Cluster 2 has a pair of anomalies: a mid-latitude trough centered near 50◦N and429

a subtropical ridge near 20◦N that emerge in the North Pacific almost two weeks before430

PEx onset. Both anomalies grow in size and strength over a fortnight, with the slight431

eastward movement of the ridge-trough pattern. The orientation and location of the ridge-432

trough pattern in cluster 2 both differ from cluster 1, such that the trough anomaly in433

cluster 2 is located further south, over the North Pacific Ocean and partly over south-434

western Canada. This trough anomaly is strongest two days before onset. Also, the trough-435

ridge pattern in cluster 2 is oriented more N-S than in cluster 1.436

In cluster 3, a stationary Aleutian ridge anomaly is observed in the 200, 500, and437

850 hPa Ψa fields more than a week before onset, steadily strengthening until peak anomaly438

amplitude two days before onset. Two Ψa500 troughs develop, one to the south and the439

other to the east of the Aleutian ridge anomaly around a week before the onset. A sec-440

ondary ridge in Ψa500 forms over northern Mexico and Southern CONUS a few days be-441

fore the onset. This secondary anomalous ridge is much stronger and wider than in the442

two prior clusters. The four strong anomaly centers are superficially similar to the PNA443

pattern, but the whole pattern is shifted west by >20 degrees of longitude, thus prompt-444

ing our label of Westward negative “PNA”.445

For cluster 4, a high anomaly Ψa500 starts developing over northern Alaska about446

8 days before PEx onset. This ridge prompts our cluster label: Prominent Alaskan ridge.447

This ridge anomaly expands westward until the onset, but it reaches peak amplitude over448

northern Alaska two days before onset. A low forms over the central North Pacific a few449
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Figure 3: Evolution of 500hPa streamfunction anomalies (unit:106m2/s). Shaded areas
show anomalies significant at the 5% level. Contours show the consistency of the anomaly
pattern. Green, magenta and yellow contours show that at least 80%, 87.5%, and 95% of
the cluster members have the same sign of anomalies, respectively. Solid black contours
(contour interval: 10 × 106m2/s) in the top row show the climatological total streamfunc-
tion. The ratio in the lower-left corner of each top row panel shows the number of events
in that cluster divided by the total number of events. The black rectangle indicates the
NorCal region. A dashed line marks the equator.

–13–



manuscript submitted to JGR: Atmospheres

days later, which expands eastward across the North American west coast, forming a band450

of low pressure anomaly extending from the tropical Pacific Ocean across to north-central451

Canada. A secondary ridge anomaly is again centered over northern Mexico 2 days prior452

to the onset and appears to extend southwestward to Papua New Guinea. Together, the453

anomalies form a ridge-trough-ridge pattern along the North American west coast.454

In all four clusters, the most prominent and distinguishing features of each LSMP455

reach peak amplitude, significance, and consistency two days before onset . Furthermore,456

the cluster means differ less at onset than two days before; therefore, the best time for457

defining an LSMPi that separates the clusters is two days before onset.458

3.2.2 Evolution of Upper-level jet (Ua200)459

The evolution of 200hPa zonal wind anomaly field (Ua200) is shown in Fig. 4. The460

meridional component wind anomaly at 200 hPa (V a200) is shown in the supplemental461

material Fig. S1.462

Figure 4: Same as Fig. 3 but for the evolution of 200hPa zonal wind anomalies (unit:
m/s). Solid black contours (contour interval: 10 m/s) in the top rows show the climato-
logical total zonal wind.
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For cluster 1, beginning about 5-7 days prior to onset, there is a prominent dipole463

across much of the North Pacific. This dipole is centered mainly on the downstream end464

of the Asian subtropical jet. The effect of the dipole is to build the north side and re-465

duce the south side of the jet, mid-Pacific. As onset approaches, another negative anomaly466

(over northwest North America) appears. That negative anomaly along with the increas-467

ing amplitude and eastward extension of the positive anomaly results in a narrowing and468

dramatic strengthening of the jet over our NorCal focus region. Onshore zonal winds ex-469

ceed 25 m/s at the focus region with an orientation that is from the southwest. The V a200470

pattern (supplemental material Fig. S1) shows comparable southerlies at and north of471

the NorCal region, giving the jet a SW-NE orientation there. The LSMPs are approx-472

imately equivalent-barotropic. Hence, the anomaly pattern for a wind anomaly compo-473

nent is similar at all levels from 850 through 200hPa.474

In cluster 2 the 200hPa streamfunction of Fig. 3, shows the NorCal region is sand-475

wiched between a deep low to the north and a narrow ridge to the south at the onset.476

Hence, zonally-elongated 200hPa zonal wind anomalies are oriented southwest-northeast477

up to two days before onset. A tripolar pattern by day 2 is similar to that in cluster 1,478

except the meridional spread is larger. A result is the positive anomaly of cluster 2 is479

nearly at the same latitude as a negative anomaly in cluster 1. Also unlike cluster 1, these480

anomalies are apparent 10-11 days prior to onset. These anomalies: move the mid-Pacific481

jet axis southward, then extend the jet eastward (at about 35◦N), narrow the latitude482

spread, and strengthen the jet stream over the eastern North Pacific. At onset, the pos-483

itive zonal wind anomaly is strongly onshore, and the jet has a southwest orientation at484

the NorCal region, locally similar to but stronger than cluster 1.485

In cluster 3 a tripolar zonal wind anomaly appears more than a week before on-486

set. This tripolar pattern looks superficially similar to that in cluster 2 except with the487

opposite sign. A key difference is: the centers are roughly 25 degrees longitude further488

west. Starting about six days before onset, a dipole appears over western North Amer-489

ica, including a positive westerly anomaly over NorCal. The main negative anomaly is490

centered on the climatological subtropical jet, causing it to broaden in latitude. As on-491

set approaches, the two southern positive anomalies join, suggesting a flow from lower492

latitudes than the prior two clusters. The meridional wind component (supplemental ma-493

terial Fig. S1) has strong southerlies centered over Kamchatka and the NorCal region,494

with northerlies in between (Gulf of Alaska). So, the jet stream winds at NorCal are again495

southwesterly.496

In cluster 4, longitudinally broad bands of zonal wind anomalies appear 5 days be-497

fore onset. Westerlies are enhanced in the subtropics and over the Arctic Ocean. A large498

negative anomaly covers much of the middle latitudes, especially two days before onset.499

In the mid-Pacific, the climatological position of the subtropical jet is centered midway500

between the negative anomaly and the southern positive anomaly. The net effect of the501

anomalies is to build the subtropical jet on its equatorward side. Downwind the anomaly502

curls northward creating strong southwesterly flow at the NorCal region. (The merid-503

ional component is again strongly positive at the North American west coast.)504

While the pattern of strong westerly flow (from a southwesterly orientation) at the505

NorCal region is locally very similar in all four clusters, how that local pattern is cre-506

ated differs greatly elsewhere, especially over the North Pacific.507

3.2.3 Evolution of integrated vapor transport anomalies (IVTa)508

Climatological total IVT has two major positive bands: eastward flux oriented WSW509

to ENE across the North Pacific (from 30-40◦N) and a tropical band of westward IVT510

centered at 15◦N in the western Pacific. There is a relative minimum along the Baja coast.511

Each cluster mean has strong onshore flow from the SW at NorCal. So, IVTa for each512
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cluster must be large over the NorCal region to overcome the climatological low IVT.513

Fig. 5 shows IVTa and 850 hPa horizontal wind anomaly vectors.514

In cluster 1, a pair of zonal bands of positive IVTa form in the Pacific consistent515

with a positive streamfunction anomaly centered at 30◦N. During the two days before516

PEx onset, the northern positive anomaly is driven towards the NorCal coast by the in-517

tensifying low pressure along the Canadian coast. This positive anomaly becomes con-518

fined close to the North American west coast and IVTa peaks over the NorCal region519

with a SW to NE orientation at onset. Negative IVTa covers a very large region north-520

west of NorCal, including all of Alaska. This large negative area is consistent with cold521

air advection as presumed from the northeasterly flow (850 hPa wind vectors). In turn,522

the cold advection supports the large negative 500 hPa streamfunction in Fig. 3.523

Figure 5: Same as Fig. 3 but for the evolution of integrated vapor transport (IVT)
anomalies (shading; unit: kg/m-s). Solid black contours (contour interval: 100 kg/m-s
in the top rows show the climatological total IVT. The vectors show the 850 hPa wind
anomalies (unit: m/s). The bottom color bar pertains to the IVT anomalies, and the
vertical color bar to the 850 hPa wind anomalies.

In cluster 2, a roughly zonal band of strongly positive IVTa develops along 35◦N524

more than a week before the onset date, consistent with the cyclonic circulation visible525

in Fig. 3. This band looks similar to cluster 1 but its peak values are further east and526

moving more slowly during the two days before onset. The IVTa further intensifies and527

bends northeastward along the continental coast. Total IVT is shown in supplemental528

material Fig. S2. Similar to cluster 1, the moisture travels >70◦ longitude across the529

North Pacific. As with cluster 1, the local IVTa is again strongest and oriented SW-NE530
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over NorCal. There is negative IVTa northwest of the NorCal region but it is less ex-531

tensive and south of the location in cluster 1. The associated northeasterly flow brings532

cold air off Alaska, supporting the negative streamfunction anomaly there.533

Cluster 3 IVTa develops broad, significant, and consistent areas a week before on-534

set. Somewhat opposite to cluster 2, a positive anomaly develops near the Aleutians. To535

the south and east a large negative anomaly forms, along 35-40◦N arcing poleward into536

Canada. These two anomalies may be anticipated from flow around the equivalent-barotropic537

anomalies of Ψa500 (and SLPa shown next). Unlike opposite-signed anomalies in clus-538

ter 2, these two anomalies stay in place, consistent with other variables, such as Fig. 3.539

Also consistent with prior figures, an intense positive IVTa develops close to the Cali-540

fornia coast (as well as a notable positive area in the tropics) only within two days be-541

fore onset. Hence, while clusters 2 and 3 look like the “PNA” pattern shifted east and542

west respectively, positive IVTa at NorCal is present >5 days before onset in cluster 2,543

but only a day before onset in cluster 3. Also, while all clusters have positive IVTa at544

and adjacent to the CONUS coast, IVTa is negative to the west and southwest of that545

area in this cluster. In contrast with cluster 2, where a large positive IVTa anomaly trav-546

els eastward from beyond the dateline, the moisture source now is much closer to and547

southwest of NorCal, reflecting how this LSMP develops in place.548

The moisture transport anomaly pattern in cluster 4 has similarities intermediate549

to those in clusters 2 and 3. Visible from day T-5 to onset, cluster 4 has a positive anomaly550

like cluster 2 that moves eastward several days before onset except is it now 5◦ further551

south. Cluster 4 is like cluster 3 in having a persistent negative anomaly where clima-552

tological IVT is the largest along the Canadian coast. Also like cluster 3, a large pos-553

itive anomaly off Baja California occurs and extends across the equator. However, the554

enhanced transport crossing the California coast has its origin just north of Hawaii about555

5 days before onset.556

Notably, the local pattern of IVTa at onset is very similar in all clusters over the557

NorCal region: sign count locally largest and have a SW to NE orientation. As with other558

variables, the LSMP properties elsewhere differ markedly, especially 2 days before on-559

set. Where cluster 2 and cluster 1 (a bit further north for the latter) have positive anomaly560

mid-Pacific, cluster 3 (and to some extent cluster 4) have negative anomaly there. Clus-561

ters 3 and 4 appear to have an obvious connection to subtropical latitudes while mois-562

ture transport in cluster 1 is more zonal at a much higher latitude. These differences563

between the patterns are less visible at the onset.564

3.2.4 Evolution of sea level pressure anomalies (SLPa)565

Fig. 6 shows SLPa evolution. The LSMPs are similar to Fig. 3 due to the equivalent-566

barotropic nature of the LSMPs. However, there are notable differences.567

In cluster 1, a positive SLPa develops in the subtropical mid-Pacific around a week568

before the onset. This anomaly slowly expands eastward. A few days before onset, a569

low pressure anomaly over Alaska and western Canada forms in essentially the same lo-570

cation as at 500hPa. The low pressure anomaly moves southeastward to become 20◦ east571

of the 500 hPa location at onset. Southwesterly flow around that trough drives surface572

air onshore over NorCal.573

The cluster 2 SLPa LSMP has a large low anomaly south of Alaska, much like the574

streamfunction anomaly in the mid and upper atmosphere. But unlike the upper air pat-575

terns (e.g. Fig. 3) the prominent high anomaly in the subtropics is missing. The neg-576

ative SLPa low forms on the southeastern quadrant of the climatological atmospheric577

trough in the North Pacific. This low develops 11 days before onset. It subsequently strength-578

ens and moves eastward until the anomaly is centered over the Canadian and NW USA579

west coast at onset, about 5◦ east of the 500hPa position. While cluster 1 has a simi-580
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Figure 6: Same as Fig. 3 but for the evolution of sea level pressure anomaly (unit: hPa).
Solid black contours (contour interval: 10 hPa) in the top rows show the climatological
total sea level pressure.
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lar low at onset, the time of formation is >10 days earlier and movement of the anomaly581

is eastward (instead of southeastward) for cluster 2. As with cluster 1, the anomaly fos-582

ters onshore surface flow over the NorCal region.583

The cluster 3 LSMP is dominated by high SLPa centered just south of the Aleu-584

tians >10 days before onset. This anomaly is stationary, strengthens until day T-2 then585

wanes; it occurs through the depth of the troposphere. By day T-6, a stationary, weak586

low appears west of Hawaii, near the dateline, much weaker than its upper air counter-587

part. Only two days before onset the trough NW of NorCal appears, ∼5◦ SE of the up-588

per troposphere trough. As in clusters 1 and 2, this anomaly would drive onshore sur-589

face winds, but this trough has a much smaller footprint. High SLP from the Great Lakes590

to Hudson Bay appears at onset; it is ∼10◦ east and much weaker than its upper air ana-591

log.592

Cluster 4 has two dominant features. (i) A strong, large SLPa high over Alaska and593

NW Canada develops from day T-7 to day T-2, then diminishes by onset. (ii) A trough594

in the subtropical eastern Pacific strengthens as it moves northeastward from day T-5595

to onset; it moves onshore ∼10◦ SE of the upper level trough at onset. This SLPa trough596

has a different orientation than other clusters in that it has a trailing portion extend-597

ing SW into the subtropics. So, as with other variables, the pattern near the NorCal re-598

gion at onset is similar in all four clusters, but elsewhere the patterns are quite differ-599

ent and especially strong at day T-2.600

3.2.5 Evolution of 850hPa and other temperature anomalies601

The evolution of the 850 hPa air temperature anomalies (Ta850) for each of the four602

clusters is shown in Fig. 7. Climatologically, lower and middle tropospheric temperature603

contours are approximately zonally-oriented with deviations due to relatively warmer air604

off the west coast and colder air at the east coast of the continents. Higher up, at 200605

hPa, the meridional temperature gradient is much weaker with cold anomalies centered606

over the NW US and central northern Asia regions (supplemental material Fig. S3). Ta850607

is our archetype though the anomalies at other levels are plotted in the supplemental ma-608

terials. Notably, the most prominent features in Ta200 generally have opposite sign, but609

similar location to the corresponding features in Ta850. The evolution of skin temper-610

ature (SkT ) differs from Ta850 by minimizing anomalies over the ocean. However, SkT611

has warm and cold anomalies over the tropical Pacific for clusters 2 and 3, respectively;612

but their possible links to ENSO are beyond the scope of this work.613

Cluster 1 LSMP has three parts: 1) a warm anomaly largely confined to North Amer-614

ica east of ∼120◦E, 2) a cold anomaly from Alaska southeastward to just NW of Nor-615

Cal, and 3) a mid-Pacific warm anomaly between 30-40◦N. These three anomalies are616

present only two days before onset and occur throughout the troposphere. At 200 hPa617

(supplemental material Fig. S3) only a warm anomaly along the northern North Amer-618

ica west coast is present; and as expected it has opposite sign to levels below (e.g. 500hPa,619

supplemental material Fig. S4). The primary cold anomaly near Alaska splits; the west-620

ern portion remains over the Bering Sea while the eastern portion migrates along the Cana-621

dian west coast. Both motions can be anticipated from the expansion of the Aleutian622

low (e.g. Figs. 6 and 3) and advection by low level flow (e.g. supplemental material Fig.623

S2. The continental warm anomaly can be similarly explained by southwesterly flow over624

that broad region. The mid-Pacific anomaly is also consistent with low level southeast-625

erly flow. Both warm anomalies create upper level height anomalies shown in Fig. 3.626

Cluster 2 has two anomalies in the troposphere: a warm anomaly arcing from Hawaii627

across the western CONUS into central Canada and a cold anomaly to the west. The628

most consistent part of the cold anomaly travels eastward by 30-50◦ degrees longitude629

in the two days leading up to onset. The western part of the warm anomaly initially has630

two parts at T-5 days: a part over Alaska and a part in the mid to eastern subtropical631
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Figure 7: Same as Fig. 3 but for the evolution of the 850 hPa air temperature anomaly
(unit: K). Solid black contours (contour interval: 5 K) in the top rows show the climato-
logical 850 hPa air temperature.
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Pacific centered at ∼60◦N and ∼20◦N, respectively. The northern warm anomaly moves632

eastward to form the aforementioned arc. Both warm anomalies merging to form an arc633

is largely explainable from advection around the huge primary tropospheric low pressure634

anomaly along with enhanced pressure closer to the equator, visible in Figs. 3 and 6. The635

subtropical warm anomaly from Hawaii eastward sits where westerly IVT, characteris-636

tic of the midlatitudes, is unusually far south (∼25◦N) where other clusters have east-637

erlies (clusters 1 and 3) or weak westerlies (cluster 4). This flow arises from the increased638

pressure gradient created by pressure and height anomalies that are: negative unusually639

far south but positive even further south, near 15-20◦N, visible in previous figures. Skin640

temperatures (supplemental material Fig. S5) are also consistently warm there as well641

as along the equatorial Pacific from the dateline to Peru. Although it does not meet642

our consistency threshold (except a small area of Peru) the warm anomaly across the east-643

ern equatorial Pacific is similar to the sea surface temperature pattern during an El Niño.644

Furthermore, the warm anomaly over the ocean along the west coast of North America645

that is accompanied by a cold anomaly in the central North Pacific resembles the pos-646

itive phase of the Pacific decadal oscillation (PDO) pattern. Having this pattern, even647

though the ocean resists temperature changes, might suggest a preference for this clus-648

ter during positive PDO and El Nino. At 200 hPa a large warm anomaly is centered above649

the cold anomaly at 500 hPa.650

In cluster 3, the 850 hPa temperature anomaly pattern has three parts that largely651

follow from flow around the two SLPa anomalies (Fig. 6). The west side of the huge pres-652

sure ridge drives subtropical air northward warming the northern Pacific and Bering Sea.653

Between that ridge and the low pressure at the NW CONUS cold air is driven south-654

ward from western Canada, across the Gulf of Alaska to southwest of NorCal. Finally,655

just prior to onset, a warm anomaly develops over Mexico. Unlike the prior two clusters,656

all three anomalies are essentially stationary over a week. This tri-polar temperature anomaly657

pattern generates three of the anomalies seen in 500hPa streamfunction shown in Fig.658

3. The temperature anomalies at 500 hPa are similar to the lower elevation pattern ex-659

cept for a cold anomaly SW of Hawaii that matches 500hPa patterns in Figs. 2 and 3.660

The skin temperature (supplemental material Fig. S5) is somewhat similar to 850 hPa661

over the land masses but also has some notable oceanic anomalies: an intense warm anomaly662

south of the Aleutians and an equatorial eastern Pacific cold anomaly. The latter is sug-663

gestive of “La Niña” conditions. At 200 hPa, the anomalies are opposite-signed and largely664

coincident to those at 850 hPa, but with the addition of a warm anomaly above east-665

ern Siberia. A difference from other levels is the Aleutian and Mexican cold anomalies666

are connected at 200hPa. Of the levels discussed, these anomalies are most prominent667

at 500hPa, where they appear a week before onset.668

The key characteristic in cluster 4 in Fig. 7 is the deep, stationary, warm anomaly669

covering Alaska, Bering Sea, and much of the Arctic Ocean. The broad extent invites670

comparison with future climate simulations showing amplified Arctic warming, thereby671

suggesting that this cluster may become more common in the future. This anomaly is672

also quite strong at 500hPa and consistent with low-level flow implied by SLPa. Over673

western Canada, an intense cold anomaly in Ta850 (and SkT ) develops a few days be-674

fore onset. At 500 hPa, this cold anomaly is less prominent (supplemental material Fig.675

S4). Also developing shortly before onset is a highly consistent warm anomaly extend-676

ing from the PEx area southwestward into the subtropical Pacific as far as Hawaii. South677

of 40◦N, this latter warm anomaly has similar extent to cluster 2, except it is slightly678

further south over the ocean. Unlike cluster 2, this more southern warm anomaly only679

develops just before onset. The 200 hPa pattern (supplemental material Fig. S3) has a680

cold anomaly above Alaska and the adjacent ocean nearly a week before onset followed681

by a warm anomaly to the south that intensifies and rotates to the Canadian west coast682

at onset. Those two anomalies are explainable from the 200 hPa streamfunction, which683

has a positive anomaly between them and a negative anomaly to the west of them: the684

resultant flow creates these 200 hPa temperature anomalies from thermal advection. The685
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Ta850, Ta500, and SkT patterns north of ∼45◦N are strongest at T-2 and largely opposite-686

signed from cluster 1, though close to the PEx region at onset their temperature anoma-687

lies match.688

3.3 Probabalistic predictions of precipitation extremes using LSMPi as689

predictors690

This subsection shows some tests using individual LSMPi values, both at and prior691

to onset, to predict heavy precipitation values. As described in section 2.2, we construct692

LSMPs from two periods of data: training LSMPs LY
c,T

l∗ and verification LSMPs LY
c,V

l∗693

and do so for 0-6 days prior to onset. The training period is 1948-1982, while the ver-694

ification period is 1982-2015; both periods use NDJFM months. We find that the LSMP695

clusters in the training and verification data are similar in spatial pattern, significance696

and consistency, an example of which is shown in supplemental material Fig. S6. The697

strong resemblance between the training and verification LSMPs supports the robust-698

ness of the patterns irrespective of the different training and verification periods. Less699

important to the discussion here is that we find more variation in the frequency of each700

cluster type. The numbers in clusters 1 and 2 are similar in both periods, but there are701

fewer members in clusters 3 and 4 in the verification period. We do not explore climate702

change issues in this report.703

As described in section 2.3, we constructed training and verification LSMPis from704

daily anomalies of the atmospheric variables that show large-scale synoptic patterns prior705

to the PEx onset. The tested variables are anomalies of 500hPa geopotential height (Za500),706

500 and 850 hPa air temperatures (Ta500 and Ta850), 850 hPa zonal and meridional winds707

(Ua850 and V a850), sea level pressure (SLPa), skin temperature (Ts), precipitable wa-708

ter (PWa) and IV Ta. Our discussion of relative skill emphasizes metrics designed for709

binary predictions. While statistically valid, such measures are not ideal for this prob-710

lem because near misses are not distinguished from large misses. As noted in Grotjahn711

(2011) there is more forecast value in near misses than large misses.712

Supplemental materials Table S1 shows measures of prediction skills when using713

LSMPis as predictors of extreme precipitation at lag 0 (and lag 2, in parenthesis). It is714

apparent that for all these variables, hits exceed misses by a large margin, indicating that715

the LSMPis can capture occurrences of PEx events very well. Of course, the skill decreases716

as the lag increases. But the LSMPi do so well that even at two days lag; they forecast717

the event occurrence with high accuracy. For all the variables, the probability of detec-718

tion (POD) at lag 0 is 0.74 or more (0.52 at lag 2). The maximum POD is offered by719

IVT at lags 0 (0.89 for training and 0.78 for verification data). Notably, the false alarm720

ratio (FAR = FA/(hits + FA)) is comparable to the POD for each variable. How-721

ever, assessing the forecast skill by comparing POD with FAR may be misleading be-722

cause the predictands (extreme precipitation events) are rare by definition (occurring less723

than 5% of the time). As explained in Ebert and Milne (2022), the evaluation of fore-724

cast skill based upon proportion-correct measures is not appropriate for predicting rare725

events. The TS and GSS scores are much lower than the PSS values for each variable.726

Ebert and Milne (2022) highlight the discrepancy among different skill scores when mak-727

ing forecasts for rare events. They suggest that the Pierce skill score is the only skill score728

that meets all three adequacy constraints for a proper measure of skill in rare events. Also729

notable is that the forecast skills for training and verification data are comparable, and730

there is no drastic fall in forecast skills when LSMPi is constructed by projecting the train-731

ing LSMPs (constructed for the period NDJFM of 1948-1982) onto the daily meteoro-732

logical fields over an independent (verification) period (NDJFM of 1982-2015). IVT is733

superior in each of the metrics, which is perhaps unsurprising given that all the LSMPs734

show an atmospheric river-like pattern over the PEx Region. Similarly, other studies of735

the circulation close to the PEx region have strong IVT around the south side of a trough736

that is unusually far south (e.g., Grotjahn & Faure, 2008; D. Chen et al., 2021).737

–22–



manuscript submitted to JGR: Atmospheres

Figure 8: Prediction skill measures for combinations of LSMPi predictors. The x-axis
shows the cumulative number of predictors while the individual lines are for lags 0, 1,
2, 4, and 6. The LSMPi predictors (LSMPis) are combined using the order as shown in
Table 2. Training period: 1948-1982 ; verification period: 1982-2015.–23–
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Table 2: Cumulative ordering of variables (LSMPis) according to their fitness as predic-
tors of the PEx events at different lags in the training dataset. The predictors are added
cumulatively. The ordering shows the best predictor (or predictor combination), based
on AIC, each time a set of predictors is tested. Refer to the text for more details. The
variables shown are anomalies but the subscript ‘a’ has been removed for brevity here.

Cumulative
ordering based
on AIC

lag6 lag4 lag2 lag1 lag0

1 PW PW IVT IVT IVT
2 SLP U850 PW SLP U850
3 IVT V850 U850 PW PW
4 U850 IVT V850 U850 SLP
5 T850 SLP SLP V850 V850
6 V850 T850 T500 Z500 Z500
7 T500 Z500 Z500 Ts T500
8 T500 T500 Ts T500 T850
9 Ts Ts T850 T850 Ts

Table S1 includes the Akaike Information criteria (AIC), which is a measure of the738

fitness of a variable as a predictor of PEx events. When comparing two variables, a vari-739

able with a lower AIC is considered a better predictor. Table 2 indicates that the most740

skillful predictive combination of variables varies with lag. For example, for lag 0, IVT741

is the best single predictor, then the best combination for two predictors is IVT with U850.742

For three and four predictors, add PW then SLP in the training dataset. However, for743

lag 2, prediction is best when IVT is followed by PW (and then U850) when two (and744

then three) predictors are used, respectively, in the training dataset. Hence, IVT+U850+PW745

is the best combination of three variables at lag 0. These optimal combinations of pre-746

dictor variables, shown in Table 2, indicate that the best combination of predictors varies747

with lag time. That is, the set of predictor variables giving the best prediction of PEx748

events varies with the lag. How many predictor variables together can best predict the749

PEx events based on our binary metrics? Fig. 8 shows prediction skill metrics in the train-750

ing and verification time periods for different numbers of predictor variables at lags 0-751

6. The same combinations of predictor variables (Table 2) are used for predicting PEx752

events in the training and verification time periods. The criteria of the fitness of predic-753

tors, AIC, shows that for shorter lead times (0-2 days), AIC is minimum for a combi-754

nation of 3-4 predictor variables, suggesting that the combination of 3-4 of our predic-755

tor variables fits the prediction model best, and adding any more variable either adds756

no further improvement or possibly degrades the prediction. For longer lead time (4-6757

days), AIC varies little with the number of predictors, though some other metrics do best758

with at least 3 or 4 predictors. The forecast skill based upon PSS suggests that the fore-759

cast skill is best for a combination of 3 to 4 variables for lags 1-6. But, there is little im-760

provement in prediction skills when using more than one predictor for lag 0 in the ver-761

ification data. A comparison of the left and right columns in Fig. 8 suggests that the762

fitness of predictor variables degrades a bit when the combination of predictor variables763

based upon training data is used to predict PEx events in the verification set. Similarly,764

the prediction skills are slightly degraded for verification data. However, there is no dras-765

tic fall in prediction skill (PSS) when compared with the training data. Moisture-based766

variables such as IVT or PW are the best predictors at any lag. Also, lower-level atmo-767

spheric variables (e.g., U850) are better predictors than mid-level atmospheric variables768

(e.g., T500). Most notably, IVT is the best predictor until 2 days before the onset but769
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is the third best predictor nearly a week before the onset (lag 6). This analysis suggests770

that LSMPs do offer predictability of PEx events, but one must select the suitable vari-771

able depending on how far in advance one wants to make a prediction.772

Fig. 9(a) shows the probabilistic prediction of precipitation using IVT LSMPi as773

a predictor of PEx in the training dataset. The IVT LSMPi and PEx have a significant774

(at the 5% level) correlation of 0.43 based on Spearman’s rank correlation test. Out of775

the 23 copulas tested, we find that the Joe copula performs the best based on maximum776

likelihood estimates. Therefore, we use the Joe copula to make predictions of the pre-777

cipitation values. In the figure, the vertical color bars show the likelihood of predicted778

values, so the yellows indicate low likelihood, and blues indicate a high likelihood of the779

predicted precipitation values. The figure shows that LSMPi constructed from IVT can780

predict the observed precipitation values (red dots) with high likelihood as most of the781

observed precipitation values are within the highly likely region (likelihood ≥ 0.75). The782

uncertainties in these predictions are shown by the black dots, which show the 95% con-783

fidence interval of the predicted values. Almost all of the observed extreme precipita-784

tion values lie within the 95% confidence interval. Fig. 9(b) shows the predictions of PEx785

events based on the verification data. As might be expected from the previous figure,786

the predictions in the verification data are not quite as good as in the training data, but787

they remain comparable to those in the training data. This analysis shows that the LSMPis788

are skillful predictors of extreme precipitation values when evaluated on independent data.789

4 Discussion and Conclusions790

Previous studies show that there is more than one set of large-scale circulation pat-791

terns that create extreme precipitation (PEx) events over Northern California (NorCal).792

In some of the published works, the large-scale circulation patterns connected to PEx793

events (or any other extreme meteorological events) are loosely described as Large Scale794

Meteorological Patterns (LSMPs). However, a true LSMP, as defined by Grotjahn (2011),795

is more than a simple composite or aggregate, and it must indicate what is important796

in that composite or aggregate. What is important must pass both a significance test797

and a consistency test (like sign counts). To emphasize these statistical tests, we rename798

“LSMP” to be large-scale statistically meaningful patterns, here associated with PEx799

over NorCal. These have been our broad objectives: First, we establish what the min-800

imum number of LSMP clusters are for NorCal PEx events. Second, we identify what801

is consistent and significant in the LSMP clusters of meteorological variables leading to802

PEx events. Third, we present a framework for the probabilistic predictions of PEx events803

using LSMP-based indices (LSMPis) as predictors. Those aspects of the current study804

have never been examined before.805

We identified 311 PEx events, defined as the 24-hr precipitation averaged over the806

NorCal region (P ) greater than the 95th percentile of P over the 1948-2015 period from807

the CPC data. We apply k-means clustering analysis to the first two principal compo-808

nents of 500hPa geopotential height anomalies (Za500l2 ) two days before the 311 PEx on-809

set dates. The patterns are most strongly distinguishable two days before onset and that810

is why we chose that timeframe for the clustering. Our analysis, using both the statis-811

tical and heuristic methods, suggests that a minimum of four clusters can explain Nor-812

Cal PEx events. To analyze clusters whose members are distinct from members in other813

clusters, we removed PEx events identified as “mixed cases”. This procedure reduces the814

number of PEx events to 243. The four clusters are identified as 1) northwestern con-815

tinental negative height anomaly that has a large negative geopotential height anomaly816

extending over Alaska, western Canada, and the the NW CONUS, 2) eastward positive817

“PNA” that has a large negative Za500 centered over the northern Pacific co-existing818

with a positive Za500 to the south of it over the central tropical Pacific (between 20◦N819

and 20◦S) and a wavetrain to the east, 3) westward negative “PNA” pattern having a820

very strong positive Za500 centered over the Aleutian region with low heights to the south821
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Figure 9: Probabilistic prediction of the precipitation amount (mm/day) using a single
LSMP index (LSMPi) as a test. This test uses lag 2 data. Precipitation values are shown
(red dots) for each day that the IVT LSMPi value exceeds its 95% in the training (a) and
verification data (b). The black dots mark the 95% range of predicted precipitation for
that LSMPi value. The Y-axis uses a log-scale. The methods section provides details.
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over the subtropical Pacific and a wavetrain to the east that creates a strong Za500 near822

the Canadian west coast. 4) Prominent Alaskan ridge that has a prominent positive Za500823

over Alaska and the adjacent Arctic Ocean with a trough across the midlatitude Pacific824

arcing into the NW CONUS.825

The investigation of synoptic properties leading to PEx onset suggests that the LSMPs826

evolve differently from each other. The LSMP patterns near NorCal are essentially the827

same at PEx onset, but they have distinctly different patterns further away from the Nor-828

Cal region and leading up to onset. For example, as the names of the clusters suggest,829

the streamfunction (and geopotential) anomalies have distinct spatial signatures in all830

four clusters. Also, in two clusters a prominent part of the LSMP is present at least a831

week before onset while other clusters develop their LSMPs only a couple days before832

onset. Some clusters have nearly stationary anomalies that form the low pressure NW833

of NorCal while other clusters have multiple features that travel large horizontal distances.834

The source of the moisture varies: from west of the dateline in the midlatitude Pacific,835

to ocean >30◦ west of NorCal, to the tropical Pacific near Hawaii, and in between. Though836

IVT anomalies (IVTa) at the onset have the same southwestern to northeastern orien-837

tation near NorCal for all clusters, cluster 2 and cluster 1 have positive IVTa mid-Pacific,838

while clusters 3 and 4 have negative IVTa there. Cluster 4 has a distinct stationary, warm839

lower tropospheric temperature anomaly over Alaska and much of the Arctic Ocean, in840

contrast, cluster 1 has a cold anomaly over the northeastern Pacific and Alaska that de-841

velops by onset. We find evidence that the NorCal PEx events have tropical connections,842

such as significant and consistent Za500 south of 20◦N crossing the equator. Significant843

but not sufficiently consistent skin temperature anomalies hint at possible El Niño and844

La Niña influences on PEx events in clusters 2 and 3, respectively.845

We estimated the predictive skills of LSMPis constructed from the training and ver-846

ification periods. We constructed the LSMPi for a variable in the training and verifica-847

tion data by projecting the training LSMP onto the related daily variable in the train-848

ing and verification data, respectively. Simple binary forecast metrics (e.g., POD, FAR,849

PSS) show that the LSMPis have skill both capturing onset PEx as well as predicting850

PEx several days in advance. The best predictor tested was moisture-based with IVT851

being superior a day or two before onset. Also, lower-level variables we tested have su-852

perior prediction skill compared to middle or upper levels, at least up to 6 days before853

the onset. We tested the concept of using LSMPis to make probabilistic predictions of854

the amount of precipitation and found even one predictor has skill.855

This LSMP-based work provides a useful framework for the process-based evalu-856

ation of climate models by climate scientists and practitioners (e.g., water managers).857

Since LSMPs are synoptic-scale patterns, they can be detected in coarse-resolution cli-858

mate models. The LSMP patterns identified in this work can be used to evaluate climate859

models for applications such as model selection and weighting for future projections by860

stakeholders and scientists.861

Our work prompts further research. For example, as discussed in Reed et al. (2022)862

and shown by Palipane and Grotjahn (2018), LSMPs provide a useful metric for eval-863

uating model skill. Our work suggests tropical teleconnections to the NorCal PEx events864

that could be further explored. We demonstrated that probabilistic prediction is feasi-865

ble with LSMPis and the use of multiple LSMPis should be explored to improve such866

prediction, based on qualitative results in (Grotjahn, 2011). Decadal average precipita-867

tion slowly declines over NorCal during our study period but the number of PEx events868

first declines by half before rebounding over the decades, the fractions of PEx events by869

each cluster varies greatly, too; we hope to report on these trends in a future publica-870

tion. Potential future work could use the LSMP-based framework for model skill eval-871

uations over the NorCal region, investigating changes in LSMPs in response to global872

warming, understanding the tropical impact on the NorCal PEx events, and designing873

storyline-based simulations to understand the effect of climate change on the historical874
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large flood events over California (e.g., Rhoades et al., 2023). LSMPs in other time frames875

could be examined: Moore et al. (2021) find similar aggregates (not LSMPs) for 5-day876

averages that look similar to the LSMPs we show for 24-hour average PEx. LSMP anal-877

yses for PEx in other contexts could be explored such as rain versus snow-producing events.878

Finally, most of these questions could be explored for other regions of Earth.879
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Supplemental Material1158

Table S1: Prediction skills in capturing observed extreme precipitation events (> 95th per-
centile) using LSMP indices (LSMPis) as predictors constructed for daily meteorological
fields at lags 0 and 2 (in parenthesis). POD: probability of detection. FAR: false alarm
ratio. TS: threat score. GSS: Gilbert skill score. PSS: Pierce skill score. AIC: Akaike In-
formation Criteria. Training period: NDJFM of 1948-1982; verification period: NDJFM of
1982-2015. The variables shown are anomalies but the subscript ‘a’ has been removed for
brevity here.

Data hits misses FA CN POD FAR TS GSS PSS AIC

IVT

Training 217 (190) 27 (54) 762 (1387) 4136 (3509) 0.89 (0.78) 0.78 (0.88) 0.22 (0.12) 0.18 (0.07) 0.73 (0.5) 37373 (40789)
Verification 213 (196) 32 (49) 996 (1530) 3750 (3214) 0.87 (0.8) 0.82 (0.89) 0.17 (0.11) 0.13 (0.07) 0.66 (0.48) 36111 (38485)

PW

Training 217 (190) 27 (54) 998 (1419) 3900 (3477) 0.89 (0.78) 0.82 (0.88) 0.17 (0.11) 0.13 (0.07) 0.69 (0.49) 38523 (41323)
Verification 209 (167) 36 (78) 1227 (1524) 3519 (3220) 0.85 (0.68) 0.85 (0.9) 0.14 (0.09) 0.1 (0.05) 0.59 (0.36) 37280 (39505)

U850

Training 215 (188) 29 (56) 1128 (1510) 3770 (3386) 0.88 (0.77) 0.84 (0.89) 0.16 (0.11) 0.12 (0.06) 0.65 (0.46) 39329 (41166)
Verification 205 (189) 40 (56) 1241 (1462) 3505 (3282) 0.84 (0.77) 0.86 (0.89) 0.14 (0.11) 0.09 (0.07) 0.58 (0.46) 37505 (38621)

SLP

Training 209 (173) 35 (71) 1122 (1595) 3776 (3301) 0.86 (0.71) 0.84 (0.9) 0.15 (0.09) 0.11 (0.05) 0.63 (0.38) 39654 (42108)
Verificatio 204 (175) 41 (70) 1227 (1443) 3519 (3301) 0.83 (0.71) 0.86 (0.89) 0.14 (0.1) 0.1 (0.06) 0.57 (0.41) 37350 (39438)

Z500

Training 212 (175) 32 (69) 1261 (1649) 3637 (3247) 0.87 (0.72) 0.86 (0.9) 0.14 (0.09) 0.1 (0.05) 0.61 (0.38) 39895 (42154)
Verification 205 (181) 40 (64) 1276 (1556) 3470 (3188) 0.84 (0.74) 0.86 (0.9) 0.13 (0.1) 0.09 (0.06) 0.57 (0.41) 37623 (39415)

V850

Training 205 (186) 39 (58) 1121 (1529) 3777 (3367) 0.84 (0.76) 0.85 (0.89) 0.15 (0.1) 0.11 (0.06) 0.61 (0.45) 39949 (41751)
Verification 200 (170) 45 (75) 1368 (1569) 3378 (3175) 0.82 (0.69) 0.87 (0.9) 0.12 (0.09) 0.08 (0.05) 0.53 (0.36) 38219 (39377)

T500

Training 188 (154) 56 (90) 1431 (1732) 3467 (3164) 0.77 (0.63) 0.88 (0.92) 0.11 (0.08) 0.07 (0.03) 0.48 (0.28) 41175 (42732)
Verification 181 (155) 64 (90) 1793 (1939) 2953 (2805) 0.74 (0.63) 0.91 (0.93) 0.09 (0.07) 0.04 (0.03) 0.36 (0.22) 39368 (40430)

Ts

Training 186 (144) 58 (100) 1679 (1891) 3219 (3005) 0.76 (0.59) 0.9 (0.93) 0.1 (0.07) 0.05 (0.02) 0.42 (0.2) 41376 (43054)
Verification 194 (127) 51 (118) 1829 (1817) 2917 (2927) 0.79 (0.52) 0.9 (0.93) 0.09 (0.06) 0.05 (0.02) 0.41 (0.14) 39196 (40733)

T850

Training 186 (149) 58 (95) 1555 (1758) 3343 (3138) 0.76 (0.61) 0.89 (0.92) 0.1 (0.07) 0.06 (0.03) 0.44 (0.25) 41419 (42871)
Verification 196 (142) 49 (103) 1794 (2025) 2952 (2719) 0.8 (0.58) 0.9 (0.93) 0.1 (0.06) 0.05 (0.02) 0.42 (0.15) 39192 (40633)
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Figure S1: Evolution of 200hPa meridional wind anomalies (unit: m/s). Shaded areas
show anomalies significant at the 5% level. Contours show the consistency of the anomaly
pattern. Green, magenta, and yellow contours show that at least 80%, 87.5%, and 95% of
the cluster members have the same sign of anomalies, respectively. Solid black contours
(contour interval: 5 m/s) in the top rows show the climatological meridional wind. The
ratio in the lower-left corner in the top rows shows the number of events in that cluster
divided by the total number of events. The black rectangle indicates the NorCal region.
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Figure S2: Same as Fig. S1 but for the evolution of total integrated vapor transport
(shading; unit: kg/m-s). The vectors show the 850 hPa wind (unit: m/s). The bottom
color bar pertains to the IVT, and the vertical color bar to the 850 hPa wind.
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Figure S3: Same as Fig. S1 but for the evolution of the 200 hPa air temperature
anomaly (unit: K). Solid black contours (contour interval: 5 K) in the top rows show
the climatological 200 hPa air temperature anomaly.

–37–



manuscript submitted to JGR: Atmospheres

Figure S4: Same as Fig. S1 but for the evolution of the 500hPa air temperature anomaly
(unit: K). Solid black contours (contour interval: 5K) in the top rows show the climato-
logical 500 hPa air temperature anomaly.
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Figure S5: Same as Fig. S1 but for the evolution of the skin temperature anomalies
(unit: K). Solid black contours (contour interval: 10 K) in the top rows show the climato-
logical skin temperature anomalies.
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Figure S6: LSMP clusters for lag 0 500mb geopotential height anomalies during months
November-March. The left panel shows the LSMP for the training period (1948-1982) and
the right panel shows the LSMP for the verification period (1982-2015). Unit:m.
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