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Abstract

This study presents a reliable methodology for monitoring streamflow in a dynamic river of the Alps prone to bathymetric

changes using non-contact instruments. The method relies on water level and surface velocity radar monitoring, discharge

measurements by Large-Scale Particle Image Velocimetry (LSPIV), and topographic surveys. A single proportional relation,

resistant to bathymetric changes, is established between maximum surface velocity (Vs,max) and bulk velocity (Umean).

Different methods are used to build this relation: (i) an empirical approach calibrated with the LSPIV measurements; (ii) the

Isovel model; (iii) the Q-Commander software developed by the Sommer company. The applicability of the method is tested

over a 2.5-year dataset. Compared to the empirical approach, both models, which require minimal input data, predict well the

Vs,max-Umean relation. The location of the maximum surface velocity, which reveals to be resistant to bathymetric changes,

is also well predicted by these models. Discharge is calculated at a time step of 10 min by multiplying the bulk velocity and the

wetted area. The results are compared to the discharge series at the historical station located 2.5 km further upstream, which

has a stage-discharge rating curve. Good agreement is observed when surface velocity is above 0.7 m/s, but accuracy decreases

for lower velocities. A simplified uncertainty analysis estimates a 20% relative error on discharge calculated with the presented

method.
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Abstract 19 

This study presents a reliable methodology for monitoring streamflow in a dynamic river of the 20 

Alps prone to bathymetric changes using non-contact instruments. The method relies on water 21 

level and surface velocity radar monitoring, discharge measurements by Large-Scale Particle 22 

Image Velocimetry (LSPIV), and topographic surveys. A single proportional relation, resistant to 23 

bathymetric changes, is established between maximum surface velocity (Vs,max) and bulk 24 

velocity (Umean). Different methods are used to build this relation: (i) an empirical approach 25 

calibrated with the LSPIV measurements; (ii) the Isovel model; (iii) the Q-Commander software 26 

developed by the Sommer company. The applicability of the method is tested over a 2.5-year 27 

dataset. Compared to the empirical approach, both models, which require minimal input data, 28 

predict well the Vs,max-Umean relation. The location of the maximum surface velocity, which 29 

reveals to be resistant to bathymetric changes, is also well predicted by these models. Discharge 30 

is calculated at a time step of 10 min by multiplying the bulk velocity and the wetted area. The 31 

results are compared to the discharge series at the historical station located 2.5 km further 32 

upstream, which has a stage-discharge rating curve. Good agreement is observed when surface 33 

velocity is above 0.7 m/s, but accuracy decreases for lower velocities. A simplified uncertainty 34 

analysis estimates a 20% relative error on discharge calculated with the presented method. 35 

 36 

Plain Language Summary 37 

Small rivers are very densely distributed over the world, yet only a few are monitored. Many 38 

small rivers are located in mountainous areas and are potentially subject to flash floods and 39 

geomorphological processes. The aim of this study is to propose a monitoring method adapted to 40 

these environments, with high temporal resolution (~ 10 min) and non-contact instruments 41 

(water level and surface velocity radars, video camera), able to give a simple and direct access to 42 

the discharge in order to reduce operating costs and make possible to equip many more small 43 

rivers in the future. This approach is tested in a river of the Southern Pre-Alps in France. A linear 44 

relation is determined empirically between the maximum surface velocity (Vs,max) and the 45 

average velocity of the cross-section (Umean) using image analysis of videos recorded during 46 

floods. This relation is resistant to morphological changes and the position of the maximum 47 

surface velocity remains stable over time. The discharge time series is calculated by multiplying 48 

Umean, derived from the Vs,max-Umean relation (with the radar velocity assimilated to 49 

Vs,max), and the wetted cross-section, derived from the water level radar. The results are 50 

validated through comparison with a reference station on the same river. 51 

1 Introduction 52 

Many applications require monitoring of discharge in rivers, both in the operational field (e.g. 53 

flood and drought warning systems, water resource management, hydroelectric production) and 54 

in academic research (e.g. hydrological modelling, calculation of flux of sediment, nutrient or 55 

contaminant). Streamflow monitoring networks are very unevenly distributed around the world. 56 

They are mainly located in developed countries, often managed by federal or governmental 57 

agencies and generally concern rivers with a drainage area greater than 100 km². The United 58 

States of America (USA) is certainly the best equipped country in the world with a network of 59 

more than 8000 stations belonging to the National Streamflow Network (NSN) managed by the 60 

United States Geological Survey (USGS) (Eberts et al. 2018). These stations cover drainage 61 
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areas ranging from 0.08 km² to 253000 km². The median drainage area is 295 km²; 96.7% (resp. 62 

71.7%) of the stations cover drainage areas larger than 10 km² (resp. 100 km²). In contrast, the 63 

southern countries have a severe lack of streamflow monitoring stations. Satellite observation 64 

(e.g. SWOT) will make it possible to improve the situation for the world's major rivers, which 65 

are more than 100 m wide, or even 50 m wide in the best case, by providing hydrometric data at 66 

a maximum frequency of 21 days (Rodrigez et al., 2020). However, the issue of rivers covering 67 

drainage areas of less than 100 km², referred to as small rivers in this study, will not be improved 68 

by satellite observation in the next decade although they represent an incalculable number of 69 

watercourses. In addition, at this scale, observation has to be done at a high temporal resolution 70 

(sub-hourly) due to the dynamics of the hydrosystems, so in situ monitoring will remain the rule 71 

for a while. Recent studies, such as on land carbon budget to give just one example (Duvert, 72 

2018; Botter, 2022), showed the need to increase the density of streamflow monitoring in small 73 

rivers. The question is how to proceed, bearing in mind that current approaches cannot be 74 

applied because of the considerable resources (human, equipment) they involved. Therefore it is 75 

particularly important for the scientific community to contribute to the development of new 76 

monitoring approaches, using parsimonious and reliable methodologies. 77 

Techniques and methods for reference discharge measurement obtained at a specific time (so-78 

called gauging), enabling to measure directly the discharge, have considerably evolved in the last 79 

decades. It is now possible to measure reference discharge with a known level of uncertainty in a 80 

wide range of conditions of river size, slope and hydrological conditions. In small rivers, 81 

impeller, electromagnetic and acoustic current meters as well as dilution methods are the most 82 

commonly tools used for low to medium flow conditions. For high flow conditions, the use of 83 

imagery like LSPIV (Muste et al., 2008) or STIV (Fujita et al., 2007) and portable surface 84 

velocity radar (Welber et al. ,2016) has enabled measurements in situations never explored 85 

before. 86 

In contrast, streamflow monitoring require specific approaches compared to the reference 87 

discharge measurements. The conventional hydrometric approach still remains the most 88 

commonly used approach to date. It combines water level monitoring and the establishment of a 89 

stage-discharge (H-Q) rating curve allowing the water level time series to be posteriori converted 90 

to streamflow time series. It has incontestable advantages: i) the low cost and high accuracy of 91 

equipment for water level monitoring, ii) the quality of streamflow time series when reference 92 

discharge measurements are carried out regularly (roughly 10 times per year), iii) the availability 93 

of methods for estimating uncertainties such as the Bayesian rating curve framework (Le Coz et 94 

al., 2014) or LOWESS regression (Coxon et al., 2015), see Kiang et al. (2018) for a review. On 95 

the other hand, the drawbacks of this method are: i) the operational costs due to the human 96 

resources involved , ii) the diversity of technical equipment required for the reference discharge 97 

measurements, iii) the initial delay in the provision of streamflow time series as it might take 98 

several years before establishing a reliable H-Q rating curve based on an extended range of 99 

reference discharge measurements, iv) the exposure to hydro-meteorological risks for the staff 100 

carrying out reference discharge measurements during floods, v) the sensitivity to hydraulic 101 

control shifts, mainly caused by changes in bathymetry. Indeed, as soon as a flood significantly 102 

modifies the geometry of the cross-section (deposition or erosion), the H-Q rating curve has to be 103 

completely rebuilt with a new set of reference discharge measurements. In highly morphogenic 104 

rivers, it is even impossible to apply this approach as the H-Q rating curves change so often. 105 
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Since the 2000s, other approaches have gradually been developed. They can be grouped together 106 

under the heading of velocimetric approaches insofar as they combine both the monitoring of the 107 

water level (H) and the velocity (V) at high temporal resolution. A first attempt has been to 108 

automate image-based discharge measurement techniques from one or more fixed cameras 109 

(Hauet et al., 2008; Le Coz et al., 2010; Stumpf et al., 2016; Li et al., 2019). Water level may be 110 

monitored by the camera itself or by an independent instrument (e.g. pressure sensor, radar, ultra 111 

sound). Video sequences of a few seconds are recorded at high temporal resolution (e.g. every 5 112 

to 30 minutes). Surface velocity fields are then calculated usually in real time on site to avoid the 113 

need for extensive data transfer and storage. There exist commercial solutions for such 114 

technology (e.g. Tenevia, Vortex-IO, Seba’s Discharge Keeper, Xylem’s Q-Cam) which are 115 

either connected to the grid or autonomous in energy. Another velocimetric approach which has 116 

seen moderate growth over the last decade is the index velocity method. It was initially presented 117 

by Levesque and Oberg (2012). This approach can substitute completely the conventional 118 

hydrometric approach for the production of discharge time series (Kästner et al., 2018; 119 

Gonçalves et al., 2023). It requires two relations: (i) a H-Awet relation for the calculation of the 120 

wetted area (Awet) based on regular topographical surveys of the monitored cross-section; (ii) a 121 

V-Umean relation for the calculation of the mean cross-section velocity Umean (so-called bulk 122 

velocity). The V-Umean relation, calibrated using a set of reference discharge measurements, can 123 

be a simple-linear regression, a compound-linear regression or a multiple-linear regression 124 

(Levesque and Oberg, 2012). Once the H-Awet and V-Umean relations are built, the calculation of 125 

discharge at any time step (t) can be done by multiplying the terms Awet(t) and Umean(t). The 126 

index velocity (V) can be monitored using different types of instruments (e.g. horizontally-127 

oriented Acoustic Doppler Current Profiler, ultrasonic transit-time, surface velocity radar, 128 

acoustic Doppler velocimeter), which makes this approach very flexible. However, the main 129 

limitations of this approach are: (i) it still requires a large number of reference discharge 130 

measurements, which implies both operating costs and human resources; (ii) velocity monitoring 131 

is generally not as accurate as water level monitoring, which introduces noise in the calculated 132 

discharges; (iii) it still needs regular survey of the bathymetry of the cross-section, to establish 133 

and maintain the H-Awet relation. 134 

The aim of this study is to produce continuous time series of discharge focusing on steep rivers 135 

(slope typically higher than 1%), subject to frequent topographic changes due to morphogenic 136 

floods, where none of the above approaches are really suitable. The use of non-contact 137 

instrumentation is preferred in order to avoid problems of maintenance and destruction by flash 138 

floods. Such conditions are common in mountainous regions of Mediterranean and tropical areas, 139 

where discharge may vary up to 3 or 4 orders of magnitude in a few hours. We propose to follow 140 

a velocimetric approach, similar to the index velocity method, using a local surface velocity 141 

monitored by a fixed radar (Vs). We propose to establish a Vs-Umean relation based on reduced 142 

information, i.e. topographic surveys and automatic video recordings, which can be obtained 143 

outside flood periods for the former, and during flood periods for the latter. Specifically, we 144 

decide to focus on the Vs,max-Umean relation between the maximum surface velocity and the bulk 145 

velocity. There are two reasons for this choice: (i) Chiu (1988, 1991) and Chiu and Said (1995) 146 

identified a linear relation between Umean and the maximum velocity Vmax in a river cross-section, 147 

with this relation invariant with time and discharge (Chiu and Tung, 2002; Chiu and Chen, 148 

2003). The existence of this linear relation was verified by Moramarco and Singh (2010) and 149 

Fulton et al. (2020) with observed data. (ii) The vertical axis on which Vmax occurs is called the 150 

“y axis”. Vs,max is located in the same vertical axis as Vmax  as demonstrated by Chen and Chiu 151 
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(2004) and Fulton et al., (2020). In natural river sections controlled by slope and roughness, it 152 

seems reasonable to assume that Vmax is located close to the surface and therefore Vs,max can be a 153 

good approximation of Vmax.  154 

A new dataset of observed data collected in a river of the southern French pre-Alps is used to 155 

apply this framework. The first objective of this study is to verify the existence of a linear Vs,max-156 

Umean relation using image-based surface velocity and discharge measurements derived from 157 

automatic video records and regular topographic surveys. Additionnaly, the resistance of this 158 

relation to morphological changes is tested. The second objective is to test if this linear Vs,max-159 

Umean relation can be reasonably well predicted by theoretical models. Such models include: (i) 160 

the isovel model, initially developed by Maghrebi, (2006), which is a theoretical model based on 161 

an analogy from Biot-Savart's law of electromagnetism (Hayt, 1981) to calculate the distribution 162 

of velocity within a cross-section, (ii) the Q-Commander software developed by the Sommer 163 

company (Sommer, 2013). The third objective is to test the steadiness of the localisation of the 164 

maximum surface velocity within the cross-section using image-based surface velocity 165 

measurements and theoretical models regardless of the existence of morphological changes. The 166 

fourth objective is to evaluate the ability to produce streamflow times series using the framework  167 

defined by the index velocity method and the Vs,max-Umean relation predicted by the empirical 168 

method calibrated with image-based results. 169 

2 Materials and Methods 170 

2.1 Site description and monitoring equipment 171 

This study is based on data collected in the Galabre river which belongs to the Draix-Bléone 172 

Observatory (https://oredraixbleone.inrae.fr/en/) and is part of the French research infrastructure 173 

OZCAR (Gaillardet et al., 2018). The Galabre river is a tributary of the Bléone river. The 174 

Galabre catchment is presented in detail by Esteves et al. (2019) and Legout et al. (2021). Mean 175 

annual rainfall is respectively 958 mm at La Robine sur Galabre close to the outlet (alt. 750m 176 

a.s.l) and 1046 mm at Ainac in the upstream part of the catchment (alt. 1145m a.s.l.). Erosion 177 

and sediment transport processes are very active in this catchment due to the presence of patches 178 

of non-vegetated badlands (representing 9% of the total area), the general slope of the basin 179 

(mean slopes of 54, 19 and 6% for hillslopes, intermittent rivers and the main river, respectively) 180 

and the influence of Mediterranean rainfall and mountain thunderstorms (Esteves et al., 2019). 181 

A conventional hydrometric station monitors streamflow at a 10-min time step at La Robine sur 182 

Galabre, at the outlet of the 20 km² catchment, since 2007 (Legout et al., 2021). The cross-183 

section is very stable as, in this reach, the river flows over limestone slabs and the local slope (3 184 

%) is high enough to prevent sediment deposition. The station is equipped with a radar for water 185 

level monitoring. A stage-discharge rating curve was established from 35 reference discharge 186 

measurements using different gauging techniques (dilution, impeller current meter, 187 

electromagnetic current meter) applied between 2007 and 2014 (ranging from 0.017 m
3
 s

−1
 to 188 

0.948 m
3
 s

−1
) and an extrapolation performed by hydraulic modelling (HEC-RAS) (Esteves et al., 189 

2019). 190 

A new station called RIPLE (River Platform for Monitoring Erosion) was installed in October 191 

2018 on the Galabre river, 2.5 km downstream of La Robine sur Galabre. Nord et al. (2020) 192 

presented the developpement of the RIPLE platform, an autonomous low-power instrument 193 
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platform for monitoring water and solid discharges in mesoscale rivers. The RIPLE station is 194 

equipped with a fixed surface velocity radar (so-called V radar), a water level radar (so-called H 195 

radar) and a video camera dedicated to Large Scale Particle Image Velocimetry (LSPIV) analysis 196 

as illustrated by the schematic diagram in Figure 1. A staff level gauge is also installed on the 197 

river bank. Both radars are installed on the same extension arm anchored to the vertical wall of 198 

the bridge on the downstream side, as shown in Figure 2. The sampling time step of the platform 199 

is 10 min. Water level and surface velocity data are remotely transmitted once a day to the lab in 200 

Grenoble. The RIPLE station is located in a gravel-bed river reach prone to frequent bathymetry 201 

changes. 202 

The H radar (CRUZOE manufactured by Paratronic) works on the time-of-flight principle. It 203 

points vertically below its position with a total opening angle of 12°. Each logged value is the 204 

average of three measuring cycles, each lasting 4 s and separated by 5 s. During each measuring 205 

cycle, the instrument makes 16 measurements per second. The logged variable is called Hrad in 206 

this study. The standard deviation (STD) is also logged simultaneously. 207 

The V radar (RG-30 manufactured by Sommer) works on the Doppler principle. For more details 208 

about the radar Doppler technology, the readers can refer to the study presented by Fulton et al. 209 

(2020), Son et al. (2023) and Huang et al. (2023). The V radar points slightly further downstream 210 

at an angle of 32 degrees to the vertical and with a total opening angle of 12°, so that the centre 211 

of the zone targeted by the V radar is located 3.7 m further downstream for very low flow 212 

conditions (respectively 2.5 m further downstreal for a water depth of 2 m). Every measurement 213 

is time averaged over 30 records obtained at a frequency of 1 Hz. The logged variable is called 214 

Vrad in this study. 215 

The AXIS P1435-LE camera is mounted on a mast from the bridge deck, looking downstream. 216 

The camera, which is triggered when the value of water level exceeds a threshold, records video 217 

at an interval of 30 min during storm events. It takes short videos (approximately 7 s) of the river 218 

scene at a rate of 30 frames per second. This configuration allows for effective utilization of 219 

media storage, reduces energy consumption of the platform and ensures that only high flow 220 

conditions are captured for LSPIV analysis. The video sequences stored in a SD card of the 221 

LSPIV camera are retrieved regularly during field visits. 222 

The LSPIV cross-section used for analysis and calculation is located slightly further downstream 223 

of the bridge. Indeed, the presence of a natural step formed by the bedrock under the upper part 224 

of the bridge creates a hydraulic jump and conditions that are particularly challenging for 225 

hydrometric monitoring. The river is more uniform downstream of the bridge, and therefore 226 

more appropriate to velocity exploration. The horizontal distance between the H radar and the 227 

“LSPIV cross-section” shown in Figure 2 is approximately 10 m. The slope of the river is of the 228 

order of 2% in this reach, which means that, assuming a slope of the free surface parallel to the 229 

slope of the bed, a drop in the water level of 0.2 m is applied to the value of Hrad to obtain the 230 

corresponding value in the “LSPIV cross-section”, so-called HLSPIV. 231 

 232 
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 233 
Figure 1 – Conceptual sketch of a velocimetric station with the different instruments deployed including fixed surface velocity radar (V 234 

radar), water level radar (H radar), LSPIV camera and staff level gauge. 235 
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 236 

 237 
Figure 2 - a) photograph of the RIPLE platform on the Galabre River taken from downstream of the bridge and looking upstream, b) 238 
aerial view of the bridge housing the RIPLE platform and the river reach downstream of the bridge with the radars cross-section, the 239 

LSPIV cross-section, and the location of the instruments. The yellow ellipse indicates the approximative area targeted by the V radar in 240 
low flow conditions such as those shown in the image. The blue ellipse indicates the approximative area targeted by the V radar when the 241 

water depth is around 2 m. 242 
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2.2 Data control and curation 243 

The period from October 2018 to May 2021 is considered in this study. For the upstream station 244 

at La Robine sur Galabre, data are regularly controlled before being publicly released through 245 

the online data platform of the Draix-Bléone observatory (https://bdoh.irstea.fr/DRAIX/nos-246 

donnees?site=Galabre). The quality codes are presented in Table 1. The raw data produced by 247 

the H radar are often of good quality and directly validated. 248 

For the downstream station, the same procedure of quality control is applied. Quality codes are 249 

assigned to processed data as presented in Table 1. Velocity data are often more spurious than 250 

water level data (Blake and Packman, 2008; Nord et al., 2014; Fulton et al., 2020; Rahman Khan 251 

et al. 2021). Customized filters based on statistical parameters have been designed for surface 252 

velocity data. The methodology is adapted from Blake and Packman (2008) and Nord et al. 253 

(2014). The order of filters follows the same sequence: 254 

1. Missing values (NaN): values are replaced by -9999 and quality code ‘l’ is 255 

assigned. Given the regular morphological changes in the river bed, some periods of 256 

missing data occur due to the presence of a gravel bar that formed temporarily below the 257 

H-V radars on the right bank of the river. This situation represents 34.2% of the total 258 

dataset and is rather more frequent from the end of 2020. 259 

2. Repeat velocity error: Given natural flow variability and resolution of radar, more 260 

than three repeated and consecutive values are unlikely. These are clone observations and 261 

are replaced by -9999 with a quality code ‘i’. 262 

3. Spurious observations: A moving window average is used with a fixed window 263 

size of 4 steps (40 min). The observation is considered erroneous when difference 264 

between recorded and moving average at a time step is more than 30%. These are 265 

replaced by -9999 and quality code ‘i’ is assigned. 266 

4. Physical and configuration limit: The maximum surface velocity in natural river is 267 

limited to 7.0 m/s. The lower limit of 0.2 m/s is recommended by manufacturer. The 268 

observations exceeding maximum and below minimum are replaced by -9999 and quality 269 

code ‘i’ is assigned. 270 

5. Signal to noise ratio (SNR): The radar manufacturer recommends a lower limit for 271 

the value of the quality. The data with a SNR value lower than 30 is replaced by quality 272 

code ‘d’. The values are maintained since deleting these may lead to parting away of 273 

useful information during subsequent analysis. 274 

6. Valid: All other remaining logged data is checked and quality code ‘v’ is 275 

assigned. This represents 51.2% of the total dataset and 77.8% of the dataset without 276 

missing data. Most of unvalidated data are associated with low velocities values, typically 277 

lower than 0.5 m/s. 278 

 279 

 280 

 281 

 282 
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Table 1 – Quality codes assigned to processed data 283 

Sr.No. Quality Code Value Comment 

1 Valid v raw data observation found valid 

2 Doubtful d raw data unexpected observation but still physically acceptable 

3 Estimate  e reconstructed  reconstructed data (e.g. interpolation) 
4 Lack l -9999 gap - missing observation (blank or NaN) 
5 Invalid i -9999 erroneous observation that has been deleted 

 284 
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 285 

2.3 Topographic surveys and detection of bathymetric shifts 286 

As seen in Figure 2, the downstream station (RIPLE) is located in a gravel-bed river reach where 287 

the morphology is likely to change regularly due to active sediment transport processes. 288 

Different methods, i.e. total station, lasermeter, D-GPS, are used to carry out 289 

topographic/bathymetric surveys of the LSPIV cross-section as illustrated in Figure 2. Each time, 290 

three reference points are surveyed in order to convert all the data into the same local reference 291 

frame represented in Figures 1 and 2. 292 

A first survey of the LSPIV cross-section was conducted in October 2018 when the station was 293 

installed. Regular surveys were then carried out during field visits (9 in total over the study 294 

period). These data enable to build the H-Awet relation of the LSPIV cross-section after each new 295 

bathymetric change. Plotting the H-V data provided by the H-V radars can help detect 296 

bathymetric changes (Rahman Khan et al., 2021). Indeed, a sudden shift in the H-V scatter plot, 297 

which often occurs during major floods, indicates a change in bathymetry and the need for a new 298 

bathymetric survey of the LSPIV cross-section. Points that cause the deviation in the scatter plot 299 

can reveal the exact timing of the morphological changes. By following this procedure, it is 300 

possible to accurately track and identify the changes occurring in the bathymetry. The AreaComp 301 

version 2.1 software (United States Geological Survey, 2021) was used to calculate the H-Awet 302 

relations. 303 

2.4 LSPIV analysis 304 

Large scale particle image velocimetry (LSPIV) is a technique that performs image processing 305 

and pattern tracking to measure the velocity of a flowing fluid (Hauet et al., 2008; Muste et al., 306 

2008; Le Coz et al., 2010). It works by analysing consecutive images taken at a fixed time 307 

interval and tracking the movement of visible patterns at the surface of the fluid thanks to a 308 

pattern-matching algorithm, with a likelihood criterion based on cross-correlation. In this study, 309 

the software Fudaa-LSPIV v1.8.2 (Le Coz et al. 2014) was used. Figure 3 illustrates the various 310 

steps involved in producing a surface velocity field and calculating discharge. 311 

Step 1 – Image Extraction: A total of 2381 video sequences were recorded during the study 312 

period. However, 2024 video sequences were withdrawn due to improper camera trigger settings 313 

between 04/10/2018 and 03/07/2019. In addition, all video sequences recorded at night and with 314 

bad quality of tracers were omitted as they were not exploitable for the LSPIV. In the end, a total 315 

of 69 video sequences were selected for this study. Once video sequences were selected 316 

manually, images were extracted using default time step of 0.033 s. The value of the water level 317 

in the “LSPIV cross-section”, HLSPIV, was also entered for each video sequence. 318 

Step 2 – Orthorectification: the coordinates of 11 ground reference points marked on site at 319 

different locations using black and white paint were used for orthorectification. This step allows 320 

to calibrate the camera model, to correct distortion due to perspective and provides metric scale 321 

to images instead of pixels. A resolution of 0.02 m/pixel was assigned for good visualization of 322 

natural tracer. 323 
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Step 3 – LSPIV analysis: Pearce et al. (2020), evaluated application of various image 324 

velocimetry algorithms, including the widely used LSPIV algorithm. They found that velocity 325 

results are sensitive to the interrogation area (IA) parameter. Le Coz et al. (2010) recommended 326 

that IA be sized enough to include enough tracers and small enough to be computationally 327 

effective. Therefore, the value of IA was derived from a first test involving two video sequences 328 

covering a wide range of surface velocities, i.e. the video sequence corresponding to the highest 329 

measured radar velocity and the video sequence corresponding to the lowest radar velocity. This 330 

methodology assured the applicability of a single parameter choice for the entire range of video 331 

sequences. The value of IA was set to 0.48 m. The spatial resolution of the grid used to perform 332 

LSPIV calculation was 0.36 m in the Y direction and 0.66 m in the X direction. There were 40 333 

points in the Y direction covering the width of the river at high flows and 30 points in the X 334 

direction from X = 2 m to X = 17.65 m. 335 

Step 4 – Post processing: Instantaneous velocities obtained for each pair of consecutive images 336 

were used to calculate time-averaged results of surface velocity field over the whole video 337 

sequence. This was carried out after applying filters on minimum and maximum correlation 338 

coefficient and velocity. In this study, correlation range of 0.6-1.0 and minimum velocity of 0.5 339 

m/s were found to be the most suitable filters to remove spurious results and obtain the most 340 

relevant surface velocity fields. 341 

Step 5 – Discharge and Vs,max: The cross-section where the discharge is to be measured (so-342 

called “LSPIV cross-section”) was imported. This transect was interpolated at a regular step of 343 

0.1 m with calculation of the corresponding water depth at each new point. The search radius 344 

was 1 m in the longitudinal direction and 0.2 m in the transverse direction. This means that the 345 

points of the grid that are within this search radius are weight-averaged by distance to produce 346 

the velocity component perpendicular to the transect at each interpolated point of the transect. 347 

Fudaa-LSPIV uses a velocity index (α), so-called depth-averaged to surface velocity ratio, to 348 

transform surface velocity to depth-averaged velocity. Welber et al. (2016), Hauet et al. (2018) 349 

confirmed the acceptability of default velocity index value of 0.85 on multiple sites under 350 

different hydraulic configurations. The default value of 0.85 was used in this study since no 351 

ADCP or current meter measurement was available to adjust the value of α. Discharge was then 352 

computed as the sum of the contributions of discharge per unit width over the whole interpolated 353 

transect. Finally, the maximum value of surface velocity (so-called Vs,max_LSPIV) as well as its 354 

spatial coordinates were extracted by calculating the moving average over 8 points to smooth out 355 

any erratic results. 356 
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 357 
Figure 3 – Main steps involved in producing surface velocity field and calculating discharge using Fudaa-LSPIV v1.8.2 358 
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 2.5 The Vs,max_LSPIV-Umean relation 359 

Four methods were initially identified to build the Vs,max-Umean relation : (i) the Entropy model; 360 

(ii) the Isovel model; (iii) a calibration using LSPIV measurements; (iv) the Q-Commander 361 

model.  However, the application of the Entropy model was not concluding in our case and the 362 

results were excluded from the study. Given the importance of this approach in the literature, the 363 

Entropy model is still presented briefly below since part of its formalism has been retained for 364 

this study. The possible reasons why the application failed are also mentioned. 365 

2.5.1 Entropy model 366 

Chiu (1987, 1988), Chiu and Tung (2002), Chiu and Chen (2003) proposed a velocity 367 

distribution equation based on the probability concept and the Shannon’s information entropy 368 

(Shannon, 1948). The velocity distribution at the “y axis”, i.e. the axis of the cross-section on 369 

which the maximum velocity Vmax occurs, is represented by: 370 

 371 

𝑢 =
𝑉𝑚𝑎𝑥

𝑀
𝑙𝑛[1 + (𝑒𝑀 − 1)𝐹(𝑢)]      (1) 372 

where u = velocity as a function of depth at the “y axis”; Vmax = maximum velocity at the “y 373 

axis”; M = parameter of the probability distribution used to describe the velocity distribution; 374 

and 𝐹(𝑢) = ∫ 𝑓(𝑢)
𝑢

0
𝑑𝑢, which represents the cumulative distribution function, or the probability of 375 

a randomly sampled point velocity that is less than or equal to u. 376 

The probability distribution 𝑓(𝑢), is resilient and is invariant with time and water level at a 377 

channel cross section. M is constant at a channel cross section. Chiu (1987, 1988) identified a 378 

linear relationship, function of the parameter M, between Umean and Vmax in a channel cross-379 

section. ∅, which is the ratio between Umean and Vmax is expressed by Chiu and Tung (2002), as 380 

follows: 381 

∅ =
𝑈𝑚𝑒𝑎𝑛

𝑉𝑚𝑎𝑥
=

𝑒𝑀

(𝑒𝑀−1)
−

1

𝑀
       (2) 382 

In its original form, the method requires at least one complete distribution of velocity within the 383 

cross-section, obtained by ADCP or current meter for example. Since such data did not exist in 384 

our case, the original method as applied by Fulton et al. (2020) could not be applied. 385 

Alternatively, Farina et al. (2014) proposed derived procedures applicable to cases where only 386 

the surface velocity is available (either the complete surface velocity distribution or only the 387 

maximum surface velocity). These derived procedures were attempted in our case using the 388 

LSPIV measurements. However, the results were not satisfactory. It seems that the parametric 389 

formula used to determine the position of the maximum velocity in the vertical initially proposed 390 

by Chiu and Tung (2002) was calibrated with data from large rivers and is not suitable for small 391 

rivers.  392 

With reference to the formalism of the Entropy model, we introduce the ratio ∅s between Umean 393 

and Vs,max expressed as: 394 

∅𝑠 =
𝑈𝑚𝑒𝑎𝑛

𝑉𝑠,𝑚𝑎𝑥
       (3) 395 
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2.5.2 Isovel model  396 

 397 

Figure 4 - Section where uspm is calculated for each point inside the cross-section considering a desired mesh size. 398 

The original motivation of the development of the Isovel model was to improve reference 399 

discharge measurements by minimising the number of sampling steps during velocity gauging, if 400 

possible to a single point velocity measurement. The model was initially developed by Maghrebi 401 

(2003). This approach draws its inspiration from the Biot–Savart law (Hayt,1981), which can be 402 

used to calculate the intensity of a magnetic field generated at a point in space by an infinitely 403 

long wire carrying a stationary and steady current. Maghrebi (2006) used this analogy to quantify 404 

the impact of perimeter roughness on velocity inside the channel. In this method, the velocity of 405 

any point inside the river cross-section depends on its distance (r) from the wetted perimeter 406 

(Pw) and the constant related to the boundary roughness (c1). uspm means the velocity of a single 407 

point measurement. As in Figure 4, the incremental velocity of any point inside the cross-section 408 

duspm is due to cross product between the function f(r), an infinitesimal element of wetted 409 

perimeter dp, and c: 410 

𝒅𝒖𝒔𝒑𝒎 =  𝑓(𝒓) × 𝑐1 𝐝𝐩      (4) 411 

f(r) is the dominant velocity function according to Kavousizadeh and Ahmadi (2018) and Ali and 412 

Maghrebi (2023). The direction of the velocity is normal to the plane containing the vector of the 413 

infinitesimal element of wetted perimeter (dp) and the vector drawn from the infinitesimal 414 

element of wetted perimeter to the point where the velocity is calculated (r). Since vectors r and 415 

dp are located in a plane normal to the main flow direction, the cross product of them is normal 416 

to the plane of the section. 417 

 418 

The velocity in the main flow direction can be obtained by integration along the wetted perimeter 419 

as: 420 

 421 

𝒖𝒔𝒑𝒎 =  ∫ 𝒅𝒖𝑠𝑝𝑚 =  ∫ 𝑓(𝒓) × 𝑐1 𝐝𝐩
𝑃𝑤

0

𝑃𝑤

0
     (5) 422 

 423 

And the scalar of the velocity in a Cartesian coordinate system (x,y,z), as shown in Figure 4, is 424 

obtained as: 425 

 426 

𝑢𝑠𝑝𝑚(y, z) =  ∫ 𝑓(𝑟) 𝑐1 𝑑𝑝 𝑠𝑖𝑛𝜃 =  ∫ 𝑐1 𝑠𝑖𝑛𝜃 𝑓(𝑟) 𝑑𝑝
𝑃𝑤

0

𝑃𝑤

0
    (6) 427 
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As a result, points far from the perimeter will have higher values of uspm than those which are 428 

located close to the perimeter.  429 

Then, for the distance function f(r), Maghrebi (2006) considers power law of velocity 430 

distribution function (Chen, 1991) as follows: 431 

𝑓(𝑟) = 𝑢∗(𝑐2  𝑟
1

𝑚)      (7) 432 

Where 𝑢∗ is the shear velocity which comes from 𝑢∗ =  √𝜏0/𝜌 with 𝜏0 the boundary shear stress 433 

and 𝜌 the mass density of fluid, c2 is the coefficient related to turbulent intensity, and m is an 434 

exponent ranging between 1/4 to 1/12 which depends on the intensity of the turbulence. 435 

Numerous experiments show that a value of m = 1/7 agrees well for turbulent velocity profiles in 436 

smooth boundaries (Chen, 1991), (Wright and Parker, 2004). 437 

Then, replacing Equation 7 in Equation 6 gives: 438 

𝑢𝑠𝑝𝑚(y, z) =  ∫ 𝑐1𝑢∗ (𝑐2 𝑟
1

𝑚) sinθ dp
𝑃𝑤

0
     (8) 439 

By considering 𝑐 = 𝑐1 𝑐2 𝑢∗ and 𝑚 = 7, Equation 8 can be rewritten as: 440 

𝑢𝑠𝑝𝑚(y, z) =  ∫ c (𝑟
1

7) sinθ dp
𝑃𝑤

0
     (9) 441 

 442 

The bulk theoretical velocity Uspm is obtained by integrating uspm over the channel section: 443 

𝑈𝑠𝑝𝑚 =  
∫ 𝑢𝑠𝑝𝑚(𝑦,𝑧) 𝑑𝐴

 
𝐴

𝐴
=  

∫ (∫ 𝑐 (𝑟
1
7

𝑃𝑤
0 ) sinθ )dA

 
𝐴

𝐴
     (9) 444 

Finally, dividing the theoretical point velocity to the theoretical bulk velocity provides with the 445 

dimensionless isovel coefficient (ɳ) at any point of the cross-section: 446 

𝜂(𝑦, 𝑧) =
𝑢𝑠𝑝𝑚(𝑦,𝑧)

𝑈𝑠𝑝𝑚
       (10) 447 

In case of uniform roughness and shear velocity along the perimeter, the term c is cancelled and 448 

Equation 10 only depends on r, 𝜃 and dA. This assumption was made in this study as it was done 449 

in the work of Kavousizadeh and Ahmadi (2018). This results in a parsimonious method for 450 

calculating the velocity distribution within the channel cross-section as only bathymetric data are 451 

required. 452 

In this study, the dimensionless isovel coefficient corresponding to the point with the highest 453 

surface velocity is called ɳs and is defined as: 454 

𝜂𝑠 =
𝑉𝑠,𝑚𝑎𝑥

𝑈𝑚𝑒𝑎𝑛
       (11) 455 

It is worth to note that 𝜂𝑠 is the inverse of ∅s. The accuracy of this method is affected by the 456 

channel bed control, non-uniformity of the cross section, irregular flow directions and presence 457 

of singularities. The choice of the cross-section is therefore crucial. This choice must follow the 458 



manuscript submitted to Water Resources Research 

 

common rules for gauging using the velocity-area method, i.e. reach of river as uniform as 459 

possible, with quasi 1D velocities. 460 

To the knowledge of the authors, this study is the first application of the Isovel model in irregular 461 

cross-sections as all other applications of this method has been done on wide regular sections. 462 

For each video records analysed with Fudaa-LSPIV, the value of water level in the “LSPIV 463 

cross-section”, i.e. HLSPIV, as well as the appropriate bathymetry, were entered to apply the Isovel 464 

model. This resulted in the value of 𝜂𝑠. The spatial coordinates of the point corresponding to 𝜂𝑠 465 

were also extracted in order to give the position of the “y axis”. Umean_Isovel was then calculated as 466 

the product of Vs,max_LSPIV by the value of 
1

𝜂𝑠
. Finally, the slope of the regression between all pairs 467 

of (Vs,max_LSPIV, Umean_Isovel) was calculated. 468 

2.5.3 Calibrated relation using LSPIV results 469 

For each video records, Umean_LSPIV was calculated by dividing the value of discharge Q by Awet 470 

in the “LSPIV cross-section”. The value of discharge was obtained through the LSPIV analysis 471 

as described in section 2.4. The value of Awet was derived from the H-Awet relation for the value 472 

of HLSPIV. Historical pairs of Vs,max_LSPIV and Umean_LSPIV were then plotted and the slope of the 473 

linear regression forcing to go through the zero intercept was computed. This method is similar 474 

to the preferred method used by Fulton et al. (2020) for computing the value of 𝜙 with the 475 

Entropy model. However, in the present case, the slope of the Vs,max_LSPIV-Umean_LSPIV gives the 476 

value of 𝜙𝑠. 477 

2.5.4 Q-Commander 478 

The Sommer company has developed the Q-Commander software in order to process velocity 479 

measured with surface velocity radars (e.g. RG-30, RQ-30). This software gives the distribution 480 

of the dimensionless k-factor throughout the cross-section. The k-factor is the ratio between the 481 

bulk velocity and the measured local velocity at the surface. It is therefore analogous to the 482 

inverse of ɳ of the Isovel model. The documentation of the software (Sommer, 2013) states that 483 

the value of the k-factor is usually in the range of 60 to 120% for suitable flow measurement 484 

sites, depending on the shape of the profile, the actually measured water level, the position of the 485 

radar sensor, and the roughness of the profile. As input, the software requires the profile of the 486 

cross-section, the roughness of the river bed and the lateral position of the radar sensor in the 487 

cross-section. Subsequently, the cross-section area and the k-factor are automatically calculated 488 

for each defined water level value. The equations used in the model are not available, but the 489 

model is based on the universal logarithmic law of the wall and considers the influence of the 490 

complete cross-section (Sommer, 2013). In this study, the version 2.0.3.5 of the Q-commander 491 

software was used. The conditions (i.e. profile of the cross-section, value of the water level) of 492 

each video records analysed with Fudaa-LSPIV were used as input, the roughness was set to 100 493 

(gravel bed) and the position that gives the lowest k-factor value was sought in the cross-section. 494 

Such a position corresponds to the “y axis” and the lowest value of the k-factor corresponds to 495 

𝜙𝑠. Umean_Commander was then calculated as the product of Vs,max_LSPIV by the lowest value of k-496 

factor. Finally, the slope of the regression between all pairs of (Vs,max_LSPIV, Umean_Commander) was 497 

calculated. 498 
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2.6 Discharge time series calculation 499 

2.6.1 Relation between Vrad and Vs,max_LSPIV 500 

In this study, the index velocity is Vrad, monitored from the downstream side of the bridge. In 501 

order to apply the theoretical framework of the index velocity method with the objective of 502 

deriving time series of discharge, a relation has to be built between Vrad and Umean. At the 503 

moment, different methods have been presented to build a linear relation between Vs,max_LSPIV 504 

and Umean in the “LSPIV cross-section”. A complementary relation has to be established between 505 

Vrad measured from the downstream side of the bridge in the “radars cross-section” and 506 

Vs,max_LSPIV in the “LSPIV cross-section”. For each video records analysed with Fudaa-LSPIV, 507 

the value of Vs,max_LSPIV was extracted and the synchronized value of Vrad was also retrieved. 508 

Historical pairs of Vrad and Vs,max_LSPIV were then plotted and a linear regression was computed. 509 

2.6.2 Discharge algorithm 510 

The procedure was designed to calculate continuously water discharge (Q) from the variables 511 

Hrad and Vrad monitored by the H-V radars at each time step (t). To accomplish this, the 512 

methodology can be summarised as follows: 513 

1) The periods with stable bathymetry were identified from the analysis of the Hrad-514 

Vrad data series and the corresponding H-Awet relations were calculated using the 515 

AreaComp version 2.1 software 516 

2) At each time step, Hrad(t) in the “radars cross section” was converted into 517 

HLSPIV(t) in the “LSPIV cross section” by applying a linear transformation that considers 518 

the slope and the distance between the “radars cross-section” and the “LSPIV cross-519 

section” (reduction of 0.2 m in water level) 520 

3) At each time step, Awet(t) in the “LSPIV cross section” was calculated using 521 

HLSPIV(t) and the corresponding H-Awet relation  522 

4) At each time step, Vrad(t) was transformed into Vs,max_LSPIV(t) using the Vrad-523 

Vs,max_LSPIV linear relation that enables to shift from the “radars cross section” to the 524 

“LSPIV cross section” (see section 2.6.1) 525 

5) At each time step, Umean(t) was calculated using one of the Vs,max_LSPIV-Umean 526 

linear relations presented in section 2.5. In this study, the relation calibrated with LSPIV 527 

results was selected. 528 

6) At each time step, Q(t) was calculated as the product of Umean(t) by Awet(t). 529 

2.6.3 Uncertainty 530 

An analysis of the uncertainty in the procedure of calculation of discharge time series was 531 

carried out. Given that Q(t) is calculated as the product of Umean(t) by Awet(t), and considering 532 

that the error sources related to Umean(t) and Awet(t) are independent, the squared relative standard 533 

uncertainty 𝑢′2(𝑄) could be expressed following the Guide to the expression of the uncertainty in 534 
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measurement (ISO/IEC 98-3, 2010) as the sum of the squared standard uncertainties of the error 535 

sources: 536 

𝑢′2(𝑄) = 𝑢′2(𝑈𝑚𝑒𝑎𝑛) + 𝑢′2(𝐴𝑤𝑒𝑡)     (12) 537 

Considering that Umean is obtained from two independant linear relations applied consecutively, 538 

𝑢′2(𝑈𝑚𝑒𝑎𝑛) is expressed as follows: 539 

𝑢′2(𝑈𝑚𝑒𝑎𝑛) = 𝑢′2(𝑉𝑟𝑎𝑑) + 𝑢′2 ((𝑉𝑟𝑎𝑑 , 𝑉𝑠,max _𝐿𝑆𝑃𝐼𝑉)
𝑟𝑎𝑡𝑖𝑛𝑔

) + 𝑢′2 ((𝑉𝑠,max _𝐿𝑆𝑃𝐼𝑉, 𝑈𝑚𝑒𝑎𝑛)
𝑟𝑎𝑡𝑖𝑛𝑔

)  (13) 540 

Similarly, considering that Awet is obtained from a non-linear relation depending on the 541 

bathymetric profile of the “LSPIV cross-section” and the value of HLSPIV which itself is derived 542 

from Hrad using the slope and the distance between the “radars cross-section” and the “LSPIV 543 

cross-section”, 𝑢′2(𝐴𝑤𝑒𝑡) is expressed as follows: 544 

𝑢′2(𝐴𝑤𝑒𝑡) = 𝑢′2(𝑏𝑎𝑡ℎ𝑦𝑚𝑒𝑡𝑟𝑦) + 𝑢′2(𝐻𝑟𝑎𝑑) + 𝑢′2(𝑠𝑙𝑜𝑝𝑒)    (14) 545 
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The standard uncertainties 𝑢′(𝑉𝑟𝑎𝑑) and 𝑢′(𝐻𝑟𝑎𝑑) are calculated as the standard relative errors of 546 

the variables Vrad and Hrad which are the standard deviations divided by the means. The standard 547 

uncertainties 𝑢′ ((𝑉𝑟𝑎𝑑, 𝑉𝑠,max _LSPIV )𝑟𝑎𝑡𝑖𝑛𝑔
) and 𝑢′ ((𝑉𝑠,max _𝐿𝑆𝑃𝐼𝑉, 𝑈𝑚𝑒𝑎𝑛)

𝑟𝑎𝑡𝑖𝑛𝑔
) are the residual standard 548 

errors of the linear regressions. The standard uncertainty 𝑢′(𝑠𝑙𝑜𝑝𝑒) is calculated as the standard 549 

uncertainty of an equiprobable rectangular distribution considering that the slope between the 550 

“radars cross-section” and the “LSPIV cross-section” can vary by 0.3% around the value of 2% 551 

used in this study. Finally, the standard uncertainty 𝑢′(𝑏𝑎𝑡ℎ𝑦𝑚𝑒𝑡𝑟𝑦)  is the most difficult to 552 

estimate. An assumption is made that the standard uncertainty in the bathymetric profile of the 553 

“LSPIV cross-section” is 10%. 554 

By following this simplified approach, it was possible to calculate a standard uncertainty on Q, 555 

𝑢′(𝑄), which is constant whatever the value of Q. The final uncertainty is expressed at the 95% 556 

confidence interval considering a normal distribution and using a coverage factor of 2. 557 

 558 

3 Results 559 

3.1 Detection of bathymetric shifts and related periods 560 

Figure 5 shows the time series of Vrad and Hrad for the entire study period. As explained already 561 

in section 2.2, some periods of missing data are due to the presence of a gravel bar that formed 562 

temporarily below the H-V radars. This affects the period from July 2019 to May 2021. Figure 5 563 

also displays the time series of water level at La Robine station, the upstream historical station. 564 

At each station, water level is expressed in a local coordinate system where the zero level 565 

corresponds to the zero in the staff level gauge. It can be seen that at certain periods, the water 566 

level at La Robine is higher than the water level at RIPLE, while at other periods it is the 567 

opposite. This is due to bathymetric shifts that occured at the RIPLE station during certain 568 

floods, whereas bathymetric shifts are very unlikely at La Robine station because the river is set 569 

over the bedrock. 570 

Figure 6a shows the scatter plot of Vrad versus Hrad for the entire study period. Six periods with 571 

distinct relations between Vrad and Hrad were identified manually. The temporal limits of these 572 

periods were extracted from the time-stamping of the couples of points (Hrad, Vrad). It is worth 573 

mentioning that, even in the absence of the Vrad time series as it is the case for many hydrometric 574 

stations, it would have been possible to identifiy the bathymetric changes using an automatic 575 

shift detection algorithm such as the method presented recently by Darienzo et al. (2021). 576 

However, the method used in this study allows a more accurate time stamping of the bathymetric 577 

shifts. The end of period 1 was identified to 01/02/2019 10:00 (UTC), the end of period 2 to 578 

23/10/2019 18:00 (UTC), the end of period 3 to 03/11/2019 04:30 (UTC), the end of period 4 to 579 

21/12/2019 04:50 (UTC), the end of period 5 to 22/01/2021 17:50 (UTC). The six periods are 580 

represented in Figure 5 using different colours. The vertical dotted lines in Figure 5 indicate the 581 

dates of the topographical surveys carried out at the RIPLE station. There is one campaign per 582 

period, with the exception of period 3. The surveyed cross-section profiles associated with each 583 

period (except period 3) are shown in Figure 6b. The topographic results confirm that the cross-584 

section profiles are significantly different from each other: the change between period 1 and 585 

period 2 is characterized by an increase in bed elevation of the order of 20 cm in the centre-right 586 
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of the river channel due to deposition of sediment. The changes between period 2 and period 3 587 

and between period 3 and period 4 remain unknown. As period 3 lasted only 11 days, it was not 588 

possible to carry out a bathymetric survey during this short period. In fact, during autumn, 589 

significant rainfall events can be frequent on soils that are already very moist, likely to produce 590 

repeated morphogenic floods (Esteves et al., 2019). Nevertheless, the change between period 2 591 

and period 4 shows an increase in bed elevation over a large part of the left-hand of the cross-592 

section. The change between period 4 and period 5 is marked by a decrease in bed elevation of 593 

the order of 50 cm over the width of the river channel due to erosion processes. The change 594 

between period 5 and period 6 is marked by a reorganisation of the shape of the cross-section 595 

with a very slight tendency towards sedimentation. 596 

It can be seen that the changes of period occurred during flood events. The change between 597 

period 1 and period 2 occurred during the first significant flood of the study (01/02/2019), where 598 

the maximum radar velocity reached 3.5 m/s. The change between period 2 and period 3 599 

occurred during a period where data were missing at the RIPLE station due to a power failure. 600 

However, the data from La Robine station shows that the flood that produced the bathymetric 601 

shift (23/10/2019) is of the same order of magnitude as that of the 01/02/2019. The change 602 

between period 3 and period 4 occurred during a major flood (03/11/2019) of the study period 603 

with maximum radar velocity of 3.5 m/s. The change between period 4 and period 5 occurred at 604 

the end of a significant flood (21/12/2019) with maximum radar velocity of 3 m/s. The change 605 

between period 5 and period 6 occurred during a small flood (22/01/2021) where the maximum 606 

radar velocity reached 1.4 m/s. Although the transitions between these periods are generally 607 

caused by floods, not all significant floods cause a change in bathymetry. For instance, the events 608 

of 02/03/2020, 04/06/2020 and 10/05/2021 did not produce significant changes in bathymetry 609 

whereas they were characterized by significant radar velocities (maximum of 2.0 m/s, 1.5 m/s 610 

and 2.1 m/s respectively). The factors controlling these changes in bathymetry are not well 611 

known yet even though they are assumed to be linked to bedload transport, and more specifically 612 

to the processes of deposition and remobilisation of gravels. On the other hand, it is likely that 613 

some bathymetric changes have been missed. In fact, there is still some dispersion in the Hrad - 614 

Vrad relations for the different separated periods. A more detailed identification, still based on the 615 

analysis of the relations between Vrad and Hrad or based on the application of an automatic shift 616 

detection method (Darienzo et al., 2021) would be possible but it would lead to more sub-periods 617 

and we would face to the problem of lack of bathymetric data. The proposed breakdown is 618 

therefore a compromise between the identification of major bathymetric shifts and the 619 

availability of topographic data. It is recognized in this study that there remains a significant 620 

degree of uncertainty in the bathymetric profiles within the six separate periods. This is taken 621 

into account in the uncertainty analysis. 622 

Figure 6c shows the H-Awet relations for periods 1 to 6 (except period 3). The result exhibits a 623 

significant change in the H-Awet relation between period 4 and 5 due to the important digging of 624 

the river section during the 21/12/2019 flood event. The other bathymetric changes have a more 625 

limited impact on the H-Awet relations. The results presented in this section confirm the 626 

effectiveness of the method proposed for detection of bathymetric changes. Regular control of 627 

the Hrad - Vrad scatter plot, coupled with bathymetric survey campaigns, enable to identify major 628 

changes in bathymetry and attribute corresponding cross-sectional profiles (i.e. H-Awet relations). 629 

 630 
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 631 
Figure 5 – Time series of Hrad (colour data, bottom series, left axis) and Vrad (colour data, top series, right axis) at the RIPLE station. 632 
Positioning of video sequence recordings on the time series of Vrad (black circles). Time series of Hrad (black +, left axis) at the Robine 633 

station. The vertical dotted lines indicate the dates of the topographical surveys at the RIPLE station. 634 
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Figure 6 – (a) Relation between Vrad and Hrad at RIPLE distinguished by bathymetric periods. (b) cross-sectional profiles at the “LSPIV 636 
cross-section” for each bathymetric period (except period 3). (c) Relations between H (in local coordinate system of RIPLE) and wetted 637 

area of the cross-sectional profiles at the “LSPIV cross-section” for each bathymetric period (except period 3). 638 

 639 

3.2 LSPIV results 640 

The results of LSPIV analysis are summarized in Table 2. The maximum discharge of 30.76 m
3
/s 641 

was computed during period 5 for the video taken the 02/03/2020 at 12:43 (UTC) with a value of 642 

Vs,max_LSPIV of 4.37 m/s and a value of Umean_LSPIV of 2.86 m/s. The lowest discharge of 0.81 m
3
/s 643 

was computed during period 2 for the video taken the 15/10/2019 at 12:21 (UTC) with a value of 644 

Vs,max_LSPIV of 1.02 m/s and a value of Umean_LSPIV of 0.71 m/s. Table 2 also gives the values of 645 

Vrad and HLSPIV at the time steps corresponding to the video recordings. HLSPIV is derived from 646 

Hrad according to the method described in the section 2.1. 647 

 648 

Table 2 – Results of LSPIV analyses carried out on video sequences recorded at the RIPLE station (Q: flow discharge, Awet: wetted area, 649 

Umean_LSPIV: mean cross-sectional velocity, Vs,max_LSPIV: maximum surface velocity, y axis: lateral position of Vs,max, ∅𝑠: ratio between Umean 650 

and Vs,max). Extraction of radar data (HLSPIV and Vrad) at time steps corresponding to the video recordings. Results of the Isovel model for 651 

the conditions corresponding to the LSPIV analyses (ηs: highest value of the dimensionless isovel coefficient). Q-Commander software 652 

results for the conditions corresponding to the LSPIV analyses (k-factormin: lowest value of the dimensionless k-factor in the cross-653 

section) 654 
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3.3 The Vs,max_LSPIV-Umean relation in the “LSPIV section” 656 

3.3.1 Calibrated relation using LSPIV results 657 

Based on data presented in Table 2, the mean cross-section velocity calculated with LSPIV 658 

results (Umean_LSPIV) was plotted against the maximum surface velocity (Vs,max_LSPIV) in Figure 7 659 

for each bathymetric period (except period 3). Linear regressions forcing to go through the zero 660 

intercept were calculated between the two variables. The statistic results of the linear regressions 661 

are presented in Table 3. Significant coefficients of determination (between 0.798 and 0.947) are 662 

obtained for all periods. The values of the slope of these different regressions are then compared. 663 

They range between 0.652 (period 4) and 0.755 (period 1). The interval of confidence of these 664 

slopes are also calculated. The assumption to be tested is the resistance of the Vs,max_LSPIV- 665 

Umean_LSPIV relation to bathymetric shifts. From a strictly statistical point of view, this assumption 666 

is not validated here since the 95% confidence intervals of the different regressions do not 667 

completely overlap. However, taking into account the relatively small number of points for 668 

certain periods (e.g. 6 and 7 observations for periods 1 and 4 respectively) and the uncertainties 669 

associated with the LSPIV method for the estimation of Vs,max_LSPIV and Umean_LSPIV (uncertainties 670 

in the image analysis method and in the bathymetry for the calculation of Umean_LSPIV), it seems 671 

reasonable to conclude that the differences between the periods are sufficiently small so that the 672 

periods can be combined together to calculate an overall regression. Figure 7 shows the linear 673 

relation between Vs,max_LSPIV and Umean_LSPIV for all periods combined together. Tha data of 674 

Figure 7 are also reproduced in Figure 8 for intercomparison with the results of the Isovel model 675 

and the Q-Commander model. The slope of the global regression is 0.686 and its 95% interval 676 

confidence is ± 0.011 (Table 3). In conclusion, there seems to be a proportionality between 677 

Vs,max_LSPIV and Umean_LSPIV. Moreover this linear relation appears to be independent of 678 

bathymetric shifts with a single stable and robust slope, which would represent an intrinsic 679 

property of the cross-section. 680 

 681 
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Figure 7 – Relation between Umean_LSPIV and Vs,max_LSPIV for each bathymetric period (except period 3). A linear regression forcing to go 682 
through the zero intercept is fitted for each bathymetric period and for all periods combined together (black line). 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 

 691 

 692 

 693 

 694 

 695 

 696 

 697 

 698 

 699 

 700 

 701 

 702 

 703 

 704 

 705 
Table 3 – Statistic results of the linear regressions (forcing to go through the zero intercept) between Umean_LSPIV and Vs,max_LSPIV using 706 
LSPIV results for each bathymetric period (except period 3) and for all periods combined together. 707 
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 708 

 709 

Figure 8 – Relation between Umean and Vs,max_LSPIV for all the conditions reported in Table 2. Umean is obtained by three methods: LSPIV 710 
results, Isovel model and Q-Commander model.  A linear regression forcing to go through the zero intercept is fitted for each approach. 711 

The 95% confidence interval associated with the linear regression for the LSPIV case is shown in grey. 712 

3.3.2 Isovel model 713 

As seen in Table 2, the value of 
1

𝜂𝑠
 ranges between 0.54 and 0.64, with an average of 0.61 and a 714 

standard deviation of 0.02. Figure 8 represents Umean calculated by the Isovel model (Umean_Isovel) 715 

versus Vs,max_LSPIV derived from the LSPIV analysis for the 69 conditions of Table 2. The linear 716 

regression forcing to go through the zero intercept gives a slope of 0.616. This value is 10% 717 

lower than the slope of the calibrated regression using LSPIV but it can be considered as an 718 

acceptable result given that the Isovel method as applied in this study only requires bathymetric 719 

and water level information as input. 720 

3.3.3 Q-Commander 721 

As seen in Table 2, the value of the k-factormin ranges between 0.49 and 0.70, with an average of 722 

0.64 and a standard deviation of 0.04. Figure 8 represents Umean calculated by the Q-Commander 723 
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software (Umean_Commander) versus Vs,max_LSPIV for the 69 conditions of Table 2. The linear 724 

regression forcing to go through the zero intercept gives a slope of 0.69. This value is of the 725 

same order of magnitude as the slope of the calibrated relation using LSPIV results. Q-726 

Commander is therefore the tool that produces the best prediction of the Vs,max_LSPIV-Umean_LSPIV 727 

relation. Q-Commander is potentially an effective tool to be used for future applications. 728 

However, given that Q-Commander is a commercial software whose code is covered by a patent, 729 

the equations used in the model are not available. It is therefore important to continue working 730 

with methods such as the Isovel model or the Entropy model to understand which factors control 731 

the linear relation between Vs,max and Umean. 732 

3.4 Position of the “y axis” 733 

Figure 9 exhibits the position of the “y axis” for all the conditions reported in Table 2 based on 734 

LSPIV results. The results are grouped by bathymetric period. The cross-sectional profiles at the 735 

“LSPIV section” for each bathymetric period are also displayed. Figure 10a shows the box plots 736 

of the “y axis” position for each bathymetric period. The mean value of the position of the “y 737 

axis” is 12.7 m (standard deviation of 1.8 m), 14.2 m (standard deviation of 0.2 m), 13.9 m 738 

(standard deviation of 0.5 m), 14.0 m (standard deviation of 0.9 m), 13.6 m (standard deviation 739 

of 0.8 m) for period 1, 2, 4, 5, and 6 respectively. The position of the “y axis” is relatively 740 

constant for periods 2 to 6. The maximum relative difference is 2% compared to the average of 741 

the 4 periods, which is 13.9 m. The maximum relative difference is also 2% compared to the 742 

river at bank-full discharge, which is approximately 13.8 m. The standard deviation values for 743 

periods 2 to 6 are all lower than 1 m. For period 1, the results are more scattered. The average 744 

position of the “y axis” for period 1 is 1.2 m lower than the average value of periods 2 to 6. This 745 

represents a relative difference of 8.6% compared to the average of periods 2 to 6. Period 1 746 

includes 3 of the 5 smallest discharge values in Table 2. Such discharges are associated with low 747 

water depths, as seen in Figure 9, and “y axis” positions that are located both furthest to the left 748 

and right sides of the dataset. This may be due to the poorer quality of the LSPIV analyses for 749 

low flow conditions and also to the fact that period 1 includes only six observations. Apart from 750 

these few outliers, the position of the “y axis” can be considered stable in spite of the 751 

bathymetric changes. 752 

In Figure 10b, the data from the different bathymetric periods are grouped together and box plots 753 

of the position of the “y axis” are represented for the three methods used in this study (LSPIV, 754 

Isovel, and Q-Commander). Based on LSPIV results, the mean value of the “y axis” position is 755 

13.8 m and the median is 14 m. For the Isovel model, the mean value of the “y axis” position is 756 

12.8 m, the median is 13 m and the standard deviation is 1 m. For Q-Commander, the mean 757 

value of the “y axis” position is 12.3 m, the median is 12 m and the standard deviation is 1.3 m. 758 

The Isovel model and the Q-Commander software predict the average position of the “y axis” 759 

respectively 1 m and 1.5 m closer to the right bank than the LSPIV method. This represents a 760 

lateral shift of 7% and 11% respectively, considering the width of the river at bank-full 761 

discharge, compared to the mean value of the LSPIV method. The standard deviation of the “y 762 

axis” for these two methods is of the same order of magnitude as for the LSPIV results (0.9%). 763 
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 764 

Figure 9 – Cross-sectional profiles at the “LSPIV section” for each bathymetric period (except period 3) and location of the “y axis”, 765 
which corresponds to the point of maximum surface velocity, for all the conditions reported in Table 2 based on LSPIV results. 766 

In conclusion, the results show that the position of the “y axis” is relatively stable despite strong 767 

bathymetric changes. On the other hand, the theoretical methods (Isovel and Q-Commander) 768 

predict satisfactorily the mean position of the “y axis” compared to the LSPIV results even 769 

though more data is still needed to verify these assertions.  770 

 771 

 772 
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 773 

Figure 10 – (a) Box and whisker plots of "y axis" positions represented by bathymetric periods (except period 3) based on LSPIV results 774 
reported in Table 2. (b) Box and whisker plots of "y axis" positions for all periods combined together (except period 3) based on LSPIV, 775 

Isovel model and Q-Commander results reported in Table 2 776 

 777 

3.5 Calculation of discharge time series 778 

3.5.1 Calibrated relation between Vrad and Vs,max_LSPIV 779 

As described in section 2.6.2, a relation needs to be established between Vrad measured in the 780 

“radars section” and Vs,max_LSPIV obtained in the “LSPIV section” before Vs,max_LSPIV can be 781 

transformed into Umean. Figure 11 presents the scatter plot of Vs,max_LSPIV versus Vrad. Two groups 782 

of periods were distinguished: periods 1 to 2 on one hand, periods 4 to 6 on the other hand. 783 

Figure 11 also shows the linear regression fitted for each group of periods as well as their 95% 784 

confidence intervals. The coefficient of determination is high for each of the linear regressions, 785 

with R²=0.9015 for periods 1 to 2 and R²=0.8111 for periods 4 to 6. The reasons for this change 786 

in the linear relation are not entirely clear. It seems to be linked to a shift in the morphological 787 

behaviour between the “radars section” and the “LSPIV section”. There may have been a 788 

localised and temporary scouring of the riverbed in the vicinity of the bridge where the radars are 789 

installed caused by the hydraulic jump in the upper part of the bridge. 790 
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 791 

Figure 11 – Relations between Vs,max_LSPIV in the “LSPIV section” and Vrad in the “radars section” based on the results reported in Table 2 792 
for two different groups of periods. A linear regression is fitted for each group of periods. The 95% confidence intervals associated with 793 

the linear regressions are shown in grey. 794 

 795 

4 Discussion 796 

4.1 Evaluation of the method 797 

4.1.1 Comparison with the historical station at La Robine 798 

The discharge algorithm was applied to the data at RIPLE for the period from October 2018 to 799 

May 2021, except period 3 (from 23/10/2019 to 03/11/2019) due to the absence of bathymetric 800 

data. The discharge time series at RIPLE, expressed as specific discharge of the drainage area (in 801 

m
3
/s/km²), are shown in Appendix 1. The discharge time series at La Robine are also represented 802 

in Appendix 1 as they provide the only comparative data for assessing the method presented in 803 

this study. The Galabre catchment at la Robine station drains a surface of 20 km² compared with 804 

a surface of 34 km² at the RIPLE station. This corresponds to a 41% increase in the drained area 805 

of the catchment from La Robine station to RIPLE station. Therefore, a very good match 806 

between the data of the 2 stations cannot be expected, even in the case of perfectly accurate data, 807 

because of the hydrological processes involved (spatial distribution of rainfall, heterogeneity of 808 

soils properties, land cover, and infiltration, role of the alluvial water table) and the phenomenon 809 
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of flood wave propagation. In general, the data seem to match up well. Table 4 presents the 810 

statistics of the comparison between the specific discharge at the two stations for all the time 811 

steps of the study period, except when data is missing at one of the stations. Both stations have 812 

the same sampling period (e.g. 10 min). Results are obtained by comparing data of the two 813 

stations at the same time step. The time lag associated with the transfer of water from upstream 814 

to downstream is neglected in this comparison. The time lag between peak discharge at the two 815 

stations during floods is short, generally on the order of 10 to 20 min and possibly up to 30-40 816 

min for small floods in spring and summer. Outside the floods, there is no need to consider a 817 

time lag as the regime is considered permanent. Anyway, the data were compared with and 818 

without a time lag, but there was no gain in the results when a time lag was considered. 819 

 820 

Table 4 – Statistic results of the comparison between the specific discharge at La Robine and RIPLE stations for all the data of the study. 821 

 822 

Three statistical results are given in Table 4: the Nash-Sutcliffe efficiency (NSE), the log Nash-823 

Sutcliffe efficiency (logNSE), and the percent bias (PBIAS). The NSE provides information 824 

about the deviation of the specific discharge at RIPLE compared to the specific discharge at La 825 

Robine. Applying the NSE to the logarithm of discharges (logNSE) enables to assess the 826 

behaviour of the prediction at low flow discharges. PBIAS provides information on the existence 827 

of a simulation bias (negative or positive), expressed as a %, between the two variables. 828 

The data are considered as a whole (all data) and then divided into two groups according to the 829 

value of the fixed velocity radar: Vrad > 0.7 m/s and Vrad < 0.7 m/s. The values of NSE are good 830 

(i.e. in the range 0.86-0.88) for "all data" and the " Vrad > 0.7 m/s" group and less good (0.58) for 831 

the " Vrad < 0.7 m/s" group. The logNSE value is reasonably good (0.738) for the " Vrad > 0.7 832 

m/s" group, but much worse (0.248) for "all data", and poor (-0.084) for the " Vrad < 0.7 m/s" 833 

group. The PBIAS value is the lower (2.9%) for the " Vrad > 0.7 m/s" group, intermediate (4.5%) 834 

for “all data”, and the higher (8.7%) for the " Vrad < 0.7 m/s" group. These results show that the 835 

comparison between specific discharges at the two stations is generally acceptable for “all data”. 836 

This comparison is better when Vrad is above 0.7 m/s. In contrast, below this velocity, specific 837 

discharges at RIPLE calculated using the approach presented in this study are significantly 838 

different from specific discharges at La Robine station calculated using the stage-discharge 839 

rating curve, and have an overall tendency to underestimate. 840 

The literature frequently states that surface velocity radars do not perform well in the low-841 

velocity range (Welber et al., 2016; Fulton et al., 2020; Rahman Khan et al., 2021; Son et al., 842 

2023), even though manufacturers claim that instrument sensitivity and resolution are good even 843 

at low velocities. In fact, the environmental conditions encountered for low velocities make 844 

measurements less reliable. Sources of error in this velocity range (typically below 0.7 m/s) 845 

include (i) wind, which has a more detrimental effect than at higher velocities; (ii) the higher 846 

distance between the sensor and the free surface compared to high flow conditions, which 847 
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increases the sampled area and thus the variability of the measurement; and (iii) the diversity of 848 

hydraulic micro-controls, which can occur at low water levels due to the exposition of boulders. 849 

 850 

Figure 12 – Specific discharge at the RIPLE station versus specific discharge at La Robine station for all the study period. 851 

Figure 12 shows the same data as in Appendix 1 but in the form of a scatter plot of specific 852 

discharges at the two stations. First of all, the regression between the two variables was 853 

calculated. It gives a slope equal to unity, an intercept of almost zero, and a coefficient of 854 

determination of 0.88. This confirms the good general agreement between the two variables and 855 

the general absence of bias. However, the two variables are better correlated for higher values 856 

than for lower values. This finding is supported by the results of Table 5 which presents the 857 

percentages of values of specific discharge at RIPLE that belong to the ranges ± 25%, ± 50% and 858 

± 100% of the corresponding values at La Robine. Similarly, the lines at ± 25% of the 1:1 line 859 

are shown in Figure 12. In Table 5, the data are considered as a whole (all data) and then three 860 

subsets are considered according to the value of the fixed velocity radar: Vrad > 0.7 m/s, Vrad > 1 861 

m/s, and Vrad > 1.5 m/s. When “all data” are considered, only 15.7% of the specific discharges 862 

calculated at RIPLE belong to the range ± 25% of the corresponding specific discharges at La 863 

Robine. On the other hand, when considering the subsets for which the value of Vrad is greater 864 

than 0.7, 1 and 1.5 m/s, respectively 30.6, 38.4 and 45.6% of the specific discharges calculated at 865 

RIPLE fall within the range ± 25% of the corresponding specific discharges at La Robine. These 866 

percentages increase significantly when the intervals at ± 50% and ± 100% of corresponding 867 

specific flows at La Robine are considered. This corroborates the fact that the results are worse at 868 
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low radar velocities (i.e. < 0.7 m/s) and better at higher radar velocities. This velocimetric 869 

method is therefore rather reserved to medium to high flow conditions. 870 

 871 

Table 5 – Percentages of values of specific discharge at RIPLE within ± 25%, ± 50% and ± 100% of values of specific discharge at La 872 
Robine. 873 

 874 

To conclude, the comparison of specific discharges at the two stations needs to be put into 875 

perspective. First, the quality of the observed discharges at La Robine is not perfect, especially at 876 

high flow conditions, since few direct discharge measurements were available to build the stage-877 

discharge rating curve. Second, it should be remembered that there is a 41% increase in the 878 

drained area between the 2 stations which means that the discharges at the two stations have to 879 

be rescaled to be compared. This is far from ideal, but there was no real alternative in this study. 880 

Therefore, it is still necessary to make comparisons of this type at other stations where reference 881 

data is available, in order to assess the velocimetric method presented in this study rigorously. 882 

Nevertheless, the results of this study show that the approach presented in this study is able to 883 

produce valuable continuous discharge time series during floods and more generally in medium 884 

to high flow conditions, despite the very frequent occurrence of bathymetric changes, given a 885 

limited investment of time and people in the field. 886 

 887 

4.1.2 Uncertainty analysis 888 

The results of the simplified uncertainty analysis applied to the velocimetric method are 889 

presented in Table 6. This table gives the relative error (in %) of each terms of uncertainty 890 

considered in this study. The dominant uncertainty terms are the two linear relations applied 891 

consecutively to transform Vrad into Umean, the bathymetry of the “LSPIV cross-section” and the 892 

slope between the “radars cross-section” and the “LSPIV cross-section”. Their relative error 893 

range between 7.1% and 12.6%. The relative uncertainty on Q which is calculated as the root 894 

square of the sum of the squares of the different terms of Table 6 is 20%. The four dominant 895 

terms of uncertainty listed above represent 83.2% of the uncertainty on Q and 98% of the relative 896 

uncertainty on Q considering the 6 sources shown in the Table 6.  897 

 898 

Table 6 – Relative error (in %) of each terms of uncertainty considered in this study when applying the velocimetric method.. 899 
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 900 

This uncertainty analysis is simplified insofar as the uncertainty is considered to be constant 901 

whatever the discharge value. Referring to the previous section, it makes sense to follow this 902 

simplified analysis for situations where radar velocities are greater than 0.7 m/s, which 903 

corresponds to high flow conditions in this study. On the other hand, this simplified analysis 904 

does not really make sense for situations involving low radar velocities and low water levels. In 905 

such case, the uncertainty is largely underestimated. 906 

 907 

Figure 13 – Time series of specific discharge at the RIPLE station calculated using the approach presented in this study and at La Robine 908 
calculated using the stage-discharge rating curve for the period from 01/03/2020 to 07/03/2020. The 95% confidence intervals are shown 909 
in pink for data at RIPLE and in grey for data at La Robine. The values of specific discharge measured directly at RIPLE by the LSPIV 910 

method for the conditions reported in Table 2 are also shown. 911 

The 95% confidence interval of Q is calculated as ± twice the value of the relative uncertainty on 912 

Q. Figure 13 exhibits the time series of specific discharge calculated using the approach 913 

presented in this study at the RIPLE station for the period from 01/03/2020 to 07/03/2020. On 914 

the same figure, the time series of specific discharge calculated at La Robine station using the 915 

stage-discharge rating curve is displayed. For this latter station, the relative uncertainty on Q 916 

considered by Navratil et al. (2011) in their global uncertainty analysis of suspended sediment 917 

monitoring was as high as 20%. Finally, the values of specific discharge calculated by the LSPIV 918 

method for the conditions reported in Table 2 (direct LSPIV measurements) are also shown in 919 

Figure 13. It can be checked that the values of specific discharge measured directly at RIPLE by 920 

the LSPIV method are within the confidence interval of the time series of specific discharge at 921 

RIPLE calculated using the approach presented in this study. Furthermore, it can be seen that the 922 

data of the two stations overlap during the two successive floods, except during the first phase of 923 

the rise of the first flood. At the end of the first flood and outside flood periods, the agreement 924 

between the data at the two stations decreases. This observation supports the previous conclusion 925 

which hinders the application of the method to low flow conditions. 926 

 927 

4.2 Limitations and perspectives for improving the method 928 
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The method presented in this study makes it possible to produce reliable streamflow time series 929 

in a river prone to bathymetric shifts when no other method is available. As a result, the method 930 

has serious advantages to offer. However, the choice of the section to be instrumented must 931 

remain that of a hydrometer, as the conditions to be met are those for current meter gauging, i.e. 932 

reach of river as uniform as possible with quasi 1D velocities. Furthermore, it should be borne in 933 

mind that the method proposed in this study has yet to be validated with reference data in 934 

different environments. It should also be mentioned that this method does not allow a qualitative 935 

estimation discharge in low flow conditions, i.e. when radar velocities are below 0.7 m/s. This 936 

can pose problems for rivers located in areas of low slope. The method is also less effective for 937 

higher than bank-full discharges, as the position of the "y axis" is likely to change when flood 938 

plain is inundated. 939 

In terms of uncertainty, we should recognize that our framework for computing the uncertainty is 940 

too simplistic, and has to be improved. It is clear that the relative error is largely underestimated 941 

for radar velocities lower than 0.7 m/s. However, it is important to bear in mind, that the idea that 942 

supports this research is to increase the spatial density of streamflow stations in the future, 943 

particularly in small rivers where it is impossible with current ressources to install more 944 

conventional hydrometric station (H-Q). In the end, it might be acceptable to have greater 945 

uncertainty on discharge estimation if, at the same time, the number of streamflow monitoring 946 

points increases spatially. 947 

The perspective of this research would be to apply the method presented in this study in 948 

ungauged rivers and possibly in the absence of LSPIV discharge measurements. Indeed, the 949 

analysis of video sequences with the LSPIV method requires both time and expertise, which 950 

could hamper the multiplication of new stations of this type. It would be possible to automate the 951 

LSPIV method, but this would require a great deal of effort and the method would still have 952 

limitations in certain light conditions, as it is a passive method.  953 

Our perspective is rather to try to be parsimonious and favours active instruments (i.e. radar or 954 

LiDAR). To do this, we propose in the future to position the H and V radars directly in the 955 

hydraulically suitable choosen section. In this study, this would have meant placing the radars 956 

directly above the “LSPIV cross section” using cables for instance, instead of placing them on 957 

the bridge ten meters upstream. This would eliminate two sources of error: the relation between 958 

Hrad to HLSPIV and the relation between Vrad and Vs,max_LSPIV. Moreover, we propose to install the 959 

V radar directly at the “y axis”, assuming that the position of the “y axis” does not vary over 960 

time, except when the flood plain is inundated. By doing so, the relative uncertainty on Q would 961 

drop to 12.9% as two of the dominant terms of uncertainty would be removed in Table 6.  962 

Different approaches can be considered for positioning the V radar at the “y axis” in the 963 

hydraulically suitable choosen section and assessing the the 𝑈𝑚𝑒𝑎𝑛/𝑉max ratio. Fulton et al. (2020) 964 

propose to use at least one highly-resolved velocity gauging obtained by ADCP or current meter 965 

to identify the position of the "y axis" in the cross section and apply the entropy method for the 966 

vertical velocity profile at the “y axis” to predict also the 𝑈𝑚𝑒𝑎𝑛/𝑉max ratio. Alternatively, if 967 

several highly-resolved velocity gaugings are available, Fulton et al. (2020) propose to calibrate 968 

the 𝑈𝑚𝑒𝑎𝑛/𝑉max ratio with the historical pairs of Umean and Vmax. They mention that this second 969 

method is optimal. It also enables to improve the accuracy of the position of the “y axis” and 970 

therefore that of the V radar to be installed at that position. However, this approach still requires 971 
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a lot of human ressources and expertise in the field for highly-resolved velocity gaugings in 972 

different flow conditions. Moreover, there remains a doubt: it is not clear how Fulton et al. 973 

(2020) calculate Umean from Vrad when the relation is established between the Vmax and Umean. 974 

With the aim of being as parsimonious as possible while maintaining the quality of the estimates, 975 

we have tested in this study the possibility of predicting the position of the "y axis" and the ratio 976 

between Vs,max and Umean using theoretical methods, i.e. the Isovel model and the Q-Commander 977 

model. The results are promising, as these theoretical methods predict quite well the location of 978 

the “y axis” and the 𝑈𝑚𝑒𝑎𝑛/𝑉𝑠,max  ratio based on limited information, i.e. the bathymetry of the 979 

cross-section and the bed roughness. These models still need to be evaluated in a larger number 980 

of rivers and environments where reference data are available. For the Isovel model, the results 981 

could certainly be further improved by considering a non-uniform roughness coefficient and by 982 

adjusting the exponent of the power law, set to 7 in this study. The impact on the quality of the 983 

discharge estimates should also be assessed when applying the "y axis" and the 𝑈𝑚𝑒𝑎𝑛/𝑉𝑠,max  ratio 984 

predicted by these theoretical models. To realize this, it is necessary to have independent data of 985 

quality for the reference discharges. 986 

Finally, one way of improving the method presented here would be to automate the detection of 987 

changes in the Hrad - Vrad scatter plot due to changes in the bathymetry by using machine-988 

learning algorithms for example, and also to try to automate bathymetric surveys. (Gourley, 989 

2017; Li et al., 2019; Stumpf et al., 2016) proposed methods to automate topographic surveys 990 

based on LiDAR and stereophotogrammetry, at least after the floods when the water level 991 

decreased sufficiently to expose to the air a large part of the cross-section. Such methods should 992 

be tested in future studies. 993 

5 Conclusions 994 

The application of the conventional method (stage-discharge rating curve) for monitoring of 995 

streamflow is not appropriate, or even not feasible, in rivers prone to frequent topographic shifts. 996 

This study proposes an effective and robust framework based on the index velocity method 997 

combined with non-contact instruments in order to provide continuous time series of streamflow 998 

in such rivers. The approach, which relies on water level and surface velocity radar monitoring, 999 

LSPIV discharge measurement and bathymetry surveys, is tested using a dataset of 2.5 years in a 1000 

river of the southern French pre-Alps. By plotting the Hrad – Vrad scatter plot, the location in time 1001 

of the bathymetric changes are easily detected - they all occur during floods - and six 1002 

bathymetric periods are defined. For each bathymetric period, a relation between the water level 1003 

and the wetted area of the cross-sectional profiles is built based on bathymetric surveys. A linear 1004 

and proportional relation is then sought between the maximum surface velocity in the “LSPIV 1005 

cross-section” called Vs,max_LSPIV and the cross-sectional velocity Umean_LSPIV. The values of 1006 

Vs,max_LSPIV are extracted for 69 video sequences recorded during floods. Umean is obtained based 1007 

on three different methods: (i) LSPIV discharge measurement; (ii) the Isovel model; (iii) the Q-1008 

Commander software developed by the Sommer company. The 𝑈𝑚𝑒𝑎𝑛/𝑉𝑠,max _𝐿𝑆𝑃𝐼𝑉 ratio is 1009 

respectively 0.686, 0.616 and 0.692 for the three methods listed previoulsy. Isovel and Q-1010 

Commander methods correctly predict the 𝑈𝑚𝑒𝑎𝑛/𝑉𝑠,max _𝐿𝑆𝑃𝐼𝑉 ratio compared to the method 1011 

calibrated with LSPIV discharge measurements (within a range of less than 10%), while they 1012 

only rely on bathymetric, bed roughness and water level information as input. These are 1013 
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therefore parsimonious methods that could prove useful in the future in the absence of highly 1014 

resolved velocity gauging. 1015 

The location of the maximum velocity in the cross-section is also investigated in the study. The 1016 

analysis of the LSPIV measurements show that the position of the “y axis” is relatively constant 1017 

for all bathymetric periods and to a lesser extent when period 1 is also included, in spite of strong 1018 

bathymetric changes. When the Isovel and Q-Commander models are applied, the mean value of 1019 

the “y axis” represents a lateral shift to the right bank of 7% and 11% respectively, considering 1020 

the width of the river at bank-full discharge, compared to the mean value obtained with the 1021 

LSPIV measurements. These methods confirm the stability of the position of the “y axis” in 1022 

presence of bathymetric changes. 1023 

Finally, discharge is calculated at each time step as the product of the cross-sectional velocity 1024 

and the wetted area, to produce a time series of streamflow for the entire study period. The 1025 

results are compared in terms of specific discharge with the data collected at an historical station 1026 

located 2.5 km further upstream on the same river and presenting a stable H-Q rating curve. Data 1027 

comparison is good when Vrad is above 0.7 m/s (NSE of 0.863, logNSE of 0.738, PBIAS of 1028 

2.9%) but much less good when Vrad is below 0.7 m/s (NSE of 0.580, logNSE of -0.084, PBIAS 1029 

of 8.7%). The quality of the estimates increases as Vrad increases, since respectively 61.1% and 1030 

79% of the estimates are within the range ± 50% of the specific discharges at the historical 1031 

station when Vrad is greater than 0.7 m/s and 1.5 m/s. 1032 
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