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Abstract

A key consideration for evaluating climate projections is uncertainty in radiative forcing scenarios. Although it is straightforward

to monitor greenhouse gas concentrations and compare those observations with specified climate scenarios, it remains less obvious

on how to connect regional climate patterns with these scenarios in real time. Here we introduce a machine learning approach

for linking patterns of climate change with radiative forcing scenarios and use an attribution method to understand how these

linkages are made. We train a neural network using output from the SPEAR Large Ensemble to classify whether temperature

or precipitation maps are most likely to originate from one of several potential radiative forcing scenarios. The neural network

learns to identify “fingerprint” patterns that associate signals of climate change with the scenarios. We illustrate this using

output from additional mitigation experiments and highlight regions that are critical for associating the new simulations with

likely radiative forcing scenarios.
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mate variables to a range of radiative forcing scenarios9

• Information extracted from regional change patterns is used to distinguish between10

climate scenarios, even those with similar global warming11

• Radiative forcing scenario classifications for the later 21st century are sensitive12

to a difference in the timing of mitigation by ten years13

Corresponding author: Zachary M. Labe, zachary.labe@noaa.gov

–1–



manuscript submitted to Geophysical Research Letters

Abstract14

A key consideration for evaluating climate projections is uncertainty in radiative forc-15

ing scenarios. Although it is straightforward to monitor greenhouse gas concentrations16

and compare those observations with specified climate scenarios, it remains less obvious17

on how to connect regional climate patterns with these scenarios in real time. Here we18

introduce a machine learning approach for linking patterns of climate change with ra-19

diative forcing scenarios and use an attribution method to understand how these link-20

ages are made. We train a neural network using output from the SPEAR Large Ensem-21

ble to classify whether temperature or precipitation maps are most likely to originate22

from one of several potential radiative forcing scenarios. The neural network learns to23

identify “fingerprint” patterns that associate signals of climate change with the scenar-24

ios. We illustrate this using output from additional mitigation experiments and high-25

light regions that are critical for associating the new simulations with likely radiative forc-26

ing scenarios.27

Plain Language Summary28

There are several sources of uncertainties when considering future projections of29

climate change. This includes uncertainty related to natural climate variations, uncer-30

tainties related to biases and climate sensitivity among different models, and finally the31

uncertainty related to the trajectory of greenhouse gas emissions. We focus on this third32

source of uncertainty, which is typically considered by running a climate model with a33

range of scenarios that include varying amounts of greenhouse gases. Although compar-34

ing real-world greenhouse gas levels with each climate scenario is a relatively simple task,35

it is harder to compare which climate scenario is most closely aligned with year-to-year36

patterns of weather and climate anomalies. In this study, we introduce a machine learn-37

ing approach that learns to associate yearly maps of global temperature and precipita-38

tion with individual climate scenarios. We also compare how these future predictions of39

climate scenarios may change over time depending on the introduction of climate mit-40

igation efforts and show regions that are particularly sensitive to this change. Our re-41

sults indicate that starting aggressive mitigation efforts a decade earlier can lead to the42

lowest greenhouse gas emission scenario being predicted by the machine learning model43

at the end of the century using this climate model.44
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1 Introduction45

The evolution of future greenhouse gas pathways, such as those developed using46

integrated assessment models, remains one of the dominant drivers of uncertainty in cli-47

mate change projections (Hawkins & Sutton, 2009; Lehner et al., 2020; S. Zhang et al.,48

2023). In the near term, it is even more difficult to identify which climate change sce-49

nario is most closely aligned with real-world observations due to the similarities in green-50

house gas concentrations (Meinshausen et al., 2020; Pedersen et al., 2021; Huard et al.,51

2022) and the outsized influence of internal climate variability (Maher et al., 2020). Al-52

though it is possible to track changes in global emissions through the carbon and methane53

budgets (e.g., Saunois et al., 2020; Sognnaes et al., 2021; Friedlingstein et al., 2022, 2023;54

Liu et al., 2023) and further quantify the time-mean, long-term warming signal using his-55

torical records (e.g., Stott et al., 2013; Dong et al., 2020; Hausfather et al., 2020) or with56

observational constraint-like approaches (e.g., Brunner et al., 2020; Liang et al., 2020;57

Tokarska et al., 2020; Ribes et al., 2021), it is less clear on how to monitor whether in-58

terannual patterns of weather and climate are consistent with particular climate change59

scenarios. This is made uniquely difficult due to the modulating effect of internal climate60

variability on the forced response (Deser et al., 2012; Medhaug et al., 2017; Wills et al.,61

2020; Sippel et al., 2021; Jain et al., 2023; Lehner & Deser, 2023), which can even de-62

lay detection of climate mitigation efforts as well (Tebaldi & Friedlingstein, 2013; Marotzke,63

2019; Samset et al., 2020). At the same time, recent data-driven results have shown that64

fingerprints of forced change are now detectable in any single day of observational data65

(Sippel et al., 2020), but this framing does not necessarily address the question of which66

climate change pathway is more realistic or probable from year-to-year. Our research let-67

ter begins to investigate this question by building off developments in applications of ma-68

chine learning for climate science (Huntingford et al., 2019; Irrgang et al., 2021; Sonnewald69

et al., 2021; Rolnick et al., 2022) that are then applied to a collection of large ensemble70

simulations from a high-resolution, fully-coupled climate model.71

Here, we design an artificial neural network (ANN) to learn to associate yearly maps72

of simulated surface temperature or precipitation with several possible climate scenar-73

ios that consist of either natural forcing, historical forcing, or one of three possible fu-74

ture anthropogenic climate change trajectories. Then we input data from two overshoot75

scenarios that feature aggressive climate mitigation efforts beginning in either 2031 or76

2040. The purposes of evaluating these additional simulations are to: 1) use this neu-77
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ral network detection framework to examine hypothetical futures that could be analo-78

gous to inputting data from the real world, and 2) identify whether there are differences79

in the temporal evolution of climate scenario classifications, given a 10-year difference80

in the onset of climate mitigation. This is especially relevant given the growing inter-81

est in alternative pathways for achieving climate mitigation strategies (IPCC, 2022), such82

as through the development of carbon dioxide removal for net negative emissions (Davis83

et al., 2018; Fuss et al., 2018; Minx et al., 2018; de Kleijne et al., 2022). In all cases, we84

apply attribution methods from explainable artificial intelligence (XAI) to attempt to85

understand which climate features the neural network is using to make its scenario clas-86

sifications. Ultimately, we show that an ANN can skillfully detect which climate scenario87

is associated with simulated fields of global temperature or precipitation by learning in-88

formation from regional climate anomalies, largely over the subpolar North Atlantic and89

portions of land areas across the tropics.90

2 Data and Methods91

To begin this data-driven approach, we employ a collection of large ensemble ex-92

periments from a single modeling system - the Seamless System for Prediction and EArth93

System Research (SPEAR; Delworth et al., 2020) by the Geophysical Fluid Dynamics94

Laboratory (GFDL). We include these SPEAR simulations as inputs to the neural net-95

works, which are used for the purpose of distinguishing between individual climate sce-96

narios (Figure S1). This includes several future projections from the Shared Socioeco-97

nomic Pathways (SSPs; O’Neill et al., 2014, 2016). Since ANNs can learn nonlinear in-98

formation across a given geographic domain (Irrgang et al., 2021; de Burgh-Day & Leeuwen-99

burg, 2023), recent work has discovered that they can be powerful tools for comparing100

across different GCMs and climate change scenarios (e.g., Labe & Barnes, 2022; Labe,101

Barnes, & Hurrell, 2023; Bône et al., 2023; Brunner & Sippel, 2023) and for use in ex-102

tracting patterns of forced change from the background noise of internal variability (e.g.,103

Rader et al., 2022; Po-Chedley et al., 2022; Gordon et al., 2023). This can be especially104

advantageous when compared to traditional methods that require local gridpoint and105

time-mean statistics (Barnes et al., 2020). Although our current detection framework106

is therefore limited to a single GCM, this subsequently eliminates any uncertainties re-107

lated to model structural biases, which Labe and Barnes (2022) showed can influence the108

results because the machine learning model can instead begin to discern mean state bi-109
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ases for its classifications. SPEAR also provides a large number of individual ensemble110

members for training each different climate scenario, while most other GCM large en-111

sembles only provide enough data for a single SSP projection, at least given what is pub-112

licly available (NCAR, 2020; Deser et al., 2020). Lastly, SPEAR has a relatively high113

horizontal resolution, which a recent study found can improve machine learning predic-114

tion skill since the model can learn to recognize relevant smaller scale features, like near115

topography (Labe et al., 2024).116

2.1 GFDL SPEAR Large Ensemble Experiments117

We use the medium resolution configuration of the fully-coupled (atmosphere-ocean-118

sea ice-land) SPEAR model (also referred to as SPEAR MED). This version has 33 ver-119

tical levels in the atmosphere with a model top at 1 hPa and uses a land-atmosphere grid120

spacing of 0.5◦ and a coarser ocean-sea ice grid spacing of approximately 1◦ (telescop-121

ing to 0.33◦ near the equator). SPEAR features the same model components as GFDL122

CM4 (Held et al., 2019), which includes AM4, LM4, MOM6, and SIS2 (Zhao et al., 2018a,123

2018b; Adcroft et al., 2019). However, SPEAR has been tuned for the study of seasonal124

to multidecadal predictability and projection, and more details on this can be found in125

Delworth et al. (2020).126

SPEAR offers 30 ensemble members for each climate scenario evaluated here, which127

are listed in Table S1 and shown in Figure 1. To sample different phases of internal cli-128

mate variability, each ensemble member of SPEAR is branched using initial conditions129

from an 1850 control run at 20 year intervals, but using the same land initial conditions130

starting in 1921. Every ensemble member is then prescribed with historical radiative forc-131

ing from the years 1921 to 2014, which includes aerosols, greenhouse gases, land use/land132

change, and solar irradiance (Meinshausen et al., 2017; Hurtt et al., 2020). Note that133

to balance the number of years in each climate scenario class (see Text S1), we only an-134

alyze the years of 1929 to 2014 from the SPEAR historical large ensemble. Thereafter,135

SPEAR is prescribed with radiative forcing following either future projections from the136

SSP5-8.5 scenario (extreme, outlier greenhouse gas emissions), SSP2-4.5 (moderate emis-137

sion scenario), or SSP1-1.9 (lowest emission scenario with net zero by 2050) (Kriegler138

et al., 2017; Ritchie & Dowlatabadi, 2017; Riahi et al., 2017; Burgess et al., 2020; Pe-139

ters & Hausfather, 2020; Hausfather & Peters, 2020; Tebaldi et al., 2021; Pielke et al.,140

2022). Again, 30 ensemble members are available for each of the three SSP scenarios over141
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the years of 2015 to 2100, which are the basis for training and testing the ANN. Two at-142

mospheric variables from SPEAR are considered for this work: 2 m height air temper-143

ature (“temperature”) and total precipitation rate (“precipitation”).144

Along with the future climate change projections, we examine a natural forcing-145

only scenario over the period of 2015 to 2100. For this counterfactual climate experiment,146

all external forcings including anthropogenic aerosols, land use/land change, and green-147

house gases are maintained at 1921 levels. Solar irradiance is then prescribed toward a148

hypothetical estimate based on the solar cycle taken from observations. Volcanic aerosols149

after 2024 are set to the long-term mean over the 1850 to 2014 period (Delworth et al.,150

2022). Thus, without external anthropogenic forcing, there are generally no pronounced151

long-term trends in this climate scenario (Figures 1 and S3a,e).152

We also analyze two rapid climate mitigation scenarios that are used for out-of-153

sample inferences after the ANN training process is complete. The first follows SSP5-154

3.4OS, which is an overshoot scenario (OS) that closely emulates SSP5-8.5 until the year155

2040 and thereafter includes a rapid reduction in greenhouse gas levels (Figure S2) due156

to bioenergy crops and other carbon capture and storage-like technology (Melnikova et157

al., 2022). This leads to large net negative emissions by 2100 (Meinshausen et al., 2020).158

We also conducted an additional idealized mitigation scenario, which again follows SSP5-159

3.4OS, but this time is scaled to start in 2031 following a similar rate of decay in the lev-160

els of carbon dioxide and methane (Figure S2a-b). All other forcings are kept to SSP5-161

3.4OS (e.g., ozone, aerosols, and nitrous oxide (Figure S2c)). This scenario, which we162

denote as SSP5-3.4OS 10ye (i.e., 10ye for 10 years earlier), is meant to imitate an ear-163

lier start to rapid climate mitigation, and thus comparing the SSP5-3.4OS and SSP5-164

3.4OS 10ye climate scenarios can provide a hypothetical comparison for revealing how165

the climate system could respond to different timings of aggressive future climate mit-166

igation.167

Figure 1 compares the responses of global mean annual temperature and precip-168

itation for each of the climate scenarios used in this work. In contrast to the higher emis-169

sions simulated under SSP5-8.5 and SSP2-4.5, there is a maximum in global surface tem-170

perature by the 2030s under SSP1-1.9 radiative forcing that is followed by a slow cool-171

ing through the end of the 21st century (Figures 1 and S3). The overshoot mitigation172

scenarios, which are similar to SSP5-8.5 until either 2031 or 2040, show ensemble mean173
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Figure 1. (a) Time series of annually-averaged global mean temperature anomalies for the

ensemble mean of the SPEAR historical scenario from 1929 to 2014 (black line), a natural-only

forcing scenario experiment with SPEAR from 2015 to 2100 (purple line), a future scenario ex-

periment with SPEAR following SSP1-1.9 from 2015 to 2100 (light blue line), a future scenario

experiment with SPEAR following SSP2-4.5 from 2015 to 2100 (dark green line), a future sce-

nario experiment with SPEAR following SSP5-8.5 from 2015 to 2100 (dark blue line), a future

mitigation scenario experiment with SPEAR following SSP5-3.4OS from 2015 to 2100 (light

green line), and a future mitigation scenario experiment with SPEAR following SSP5-3.4OS

but starting mitigation 10 years earlier (SSP5-3.4OS 10ye; tan line). The spread across the 30

ensemble members is indicated by the lighter shading for each climate scenario experiment. All

anomalies are computed from their respective 1921-1950 climatological time means (historical or

natural forcing). The black and gray markers note the highest ensemble mean temperature for

SSP5-3.4OS and SSP5-3.4OS 10ye, respectively. The dashed black vertical line indicates the start

of mitigation for SSP5-3.4OS (year 2040), and the dashed gray vertical line indicates the start

of mitigation for SSP5-3.4OS 10ye (year 2031). (b) As in (a), but for global mean precipitation

anomalies.
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global temperatures rising until 2049 for SSP5-3.4OS 10ye and 2059 for SSP5-3.4OS. In174

Figure S2 the time series of greenhouse gas concentrations show a corresponding peak175

in carbon dioxide levels of about 515 ppm for SSP5-3.4OS 10ye and 571 ppm for SSP5-176

3.4OS, which are nearly concurrent with the timing of the greatest global warming re-177

sponse before the reversal of the upward trend. This contrasts with the continuing rise178

of carbon dioxide under SSP5-8.5 that reaches 1135 ppm by 2100; that said, recent work179

has shown that this climate scenario is becoming an implausible upper bound (e.g., Pielke180

et al., 2022). The overshoot scenario results are broadly consistent with recent studies181

(e.g., MacDougall et al., 2020) finding little warming after net zero emissions, but note182

that these scenarios also include a drawdown of greenhouse gases. Strikingly, by 2100,183

the difference in the ensemble-mean global mean surface temperature for SSP5-3.4OS 10ye184

and SSP5-3.4OS is 0.53◦C (Figure 1a). Even more revealing is that the ensemble spreads185

do not overlap despite rapid mitigation efforts only starting a decade earlier in SSP5-186

3.4OS 10ye. Comparing temperature trends over 2071 to 2100 also reveals widespread187

cooling in both SSP5-3.4OS and SSP5-3.4OS 10ye, which is particularly amplified in higher188

latitude regions of the Northern Hemisphere (Figure S4a-b). There are also hemispheric189

differences in precipitation, including a southward shift in the annual mean climatology190

of the Intertropical Convergence Zone. This could be related to the weakening of the At-191

lantic Meridional Overturning Circulation (AMOC) as simulated by SPEAR (Delworth192

et al., 2022) and will be investigated in future work.193

Globally, precipitation increases in response to larger radiative forcing in SSP2-4.5194

and even more so for SSP5-8.5 (Figure 1b). In contrast to global temperature, the re-195

versal of the ensemble mean upward precipitation trend does not occur until about 10-196

15 years later for both the SSP5-3.4OS 10ye and SSP5-3.4OS scenarios. Internal vari-197

ability also contributes to overlapping ensemble member spreads in precipitation between198

SSP1-1.9 and SSP2-4.5 along with the two overshoot scenarios, but this global mean re-199

sponse continues to remain separate and distinct from the natural forcing scenario.200

2.2 Explainable Neural Network Approach201

Figure S1 summarizes our framework for using neural networks to detect which cli-202

mate scenario is associated with maps of different climate variables. First, a classifica-203

tion ANN is trained on annual mean global maps of temperature (or precipitation) from204

SPEAR large ensembles simulated under either historical forcing from 1929 to 2014 or205
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under natural forcing, SSP1-1.9, SSP2-4.5, and SSP5-8.5 for the future years from 2015206

to 2100. The aim of the ANN is to learn to associate individual inputs (the climate maps)207

with the correct climate scenario (i.e., 5 possible classes/predictions). Figures S5-S6 show208

sensitivity of the ANN performance to different choices in architecture, but overall we209

find relatively similar mean skill across these networks. The ANN configuration that is210

ultimately selected from this hyperparameter sweep is based on balancing median val-211

idation accuracy and overall interpretability, which is further described in Text S1. Af-212

ter training, validating, and testing is complete, we then input data from the 30 ensem-213

ble members simulated under SSP5-3.4OS or SSP5-3.4OS 10ye into the ANN to see which214

climate scenario class is predicted for every year from 2015 to 2100 during these miti-215

gation scenarios. This is effectively out-of-sample data that the ANN has never seen be-216

fore, and the ANN can again classify each year as either natural forcing, historical forc-217

ing, SSP1-1.9, SSP2-4.5, or SSP5-8.5. For ease of interpretation in our results, we con-218

catenate years from 2015 to 2030 using SSP5-3.4OS to complete the time series for SSP5-219

3.4OS 10ye, which by itself does not diverge until 2031. In other words, the machine learn-220

ing classifications for the years of 2015 to 2030 are the same between SSP5-3.4OS and221

SSP5-3.4OS 10ye, so that they equally cover the same 2015-2100 period (86 years).222

As discussed further below, we discover that there are jumps in the classifications223

from one climate scenario to the next for the time evolution of the overshoot scenarios224

(e.g., ANN consistently predicting SSP5-8.5 followed by an abrupt transition to consis-225

tent SSP2-4.5 predictions as time progresses). To investigate these transitions in climate226

scenario predictions more closely, we also train and test two binary classification ANNs,227

which can predict either SSP5-8.5 versus SSP2-4.5 (Figure S1b) or SSP2-4.5 versus SSP1-228

1.9 (Figure S1c). We again feed the out-of-sample data from the SSP5-3.4OS and SSP5-229

3.4OS 10ye SPEAR large ensembles into the binary ANNs after their original training230

is complete. The purpose of these additional ANNs is primarily for interpreting our ex-231

plainable machine learning results, which is described in detail within Section 3.2. The232

skill metrics for variations in the architecture of the binary ANNs are also provided in233

Figure S7 and S9 for temperature and Figures S8 and S10 for precipitation.234

For understanding which climate patterns are important for the ANNs to distin-235

guish one scenario from another, we use a form of XAI called Integrated Gradients (Sundararajan236

et al., 2017), which is an ad hoc feature attribution method that is used to describe the237

contribution of each input pixel (e.g., an individual grid cell on a global map) to the over-238
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all prediction output (Baehrens et al., 2010). Integrated Gradients is similar to the method239

of Input*Gradient (Shrikumar et al., 2016, 2017), but is designed to address potential240

nonlinearities. Recent work, such as Mamalakis et al. (2022b), has shown that explana-241

tions from Integrated Gradients have performed well compared to other XAI methods242

on climate datasets with similar characteristics as ours. We also found close XAI results243

after applying methods using different layer-wise relevance propagation rules (Bach et244

al., 2015) (not shown). In this study, highly positive areas of relevance on the XAI heatmaps245

can be interpreted as regions that pushed the ANN toward its predicted climate scenario246

class, whereas negative areas of relevance are vice versa. While XAI is not itself a method247

for proving causality, it can still help to aid in building user trust and insight into the248

decision-making process of the machine learning black box (McGovern et al., 2019; Toms249

et al., 2020; Jacovi et al., 2021; Mamalakis et al., 2022a; Bostrom et al., 2023). Here, our250

XAI heatmaps provide a tool in identifying the relevant climate regions that were used251

by the ANN to make its classifications (e.g., Labe & Barnes, 2022), especially for reveal-252

ing the important time-evolving climate patterns after rapid mitigation efforts in the two253

overshoot scenarios.254

In summary, we use ANNs to take inputs of global temperature or precipitation255

data from SPEAR and task the network to classify which climate scenario is associated256

with each yearly map. Additional details regarding the choice and design of the ANNs257

can be found in Text S1, and the final hyperparameter specifications that are uniquely258

selected for each climate variable and classification task are listed in Table S2.259

3 Results260

3.1 Classification of Climate Scenarios261

In Figure 2, we begin to evaluate the skill of our detection method on the 2 test-262

ing ensemble members associated with the 5-class ANN and then show composites of the263

relevance heatmaps for each predicted climate scenario class using the Integrated Gra-264

dients method of XAI. We find higher accuracy for inputs of temperature maps (91%)265

compared to precipitation (86%), which is likely due to their greater separation between266

individual future projections (Figure 1a) and higher regional signal-to-noise ratio (Hawkins267

& Sutton, 2011). Although our classes are balanced, we still show the metrics of recall,268

precision, and F1 score for each climate scenario. Skill is generally similar for each cli-269
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mate scenario, except for the natural forcing ensemble members which have better per-270

formance for temperature and precipitation (Figure 2b,g).271

Figure 2. (a-e) Explainability maps using the Integrated Gradients method that are com-

posited separately for each predicted climate scenario class using the testing ensemble members

and global maps of temperature. The total accuracy is denoted in the far left label. The local

precision, recall, and F1 scores for individual classes are denoted below each climate scenario

composite. Relevance values are normalized by the absolute maximum relevance in each compos-

ite. (f-j) As in (a-e), but for maps of precipitation.

For inputs of temperature, we find several spatially-coherent regions of positive and272

negative areas of relevance in common across the climate scenarios. This indicates that273

these particular regions are important locations for the ANN to decide which scenario274

is associated with a given map. One of these regions is across eastern South America,275

where temperature anomalies in this region can therefore be interpreted as an impor-276

tant characteristic (or indicator) for correctly identifying a temperature map from the277

natural-forcing scenario (positive relevance; Figure 2b), but on the other hand, this re-278

gion also tends to confuse the ANN when given historical-forcing maps as it tries to push279

the network toward another class prediction (negative relevance; Figure 2a). Another280

important indicator region overlaid with areas of positive and negative relevance depend-281

ing on the specific climate scenario is found across Central Africa. Again, this suggests282

that temperatures in this region are a unique indicator for the ANN to identify the in-283

dividual climate scenario. Locations with highly positive and negative relevance values284

in close proximity are also found in some areas near higher topography and over the South-285
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ern Ocean, which is likely related to sharper temperature gradient features or simply in-286

significant, noisy XAI attributions. There are distinctive relevance patterns for individ-287

ual scenarios too, such as the North Atlantic being most important for predicting SSP1-288

1.9 (Figure 2d) and a temperature signal across the tropical west-central Pacific that is289

important for predicting SSP5-8.5 (Figure 2c). This is similar to previous work that has290

found a contribution of scenario uncertainty to the evolution of the North Atlantic warm-291

ing hole region, but even larger uncertainties exist if comparing across other GCMs (Park292

& Yeh, 2024).293

Looking at the relevance maps for precipitation (Figure 2f-j), we find that features294

across the high latitude regions of the Arctic and the Southern Ocean are important for295

the ANN to make its scenario classifications. The locations of these positive relevance296

areas align with earlier work showing stronger signal-to-noise ratios from radiative forc-297

ing (e.g., H. Zhang & Delworth, 2018; Hawkins et al., 2020). We again find that the North298

Atlantic and Central Africa are associated with higher relevance, but one notably dif-299

ferent relevance region is over the tropical Atlantic that is especially used for predict-300

ing either SSP1-1.9 (Figure 2i) or SSP2-4.5 (Figure 2j). Based on these XAI results, we301

mainly find that the ANN is focused on patterns of polar precipitation and the response302

of the Intertropical Convergence Zone in order to distinguish between different climate303

scenario classes.304

Even though we have now shown that there are specific regions of temperature and305

precipitation information that the ANN is weighting together for discerning individual306

climate scenarios, it is still possible the network is simply learning to distinguish the cli-307

mate scenarios by the differences in their mean of each map. To address this prospect,308

we set up a logistic regression model by inputting only the value of the global mean tem-309

perature or precipitation to attempt to predict the five scenarios. For this problem, we310

find that the logistic regression skill is highly variable due from a sensitivity related to311

different combinations of training ensemble members; nonetheless, it still only reaches312

a maximum accuracy up to 60% for temperature and precipitation for its best model (not313

shown). This baseline comparison provides further support to show that the ANN is learn-314

ing important spatial information to connect the yearly maps with individual climate315

scenarios. This result is also not too surprising given that there is substantial overlap316

in the global means across scenarios when evaluating the data without considering their317

time evolution (Figure 1). For example, there are at least a few ensemble members in318
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the SSP1-1.9, SSP2-4.5, and SSP5-8.5 scenarios that at some point all observe a global319

mean temperature anomaly of 1.5◦C (Figure 1a), and even more overlaps in the ensem-320

ble spreads are found for precipitation (Figure 1b).321

3.2 Identifying Indicators of Regional Change After Rapid Mitigation322

After finding that our data-driven framework can skillfully learn to associate maps323

of temperature and precipitation with different climate scenarios, we now feed in data324

from two overshoot simulations that were not used as part of the original training pro-325

cess. To recall from earlier, these experiments are associated with aggressive climate mit-326

igation that starts in 2040 (SSP5-3.4OS) or about a decade earlier in 2031 (SSP5-3.4OS 10ye)327

after branching from a trajectory that mirrors SSP5-8.5 radiative forcing. The effects328

of starting mitigation 10 years apart on the time-evolution of the predicted climate sce-329

narios are displayed in Figure 3 using the 5-class ANN framework. These classifications330

are sorted by the selected scenario for each of the 30 ensemble members for SSP5-3.4OS331

and SSP5-3.4OS 10ye using annual-mean global maps of temperature (Figure 3a,c) and332

precipitation (Figure 3b,d). Greater uncertainty across the individual ensemble class pre-333

dictions is found prior to around 2030, which likely reflects the overlap in SSP projec-334

tions as shown in Figure 1. In other words, there are fewer distinctive novel patterns that335

the ANN can learn to connect with each unique climate scenario during this period of336

time.337

Looking at the yearly progression of predictions for SSP5-3.4OS, we find that SSP5-338

8.5 is predicted by the majority of the ensemble members from the mid-2020s to about339

2060 for inputs of temperature and precipitation (Figure 3a-b). Thereafter, the major-340

ity of ensemble members are classified as the SSP2-4.5 scenario through 2100. In fact,341

the highest agreement across ensemble members is found for these future SSP2-4.5 clas-342

sifications, particularly for the temperature maps. This result is also consistent with the343

high value of ensemble mean ANN confidence, as exhibited in Figure S11, for the yearly344

evolution of the climate scenario classifications after the middle of the 21st century. In-345

terestingly, however, we do find a reduction in mean ANN confidence for SSP2-4.5 and346

a corresponding increase in confidence toward the SSP1-1.9 class for maps of precipita-347

tion by the 2090s under SSP5-3.4OS (Figure S11b).348
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Figure 3. (a) Heatmap showing the number of ensemble members for each individual classifi-

cation of SSP5-3.4OS temperature maps from 2015 to 2100. The dashed dark green line indicates

the start of mitigation in 2040. The vertical red lines indicate the start and end of the transition

in consistent predictions of the climate scenario classes from SSP5-8.5 to SSP2-4.5. See text for

details. Open red dots denote that more than 15 ensemble members predicted that individual

climate scenario, and filled red dots indicate that at least 25 ensemble members predicted that

scenario. (b) As in (a), but for maps of precipitation. (c-d) As in (a-b), but for individual classi-

fication predictions of SSP5-3.4OS 10ye. The vertical red lines indicate the start and end of the

transitions in consistent predictions of the climate scenario classes from SSP5-8.5 to SSP2-4.5

or from SSP2-4.5 to SSP1-1.9. The dashed bright green line indicates the start of mitigation in

2031.

–14–



manuscript submitted to Geophysical Research Letters

For the ensemble of simulations following SSP5-3.4OS 10ye radiative forcing, we349

find a different evolution of climate scenario classifications, as revealed in Figure 3c-d.350

These predictions show a transition from mainly predicting SSP5-8.5 to SSP2-4.5 that351

occurs earlier at around 2050 for maps of temperature and precipitation. Another changeover352

then starts in the mid-2070s when the ANN begins to predict the SSP1-1.9 scenario, which353

persists until the end of the century. Again, we find high agreement in these future cli-354

mate scenario predictions across individual ensemble members. This suggests that the355

ANN is learning robust patterns of regional climate indicators unique to each scenario356

despite the background noise of internal variability. Another surprising result here is the357

striking consistency in the timing of shifts between the consecutive climate scenario pre-358

dictions found for both variables.359

To more thoroughly evaluate these transitions in scenario classifications that are360

selected for the overshoot experiments, we now turn to our two binary ANNs. Specif-361

ically, we focus on compositing the differences in their relevance maps before and after362

these transition periods (Figure 4), which are associated with lower model confidence (Fig-363

ure S11-12) and greater variability in the predicted scenarios when looking across indi-364

vidual ensemble members (Figure 3). Since the ANN can only predict one of two pos-365

sible climate scenarios, we can more directly interpret these explainability maps. This366

is unlike the earlier 5-class ANN, where their relevance maps cannot be compared directly367

between one climate scenario and another (e.g., Figure 2), as this ANN must instead learn368

to identify climate patterns that are unique to each of the five classes (Labe & Barnes,369

2022).370

We first consider the broader shift in classifying the SSP5-8.5 scenario to mostly371

the SSP2-4.5 scenario for SSP5-3.4OS and SSP5-3.4OS 10ye maps of temperature (Fig-372

ure 4a-b) and precipitation (Figure 4d-e). Note that this binary ANN (SSP5-8.5 or SSP2-373

4.5) has an overall accuracy of 92% and average F1 score of 92% when evaluated on the374

SPEAR testing ensemble members for temperature and returns an accuracy of 89% and375

average F1 score of 89% for precipitation.376

Next, we use another binary ANN that classifies a temperature or precipitation map377

but this time as either SSP1-1.9 or SSP2-4.5 (testing data accuracy = 93% and average378

F1 score = 93% for temperature; testing data accuracy = 91% and average F1 score =379

91% for precipitation). This shift in climate scenario classification only occurs for data380
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from SSP5-3.4OS 10ye (Figure 3c-d), and therefore we only evaluate these difference in381

relevance maps for the experiment where climate mitigation begins in 2031 (Figure 4c,f).382

Since our XAI method returns a relevance heatmap for every year fed into the ANN,383

we can therefore assemble these composites that show the difference in the relevance maps384

around these transition periods for SSP5-3.4OS and SSP5-3.4OS 10ye. These XAI dif-385

ferences are shown in Figure 4 and are calculated by taking the ensemble mean of the386

five years after each transition period minus the five years before each transition period.387

We can then interpret positive areas of relevance as locations that pushed the ANN to388

select the later climate scenario class. For example, positive areas of relevance in Fig-389

ure 4a are temperature features that made the ANN more likely to predict SSP2-4.5, and390

negative relevance can then be interpreted as the opposite. These overall transition pe-391

riods are outlined by the red lines in Figure 3 by considering whether the climate sce-392

nario is predicted by at least 50% or 80% of the 30 ensemble members. Note that the393

specific years and the raw data for the temperature and precipitation differences are dis-394

played in a corresponding Figure S13. Although we acknowledge that these thresholds395

are somewhat arbitrary, the purpose of this analysis is just to gain some broader insight396

on how XAI tools could be used to investigate why there are robust and rapid switches397

in climate scenario classifications associated with the aggressive mitigation runs. A closer398

examination of these overshoot simulations is left for future work.399

In general, we find that the North Atlantic is an important regional indicator dur-400

ing these mean shifts in climate scenario classifications after the onset of climate mit-401

igation for both inputs of temperature and precipitation (Figure 4). This relevance fea-402

ture is consistent with a pattern of North Atlantic temperature anomalies that can be403

influenced by the strength of AMOC (R. Zhang et al., 2019; Delworth et al., 2022), which404

can have substantial implications for the magnitude of the global climate response (Bellomo405

et al., 2021). Central Africa is another region of larger differences in relevance around406

transition periods, which aligns closely with looking at the raw data differences shown407

in Figure S13. For instance, the reduced precipitation over Central Africa in the late 21st408

century under SSP5-3.4OS 10ye forcing (Figure S13f) is an important regional change409

for pushing the ANN to begin predicting SSP1-1.9 instead of SSP2-4.5 (Figure 4f). Other410

prominent features include the notable contrast in relevance between hemispheres for the411

transition around predicting SSP2-4.5 to SSP1-1.9 with temperature (Figure 4c). This412

is likely related to the larger cooling signal observed by the simulation with the SSP5-413
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Figure 4. (a) Difference in the explainability spatial heatmaps for the ensemble mean of

SSP5-3.4OS temperature predictions for the five years after the transition period in classifica-

tions from SSP5-8.5 to SSP2-4.5 minus the five years before the transition period. This transition

period is designated by the vertical red lines outlined in Figure 3a. (b) As in (a), but for the

ensemble mean of predictions using SSP5-3.4OS 10ye. This transition period is designated by the

vertical red lines outlined in Figure 3c. (c) As in (b), but for the five years after the transition

period in classifications from SSP2-4.5 to SSP1-1.9 subtracted by the five years before this tran-

sition period. The coarser appearance of this specific relevance composite for temperature inputs

is due to the smaller ridge parameter selected for this binary ANN (Table S2). (d-f) As in (a-c),

but for maps of precipitation using the transition periods outlined in Figure 3c,d.
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3.4OS 10ye radiative forcing (Figure S13c), particularly over land. Regarding the pre-414

cipitation XAI maps, we find that signals in the tropics are important for the ANN to415

identify switches in the climate scenario classifications, but this appears less important416

over the eastern Pacific Ocean and Indian Ocean basins (Figure 4d-f).417

Lastly, we also highlight differences in the XAI heatmaps when compositing the418

SSP5-3.4OS and SSP5-3.4OS 10ye simulations by their respective scenario predicted us-419

ing the 5-class ANN for temperature and precipitation (Figures S13). Having said that,420

we observe that the historical- and natural-forcing scenarios are rarely predicted for the421

overshoot simulations, so the sample sizes of the mean relevance plots vary substantially422

(Figure S14-S15). These relevance fields closely mirror the ones from the testing ensem-423

ble members in Figure 2 and support our conclusion that the ANNs are learning to spatially-424

weight distinctive temperature and precipitation features.425

4 Summary and Conclusions426

In our new detection method, we find that an ANN can skillfully identify a global427

map with its associated radiative forcing scenario, even for a lower signal-to-noise vari-428

able like precipitation (Hegerl et al., 2004; King et al., 2015; H. Zhang & Delworth, 2018;429

Hawkins et al., 2020). By weighting spatial information, such as fingerprint patterns of430

localized climate change, we find that this framework can identify between different ra-431

diative forcing scenarios despite large internal variability and at times which share over-432

lapping global mean characteristics. Then, by applying this framework to two overshoot433

simulations, we show how this methodology can be used to reveal a difference in the av-434

erage climate scenario impacts predicted over the 21st century after mitigation. In this435

example, when aggressive climate mitigation efforts starts in 2031, we find that SSP1-436

1.9 is predominately predicted by the 2070s for both temperature and precipitation. In437

contrast, when climate mitigation instead begins in 2040, we find that SSP2-4.5 is clas-438

sified for this same decadal period through the end of the run in 2100. This result in-439

dicates that starting rapid mitigation in as little as a decade earlier can reduce the ex-440

pected climate impacts that are typically associated with a more moderate emission sce-441

nario (SSP2-4.5) compared to the lowest emission scenario (SSP1-1.9). Although we started442

using XAI to explore the key regions of change associated with the climate scenario clas-443

sifications, a deeper investigation into the physical responses associated with the tim-444

ing of mitigation is crucial for assessing future climate risks, especially at the local level445
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(Diffenbaugh et al., 2023). While there is some spread in the specific classifications be-446

tween the individual ensemble members due to internal variability in the earlier part of447

the 21st century, we find that the majority of predictions are consistent by the mid 2020s.448

More broadly speaking, this study highlights the benefit of this machine learning449

approach for identifying time-evolving climate patterns and anomalies unique to differ-450

ent radiative forcing scenarios, even in a single ensemble member with one realization451

of internal variability. Large ensembles of additional radiative forcing simulations may452

therefore not be needed when evaluating the ANNs after the training process. Given the453

sensitivity of this neural network framework to learning crucial local spatial information,454

it is conceivable that this architecture could also be extended to compare observations455

with other climate modeling systems such as those that differ by examining new param-456

eterization schemes, coupled model components, or sensitivities to different external forc-457

ings. Alternatively, future work could investigate using spatial maps from multiple vari-458

ables simultaneously, which might elucidate unique fingerprint patterns for compound459

climate extremes across local scales.460

The utility for near real-time monitoring of observations is a natural next exten-461

sion of this work. Nevertheless, there are several remaining challenges. First, the ANNs462

here are only trained on large ensemble experiments using a single GCM, and therefore463

it is likely the ANN has learned any inherent biases associated with the SPEAR model464

itself. Second, a key foundation of this work is on the availability of a large number of465

ensemble members for training the ANN to learn each climate change scenario, which466

allows the ANN to learn to distinguish the forced response from internal variability (Milinski467

et al., 2020; Jain et al., 2023). This data availability is currently limited for other pub-468

licly available initial-condition large ensembles, but it could be possible for a limited num-469

ber of models such as MIROC6-LE (Shiogama et al., 2023) and SMHI-LENS (Wyser et470

al., 2021). Third, and possibly the largest caveat to this work, is related to the constraints471

of the classification scheme itself. In other words, the training here is limited to the pre-472

diction of only a few pre-selected radiative forcing scenarios. In reality, the evolution of473

greenhouse gases will not perfectly follow any of these scenario boundaries, and there-474

fore how scientists reframe the development of new climate model scenarios for CMIP7475

and beyond (e.g., Meinshausen et al., 2023; Nature, 2023; Sanderson et al., 2023) will476

play a key role in how this detection method can be expanded in the future, particularly477

as it pertains to more relevant regional applications for the climate services community.478
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Text S1: Artificial Neural Network Parameters12

For each classification task (e.g., predicting 5 climate scenarios or 2 climate scenarios) and climate13

variable (temperature or precipitation) (Figure S1), we find a unique artificial neural network14

(ANN) which scores the highest in validation data accuracy. These final architecture details are15

listed in Table S2, and each one is selected by identifying the median accuracy of different ANN16

iterations for a range of network complexities. For networks with similar median skill, we select17

the higher ridge regularization parameter to help reduce overfitting and improve interpretabil-18

ity. The iterations are conducted by randomly selecting different SPEAR ensemble members19

used for training, testing, and validation data and alternating different random initialization20

seeds. This is conducted three times each for the 5-class ANN and five times each for the binary21

ANNs, and these results are shown in Figures S5-S6 and S7-S10, respectively. The relatively22

small number of random iterations for each network is due to the high computational cost of this23

machine learning task (i.e., slow training process for a comprehensive hyperparameter sweep),24

but overall we find that adding more iterations does not change our skill score results (not shown).25

26

Each of the neural networks is fully-connected and receives vectorized maps of temperature or27

precipitation at the input layer that have a size equal to 207,360 units, which is comprised of28

360 latitude points by 576 longitude points. No other information is provided at the input layer29

or during the training process, and therefore the ANN has no direct knowledge of which year is30

associated with each climate map. The output layer contains either two or five nodes depending31

on the classification network (e.g., number of predicted climate scenarios) (Figure S1). All classes32

are balanced with 86 years of annual mean maps input for each scenario (either 1929-2014 or33
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2015-2100). Before inputting any data into the ANN, all climate maps are standardized by sub-34

tracting the mean of the training data and dividing by the training standard deviation. This is35

conducted across all years, relevant climate scenarios, and training ensemble members for every36

grid point.37

38

In short, a neural network training process consists of iteratively updating the model weights and39

biases until the loss function is minimized. For training each ANN, we use 24 ensemble members40

(80% of the data). There are 4 ensemble members then used for validation, and 2 ensemble41

members are used as testing data for independent classification evaluations. We consistently use42

one random initialization seed and the same subsets of individual ensemble members for training,43

testing, and validation for the main results of this study. Skill metrics for these specific ANNs,44

including testing accuracy, recall (proportion of classifications out of all possible samples in a45

given climate scenario class), precision (proportion of climate scenario classifications actually46

from that particular class), and the F1 score (harmonic mean of precision and recall) (Johnson47

& Khoshgoftaar, 2019), are shared in the main text and figures of the manuscript (e.g., Figure48

2). Across all ANNs, we use a batch size of 128, learning rate of 0.0001, a stochastic gradient49

descent optimizer (Ruder, 2016) using Nesterov momentum (0.9) (Nesterov, 1983), a categorical50

cross-entropy loss function, the rectified linear unit (ReLu; Agarap, 2018) for nonlinear transfor-51

mation in the hidden layers, and a softmax activation function applied to the output layer.52

53

To help limit overfitting, we apply several different approaches to each classification network.54

First, we include a ridge regularization (L2) parameter (L2; Friedman, 2012), which acts to55
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penalize larger weights across the input data and subsequently reduces autocorrelation in the56

gridded fields of temperature and precipitation (Sippel et al., 2019; Barnes et al., 2020; Labe et57

al., 2024). We test a number of different combinations of regularization values and ANN archi-58

tectures and then select the L2 separately for each variable and classification network. These59

final values are given in Table S2. Interestingly, we find that ANN classification accuracy is60

more sensitive to the choice of L2, rather than the complexity of the network itself (i.e., number61

of hidden layers and nodes). In general, our networks here are relatively shallow (one to three62

layers) and similar to recent studies applying feed-forward neural networks to climate science ap-63

plications (e.g., Toms et al., 2021; Labe & Barnes, 2022; Martin et al., 2022; Rader et al., 2022).64

Although a slightly deeper ANN is sometimes selected for the binary classification prediction65

problem (Table S2), we acknowledge that this does not necessarily imply that a more complex66

network is necessarily needed given such similar skill is found between architectures and training67

iterations. We further apply early stopping to each training process, which stops model training68

if there is no improvement in validation accuracy (i.e., minimizing the loss function) after 1069

epochs. The network with the best weights is then returned after this technique, and note that70

each ANN trains for no more than 1500 epochs. Lastly, we include a dropout layer after the71

first hidden layer (dropout rate = 0.4), which is another form of regularization that forces the72

ANN to learn more slowly and acts to lessen overfitting on new unseen data (Hinton et al., 2012;73

Srivastava et al., 2014).74

75

To find a more comprehensive introduction to machine learning, we recommend resources pro-76

vided by Goodfellow, Bengio, and Courville (2016) and Russell and Norvig (2021). In addition,77
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overviews specifically related to the atmospheric sciences can be found in Chase, Harrison, Lack-78

mann, and McGovern (2022); Chase, Harrison, Burke, Lackmann, and McGovern (2022); de79

Burgh-Day and Leeuwenburg (2023), including for the use of explainability methods (Toms et80

al., 2020; Flora et al., 2023).81

82

Text S2: Software Programs and Other Tools83

As suggested by Irving (2016) on improving data and method standards in climate science, we84

provide references that document the important computational packages utilized in this work.85

Preprocessing of the large ensemble data was completed using CDO v1.9.10 (Schulzweida, 2019)86

and NCO v5.0.1 (Zender, 2008). Python code for the machine learning models and other sta-87

tistical analysis is available from Labe, Delworth, Johnson, and Cooke (2023). The majority of88

this study uses Python v3.9.13 (Rossum & Drake, 2009) with the Conda v23.1.0 (Anaconda,89

2023) environment and package management system. Specific Python packages that make up90

the majority of the analysis include Numpy v1.22.4 (Harris et al., 2020), SciPy v1.8.1 (Virtanen91

et al., 2020), Scikit-learn v1.1.1 (Pedregosa et al., 2011), TensorFlow/Keras v2.7.0 (Abadi et al.,92

2016; Chollet, 2015), iNNvestigate v2.0.2 (Alber et al., 2019), Matplotlib v3.5.2 (Hunter, 2007),93

Basemap v1.3.6, (Basemap, 2022), CMasher v1.6.3 (van der Velden, 2020), and cmocean v2.094

(Thyng et al., 2016).95
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Table S.1. List of the GFDL SPEAR Large Ensemble experiments (medium resolution

configuration (MED)) evaluated using the neural network framework. More information on

the model can be found at https://www.gfdl.noaa.gov/spear large ensembles/, and it is

comprehensively documented in Delworth et al. (2020).

Experiment Name Climate Scenario Years # Members

SPEAR MED SSP119 SSP1-1.9 2015-2100 30
SPEAR MED SSP245 SSP2-4.5 2015-2100 30
SPEAR MED SSP585 SSP5-8.5 2015-2100 30

SPEAR MED NATURAL Only Natural Forcing 2015-2100 30
SPEAR MED HISTORICAL CMIP6 Historial Forcing 1929-2014 30

SPEAR MED SSP534OS SSP5-3.4OS 2015-2100 30
SPEAR MED SSP534OS 10ye SSP5-3.4OS, but with CO2/CH4 2015-2100 30

mitigation starting 10 years earlier
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Table S.2. Parameters for the artificial neural network (ANN) architecture that is ultimately

selected for each classification network. These choices are determined by identifying the best

performing network after a hyperparameter tuning process conducted for each separate variable

(temperature and precipitation) and sequence of predicted climate scenarios, as shown in

Figures S5-S10. This is done by identifying the combination of ridge regularization parameter

and architecture (i.e., number of layers and nodes) with the highest median categorical accuracy

after comparing several networks with random seeds. See Text S1 for more details.

Artificial Neural Network – Possible Classes Variable # Layers # Nodes Per Layer Ridge regularization (L2)

Historical, Natural, SSP1-1.9, SSP2-4.5, SSP5-8.5 Temperature 1 100 0.1
Historical, Natural, SSP1-1.9, SSP2-4.5, SSP5-8.5 Precipitation 1 100 0.1

SSP2-4.5, SSP5-8.5 Temperature 1 20 0.2
SSP2-4.5, SSP5-8.5 Precipitation 3 100 0.05

SSP1-1.9, SSP2-4.5 Temperature 2 20 0.05
SSP1-1.9, SSP2-4.5 Precipitation 3 100 0.05
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Figure S1. Outline of our approach for classifying maps of climate variables to individual

climate scenarios. (a) A classification ANN that takes inputs of global maps of annual mean

near-surface temperature or total precipitation and then outputs whether each map is from a

historical forcing scenario, a natural forcing scenario, Shared Socioeconomic Pathway (SSP) 1-1.9

(SSP1-1.9), SSP2-4.5, or SSP5-8.5. See Text S1 and Table S2 for the architecture specifications

and hyperparameter choices. (b) As in (a), but for an ANN that only predicts two classes (SSP2-

4.5 or SSP5-8.5). (c) As in (b), but instead predicts either SSP1-1.9 or SSP2-4.5.
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Figure S2. (a) Time series of annual mean carbon dioxide (CO2; parts per million (ppm)) for

the concatenated historical scenario and SSP5-8.5 scenario of SPEAR from 1921 to 2100 (solid

red line; SPEAR MED SSP585), the SSP5-3.4OS scenario from 2015 to 2100 (solid dark green

line; SPEAR MED SSP534OS), and the SSP5-3.4OS 10ye scenario from 2031 to 2100 (dashed

bright green line; SPEAR MED SSP534OS 10ye). The vertical dark green line indicates the

start of mitigation in 2040, and the bright vertical green line indicates the start of mitigation in

2031. (b) As in (a), but for methane (CH4; parts per billion (ppb)). (c) As in (a), but for nitrous

oxide (N2O; parts per billion (ppb)).

March 19, 2024, 10:23am



X - 10 LABE ET AL.: CLASSIFICATION OF FUTURE CLIMATE SCENARIOS

Figure S3. (a) Decadal trends of annual mean temperature (◦C) from 2071 to 2100 for the

ensemble mean of the natural forcing run of SPEAR. The map is calculated by considering the

linear least-squares regression at every grid point in single ensemble members before averaging

all members for the ensemble mean. (b) As in (a), but for the SSP5-8.5 future scenario. (c) As

in (a), but for the SSP1-1.9 future scenario. (d) As in (a), but for the SSP2-4.5 future scenario.

(e-h) As in (a-d), but calculated for fields of precipitation (mm/day).
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Figure S4. As in Figure S3, but for the SSP5-3.4OS future scenario (a,c) and the SSP5-

3.4OS 10ye future scenario (b,d).
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Figure S5. Scores for the total class accuracy of validation data using the 5-class artificial

neural network (ANN) and inputs of global maps of annual mean temperature. (a) The ANN

architecture consists of 1 hidden layer and 5 nodes. Four different L2 regularization values

(0.001, 0.01, 0.1, 5) are compared using this same ANN architecture. Each set of red points

is the distribution of accuracies from 3 ANN iterations (randomized combinations of ensemble

members used for training, validation, and testing and selection of random initialization seeds).

The median accuracy is shown with a blue horizontal line and organized by L2 parameter. (b-l)

As in (a), but for ANN architectures of 1 hidden layer and 20 nodes, 1 hidden layer and 100

nodes, 2 hidden layers of 5 nodes each, 2 hidden layers of 30 nodes each, 2 hidden layers of 100

nodes each, 3 hidden layers of 5 nodes each, 3 hidden layers of 20 nodes each, 3 hidden layers of

100 nodes each, 4 hidden layers of 5 nodes each, 4 hidden layers of 30 nodes each, and 4 hidden

layers of 100 nodes each.
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Figure S6. As in Figure S5, but for global maps of annual mean precipitation.
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Figure S7. Scores for the total class accuracy of validation data using the binary ANN

framework (either SSP2-4.5 or SSP5-8.5) and inputs of global maps of annual mean temperature.

(a) The ANN architecture consists of 1 hidden layer and 5 nodes. Eight different L2 regularization

values (0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 5) are compared using this same ANN architecture.

Each set of red points is the distribution of accuracies from 5 ANN iterations (randomized

combinations of ensemble members used for training, validation, and testing and selection of

random initialization seeds). The median accuracy is shown with a blue horizontal line and

organized by L2 parameter. (b-q) As in (a), but for ANN architectures of 1 hidden layer and 20

nodes, 1 hidden layer of 30 nodes, 1 hidden layer of 100 nodes, 2 hidden layers of 5 nodes each,

2 hidden layers of 20 nodes each, 2 hidden layers of 30 nodes each, 2 hidden layers of 100 nodes

each, 3 hidden layers of 5 nodes each, 3 hidden layers of 20 nodes each, 3 hidden layers of 30

nodes each, 3 hidden layers of 100 nodes each, 4 hidden layers of 5 nodes each, 4 hidden layers

of 20 nodes each, 4 hidden layers of 30 nodes each, and 4 hidden layers of 100 nodes each.
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Figure S8. As in Figure S7, but for global maps of annual mean precipitation.
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Figure S9. As in Figure S7, but for the binary ANN framework that predicts either SSP1-1.9

or SSP2-4.5 climate scenarios.
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Figure S10. As in Figure S8, but for the binary ANN framework that predicts either SSP1-1.9

or SSP2-4.5 climate scenarios.
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Figure S11. (a) The ensemble mean of the confidence values (after the softmax operator)

for the ANN with 5 climate scenario classes (historical scenario (purple line), natural forcing

scenario (blue line), SSP5-8.5 (green line), SSP1-1.9 (yellow line), or SSP2-4.5 (red line)) after

making inferences on maps of temperature from the SSP5-3.4OS experiment for 2015 to 2100.

The vertical black line indicates the start of climate mitigation for this experiment (year 2040).

The darker colored lined are denoted for the climate scenario with the highest mean confidence

value in each year, and the remaining classes subsequently have a lighter transparency shading.

(b) As in (a), but for inputting maps of precipitation. (c) As in (a), but for the SSP5-3.4OS 10ye

experiment. The vertical dashed gray line shows the start of mitigation in 2031 for this scenario.

Note that the predictions from 2015 to 2030 are the same as the SSP5-3.4OS experiment in panel

(a) (see Section 2.2). (d) As in (c), but for precipitation.
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Figure S12. (a) The ensemble mean of network confidence values (after the softmax function)

for the ANN with two climate scenario classes (SSP2-4.5 (red line) or SSP5-8.5 (green line)) after

making inferences on maps of temperature from the SSP5-3.4OS experiment for 215 to 2100. The

vertical black line indicates the start of climate mitigation for this experiment (year 2040). The

darker colored lined are denoted for the climate scenario with the highest mean confidence value

in each year, and the remain classes subsequently have a lighter transparency shading. (b) As

in (a), but for inputting maps of precipitation. (e) As in (a), but for the SSP5-3.4OS 10ye

experiment. The vertical dashed gray line shows the start of mitigation in 2031 for this scenario.

Note that the predictions from 2015 to 2030 are the same as the SSP5-3.4OS experiment in panel

(a). See methods in Section 2. (f) As in (a), but for precipitation. (c,d,g,h) As in (a,b,e,f), but

for the binary ANN predicting either SSP1-1.9 (yellow line), or SSP2-4.5 (red line).
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Figure S13. Difference in temperature (◦C) for the ensemble mean of SSP5-3.4OS temperature

predictions for the five years after the transition period in classifications from SSP8-8.5 to SSP2-

4.5 minus the five years before the transition period (i.e., mean of 2063 to 2067 minus the mean

of 2048 to 2052). See also Figure 4a. Statistically significant differences are overlaid with black

stippling after using a two-sided Student’s t test and adjusting for field significance using the false

discovery rate (FDR; Benjamini & Hochberg, 1995; Wilks, 2006, 2016) with an FDR-adjusted

p value less than 0.05. (b) As in (a), but for the ensemble mean of predictions using SSP5-

3.4OS 10ye (i.e., years of 2056 to 2060 minus the mean of 2044 to 2048). See also Figure 4b.

(c) As in (b), but for the five years after the transition period in classifications from SSP2-4.5

to SSP1-1.9 subtracted by the five years before this transition period (i.e., mean of 2084 to 2088

minus the mean of 2069 to 2073). (d-f) As in (a-c), but for maps of precipitation (mm/day)

using transition periods around the years (a) 2064 to 2068 minus 2045 to 2049, (b) 2051 to 2055

minus 2041 to 2045, and (c) 2086 to 2090 minus 2068 to 2072. See also Figure 4c,d.
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Figure S14. (a-e) Explainability composites using the Integrated Gradients method aver-

aged for each climate scenario prediction using the 5-class ANN after inputting yearly maps of

temperature from the SSP5-3.4OS experiment for 2015 to 2100. Thus, there are a total of 2580

possible predictions (N) in the top row (86 years times 30 ensemble members). The number of

times each class was predicted (n) is denoted in the upper-left corner of every map composite.

Gray shaded maps indicate that this climate scenario was never predicted. Positive areas of

relevance (red shading) indicate that the region had a positive contribution to the ANN’s predic-

tion (i.e., pushed the network toward the ultimately predicted climate scenario). Negative areas

of relevance (blue shading) indicate that the region had a negative contribution to the ANN’s

prediction (i.e., pushed the network toward predicting one of the other climate scenario classes).

(f-j) As in (a-e), but for 30 ensemble members of the SSP5-3.4OS 10ye experiment. Note that

the composites for years from 2015 to 2030 are the same as the SP5-3.4OS experiment in (a-e).
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Figure S15. As in Figure S14, but for fields of precipitation.
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Duchesnay (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning169

Research, 12 .170

Rader, J. K., Barnes, E. A., Ebert-Uphoff, I., & Anderson, C. (2022, 7). Detection of171

forced change within combined climate fields using explainable neural networks. Jour-172

nal of Advances in Modeling Earth Systems , 14 , e2021MS002941. Retrieved from173

https://onlinelibrary.wiley.com/doi/full/10.1029/2021MS002941 doi: 10.1029/174

2021MS002941175

Rossum, G. V., & Drake, F. L. (2009). Python 3 reference manual [software]. CreateSpace.176

Ruder, S. (2016, 9). An overview of gradient descent optimization algorithms. arXiv . Retrieved177

from http://arxiv.org/abs/1609.04747178

Russell, S., & Norvig, P. (2021). Artificial intelligence: A modern approach (global edition).179

Artificial Intelligence: A Modern Approach. Retrieved from https://aima.cs.berkeley180

.edu/181

March 19, 2024, 10:23am



LABE ET AL.: CLASSIFICATION OF FUTURE CLIMATE SCENARIOS X - 27

Schulzweida, U. (2019, 2). Cdo user guide [software]. Zenodo. Retrieved from https://182

zenodo.org/record/2558193 doi: 10.5281/ZENODO.2558193183

Sippel, S., Meinshausen, N., Merrifield, A., Lehner, F., Pendergrass, A. G., Fischer, E., &184

Knutti, R. (2019). Uncovering the forced climate response from a single ensemble member185

using statistical learning. Journal of Climate, 32 . doi: 10.1175/JCLI-D-18-0882.1186

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout:187

A simple way to prevent neural networks from overfitting. Journal of Machine Learning188

Research, 15 .189

Thyng, K., Greene, C., Hetland, R., Zimmerle, H., & DiMarco, S. (2016, 9). True colors190

of oceanography: Guidelines for effective and accurate colormap selection. Oceanogra-191

phy , 29 , 9-13. Retrieved from https://tos.org/oceanography/article/true-colors192

-of-oceanography-guidelines-for-effective-and-accurate-colormap doi: 10.5670/193

oceanog.2016.66194

Toms, B. A., Barnes, E. A., & Ebert-Uphoff, I. (2020, 9). Physically interpretable neural195

networks for the geosciences: Applications to earth system variability. Journal of Advances196

in Modeling Earth Systems , 12 . Retrieved from https://onlinelibrary.wiley.com/doi/197

10.1029/2019MS002002 doi: 10.1029/2019MS002002198

Toms, B. A., Barnes, E. A., & Hurrell, J. W. (2021, 6). Assessing decadal predictability in199

an earth-system model using explainable neural networks. Geophysical Research Letters ,200

48 , e2021GL093842. Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/201

10.1029/2021GL093842 doi: 10.1029/2021GL093842202

March 19, 2024, 10:23am



X - 28 LABE ET AL.: CLASSIFICATION OF FUTURE CLIMATE SCENARIOS

van der Velden, E. (2020, 2). Cmasher: Scientific colormaps for making accessible, informative203

and ’cmashing’ plots. Journal of Open Source Software, 5 , 2004. Retrieved from https://204

joss.theoj.org/papers/10.21105/joss.02004 doi: 10.21105/JOSS.02004205

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., . . .206

Vázquez-Baeza, Y. (2020). Scipy 1.0: fundamental algorithms for scientific computing in207

python. Nature Methods , 17 . doi: 10.1038/s41592-019-0686-2208

Wilks, D. S. (2006, 9). On “field significance” and the false discovery rate. Journal of Applied209

Meteorology and Climatology , 45 , 1181-1189. Retrieved from http://journals.ametsoc210

.org/doi/abs/10.1175/JAM2404.1 doi: 10.1175/JAM2404.1211

Wilks, D. S. (2016, 12). “the stippling shows statistically significant grid points”: How research212

results are routinely overstated and overinterpreted, and what to do about it. Bulletin213

of the American Meteorological Society , 97 , 2263-2273. Retrieved from http://journals214

.ametsoc.org/doi/10.1175/BAMS-D-15-00267.1 doi: 10.1175/BAMS-D-15-00267.1215

Zender, C. S. (2008). Analysis of self-describing gridded geoscience data with netcdf operators216

(nco). Environmental Modelling and Software, 23 . doi: 10.1016/j.envsoft.2008.03.004217

March 19, 2024, 10:23am


