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Abstract

The development of reliable operational earthquake forecasts is dependent upon managing uncertainty and bias in the parameter

estimations obtained from models like the Epidemic-Type Aftershock Sequence (ETAS) model. Given the intrinsic complexity

of the ETAS model, this paper is motivated by the questions: “What constitutes a representative sample for fitting the ETAS

model?” and “What biases should we be aware of during survey design?”. In this regard, our primary focus is on enhancing the

ETAS model’s performance when dealing with short-term temporally transient incompleteness, a common phenomenon observed

within early aftershock sequences due to waveform overlaps following significant earthquakes. We introduce a methodological

modification to the inversion algorithm of the ETAS model, enabling the model to effectively operate on incomplete data and

produce accurate estimates of the ETAS parameters. We build on a Bayesian approach known as inlabru, which is based

on the Integrated Nested Laplace Approximation (INLA) method. This approach provides posterior distributions of model

parameters instead of point estimates, thereby incorporating uncertainties. Through a series of synthetic experiments, we

compare the performance of our modified version of the ETAS model with the original (standard) version when applied to

incomplete datasets. We demonstrate that the modified ETAS model effectively retrieves posterior distributions across a wide

range of mainshock magnitudes and can adapt to various forms of data incompleteness, whereas the original model exhibits

bias. In order to put the scale of bias into context, we compare and contrast further biases arising from different scenarios using

simulated datasets. We consider: (1) sensitivity analysis of the modified ETAS model to a time binning strategy; (2) the impact

of including and conditioning on the historic run-in period; (3) the impact of combination of magnitudes and trade-off between

the two productivity parameters K and α; and (4) the sensitivity to incompleteness parameter choices. Finally, we explore the

utility of our modified approach on three real earthquake sequences including the 2016 Amatrice earthquake in Italy, the 2017

Kermanshah earthquake in Iran, and the 2019 Ridgecrest earthquake in the US. The outcomes suggest a significant reduction

in biases, underlining a marked improvement in parameter estimation accuracy for the modified ETAS model, substantiating

its potential as a robust tool in seismicity analysis.

1



submitted to Geophys. J. Int.

Enhancing the ETAS model: incorporating rate-dependent

incompleteness, constructing a representative dataset, and

reducing bias in inversions

Farnaz Kamranzad1, Mark Naylor1, Finn Lindgren2, Kirsty Bayliss3, and Ian Main1

1 School of GeoSciences, University of Edinburgh, EH9 3FE, Edinburgh, UK.
2 School of Mathematics, University of Edinburgh, EH9 3FD, Edinburgh, UK.
3 Global Earthquake Model (GEM) Foundation, via Ferrata 1, 27100 Pavia, Italy.

Received 2024 April 07; in original form 2024 April 07

SUMMARY1

The development of reliable operational earthquake forecasts is dependent upon managing2

uncertainty and bias in the parameter estimations obtained from models like the Epidemic-3

Type Aftershock Sequence (ETAS) model. Given the intrinsic complexity of the ETAS model,4

this paper is motivated by the questions: “What constitutes a representative sample for fitting5

the ETAS model?” and “What biases should we be aware of during survey design?”. In this6

regard, our primary focus is on enhancing the ETAS model’s performance when dealing with7

short-term temporally transient incompleteness, a common phenomenon observed within early8

aftershock sequences due to waveform overlaps following significant earthquakes. We intro-9

duce a methodological modification to the inversion algorithm of the ETAS model, enabling10

the model to effectively operate on incomplete data and produce accurate estimates of the11

ETAS parameters. We build on a Bayesian approach known as inlabru, which is based on the12

Integrated Nested Laplace Approximation (INLA) method. This approach provides posterior13

distributions of model parameters instead of point estimates, thereby incorporating uncertain-14

ties. Through a series of synthetic experiments, we compare the performance of our modified15

version of the ETAS model with the original (standard) version when applied to incomplete16
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datasets. We demonstrate that the modified ETAS model effectively retrieves posterior distri-17

butions across a wide range of mainshock magnitudes and can adapt to various forms of data18

incompleteness, whereas the original model exhibits bias. In order to put the scale of bias into19

context, we compare and contrast further biases arising from different scenarios using sim-20

ulated datasets. We consider: (1) sensitivity analysis of the modified ETAS model to a time21

binning strategy; (2) the impact of including and conditioning on the historic run-in period; (3)22

the impact of combination of magnitudes and trade-off between the two productivity parame-23

ters K and α; and (4) the sensitivity to incompleteness parameter choices. Finally, we explore24

the utility of our modified approach on three real earthquake sequences including the 201625

Amatrice earthquake in Italy, the 2017 Kermanshah earthquake in Iran, and the 2019 Ridge-26

crest earthquake in the US. The outcomes suggest a significant reduction in biases, underlining27

a marked improvement in parameter estimation accuracy for the modified ETAS model, sub-28

stantiating its potential as a robust tool in seismicity analysis.29

Key words: Statistical seismology; Theoretical seismology; Earthquake interaction, forecast-30

ing, and prediction; Statistical methods; Bayesian inference.31

1 INTRODUCTION32

Seismicity modelling plays a crucial role in understanding the behaviour of earthquake sequences.33

This process involves fitting appropriate statistical models to effectively describe and forecast the34

spatial, temporal, spatio-temporal and magnitude patterns of earthquakes. These models build on35

well-recognised empirical relations, most commonly: (1) the Gutenberg-Richter law (Gutenberg36

& Richter 1944), which describes the distribution of earthquake magnitudes and their correspond-37

ing frequencies of occurrence; (2) the modified Omori law (Omori 1895; Utsu 1957; Shcherbakov38

et al. 2004), which explains the decay rate of aftershocks over time following a mainshock; (3)39

Utsu’s scaling productivity law (Utsu 1972; Mignan 2018; Shebalin et al. 2020), which estimates40

aftershock productivity based on mainshock magnitude; (4) Båth’s law (Båth 1965), which deter-41

mines the magnitude difference between a mainshock and its largest aftershock; and (5) the ETAS42

model (Ogata 1988; Ogata & Zhuang 2006; Ogata 2011), which amalgamates elements from the43
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aforementioned models, and expands the modelling framework by capturing the effect of complex44

inter-event interactions.45

Over its 35-year evolution, the ETAS model has established itself as a core tool for retrospec-46

tive seismicity analysis and prospective operational earthquake forecasting. Central to the ETAS47

model is the concept that earthquake populations can be modelled as a marked point process and48

that any earthquake has the potential to trigger subsequent aftershocks, initiating a branching pat-49

tern of seismic activity — this class of statistical model is referred to as a self-exciting point50

process, or a marked Hawkes process. The ETAS model is a specific example. It characterises af-51

tershock sequences through two components: the background seismicity rate, representing the av-52

erage baseline rate of independent earthquakes within a specified spatial and temporal domain, and53

the triggered seismicity, which encompasses the additional seismic activity triggered by preceding54

earthquakes. Thus, the ETAS model offers a dynamic representation of earthquake occurrences,55

facilitating the analysis and forecast of aftershock sequences, and enhancing the understanding of56

the clustered nature of seismic events.57

Many flavours of the ETAS model exist. The majority employ a maximum-likelihood estima-58

tion (MLE) method to produce point estimates of the model parameters through an optimisation59

algorithm. Important algorithms include gradient-based methods e.g. (Ogata 1998; Jalilian 2019),60

expectation-maximisation (EM) e.g. (Veen & Schoenberg 2008; Mizrahi et al. 2023; Stindl &61

Chen 2023), non-linear methods e.g. (Kanazawa & Sornette 2023), machine-learning likelihood-62

free inference e.g. (Stockman et al. 2023), etc. Recent research studies have adopted Bayesian63

inference, focusing on providing posterior probability distributions instead of point estimates for64

ETAS parameters. This shift allows for applying prior constraints on the model parameters and65

facilitates a more comprehensive exploration of uncertainties associated with these parameters.66

Examples include (Omi et al. 2015; Ebrahimian & Jalayer 2017; Shcherbakov et al. 2019; Ross67

2021; Schneider & Guttorp 2021; Shcherbakov 2021; Laub et al. 2021; Ebrahimian et al. 2022;68

Molkenthin et al. 2022; Ross & Kolev 2022; Naylor et al. 2023; Nishikawa & Nishimura 2023).69

The widespread use of the ETAS model comes with a significant challenge: accurately assess-70

ing parameter estimations when applied to real data is difficult. This difficulty arises because the71
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methods listed above usually return a parameter set without flagging potential issues of bias. To72

address this, synthetic experiments offer a solution by allowing us to understand how issues, such73

as incomplete datasets, influence the accuracy and precision of parameter estimations, as well as74

the efficacy of the ETAS model. Once important sources of bias leading to epistemic uncertainty75

(i.e. that which cannot be quantified by the random error or aleatory uncertainty) are identified, we76

can identify routes to accommodate or correct such biases. Then, when we return to real datasets,77

where the true underlying model remains unknown, we are restricted to making comparative es-78

timates of accuracy or bias against synthetic data, where the underlying parameters are known.79

Consequently, by ensuring that the corrections applied are consistent with those made in the syn-80

thetic experiments, we can bolster our confidence in these corrective measures.81

A number of studies have investigated some limitations, considerations, and advancements re-82

lated to the ETAS model including the effect of short-term time-varying incompleteness (Morad-83

pour et al. 2014; Omi et al. 2014; Hainzl 2016; Page et al.2016; de Arcangelis et al. 2018; Hard-84

ebeck et al. 2019; Lippiello et al. 2019; Hainzl 2021; Mizrahi et al. 2021; Grimm et al. 2022;85

Iacoletti et al. 2022; van der Elst et al. 2022; Naylor et al. 2023), model under-fitting for major86

mainshock-aftershock sequences and over-fitting for regions with normal seismicity (Harte 2013),87

impact of triggering boundary magnitude (Harte 2016), the impact of sample size and tempo-88

ral finiteness of catalogues on background rate and branching ratio estimators (Seif et al. 2017),89

time-varying background rates (Muir & Ross 2023), the impact of run-in history before mainshock90

(Naylor et al. 2023), incorporating anisotropic spatial kernels (Ogata 2011; Moradpour et al. 2014;91

Zhang et al. 2018; Grimm et al. 2021; Grimm et al. 2022), restricting infinite spatial extent (Grimm92

et al. 2021; Grimm et al. 2022), and including extra covariates (Adelfio & Chiodi 2021; Chiodi et93

al. 2021).94

In this study, we aim to enhance the accuracy of parameter estimations for the ETAS model,95

when dealing with datasets characterised by short-term, time-varying incompleteness. We also try96

to identify some potential sources of bias and introduce ways to select appropriate representa-97

tive samples to minimise the bias during the training of the ETAS model. We use the Integrated98

Nested Laplace Approximation (INLA) method (Rue et al. 2009), along with its extension, the99
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inlabru package (Bachl et al. 2019), for computing posterior estimates of the ETAS model pa-100

rameters within a Bayesian framework. Compared to the traditionally used Markov Chain Monte101

Carlo (MCMC) method, INLA and inlabru provide substantial computational benefits, notably in102

efficiency and speed. However, it is important to note that the methodological improvements and103

investigations proposed in our study aim to address broader issues inherent in the ETAS model.104

These improvements are applicable regardless of the specific estimation technique used, whether105

it involves point estimate methods or Bayesian implementations of the ETAS model. This paper106

is structured as follows: We begin by introducing the fundamental concepts and modifications107

we have applied to the inversion algorithm of the ETAS model to tackle the issue of short-term108

incompleteness in data, as detailed in Section 2. In Section 3, we assess and compare the perfor-109

mance of both the original and our modified ETAS models using synthetic earthquake catalogues,110

demonstrating how our modifications enhance the accuracy of ETAS parameter estimation in the111

presence of incomplete data. We then apply both models to three real aftershock sequences to ex-112

amine the consistency of the results. Additionally, we introduce some considerations to minimise113

further biases. In Section 4 we elaborate on remaining limitations and possible improvements. We114

then discuss the process of selecting representative samples for ETAS estimations in Section 5.115

Finally, in Section 6, we conclude by summarising the main findings of our research.116
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2 METHODS117

2.1 Concept and formulation of the ETAS model118

The ETAS model is a spatio-temporal statistical model used to describe and forecast the occurrence119

rate of aftershocks. Aftershocks are modelled as a self-exciting point process, often referred to as120

Hawkes process in statistics. Hawkes processes are non-Markovian, meaning that the memory of121

the previously occurred events changes the probability of the upcoming events. Conceptually, this122

means that in a sequence of aftershocks, every earthquake can trigger other future earthquakes,123

which in turn generate more earthquakes and so on, creating a “cascade” or “epidemic” of events.124

Consequently, unlike more basic models that assume aftershocks are directly triggered only by the125

mainshock, the ETAS model takes into account the secondary, tertiary, etc., aftershocks as well,126

and assumes that aftershocks can act as “parents” to further “generations” of aftershocks (also127

known as “offspring”, “descendants”, or “daughters”) in a branching process, leading to an inter-128

connected sequence of earthquakes. Here, we refer to them as “triggering” and “triggered” events,129

respectively.130

A Hawkes process is mathematically represented by its conditional intensity function, which131

provides the rate of events at any given point in time and space. In this study, we specifically focus132

on the temporal model with general form133

λHawkes(t|Ht) = µ+
∑

(ti,mi)∈Ht

g(t) (1)

where λHawkes(t|Ht) represents the expected rate of events at time t, taking into account the134

history of process up to that point, denoted by Ht. The history includes the set of past events as135

Ht = {(ti,mi) : ti < t, mi ≥ M0, i = 1, . . . , n}. mi and ti correspond to the magnitude and136

time of the ith earthquake in the history, respectively. M0 represents the explicit constant reference137

magnitude, ensuring that the model parameters remain constant. µ is the background rate, and it138

can be regarded as the “base level” of earthquakes in a region, representing the rate of spontaneous139

earthquake occurrences that are independent of each other, i.e. are not triggered by other events.
∑

140

is the sum over all triggering earthquakes that happened before time t; The function g(t) inside the141

summation is referred to as the “triggering function” and determines the triggering contribution142
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from all previous events to the occurrence of future events; g(t) can take various functional forms,143

with exponential and power-law functions being commonly used in practice. Here, we consider144

one of the most-commonly used form as145

λHawkes(t|Ht) = µ+
∑

(ti,mi)∈Ht

Keα(mi−M0)

(
t− ti
c

+ 1

)−p

, (2)

where K, α, c, and p are the model parameters to be estimated along with µ. (see Table A1).146

The ETAS model is a specific type of marked Hawkes process with a conditional intensity147

function that can be expressed as148

λETAS(t, |Ht,m) =

µ+
∑

(ti,mi)∈Ht

Keα(mi−M0)

(
t− ti
c

+ 1

)−p
 βeβ(m−M0), (3)

where βeβ(m−M0) is the probability density form of the Gutenberg-Richter (G-R) law added to149

the Hawkes model. In this study, we focus primarily on the Hawkes part of the model as none150

of the G-R parameters are optimised in the inversion, but we will later use the properties of the151

magnitude model in addressing the censoring data in section 2.4.152

Looking at Eq. (2), the first factor of the triggering function, Keα(mi−M0) is often referred to153

as the “exponential magnitude-based productivity”, and is equivalent to Utsu scaling law. This154

factor determines the increase in seismicity rate after the ith earthquake based on its magnitude mi.155

This implies that a larger earthquake will have a greater influence on triggering subsequent events.156

The second factor,
(
t−ti
c

+ 1
)−p, also known as the “temporal triggering kernel”, represents the157

decay of this influence over time. It follows a power-law function equivalent to the Omori law, and158

captures the dependence on time since the triggering event and makes the rate decay over time.159

The interplay between these two ingredients of the triggering function ensures a balance between160

a rise of intensity with each event and the temporal decay of it. In modelling aftershocks, such a161

balance is handled by a quantity called “branching ratio” which controls the average number of162

aftershocks directly triggered by any given earthquake.163

Of the model parameters, both K and α jointly contribute to the productivity of aftershocks164

but in different ways. Conceptually, K is the base productivity parameter which quantifies the165

average number of direct aftershocks produced by an earthquake of a reference magnitude M0.166
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To be exact, K is the change in intensity by a new event with magnitude mi = M0. K usually167

ranges from 0.01 to 10 or more, depending on the magnitude range implied by the choice of model168

domain, i.e. expected rate increases at t ≃ ti for parent of M0. This baseline productivity is then169

adjusted by eα(mi−M0) which is a factor that increases this productivity for larger earthquakes. α is170

the magnitude scaling productivity parameter, dictating how much more productive an earthquake171

becomes for each unit increase in its magnitude. This allows a magnitude dependent increase in172

the intensity. There is always a trade-off between K and α when contributing to the productivity173

of an earthquake sequence. We will explore this issue in more detail in section 3.3.2.174

The other two parameters, c and p, control the Omori-law decay. In the Omori law, c is a175

characteristic time that represents a short temporal delay after the mainshock during which the176

rate of aftershocks does not exhibit a decay trend. c can range from a few minutes to several177

days, depending on the magnitude of the mainshock and the capabilities of the seismic network178

involved. However, in the context of the ETAS modelling, c has a slightly different meaning and179

applies to all events, not just the mainshock. Here, c represents a short-term offset in time or a lag180

period immediately after each triggering earthquake. It is a small, positive value that is used to181

avoid singularity at t = ti, ensuring finite rates for all times. Typical values for c are very small,182

often in the range of 0.001 to 0.1 days. Note that the ETAS model is highly sensitive to the choice183

of parameter c, so that a small change in c can significantly affect the predicted earthquake rates.184

Specifically, smaller values of c lead to sharper initial increase in aftershock rates immediately after185

a parent event, accompanied by a rapid temporal decay. In contrast, larger values of c result in a186

gentler initial increase in aftershocks, followed by a slower decrease over time. Because c directly187

influences the temporal evolution of the aftershock sequence, precise estimation of this parameter188

is crucial for accurate modelling and forecasting sequences. Some studies use temporarily varying189

c to model incompleteness but this mixes a physical and a network design constraint so it is not an190

ideal implementation. Parameter p is simply the Omori law’s exponent and measures how quickly191

the fading of aftershocks happens. Empirical studies of various aftershock sequences suggest that p192

typically ranges between 0.8 and 1.5, with larger values of p indicating a faster decay in the rate of193

aftershocks, while smaller values denote a slower decay. Physically, p is considered a region-based194
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parameter and may vary based on factors such as tectonic environment, temperature, magnitude,195

and depth of the mainshock, etc.196

2.2 Approximation of parameters in the original ETAS model197

In this section, we explain the approximation of the model parameters for the original (standard198

or traditional) ETAS model. This serves as a preliminary step, examining a version of the model199

before incorporating adjustments for the transient short-term incompleteness observed in early200

aftershocks. Building on this foundation, we will further develop and adapt the solution for our201

modified version of the ETAS model, which specifically addresses the short-term incompleteness202

issue. This will be thoroughly explored in Sections 2.3 and 2.4.203

In statistical modelling, the likelihood function plays a pivotal role in estimating the unknown204

model parameters. It quantifies how likely a given set of model parameters would produce the205

observed data. For the Hawkes process model, the likelihood function in the interval t ∈ [T1, T2]206

is defined as

L (θ|H) = exp

(
−
∫ T2

T1

λ (t|Ht) dt

) ∏
(ti,mi)∈H

λ (ti|Hti) , (4)

or equivalently in logarithmic form as

L (θ|H) = logL (θ|H) = −
∫ T2

T1

λ (t|Ht) dt +
∑

(ti, mi) ∈ H

log λ (ti |Hti) . (5)

Here, λ(t|Ht) represents the intensity function as detailed in Eq. (2), and θ denotes the vector of207

model parameters that we aim to estimate. For the temporal ETAS modelling θ = (µ , K, α, c, and208

p). We use the logarithmic form of likelihood function as it effectively transforms multiplications209

into additions, making complex calculations simpler and more numerically stable. By substituting210

Eq. (2) into Eq. (5) and then solving the integral, the log-likelihood function is obtained as

L(θ|H) =− µ (T2 − T1)

−
∑

(ti,mi)∈H

Keα(mi−M0)
c

p− 1

[(
max(T1, ti)− ti

c
+ 1

)1−p

−
(
T2 − ti

c
+ 1

)1−p
]

+
∑

(ti,mi)∈H

log

µ+
∑

(ti,mi)∈Ht

Keα(mi−M0)

(
t− ti
c

+ 1

)−p
 , (6)



10 F. Kamranzad, M. Naylor, F. Lindgren, K. Bayliss, and I. Main

where the 1st term represents the expected background rate, the 2nd term is the expected num-211

ber of triggered earthquakes by each triggering event, and the 3rd term indicates the sum of log-212

intensities. However, the approximation of the 2nd term, which considers the role of each triggering213

event, is not adequately precise as it is. This is primarily due to the fact that a Hawkes process is214

naturally impulsive, and it is a summation of exponential functions that spike after each event.215

Also, for each event, the triggering function varies most rapidly for the times close to ti and be-216

comes nearly constant moving away from it. So, to properly handle such rate fluctuations, a time217

binning strategy is usually applied e.g. in (Kirchner 2017; Cheysson & Lang 2022; Shlomovich et218

al. 2022). This involves partitioning the impact interval of each event, [ti, T2], into several discrete219

bins and then counting the rate in each bin, within the model domain. To balance rapidly decreas-220

ing rates whilst maintaining reasonable bin occupancy, we adopt an exponential binning strategy221

for creation of a temporal mesh as proposed in (Naylor et al. 2023):{
ti , ti +∆ , ti +∆(1 + δ) , ti +∆(1 + δ)2 , . . . , ti +∆(1 + δ)ni , T2

}
, (7)

where ni ≤ nmax, ∆ > 0 and δ > 0. nmax controls the maximum number of bins and the222

two constants ∆ and δ regulate the length of the first bin, and the length ratio between consecutive223

bins, respectively. By incorporating the binning strategy and linearisation into calculations, the224

likelihood function undergoes reformulation, resulting in

L(θ|H) =− exp

{
log µ+ log (T2 − T1)

}

−
∑

(ti,mi)∈H

Bi−1∑
j=0

exp

{
logK + α(mi −M0) + log

(
c

p− 1

)

+ log

(tbij − ti

c
+ 1

)1−p

−

(
tbij+1 − ti

c
+ 1

)1−p


+
∑

(ti,mi)∈H

log

µ+
∑

(ti,mi)∈Ht

Keα(mi−M0)

(
t− ti
c

+ 1

)−p
 . (8)

This formulation is then input into the bru function, which implements the inlabru workflow225

(Bachl et al. 2019) to estimate Bayesian posterior density functions from the product of the prior226

distributions and the likelihood function. The workflow takes initial trial parameters for ETAS, and227
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iteratively updating these parameters based on the likelihood of observed earthquake data within228

a Bayesian context using INLA, where it does the calculations around the mode of the posteriors229

(Rue et al. 2009). Once the model parameters stop significantly changing between iterations, it230

returns the estimated ETAS parameters and their approximate posterior distributions.231

In the following section, we will define a modified form of the conditional intensity function232

for the ETAS model which will accommodate short-term incompleteness. We will then modify the233

solution for the likelihood function, following a process similar to the steps explained above.234

2.3 Transient short-term incompleteness in early aftershocks235

2.3.1 Model for time-varying magnitude of completeness, mc(t)236

During an aftershock sequence, the overlap of numerous earthquake waveforms leads to censoring237

of smaller events and hence an upward temporary shift in the magnitude of completeness. This238

implies that the level of completeness, which is otherwise a constant (M0), now varies with the239

activity rate and magnitude of events. Helmstetter et al. (2006) proposed a model describing the240

evolution of the completeness magnitude in the form

mc(t) = mi −G−H log10(t− ti) (9)

following some previous earthquake i. Here, mc(t) is an estimate of the level of completeness241

magnitude at time t, and is the maximum value of Eq. (9) computed over all previous earthquakes242

(van der Elst 2021). G and H are the model parameters (G,H > 0). In this study, to simplify243

the complexity of combining the ETAS and the incompleteness models, we focus solely on the244

incompleteness caused by a significant mainshock, disregarding the influence of other events.245

This is reasonable as many sequences include a single significant event. Thus, the incompleteness246

model is re-written as

mc(t) = Mm −G−H log10(t− Tm) (10)

where t denotes the time after the mainshock (t > Tm), and Mm and Tm correspond to the magni-247

tude and occurrence time of the mainshock, respectively. By rearranging Eq. (10) and substituting248

mc(t) = M0, we can derive a formula to calculate the end of an incompleteness period following249



12 F. Kamranzad, M. Naylor, F. Lindgren, K. Bayliss, and I. Main

a mainshock, so that

Te = Tm + 10(Mm−G−M0)/H . (11)

where Te denotes the specific point in time when the time-varying mc(t) returns to its constant250

baseline value M0.251

2.4 Modified ETAS: incorporating short-term incompleteness in the model252

2.4.1 Defining a time-dependent censorship function253

Our approach is to define a censorship factor that is added to the ETAS intensity function, and254

then modify the likelihood function accordingly, so that we can estimate the expected number255

of observed events which can be directly compared to the catalogue. Building on section 2.3,256

we consider a catalogue which is generally complete down to a constant threshold of M0 but is257

temporarily complete at a higher threshold of mc(t). This scenario is common for a short period258

following large earthquakes. Assuming constant b-value and activity rate, the Gutenberg-Richter259

law provides an estimate of the expected number of events above those thresholds,

N(m ≥ M0) = a10−bM0 ,

N(m ≥ mc(t)) = a10−bmc(t).

(12)

The ratio of these allows us to estimate the proportion of events above M0 that have been observed,

N(m ≥ mc(t))

N(m ≥ M0)
= 10−b(mc(t)−M0). (13)

A similar approach was used by Stallone and Falcone (2021), who attempted to fill the gaps260

and restore the missing earthquakes, assuming that the Gutenberg-Richter law holds with the same261

exponent b in the censored part of the data. Unlike their method, our approach employs this ratio262

as a time-dependent censoring function, not aiming at recovering the missing events in the data,263

but rather to quantify what proportion of events are observed given the censorship. Therefore, we264

use this to correct the estimate of the number of expected events above M0 provided we have a265

reasonable estimate of mc(t) at that point in time. This approach avoids the potential inaccuracies266

that may arise from trying to explicitly reconstruct the missing data, which necessitates assuming267

a specific pattern of data omission— which might be varying from underestimation to overestima-268
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tion—and thereby could inadvertently introduce artifacts into the analysis. Substituting Eq. (10)269

into Eq. (13) for mc(t), we get

π(t) =


1, if t ≤ Tm, or t > Te,

10−b(Mm−G−H log10(t−Tm)−M0), if Tm < t ≤ Te,

(14)

where π(t) is a piece-wise function determining the time-dependent censorship coefficient for our270

modified model. Tm is the time of mainshock and Te is the end of the incompleteness interval271

as calculated in Eq. (11). For the incompleteness period (Tm, Te], the ratio varies between 0 <272

π(t) < 1 and it represents the apparent (observed or recorded) rates as a percentage of the actual273

rates (rates occurring in reality, encompassing both observed and unobserved events with smaller274

magnitudes). In other words, over the incompleteness period, the apparent rate has an increasing275

trend until it fully reaches the actual rates.276

2.4.2 Modifying the intensity and likelihood functions277

To incorporate the incompleteness model into the ETAS framework, we initially modify the ETAS278

conditional intensity function. This modification represents apparent rates rather than actual rates,279

as

λapparent(t|Ht,mc(t)) =

µ+
∑

(ti,mi)∈Ht

Keα(mi−M0)

(
t− ti
c

+ 1

)−p
 π(t) (15)

We can assume that the correction factor has a slight effect on the background rate within the280

short-term incompleteness interval; thus, we can disregard adjustments to µ and treat it as constant.281

Hence,

λmodified(t|Ht,mc(t)) ≃ µ+
∑

(ti,mi)∈Ht

Keα(mi−M0)

(
t− ti
c

+ 1

)−p

π(t). (16)

This change in the intensity function leads to changes in approximation of the likelihood function282
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as well. Substituting λmodified for λ in Eq. (5), we have

Lmodified (θ|H) =−
∫ T2

T1

µ dt

−
∫ T2

T1

∑
(ti,mi)∈Ht

Keα(mi−M0)

(
t− ti
c

+ 1

)−p

π(t) dt

+
∑

(ti,mi)∈H

log

µ+
∑

(ti,mi)∈Ht

Keα(mi−M0)

(
t− ti
c

+ 1

)−p

π(t)


(17)

By solving the internal integral for the triggering part of Eq. (17) and subsequently incorporat-283

ing the time binning strategy, along with linearisation (as previously explained in Section 2.2), the284

modified log-likelihood is

Lmodified(θ|H) =− exp

{
log µ+ log (T2 − T1)

}

−
∑

(ti,mi)∈H

Bi−1∑
j=0

exp

{
logK + α(mi −M0) + log

(
c

p− 1

)
+

log

(tbij − ti

c
+ 1

)1−p

−

(
tbij+1 − ti

c
+ 1

)1−p
} · I1(t)

−
∑

(ti,mi)∈H

Bi−1∑
j=0

exp

{
logK + α(mi −M0) + log

(
c

p− 1

)
+ log (10−b(Mm−G−M0))+

log

[[(
tbij − ti

c
+ 1

)1−p

(tbij − Tm)
bH

2F1

(
−bH, 1, 2− p,

tbij − ti + c

tbij − Tm

)]
−

[(
tbij+1 − ti

c
+ 1

)1−p

(tbij+1 − Tm)
bH

2F1

(
−bH, 1, 2− p,

tbij+1 − ti + c

tbij+1 − Tm

)]]}
· I2(t)

+
∑

(ti,mi)∈H

log

µ+
∑

(ti,mi)∈Ht

Keα(mi−M0)

(
t− ti
c

+ 1

)−p

π(t)


(18)

where 2F1 denotes a Gaussian hypergeometric function. This solution represents a joint demon-285

stration of likelihood comprising the previous solution (Eq. 8) and the new one. Within the in-286

completeness interval, we adhere to the new solution with the applied censorship. Outside this287

interval, where π(t) = 1, we switch to the original solution. To determine the appropriate solu-288

tion, we use indicator functions, I1(t) and I2(t), ensuring the correct solution is applied as needed.289
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These indicators are defined as follows:

I1(t) =


1, if T1 ≤ t ≤ Tm or Te < t ≤ T2

0, otherwise,
(19)

and

I2(t) =


1, if Tm < t ≤ Te

0, otherwise.
(20)

In the following section, we elaborate on the practical implementation of the transition between290

the two solutions considering the time binning.291

2.4.3 Considerations for time binning in the modified ETAS292

As described above, we have adopted a temporal binning strategy designed specifically to enhance293

the accuracy of calculating the integral of triggered events, especially when the intensity changes294

rapidly following each triggering event. Here, we investigate the sensitivity of the ETAS model295

parameters to the choice of time binning, and offer insights into making an informed selection for296

an optimal binning strategy when fitting the ETAS model to datasets.297

Based on the exponential form of binning defined by Eq. (7), the temporal effect domain of298

each triggering event i is split into several bins, such that bins closer to ti are narrower (higher299

resolution), and progressively become wider as the distance from ti increases. This approach is300

taken because the triggering function shows the greatest variations at times t close to ti, and tends301

to stabilise, or remain nearly constant, at times further away from ti. In the original ETAS model,302

having approximately 10 bins for each observed point proves adequate in terms of accuracy and303

computational costs (Naylor et al. 2023). In the modified ETAS model, the computation of inte-304

gral values across bins introduces additional complexities. These complexities are primarily due305

to increased variations in the new modified triggering function and are exacerbated by overlaps306

between binning intervals and critical temporal markers, Tm and Te. Moreover, the way how we307

amalgamate the integration solution, depending on the bins’ positions, further contributes to these308

challenges.309
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Here, we divide the entire modelling domain [T1 , T2] into two phases: the complete phase,310

which includes [T1, Tm] and (Te, T2], and the incompleteness period which includes (Tm, Te]. A311

triggering event with the effect domain [ti , T2] can occur in any of these phases. Fig. 1 illustrates312

general examples of triggering events that may happen either before the mainshock (ti < Tm),313

within the incompleteness interval (Tm < ti ≤ Te), or thereafter (ti > Te). Given that the effect314

domain of each triggering event is divided into several bins, a single bin may fall either entirely315

within the incompleteness period, or completely outside of it, or it may cross the boundaries of the316

incompleteness period and encompass parts of areas within and outside of the period. Based on317

this, we identify five distinct scenarios for bins of length [T1b, T2b]:318

(1): If the whole bin is inside the complete phase (green bins in Fig. 1-a, b, c, and d), such that319

[T1b, T2b] ≤ Tm or [T1b, T2b] > Te, we use the integral solution of the original ETAS in320

order to count the expected number of events within that bin.321

(2): If the whole bin is inside the incompleteness interval (purple bins in Fig. 1-b and c), such that322

Tm < [T1b, T2b] ≤ Te, we apply the integral solution of the modified ETAS.323

(3): If the bin is long enough to encompass the whole incompleteness period and parts of the324

complete intervals (orange bin in Fig. 1-a), so that T1b < Tm and T2b > Te, we split the bin325

into three sub-bins with length of [T1b, Tm], (Tm, Te], and (Te, T2b], and then consider the326

integral solution of the original, modified, and original ETAS models, respectively.327

(4): If the bin crosses the left border of the incompleteness period (yellow bin in Fig. 1-b), so that328

T1b < Tm and Tm < T2b < Te, we split the bin into two sub-bins with length of [T1b, Tm]329

and (Tm, T2b], respectively. We then consider the integral solution of the original and the330

modified ETAS, respectively.331

(5): If the bin crosses the right border of the incompleteness period (blue bins in Fig. 1-b and c),332

so that Tm < T1b < Te and T2b > Te, we split the bin into two sub-bins with length of333

[T1b, Te] and (Te, T2b], and then consider the integral solution of the modified and original334

ETAS, respectively.335

It is noteworthy that in order to maintain the model finite where a bin starts exactly from the336
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Figure 1. A schematic representation of time-binning considerations in the modified ETAS model. Tm and

Te represent the time of the mainshock and the end of the incompleteness period, respectively. Panel (a) and

(b) illustrate triggering events occurring before the mainshock; Panel (c) demonstrates a triggering event

occurring within the incompleteness period; and Panel (d) shows a triggering event occurring after the in-

completeness period. The bins are colour-coded based on the binning strategy: the green bins entirely fall

within the complete interval, the purple bins entirely fall within the incompleteness period, the orange bin

starts before the mainshock and ends after the incompleteness period, the yellow bin starts before the main-

shock and ends within the incompleteness period, and the blue bins start within the incompleteness period

and end after this period. We then divide each bin into sub-bins to apply appropriate integral solutions, as

detailed in Section 2.4.3.

mainshock time (where tbij = Tm in the hypergeometric function in Eq. (18)), we add an epsilon337

value, which in our implementation is set to 10−10.338

Conceptually, in the modified model, those bins that fall within the incompleteness period339

show lower event rates compared to the original model, due to the applied censorship. To quantify340

this difference, we can calculate the expected number of events inside each bin as a fraction of the341

count predicted by the original model. For bins in the complete phase, this ratio equals 1, indicating342

full capture of seismic activity without censorship. Within the incompleteness period, however, the343

ratio varies between 0 and 1. Near the mainshock time (Tm), the detected events are significantly344

fewer than the actual rates, resulting in greater censorship and consequently, lower detection ratios.345

As time progresses, our detection of individual events improves, narrowing the gap between the346

observed and the actual rates, and thus, the ratio increases. By the end of the incompleteness period347

(Te), the detection ratio reaches 1, signifying complete sampling of all events with no missing data.348

In Section 3.1, we will further investigate the model’s sensitivity to time binning and demon-349

strate its practical implications.350
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3 RESULTS351

In this section, we present the results from our modified ETAS model which extends the standard352

ETAS framework by incorporating a time-dependent censorship function in order to address the353

challenge of short-term, time-varying incompleteness in early aftershocks. We start by a prelim-354

inary assessment of the sensitivity of our model to different time-binning choices in Section 3.1,355

offering guidance for selecting an optimal temporal mesh to secure reliable posteriors. In Section356

3.2, we highlight the enhanced parameter estimation accuracy achieved by our model through the357

analysis of several synthetic datasets, contrasting these findings against those derived from the358

standard ETAS model. In Section 3.3, we introduce three key considerations to help practitioners359

in selecting a representative sample that results in more accurate and unbiased ETAS inversions.360

Lastly, in Section 3.4, we compare the efficacy of both the original and the modified ETAS models361

through their application to three real earthquake sequences.362

3.1 Sensitivity analysis to time binning strategy363

To assess the sensitivity of the original and the modified ETAS models to time-binning choices,364

we fit both models to an incomplete synthetic dataset using different binning options. We first sim-365

ulate a complete synthetic catalogue spanning 1500 days, including a mainshock with magnitude366

M6.7 on day 500. Then, we filter out events with magnitudes below the incompleteness model367

(Eq. 10) from the catalogue. We specify the parameters of the incompleteness model as G = 3.8,368

and H = 1. We then consider five temporal meshes with different binning designs and resolu-369

tions. Table 1 summarises the results regarding the effects of time binning on the run-time, and370

the number of iterations required for model convergence. As expected, the runtime increased for371

both the original and the modified models with higher binning resolutions. However, the number372

of iterations only increased for the modified model. In addition, Fig. 2 exemplifies how binning373

affects the posteriors of model parameters (µ , K, α, c, and p) in both the original and the mod-374

ified ETAS models. In this figure, the vertical dashed lines represent the true ETAS parameters375

that were used to generate the synthetic catalogue for this analysis. Therefore, any deviations from376

these lines indicate biases in parameter estimations. Clearly, the accuracy of posteriors in the mod-377



Enhancing the ETAS model 19

Table 1. Runtime (in minutes) and number of iterations required for model convergence using different

binning options. The analysis was conducted on an incomplete synthetic catalogue spanning 1500 days,

featuring a mainshock of magnitude 6.7 on day 500, with incompleteness parameters set at G = 3.8 and

H = 1. We ran the models on a Windows-10 laptop with 16-GB RAM, 4 cores, and 8 logical processors.

parameters of time binning run time (minutes) no. iterations for convergence

∆ δ nmax

original

ETAS

modified

ETAS

original

ETAS

modified

ETAS

0.1 1.0 10 1.7 1.8 37 38

0.05 0.50 20 2 1.8 37 38

0.01 0.25 50 2.5 3.1 37 41

0.005 0.20 75 3.0 4.3 37 42

0.0001 0.15 100 5.3 8.8 36 63

ified model increases with the refinement of mesh resolution, highlighting the significant impact378

of binning choice. In contrast, the original model remains unaffected by changes in binning, yet379

it consistently shows significant biases in its posteriors (we will discuss this in more detail in the380

next section). Here, our goal was merely to conduct a preliminary assessment of the model’s sen-381

sitivity to time binning, demonstrating the significance of selecting an appropriate mesh resolution382

to achieve the best performance when fitting the ETAS models. Identifying an optimal binning383

strategy is beyond the scope of this paper.384
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Figure 2. Posterior distributions obtained for the original ETAS model (top row) and the modified ETAS

model (bottom row) using five temporal meshes with different binning parameters. Vertical dashed lines

mark the true ETAS parameters used to generate a synthetic earthquake catalogue for this study. This cata-

logue covers a 1500-day period, featuring a mainshock of magnitude 6.7 on day 500. We then removed the

incomplete data portion using incompleteness parameters set at G = 3.8 and H = 1, and fitted both the

original and the modified models to the new incomplete catalogue. As the posterior distributions illustrate,

the original ETAS model’s performance is not influenced by the choice of binning strategy, but shows con-

sistent biases in the estimation of parameters across different resolutions. In contrast, the modified ETAS

model is highly sensitive to how data is binned, with the inaccuracies in estimating ETAS parameters sig-

nificantly reduced as the mesh resolution becomes finer.
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3.2 Performance assessment of the modified ETAS model using synthetic data385

In real catalogues that exhibit short-term incompleteness after large events, the catalogues are386

incomplete in the sense that there is partial observation of events below a time-evolving threshold.387

The Helmstetter model (Eq. 10) estimates this evolving completeness threshold. When we look at388

real data in Section 3.4, our strategy will be to remove all events below this threshold and correct389

for this censoring using the apparent intensity function which tells us the proportion of events390

that should remain above that threshold. Here, we first demonstrate the efficiency of our modified391

ETAS model through synthetic experiments. In doing so, we generate sets of synthetic catalogues392

by creating complete catalogues and then remove all events below the completeness predicted393

by the Helmstetter model. Hereafter, we refer to the data before removal as the ’complete’ and394

the data after removal as the ’incomplete’ catalogues. Each synthetic catalogue spans 1500 days,395

with a mainshock seeded on day 500. The 500-day pre-mainshock period is designed to ensure396

sufficient background before the emergence of the aftershock cluster (we will discuss this later in397

Section 3.3.1), and the 1000-day sequence ensures that the sequence has ended and returned to the398

background, aligning with the temporal windows for M ≤ 8 introduced by Gardner & Knopoff399

(1974).400

These catalogues are generated with a background rate of µ = 0.1 events per day, a rate consis-401

tent with moderately to highly seismic regions. The Gutenberg-Richter b-value parameter is also402

set to b = 1 for this study. Also, we set a constant magnitude threshold at which the catalogue is403

complete except below M0 = 2.5. The true ETAS parameters were set as K = 0.15 , α = 2.29404

, c = 0.05 , and p = 1.08, shown by the vertical dashed lines on Figure 4. For the incomplete-405

ness models, we adopted parameters proposed by Helmstetter et al. (2006), with G = 4.5 and406

H = 0.75. It is worth mentioning that these parameters are not universal, and they can vary based407

on the seismicity characteristics of a particular region and the capability of seismic networks to408

record and discriminate between events. In subsequent sections, we will explore different param-409

eters to demonstrate our model’s capability to adapt to different incompleteness behaviours. Our410

modified model is versatile, accommodating a broad range of mainshock magnitudes and incom-411

pleteness parameters. As a representation, we provide four synthetic data samples with mainshock412
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magnitudes of 6.0, 6.5, 7.0, and 7.5, as depicted in Fig. 3. In this figure, the left panel displays413

each sequence’s complete data, while the right panel illustrates a close-up view around the incom-414

pleteness period. Unobserved (missing) data points are shown with red circles and their count is415

provided at the top for each case.416

We then fitted the original ETAS model to both the complete and incomplete datasets, while417

the modified ETAS model was applied exclusively to the incomplete dataset (pair plots of ETAS418

parameters and convergence plots are provided in appendix in Fig. A1 to Fig. A4). The estimated419

posteriors are illustrated in Fig. 4, with detailed information provided in Table 2. As the results420

indicate, the original ETAS model, when trained on complete data (blue posteriors), adeptly re-421

trieves the true parameters. However, as explained before, real earthquake sequences often exhibit422

incompleteness, and when the original ETAS is trained on incomplete data (red posteriors), there is423

a noticeable bias in parameter estimations. In contrast, the modified model, trained on incomplete424

data (green posteriors), demonstrates a significant reduction in this bias, so that its estimations425

closely align with the true parameters and the blue posteriors. This indicates that, despite being426

fed the incomplete data, the modified ETAS model can achieve accurate posteriors akin to those427

of the original ETAS model trained on complete data, providing we can parameterise the censor-428

ing process. Also, the modified model’s posteriors fall within the uncertainty range of the original429

model but exhibit a shorter peak.430

Another evidence supporting our findings can be observed in the triggering function (Eq. 2),431

which indicates rates for various magnitude thresholds. An illustrative example of this function,432

using the synthetic catalogue with mainshock magnitude of M = 7.0, is presented in Fig. 5.433

The triggering function derived from the original ETAS model, which was trained on incomplete434

data, shows a considerable underestimation of event rates (Fig. 5 - middle column). In contrast,435

the triggering function of the modified ETAS model trained on incomplete data (Fig. 5 - right436

column) closely mirrors that of the original model when trained on complete data (Fig. 5 - left437

column). Due to the missing portion of events in the incomplete data, the triggering function of438

the modified ETAS model, trained on this data, displays a slightly wider uncertainty band than that439

of the original model trained on complete data. However, it still remains well within the latter’s440
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uncertainty bounds. This demonstrates that our modifications have enhanced the model’s ability441

to accurately capture the triggering patterns of aftershocks.442

Further evidence of the models’ performance, along with a consistency check, is provided by443

predicted intensities within the short-term incompleteness periods. Figure 6 displays the actual444

rates (in black) and the apparent (observed/recorded) rates (in purple) for our four selected syn-445

thetic catalogues. We then predict the modelled intensities using the posterior modes of both the446

original (in red) and the modified (in dashed green) ETAS models. The modified ETAS model no-447

tably outperforms the original ETAS model in reproducing actual rates. This superiority becomes448

even more pronounced for larger mainshock magnitudes, which are associated with longer periods449

of incompleteness and a higher number of missing events. These findings underscore significant450

differences in the results between the original and the modified ETAS models when trained on451

incomplete data, thereby highlighting the improvements made in the modified version.452
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Figure 3. (Left): Four generated 1500-day synthetic catalogues with mainshock magnitudes of 6.0, 6.5,

7.0, and 7.5, seeded on day 500. (Right): Zoomed-in representations showing recorded events in black and

missing events in red within the short-term incompleteness interval for each sequence. The incompleteness

model parameters are set as G = 4.5, H = 0.75, and b = 1. The number of events is also indicated above

each figures. Obviously, under the same parameterisation, the duration of incompleteness and the portion of

missing events increase with the magnitude of mainshock.
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Figure 4. Posteriors presented for four simulated catalogues corresponding to mainshock magnitudes of 6.0,

6.5, 7.0, and 7.5. The blue and red posteriors are derived from the original ETAS model using complete and

incomplete catalogues, respectively. The green posteriors are obtained by training the modified ETAS model

on the incomplete data. It is evident that when working with data exhibiting short-term incompleteness, the

original ETAS model struggles to accurately estimate parameters. In contrast, the modified model performs

well, closely approximating the blue posterior, as if working with complete data.
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Table 2. Details on data incompleteness and parameter estimates from the original and the modified ETAS

models trained on incomplete synthetic catalogues with different mainshock magnitudes. True values are

included for reference. Comparison of values indicates that the modified ETAS model clearly outperforms

the ETAS original model.

Mainshock magnitude 6.0 6.5 7.0 7.5

number of all events 421 1140 2708 9175

number of recorded events 413 1079 2261 6723

number of missing events 8 61 447 2452

incompleteness period (days) 0.05 0.22 1 4.64

number of events in the incompleteness period 16 106 673 3435

% missing events in the incompleteness period 50% 57.5% 66.4% 71.4%

true value 0.1 0.1 0.1 0.1

µ posterior mode (modified ETAS) 0.103 0.104 0.098 0.092

posterior mode (original ETAS) 0.103 0.099 0.080 0.066

true value 0.15 0.15 0.15 0.15

K posterior mode (modified ETAS) 0.14 0.16 0.16 0.16

posterior mode (original ETAS) 0.12 0.13 0.11 0.57

true value 2.29 2.29 2.29 2.29

α posterior mode (modified ETAS) 2.26 2.26 2.25 2.22

posterior mode (original ETAS) 2.18 2.08 1.82 1.36

true value 0.05 0.05 0.05 0.05

c posterior mode (modified ETAS) 0.07 0.05 0.06 0.07

posterior mode (original ETAS) 0.11 0.14 0.43 0.20

true value 1.08 1.08 1.08 1.08

p posterior mode (modified ETAS) 1.10 1.09 1.09 1.11

posterior mode (original ETAS) 1.14 1.15 1.26 1.29
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Figure 5. Triggering functions for the synthetic catalogue with mainshock magnitude of 7.0. The functions

display rates and associated uncertainties for 1 day after the mainshock at different triggering magnitude

levels (6.5, 6.0, and 5.5). These triggering functions are obtained from three scenarios: the original ETAS

model trained on complete data (left column), the original ETAS model trained on incomplete data (middle

column), and the modified ETAS model trained on incomplete data (right column). The original model

exhibits significant underestimation when dealing with incomplete data. In contrast, the modified model

accurately estimates rates, resulting in slightly wider plots than the original model with complete data, yet

laying within the uncertainty range of the latter.
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Figure 6. The actual (in black), apparent (in purple), and predicted intensities for four simulated catalogues

with mainshock magnitudes of 6.0, 6.5, 7.0, and 7.5. The predicted intensities are calculated using posterior

modes obtained from both the original and the modified ETAS models, each trained on incomplete data, and

applied to the conditional intensity formula. Two grey vertical dashed lines mark the beginning (mainshock

time) and end of the incompleteness period. Clearly, the modified ETAS model (in dashed green) yields

predicted intensities that are closer to the actual ones, whereas the original ETAS model (in red) significantly

underestimates the intensities.
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3.3 Considerations for selecting representative samples and reducing bias in the ETAS453

inversions454

Here we consider the concept of having a representative sample so that the data being analysed455

contains sufficient information to understand and parameterise the generative processes. This is456

an intuitive problem when we want to, for example, understand the distribution of heights in the457

adult population where what is important is that we have a random sample of the population from458

which we can estimate means and standard deviations, etc.459

However, defining a representative sample for a Hawkes process is non-trivial and has im-460

portant implications for survey design and data analysis. This is evidence in how we choose the461

spatial-temporal domain to be analysed. Even a purely temporal ETAS model has a spatial compo-462

nent in the sense that we chose to draw a box within which we extract a catalogue to be modelled;463

and in drawing this box, we are biased towards areas in which there are interesting active se-464

quences. Further, it is common to start the analysis close to the start of the mainshock. The acts of465

defining domains containing interesting sequences, and excluding regions with lower productivity466

inherently biases model parameters.467

A truly representative sample would contain sufficient diversity that all of the ETAS parameters468

can be well constrained. In practice, individual case studies may not have sufficient data to permit469

this. However, by being aware of the deficits in specific case study data, we can anticipate the470

limitations of our parameter estimations.471

Here, we compare the biases that arise from (i) only analysing the active sequences and how472

this can be mitigated by including historic events to condition a more recent temporal domain, (ii)473

what properties catalogues require in order to resolve tradeoffs in the productivity parameters, and474

(iii) exploring the sensitivity of the modified ETAS model to the accuracy of the incompleteness475

(Helmstetter) model parameters. We hope that these analyses will build intuition regarding the476

reliability of ETAS inversion on real data. This has important consequences for those attempting477

to forecast evolving aftershock sequences.478
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3.3.1 Including and conditioning on the historic run-in period479

When dealing with real datasets, it is common practice to calibrate the ETAS model using individ-480

ual earthquake sequences that start from a mainshock and extend to an inferred endpoint, cropping481

out the remaining data. Here, we explain how incorporating and also conditioning the model on482

the history preceding the mainshock impacts the quality of the ETAS inversions. This idea was483

previously demonstrated for the original ETAS model by Naylor et al. (2023). Here, we apply the484

same principle to the modified ETAS model, illustrating the degree of bias that can be reduced485

by including and conditioning on the past seismicity. This shows the extent to which parameters486

should change under natural variability in simulations. Here, we examine two scenarios: (1) ex-487

tending the modelling domain to include run-in history prior to a mainshock, and (2) conditioning488

the model on the history prior to modelling domain.489

Within the modelling domain [T1, T2], there are some certain events that may not be directly490

linked to either the triggering events in the sequence or the background activity. Instead, they are491

triggered by and linked to events that occurred before T1. This implies that the intensities of these492

preceding events are still strongly effective, still producing earthquakes, and thereby affecting the493

overall rate. Therefore, by conditioning the model on the history prior to the modelling domain,494

we take into account events before T1 and include their intensities into the rate prediction without495

evaluating them in the process.496

To analyse both scenarios, we generate a catalogue spanning 1,500 days, with an M6.7 main-497

shock occurring on day 500.01, and M0=2.5. We then create several sub-catalogues by truncating498

the first 250, 400, 500, and 501 days (Fig. 7). Subsequently, we conduct two experiments. In the499

first experiment, we fit the modified ETAS model to the five sub-catalogues within their time in-500

tervals [T1, T2] with different starting dates T1. This approach extends the modelling domain each501

time and incorporates some historical data before the mainshock event. For the second experiment,502

we repeat the same procedure as in the first one, but additionally, we condition the model on the503

history before the modelling domain [0, T1) for each case. This accounts for capturing the influ-504

ence of previous events that occurred prior to the modelling domain without including them in the505

modelling process.506
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Figure 7. Setting different run-in periods for a 1500-day catalogue, by removing the first 0, 250, 400, 500,

and 501 days of data.

Fig. 8 and Table 3 display the results of the inversions using our modified ETAS model. The507

results indicate that including a run-in history before the mainshock event, and conditioning on508

the past seismicity before our modelling domain, significantly impacts estimations of the model509

parameters. With an adequate run-in period, we can reduce bias in the estimates of ETAS parame-510

ters, bringing the posteriors closer to their true values. This consideration becomes more crucial in511

the presence of missing data in the incompleteness interval, where productivity is more affected.512
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Figure 8. (A) A 1500-day catalogue with short-term incompleteness simulated to train the modified ETAS

model, considering “including” and “conditioning on” run-in history. The mainshock with M6.7 was seeded

on day 500.01. We extract five sub-catalogues with different starting dates by excluding the first 0 days, 250

days, 400 days, 500 days, and 501 days. (B) Posteriors of the ETAS parameters for each sub-catalogue

without conditioning the model on run-in history. (C) Posteriors of the ETAS parameters for each sub-

catalogue with the model conditioned on run-in history prior to T1.

We can conclude that conditioning on the past history significantly enhances model performance,513

revealing that even for the shortest modelling domain with start date on day 501 that lacks the514

presence of the large event within the model domain - which is supposed to be the dominant event515

responsible for majority of aftershock rates - we are still able to retrieve accurate estimates of the516

ETAS parameters.517

Our interpretation of the trends in the bias with respect to the duration of runin period before518

the mainshock, for these synthetics, hangs on how well the background rate, µ, is resolved. If µ519

is poorly estimated, we argue that the triggering model will need to compensate, and hence the520



Enhancing the ETAS model 33

Table 3. Estimation of the ETAS parameters for the five synthetic sub-catalogues with a starting point of T1

for two scenarios: not conditioning and conditioning on history prior to T1. The mainshock was imposed on

day 500.01. The true values for each parameter are also shown below them in the first row of the table.

Scenario T1 µ K α c p

0.1 0.089 2.29 0.11 1.08

not-conditioned on the run-in history

0 0.10 0.092 2.28 0.11 1.08

250 0.15 0.065 2.08 0.42 1.22

400 0.17 0.067 2.06 0.44 1.24

500 0.20 0.073 2.04 0.48 1.28

501 0.17 0.414 1.66 0.28 1.37

conditioned on [0, T1]

0 0.10 0.092 2.28 0.11 1.08

250 0.12 0.083 2.27 0.13 1.10

400 0.14 0.084 2.26 0.14 1.11

500 0.16 0.088 2.24 0.15 1.13

501 0.15 0.090 2.23 0.14 1.12

parameters in the triggering model will also be biased; in these scenarios we have shown that521

the background rate tends to be high and the triggering effects tend to be underestimated which522

has implications for forecasting. In our example, at the end of the model domain, T2, the rate of523

events has not yet decayed to the background rate, hence the model is entirely dependent on the524

information in the period prior to the mainshock to calibrate the background rate; this is what525

permits µ to have high estimates. As the length of the period prior to the mainshock increases, the526

accuracy of the estimate of µ improves as the intensity tends towards the background intensity. In527

this synthetic example, µ is biased to high values even when it contains 250 days of data before the528

mainshock - presumably because there was a larger event just prior to the 250 day mark which is529

otherwise unaccounted for. This highlights an important operational consideration. In an evolving530

aftershock sequence, the intensity of events on any given day after the mainshock will tend to531

decay, and if we do not have a sufficiently long period of data prior to the mainshock to calibrate µ532

well, this decay in intensity as the sequence evolves will gradually draw the estimate of µ down as533

the sequence evolves - this means that the triggering parameters will also evolve to compensate for534

the bias. This would make it appear that the parameters are time dependent. This is problematic -535
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particularly since we know that in this example the parameters were actually fixed. Consequently,536

we recommend spending the time to constrain µ well either through an external constraint on537

the prior or through careful selection of the model domain. Conditioning on a history, has the538

potential to increase the stationarity of the analysis and account for triggers unobserved in the539

target catalogue, but cannot correct the background rate inaccuracies significantly. In total, the540

ETAS model contains 5 parameters. One background rate and four within the triggering function.541

If we can satisfactorily partition the background and triggered events, we then have the opportunity542

to resolve the tradeoffs between the triggering parameters.543
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3.3.2 Impact of combination of magnitudes and trade-off between K and α544

There exists a clear trade-off between the two productivity parameters in the triggering component545

of the ETAS model. K describes the productivity at M0, and α describes a magnitude dependent546

productivity for parent events with magnitudes greater than M0.547

Here, we explore the requirements for a catalogue to have sufficient information to resolve the548

tradeoff between α and K. Our hypothesis is that resolution of the magnitude dependence (i.e.549

α) in triggering requires a sufficient number of mainshocks of different magnitude in the training550

catalogue. This will inform what a sufficiently representative catalogue would look like if we551

expect to resolve all the parameters unbiasedly.552

We investigate this effect using four synthetic earthquake catalogues, each spanning 5000 days553

(Fig. 9 - top). These catalogues each feature three mainshocks seeded on days 500, 2000, and554

3500. The first catalogue has three mainshocks, each with a magnitude of 4; the second one has555

three mainshocks, each of magnitude 5; the third one has three mainshocks of magnitude 6; and the556

fourth one is a mix with magnitudes of 6, 5, and 4. In generating the synthetics, we intentionally557

selected catalogues which did not contain other very large events in the sequences so we could558

isolate the impact of the magnitudes we prescribed.559

Whilst the catalogue with three M6 events contains the greatest number of events, we hypoth-560

esise that the catalogue containing three different M6,M5,M4 mainshock magnitudes will have561

the greatest power at resolving α and hence do the best job at resolving the tradeoff in the produc-562

tivity parameters. Upon fitting the ETAS model to these data and analysing the posteriors (Fig. 9 -563

bottom), we can infer the following results:564

(i) Although the catalogue with 3×M4 better retrieves accurate background rates, it is less precise565

when estimating ETAS triggering parameters. This leads to broader posteriors, which exhibit566

biased estimates and higher uncertainty compared to other catalogues. Consequently, sequences567

with lower mainshock magnitudes and longer quiet periods provide better conditioning for the568

parameter µ, but not for the triggering parameters. As the mainshock magnitude increases, the569

posteriors for triggering parameters become tighter and exhibit less bias.570

(ii) Comparing the catalogue that combines different mainshock magnitudes of M6,M5,M4 to571
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the catalogues of 3×M6 and 3×M5, we find that the catalogue which varies the mainshock572

magnitudes provides more accurate estimates than those with identical mainshock magnitudes.573

Thus, resolving the α − K trade-off when there are not sequences of different sizes is more574

challenging. However, diversity in mainshock magnitudes allows for effective conditioning of575

α and K, even with fewer data points.576

This tradeoff has an important consequence for operational earthquake forecasting. Since577

α controls the magnitude dependent productivity, a biased estimate means that the scaling of578

the number of triggered events from a future larger event could be significantly under- or over-579

estimated.580

Where only a single sequence is studied, we should be conscious of this bias. To mitigate it,581

we should try to use more representative samples by increasing the size of the spatial-temporal582

domain. At the same time, in many regions, it would be impractical to draw a geographical and583

temporal boundary around a training catalogue that contains sufficient number of mainshocks of584

different magnitude for the catalogue to be truly representative. We recommend that practitioners585

need to actively recognise this tradeoff as part of their workflow, identify mitigating strategies586

where possible, and acknowledge the residual uncertainty if it is not possible to analyse a more587

representative catalogue.588
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Figure 9. Four different simulated catalogues with different combination of magnitudes with 3 × M4,

3×M5, 3×M6, and combination of M6,M5,M4. Posteriors of each case are shown below the magnitude

time series.
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3.3.3 Impact of choice of incompleteness model parameters589

In this section, we consider the consequences of mis-specifying the incompleteness model. Es-590

timating mc(t) to be too high will reduce the total amount of reliable data from the inversion.591

Underestimating will mean that there remains some incomplete data, but perhaps we should ex-592

pect asymptotic improvement as the completeness threshold is approached from either direction.593

We investigate how varying the parameters G and H of the incompleteness model influences594

the posteriors of the modified ETAS model. To accomplish this, we generate a catalogue spanning595

a 1500-day period with a mainshock magnitude of 6.9 and apply truncation to create an incomplete596

catalogue, using G = 3.8 and H = 1 as the true incompleteness parameters. We then consider five597

distinct scenarios in which we fit the ETAS model with various choices for the incompleteness598

parameters. These scenarios include the use of the true parameters (G = 3.8 , H = 1), inferred599

parameters 1 (G = 3.1 , H = 1), inferred parameters 2 (G = 4.1 , H = 0.75), inferred parameters600

3 (G = 4.5 , H = 2), and inferred parameters 4 (G = 3.8 , H = 2). We deliberately select these601

parameter combinations to cover a variety of choices of the incompleteness model. This results602

in different decay patterns and different endpoints for the incompleteness period, as illustrated603

in Fig. 10 (top). Then, we fit our modified ETAS model to the incomplete catalogue considering604

the different incompleteness parameter sets. We also run the original ETAS model with the true605

incompleteness parameters.606

Posteriors for all scenarios are shown in Fig. 10 (bottom). In this figure, the green posteri-607

ors, derived from the true incompleteness model, accurately capture the true ETAS values. The608

blue posteriors, corresponding to the ’inferred 1’ scenario, wherein more events are eliminated609

compared to the green model, closely mirror the ETAS estimates of the ’true’ model but exhibit610

somewhat shorter peaks. This indicates a similar yet slightly increased uncertainty, expected due to611

discarding a larger dataset above the actual incompleteness threshold, leading to precise yet more612

uncertain estimates. The amber posteriors from the ’inferred 4’ scenario show slight deviations in613

estimates. Examining the purple (’inferred 2’) and salmon (’inferred 3’) scenarios, which signif-614

icantly differ in incompleteness curves, show bias in the ETAS posteriors. Interestingly, all five615

scenarios with the modified ETAS models, including the extreme scenarios (purple and salmon),616
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Figure 10. Impact of the choice of incompleteness model parameters on the ETAS estimates. (top): five

incompleteness models with different decay curves and endpoints. The green curve represents the true

incompleteness model, utilised for data truncation and preparation of the incomplete catalogue. The other

four incompleteness models (’inferred 1’ to ’inferred 4’) are intentionally selected with visually different

curves to assess the impact of the choice of incompleteness parameters. (bottom): Posteriors derived from

the modified ETAS model using the five incompleteness scenarios, and posteriors obtained from the original

ETAS model (in dashed dark grey) using the true incompleteness parameters.

still outperform the original ETAS model (dashed dark grey posteriors), calibrated with true in-617

completeness parameters.618
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3.4 Application to real earthquake case studies619

We now apply both the original and the modified ETAS models to three real earthquake sequences:620

the 2016 M6.5 Amatrice earthquake in Italy, the 2017 M7.3 Kermanshah earthquake in Iran, and621

the 2019 M7.1 Ridgecrest earthquake in the US. To minimise bias and select a representative622

sample, we chose data with one year before and two years after the mainshock for the 2016 Am-623

atrice and 2019 Ridgecrest earthquake sequences, and one year before and three years after the624

mainshock for the 2017 Kermanshah earthquake sequence. This choice provides a fair amount of625

background data and allows sufficient time for the sequences to return to background rates and626

decay from the triggering effects and it permits a comparison with the synthetic models we anal-627

ysed in section 3.2. In addition, we also conduct our analysis without the one-year period prior to628

the mainshocks, where the modelling domain directly starts from the mainshcok event. This also629

allows a comparison with the synthetic models we analysed in section 3.3.1. The spatial domain630

for each case was also determined based on published shake maps and seismicity maps.631

The time series of magnitudes and magnitude-event number plots for each earthquake are632

shown in Fig. 11. There are some positive and negative aspects of the nature of the sequences in633

terms of being able to compensate for the short-term censoring effects. For the 2016 Amatrice634

sequence, the pre-mainshock period has few events but looks reasonable for resolving background635

rate, and the sequence has nearly decayed back to this by the end. The sequence encompasses636

a good mix of magnitudes and only the strong period of incompleteness needs correcting. For637

the 2017 Kermanshah sequence, the pre-mainshock phase looks quite active, and this seismicity638

level is typical of the longer term within the Zagros mountains in Iran. There are also quite a few639

events at different magnitudes. Despite considering three years of data after the M.7.3 mainshock,640

the sequence is still active at the end so we expect that the pre-mainshock period dominates the641

estimate of µ. For the 2019 Ridgecrest sequence, there are not many events in the pre-mainshock642

phase, and there is also only one larger event in the aftershock sequence which might not be643

sufficient to resolve K − α tradeoff (as discussed in section 3.3.2).644

To find the incompleteness model parameters for each sequence, we plot zoomed-in magnitude-645

time plots that clearly reveal the incompleteness in the early aftershock period. We fit the most646
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appropriate model to the observed events, and obtain values of G and H for the 2016 Amatrice647

earthquake as G = 5.45 and H = 1, for the 2017 Kermanshah earthquake as G = 5.5 and H = 1,648

and for the 2019 Ridgecrest earthquake as G = 5.8 and H = 1, as shown in Fig. 12. Also, the649

b-value of each sequence is estimated using stability of b versus completeness threshold shown in650

Fig. 13. Subsequently, we apply both the original and the modified ETAS models to the earthquake651

catalogues. In Fig. 14, we present the posterior outcomes of both the modified (in green) and the652

original (in red) ETAS models. These models are trained on two distinct datasets: The first dataset653

comprises one-year of data prior to the mainshock, defining the modelling domain as T1 = Tm−1,654

with the corresponding results represented by solid lines. The second dataset involves modelling655

without pre-mainshock data, initiating directly from the mainshock event. In this case, the mod-656

elling domain is set as T1 = Tm, and the results are illustrated using dashed lines. Additionally,657

we extract the triggering functions for both models, as illustrated in Fig. 15 which indicates higher658

rates and narrower plots (less uncertainty) for the modified model in comparison to the original659

version.660

Since we do not have access to the true parameters for the real datasets, we can assess the per-661

formance of both original and modified models based on two key aspects: (1) visual inspection:662

This involves examining whether models trained on real data produce patterns of underestimation663

and overestimation similar to those observed in synthetic experiments. Here, we see that the results664

for the real sequences are consistent with changes seen in synthetics data. (2): goodness-of-fit met-665

rics: utilising quantitative goodness-of-fit metrics can provide an additional measure of how well666

each model fits the real data. Here, we use the Widely Applicable Information Criterion (WAIC),667

also known as Watanabe–Akaike Information Criterion, (WAIC) score which is a measure used668

in statistical modelling, particularly in the context of Bayesian analysis, to assess the goodness of669

fit of a model to the data. It is used for model comparison, where lower WAIC values generally670

indicate a better-fitting model.671

Table 4 displays the WAIC values for the three real sequences using both the original and the672

modified ETAS models. The modified model’s lower WAIC values indicate better performance673

compared to the original model. Therefore, we can conclude that the modified ETAS model pro-674
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Figure 11. The three selected real earthquake sequences, including the 2016 Amatrice, Italy; the 2017

Kermanshah, Iran; and the 2019 Ridgecrest, US earthquakes. (top): magnitude - time plots and (bottom):

magnitude - event number plots.

vides more reliable estimates of the ETAS parameters and offers a better representation of the675

underlying processes. Alternatively, the forecasting ability of each model could be examined us-676

ing CSEP tests, though this falls beyond the scope of the current study.677

In all cases correcting for short term incompleteness changes the estimates of the magnitude678

dependent productivity α. The background rate is consistent in all case studies, presumably be-679

cause of the adequate sampling of the pre-mainshock period. The Ridgecrest data has the greatest680

short-term incompleteness and this propagates through to significant reductions in c and p; this is681

consistent with the changes seen in the synthetics in Fig. 4, so we believe the corrected estimates682

to be more reliable.683

Table 4. WAIC score obtained from the original and the modified ETAS models trained on the three selected

real earthquake sequences: the 2016 Amatrice, Italy; the 2017 Kermanshah, Iran; and the 2019 Ridgecrest,

US.

ETAS version
WAIC

2016 Amatrice 2017 Kermanshah 2019 Ridgecrest

modified 13979.98 12694.9 10592.66

original 13997.91 12697.5 10659.72
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Figure 12. Extracting parameters G and H with the best fit of the incompleteness model to the three selected

real earthquake sequences, including the 2016 Amatrice, Italy; the 2017 Kermanshah, Iran; and the 2019

Ridgecrest, US earthquakes.

Figure 13. Estimation of b-value of the Gutenberg-Richter law for the three selected real earthquake se-

quences, including the 2016 Amatrice, Italy; the 2017 Kermanshah, Iran; and the 2019 Ridgecrest, US

earthquakes.
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Figure 14. Posteriors of the three selected real earthquake sequences, including the 2016 Amatrice, Italy;

the 2017 Kermanshah, Iran; and the 2019 Ridgecrest, US earthquakes. These posteriors are obtained using

the modified (green) and the original (red) ETAS models, respectively. The models are trained on two

different datasets: one with one year of data prior to the mainshock (solid lines), and the other without a

pre-mainshock period, starting directly from the mainshock event (dashed lines).
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Figure 15. Triggering functions of the three selected real earthquake sequences, including the 2016 Ama-

trice, Italy; the 2017 Kermanshah, Iran; and the 2019 Ridgecrest, US earthquakes obtained from the original

and the modified ETAS models.
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4 REMAINING LIMITATIONS AND POSSIBLE IMPROVEMENTS684

While our modified model to correct for temporal incompleteness has demonstrated its efficacy in685

enhancing the accuracy of ETAS estimates, ensuring generality, and mitigating bias in synthetic686

realisations where underlying parameters are known, there remain certain limitations that warrant687

attention in future developments.688

In calculating the intensity at any point, we sum over all past events. However, we do not689

explicitly correct for the contributions to the intensity from events that lie below the time varying690

completeness threshold. It is likely that these contributions are in total small because they are691

inherently from the less productive, smaller magnitude aftershocks. This could be accounted for692

analytically using the assumptions presented in this paper, but since we recover the posteriors well693

with the current approach, we did not implement it here.694

We also make the simplifying assumption that the background rate during the incompleteness695

period was not affected by censoring. Statistically, this is reasonable because the background rate696

is extremely small compared to the rate of triggered events during the period of temporal incom-697

pleteness. However, it is not strictly physically correct.698

We were only able to consider a limited number of scenarios within this publication. We highly699

recommend others undertake a similar study calibrated to their setting in order to understand po-700

tential sources of bias and their implications when performing ETAS inversions and seismicity701

forecasts.702

A further area of improvement could involve the exploration of alternative models for incom-703

pleteness. While the model introduced by Helmstetter et al. (2006) remains widely adopted, our704

experience indicates that its incorporation into the computational process of likelihood can be chal-705

lenging, especially when resulting in the hypergeometric function. Seeking models with different706

functional forms, such as exponential or power-law, could offer a more intuitive or computation-707

ally efficient representation. Such enhancements may elevate both the performance and flexibility708

of the ETAS model.709

In terms of technical advances, there exists potential to expand the consideration of incom-710

pleteness from purely temporal ETAS models to encompass spatio-temporal models as well. This711
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would provide a more comprehensive view of earthquake dynamics, taking into account the in-712

completeness issue for both the timing and location of earthquake events, potentially enhancing713

predictive accuracy and offering a richer understanding of the underlying processes.714

5 DISCUSSION715

Here we have explored the impacts of different sources of bias and used this information to explore716

the data requirements for a training catalogue to be sufficiently representative of the governing717

processes that it can recover the key parameters unbiasedly.718

The need for exploring these questions arises from the limitations of real datasets and the fact719

that an ETAS inversion will generally return a set of parameters but little information that helps us720

decide whether the training data was sufficient to produce unbiased estimates of these parameters721

in the first place. Consequently, it is easy to perform an inversion and unquestioningly work with722

the parameters that were returned.723

We believe that we can do better than this, and the starting point needs to be understanding724

potential sources of bias within synthetic datasets such as those presented here and to actively725

consider sources of potential bias.726

In practice, our datasets will always be limited by the seismic history of a region and the727

practicalities of defining a space-time-magnitude domain within it. However, we can question728

whether we have sufficient data to constrain key components of the ETAS model. For example,729

• Do we have sufficient data from quieter periods to constrain µ? If not, we should anticipate730

that it may be biased. In our experience, when modelling productive sequences not includ-731

ing sufficient background will produce systematically high estimates of µ and consequently732

underestimations of the productivity within the triggered sequences.733

• Do we have distinct mainshocks of different magnitudes in the training data? If not, even if734

µ is well calibrated, we should anticipate that the forecasts may do a bad job when scaling to735

future mainshocks of very different magnitude.736

• Is there short-term incompleteness following large events within the catalogue? We have737

presented an innovative solution for dealing with this as a censoring problem. If there is such738
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incompleteness, and we do not correct for it, the synthetics shown here suggest we will both739

underestimate the background rate and underestimate the number of triggered events. Again,740

this would affect the performance of a prospective forecast.741

• Is the short term incompleteness accurately modelled? The modified model performs well742

provided the time varying incompleteness threshold is reasonably estimated. As the threshold743

is reached from the incomplete side, it provides asymptotic improvement. If the threshold is744

estimated at a higher level than necessary, we still see good recovery of the true triggering745

parameters in the synthetics.746

We hope that this study gives an intuitive indication of where bias may arise in ETAS inver-747

sions and how these biases would propagate through to systematic errors in operational earthquake748

forecasts. We believe that the analyses we have shown offer a way forwards for critiquing the per-749

formance of ETAS inversions and can help practitioners anticipate how they can better define750

model domains for extracting catalogues that are sufficiently representative for producing fore-751

casts that lie within uncertainty of real evolving sequences. Our study offers a roadmap for future752

research in earthquake sequence modelling, promising improved seismic hazard analysis accuracy753

and a better understanding of earthquake behaviour.754

6 CONCLUSION755

In this study, we demonstrated the importance of accounting for short-term incompleteness in756

aftershock sequences, which can lead to biased ETAS estimates and inaccurate forecasts if not757

properly addressed. To mitigate this issue, we proposed a modified ETAS model that incorporates758

a correction for the short-term incompleteness, thereby improving the accuracy of the ETAS pa-759

rameter estimates and enhancing forecast performance. To achieve this, we defined a censorship760

function and applied it to the inversion algorithm of the ETAS model.761

Through a series of synthetic experiments, we have shown that the modified ETAS model762

yields more reliable parameter estimates compared to the original ETAS model. In addition, we763

investigated the impact of time binning strategy on model performance, the impact of conditioning764

model on the run-in history, the trade-off between productivity parameters K and α, as well as the765
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impact of choice of incompleteness model parameters. These analyses demonstrated the robustness766

and reliability of the modified ETAS model across various synthetic earthquake scenarios, thereby767

contributing to a better understanding of its efficacy in real-world applications.768

Subsequently, we applied both original and modified ETAS models to earthquake sequences769

from Amatrice, Italy (2016); Kermanshah, Iran (2017); and Ridgecrest, US (2019), covering a pe-770

riod of one year before and two/three years after each mainshock. We observed distinct regional771

seismicity patterns and triggering mechanisms, with the Kermanshah sequence remaining active772

well beyond the others, highlighting the enduring seismic influence in the Zagros mountains in773

Iran. Conversely, the Ridgecrest sequence presented challenges in resolving the ETAS model pa-774

rameters due to its limited pre-mainshock events and aftershock data. We found that the results775

from the posteriors and triggering functions for real scenarios are consistent with the patterns and776

changes observed in synthetic data. Indicated by lower WAIC scores, the modified ETAS model777

shows better performance than the original model, suggesting its enhanced ability to better capture778

real seismic processes.779

Finally, we identified remaining limitations and proposed potential avenues for future research.780

These include exploring alternative models for incompleteness, expanding the consideration of in-781

completeness to spatio-temporal models, and further investigating sources of bias in ETAS param-782

eter estimates. By refining our understanding of earthquake dynamics and the factors influencing783

parameter estimation, we can advance the state-of-the-art in earthquake forecasting and contribute784

to better-informed decision making for earthquake risk reduction.785
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http://terremoti.ingv.it/en. The 2017 Kermanshah earthquake dataset was obtained from793

the Iranian Seismological Centre (IRSC) at http://irsc.ut.ac.ir/bulletin.php. And the794

2019 Ridgecrest earthquake dataset was retrieved from the U.S. Geological Survey (USGS) Earth-795

quake Catalogue at https://earthquake.usgs.gov/earthquakes/search/, all last accessed796

in August 2023.797
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Figure A1. Pair plot of ETAS parameters

APPENDIX A: EXTRA PLOTS933
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Figure A2. Convergence plot for the original ETAS model trained on complete data
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Table A1. Glossary and description of variables and parameters.

in text in codes description

t t a time point at which we evaluate the intensity

ti th time of the ith triggering event

tbij T1b start time of jth bin of the ith triggering event (left edge)

tbij+1 T2b end time of jth bin of the ith triggering event (right edge)

T1 T1 start time of the modelling domain

T2 T2 end time of the modelling domain

max(T1, ti) T.l time for either ’including’ or ’conditioning’ on history

Tm Tm time of the mainshock (also start time of the incompleteness interval)

Te Te end time of the incompleteness interval

c c time shift to avoid infinity at t = ti

mi mh magnitude of the ith triggering event

Mm Mm magnitude of the mainshock

M0 M0 fixed magnitude of incompleteness

mc(t) mct short-term time-varying magnitude of incompleteness

µ mu background seismicity

K K base productivity parameter

α alpha magnitude scaling productivity parameter

p p decay speed of aftershock rates

b b b-value of the Gutenberg-Richter relation

G G baseline magnitude shift in incompleteness model

H H log-time scaling parameter in incompleteness model

λ cond.lambda intensity or rate of aftershocks

g(t) gt ETAS triggering function

H Ht time history of aftershock evolution

L predictor.fun likelihood of model

θ theta vector of all model parameters

∆ delta.t base time increment in time binning

δ coef.t growth factor in time binning

nmax Nmax maximum number of bins for each event in temporal mesh
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Figure A3. Convergence plot for the original ETAS model trained on incomplete data
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Figure A4. Convergence plot for the modified ETAS model trained on incomplete data
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