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Abstract

Global climate goals require a transition to a deeply decarbonized energy system. Meeting the objectives of the Paris Agree-

ment through countries’ Nationally Determined Contributions and Long-Term Strategies represents a complex problem with

consequences across multiple systems shrouded by deep uncertainty. Robust, large-ensemble methods and analyses mapping a

wide range of possible future states of the world are needed to help policymakers design effective strategies to meet emissions

reduction goals. This study contributes a scenario discovery analysis applied to a large ensemble of 5,760 model realizations

generated using the Global Change Analysis Model. Eleven energy-related uncertainties are systematically varied, represent-

ing national mitigation pledges, institutional factors, and techno-economic parameters, among others. The resulting ensemble

maps how uncertainties impact common energy system metrics used to characterize national and global pathways toward deep

decarbonization. Results show globally consistent but regionally variable energy transitions as measured by multiple metrics,

including electricity costs and stranded assets. Larger economies and developing regions experience more severe economic out-

comes across a broad sampling of uncertainty. The scale of CO2 removal globally determines how much the energy system can

continue to emit, but the relative role of different CO2 removal options in meeting decarbonization goals varies across regions.

Previous studies characterizing uncertainty have typically focused on a few scenarios, and other large-ensemble work has not

(to our knowledge) combined this framework with national emissions pledges or institutional factors. Our results underscore

the value of large-ensemble scenario discovery for decision support as countries begin to design strategies to meet their goals.
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1. Introduction 40 

Global climate policy is taking shape across multiple scales and using a variety of strategies to 41 
address diverse sets of objectives. Most notably, the Paris Agreement has been at the forefront of 42 
international cooperation and accountability in limiting global warming from anthropogenic 43 
climate change (United Nations, 2015). Under this multilateral agreement, countries periodically 44 
submit and update Nationally Determined Contributions (NDCs) to articulate intended action 45 
plans. Though unique to each country, NDCs typically lay out shorter-term emissions reduction 46 
goals (e.g., by 2030) (UNFCCC, 2022a). In addition to NDCs, countries have also 47 
communicated long-term strategies (LTS), many of which contain net-zero targets (usually for 48 
2050), to help inform and align near-term activities (UNFCCC, 2022b). In order to meet the 49 
goals set forth by the Paris Agreement, a major global transition to a deeply decarbonized energy 50 
system is underway (UNFCCC, 2023). 51 

The global energy system is the largest contributor to CO2 emissions (>90%), through sectors 52 
including electricity generation, transportation, industry, and buildings (IEA, 2021). Therefore, 53 
decarbonization pathways must consider abatement strategies across the full landscape of 54 
energy-related emissions. However, there are many technological, financial, and policy tools 55 
available to help shape future pathways, as well as exogenous forces driving potential outcomes 56 
(Riahi, 2022). There is significant future uncertainty associated with the evolution of energy 57 
systems coming from many sources, such as socioeconomics, technology, institutions, demand 58 
patterns, and climate feedbacks, to name a few (Fodstad et al., 2022; Yue et al., 2018). These 59 
issues represent deep uncertainties with unknown functional forms which cannot be well-60 
characterized by a probability distribution, and dynamically evolve across sectors with complex 61 
and potentially wide-reaching consequences (Srikrishnan et al., 2022; Workman et al., 2021). 62 

As countries begin to implement emissions reduction pledges outlined in their NDCs, deep 63 
uncertainties (Walker et al., 2013) associated with the energy transition will emerge and impose 64 
challenges on decisionmakers in designing strategies to meet emissions goals (Paredes-Vergara 65 
et al., 2024). For decision makers, it is important to gain an understanding of a very wide range 66 
of plausible outcomes and characterize their associated pathways, in order to provide informed 67 
guidance on the most critical drivers as well as potential tradeoffs and synergies arising from 68 
different combinations of uncertain factors. In the context of a global energy transition driven by 69 
national decarbonization commitments, mapping and exploring a broad outcome space can help 70 
identify key challenges and opportunities, and how they may be distributed across regions, under 71 
a robust set of circumstances. 72 

Previous research in this space has typically focused on a select few plausible futures to explore, 73 
which limits the range and diversity of outcomes (Fawcett et al., 2015; Iyer et al., 2015b; 74 
Kriegler et al., 2018; Ou et al., 2021). Other work has examined structural differences across 75 
multiple models, but with limited sampling of uncertainty (Arango-Aramburo et al., 2019; 76 
Browning et al., 2023; Burleyson et al., 2020; Kober et al., 2016; Lucena et al., 2016; McFarland 77 
et al., 2015; Pietzcker et al., 2017; van de Ven et al., 2023; Van Der Zwaan et al., 2016; 78 
Wilkerson et al., 2015). While there are existing large ensemble studies to draw from (Groves et 79 
al., 2020; Huppmann et al., 2018; McJeon et al., 2011), there remains a dearth of research 80 
contributing a systematic exploration of a wide range of uncertainties using large-ensemble 81 
simulations to characterize NDC- and LTS-consistent energy transitions. Refer to the 82 



supplementary information for further discussion on current literature. The present study 83 
addresses this gap by applying scenario discovery to the Global Change Analysis Model 84 
(GCAM) (Bond-Lamberty et al., 2022) to explore how future uncertainties in the energy system 85 
drive global and national pathways toward deep decarbonization under Paris Agreement 86 
emissions pledges. In doing so, our study characterizes global and regional outcomes across a 87 
broad uncertainty space and identifies decision-relevant drivers and tradeoffs to assist planners in 88 
designing robust strategies to meet their long-term decarbonization goals. 89 

Our large ensemble of model realizations is generated using GCAM (Calvin et al., 2019), 90 
described briefly in Section 3.1. Eleven categories of energy-related sensitivities and a suite of 91 
output metrics, illustrated in Figure 1, are systematically varied within the model configuration. 92 
These scenario factors represent national mitigation pledges, institutional factors, and techno-93 
economic parameters, and are described in more detail in Section 3.2, followed by a description 94 
of the scenario discovery framework. Results are presented for ten aggregated global regions, 95 
constructed from GCAM’s 32 geopolitical regions. Section 4 characterizes the impacts of the 96 
uncertainty space on outcomes of interest such as electricity price, stranded assets, and negative 97 
emissions, to identify drivers of global and regional pathways toward deep decarbonization 98 
under national emissions pledges. The paper concludes with a discussion of results and 99 
implications for robust mitigation policy, highlighting the value of large-ensemble scenario 100 
discovery frameworks for countries beginning to design strategies to meet their goals. 101 



 102 
Figure 1: Categories of sensitivities varied in the ensemble and analysis metrics used. 103 

2. Background 104 

Some level of uncertainty will generally accompany any model used to aid planning decisions, 105 
inform policy, or otherwise convey insight about the systems and processes it represents (Beven, 106 
2018). Over the last century, uncertainty has been described by several hierarchies and 107 
classifications using a variety of methods (Walker et al., 2003). A common dichotomy applied to 108 
uncertainty is to categorize it as epistemic (reducible through, e.g., more data or improved 109 
knowledge of the truth) or aleatory (irreducible due to inherent randomness) (Kiureghian and 110 
Ditlevsen, 2009). In simulation and optimization modeling, uncertainty can also be categorized 111 
as parametric (uncertainty in model parameters’ true values), structural (uncertainty in the 112 
mathematical abstractions of real-world processes), and sampling (coverage from sampling a 113 
random variable, i.e., aleatory uncertainty) (Srikrishnan et al., 2022). 114 



The severity of a given uncertainty can range from well-characterized (a single probability 115 
distribution and a single objective) to a state of deep uncertainty, in which the likelihood of 116 
different scenarios is completely unknown or cannot be agreed upon (Lempert et al., 2003). The 117 
concept of deep uncertainty can be traced through the 20th century from Knightian uncertainty 118 
(Knight, 1921) and the inability to quantify outcomes or human decisions using probability 119 
distributions, through “wicked problems” (Rittel and Webber, 1973) and the possibility of 120 
fundamental disagreements on objectives, problem formulations, and model functional forms. 121 
Well-characterized uncertainty can be mitigated in modeling through a variety of methods, such 122 
as sensitivity analysis for parametric uncertainty (Pianosi et al., 2016), comparing across 123 
multiple models to address structural uncertainty (Marangoni et al., 2017; van de Ven et al., 124 
2023), and Monte Carlo analysis for sampling uncertainty of a stochastic process (New and 125 
Hulme, 2000). However, deep uncertainty in inherently interconnected and complex systems 126 
may be more difficult or even impossible to assess using these standard methods. Further, the 127 
lack of probabilistic data and tools available to deeply uncertain systems can shift the research 128 
goals from predicting system behavior to analyzing sets of “what-if” scenarios. This philosophy 129 
is central to exploratory modeling (Bankes, 1993). 130 
Exploratory modeling is a generalized approach developed to study systems dealing with deep 131 
uncertainty (Bankes, 1993; Lempert, 2002). Whereas the traditional view of a model as a 132 
probabilistic predictive tool may be concerned with uncertainty quantification, an exploratory 133 
modeling framework primarily involves uncertainty characterization, which instead aims to 134 
describe and characterize the influential factors driving a model’s outcome space through 135 
systematic computational experimentation (Kwakkel and Pruyt, 2013). By assessing many 136 
plausible alternatives with the goal of decision support, exploratory modeling can help identify 137 
vulnerabilities as well as robust solutions when significant deep uncertainty prevents 138 
probabilistic analysis (Kasprzyk et al., 2013; Lempert, 2019). 139 
Communicating insights from large ensembles of model realizations is often done using 140 
scenarios which, in this context, refer to small numbers of narrative storylines describing sets of 141 
conditions, trends, pathways, and vulnerabilities packaged in interpretable and decision-relevant 142 
clusters (Garb et al., 2008). Scenarios enable discussion about future states of the world without 143 
relying on probabilistic forecasts (Lempert, 2013). Scenario analysis exists broadly across 144 
domains, but is particularly useful in climate and human-earth systems modeling (for a review, 145 
see EEA, 2009). Distilling information from many (dozens to millions) modeled futures into a 146 
handful of digestible scenarios can be done with techniques such as scenario discovery, a model-147 
agnostic approach to developing scenario narratives in complex systems (Lempert et al., 2006; 148 
Groves and Lempert, 2007). Scenario discovery can refer to any methodology aimed at 149 
identifying areas of interest within the outcome space of a model via a systematic exploration of 150 
deep uncertainties, with the ultimate goal of connecting critical drivers (model parameters and 151 
structural forms, exogenous uncertainties, policy levers) to outcome metrics and narrative 152 
storylines to inform decision-making (Lempert et al., 2008; Bryant and Lempert, 2010; Lempert 153 
et al., 2003). This approach is used widely in human-earth systems modeling (McJeon et al., 154 
2011; Kwakkel et al., 2013; Shortridge and Guikema, 2016; Lamontagne et al., 2018; Moksnes 155 
et al., 2019; Dolan et al., 2022; Birnbaum et al., 2022; Morris et al., 2022; Guivarch et al., 2022; 156 
Woodard et al., 2023) using a variety of statistical, machine learning, and data mining techniques 157 
(Lempert et al., 2008; Kwakkel and Jaxa-Rozen, 2016; Kwakkel and Cunningham, 2016; Jafino 158 
and Kwakkel, 2021; Steinmann et al., 2020). In this study, we apply scenario discovery to 159 



GCAM, an actively developed and widely used multisector model for large ensemble analyses; 160 
refer to Section 3.1 for more details. 161 

3. Methods 162 

3.1. Global Change Analysis Model (GCAM) 163 

GCAM is a global model with detailed process representations of and interactions across five 164 
systems: energy, water, agricultural and land use, water, and economy. The model runs in five-165 
year time steps starting from 2015 (the calibration year) out to 2100. This study adapts GCAM 166 
v6 (Bond-Lamberty et al., 2022) with assumptions used in the creation of GCAM-LAC (Khan et 167 
al., 2020), which breaks out Uruguay as a standalone region. While a detailed description of the 168 
GCAM model is available [here], the description below provides a summary of the energy 169 
system which is most relevant to this study.  170 

GCAM solves each modeling period through market equilibrium, linking the five integrated 171 
systems across 33 geopolitical regions (32 in the core model, plus Uruguay) which are further 172 
divided into 235 water basins and 384 land use regions. These solutions determine market-173 
clearing prices and quantities of energy, water, agriculture, land use, and emissions markets in 174 
each region and time step, informed only by the conditions in the previous period and driven by 175 
exogenous socioeconomic assumptions as well as representations of policies, resources, and 176 
technologies. Greenhouse gas (GHG) emissions are tracked endogenously for 24 gases. 177 

Flows of energy in GCAM can be described by renewable and nonrenewable primary energy 178 
resources being collected and transformed through various processes into final energy carriers 179 
(e.g., electricity, hydrogen, fossil fuels) in order to meet the demands of the buildings, industry, 180 
and transportation end use sectors. Individual technologies and processes compete for market 181 
share on a levelized cost basis, which is comprised of exogenous non-energy capital costs and 182 
endogenous fuel costs, subject to any technology or emissions policies implemented. Fossil fuel 183 
resources, uranium, wind, and rooftop PV utilize exogenous supply curves to determine resource 184 
costs, which increase with higher cumulative extraction/deployment levels. A logit choice model 185 
controls market competition, which protects against a single technology dominating the market 186 
share. 187 

The energy system in GCAM is coupled with the agriculture and land use system mainly through 188 
commercial biomass (supplied by the agriculture and land use system and demanded by the 189 
energy system) and fertilizer (supplied by the energy system and demanded by the agriculture 190 
and land use system). Additionally, cooling water is demanded by many technologies within the 191 
energy system, linking it with GCAM’s water system. CO2 emissions are tracked when fossil 192 
fuels are combusted or converted to other forms, while agriculture and land use change (LUC) 193 
emissions are tracked via the amount of land use change within a region. 194 

3.2. Uncertain factors varied in this analysis 195 



Figure 1 gives an overview of the large ensemble of GCAM realizations developed in this work, 196 
and individual sensitivities are also summarized in Table 1. Broadly, the sensitivities we draw 197 
from represent a wide range of energy system and economic uncertainties, which are arranged 198 
into five categories. Sensitivities were developed from a review of the broad energy transition 199 
literature, identifying commonly varied as well as potentially underexplored uncertainties. When 200 
applicable, implementation of these sensitivities is based on previous studies using GCAM and 201 
referenced in Table 1. The sensitivities are varied discretely rather than sampled across a 202 
continuous range, and are combined in a full factorial ensemble. This resulted in a total of 5,760 203 
unique model realizations. 204 

Table 1: Description of sensitivities varied in the ensemble.  205 
Type Name Sensitivities Short Description / Representation in GCAM Key Global 

Dynamics 
Adapted 

From 
Climate 
Mitigation 

NDC + LTS 
Emissions 
Constraint 

Reference: no constraint 
Climate Pledges: goals 
achieved as stated 

Countries achieve long-term strategies, shorter-term 
pledges, and net-zero targets as stated, followed by a 
minimum decarbonization rate thereafter. Implemented 
as a regional constraint on CO2 emissions consistent 
with stated short-term (2030) goals and long-term 
(2050-2060) strategies. 

Lower emissions, 
introduces CDR, 
reduces fossil fuel 
reliance 

Iyer et 
al., 
2022; 
Ou et al., 
2021 

Land Use 
Change 
Emissions 
Sinks 

Reference: 10% scaling up 
over time 
High: 100% (only used 
with climate pledges) 

For NDC + LTS runs, adjusts the fraction of the 
carbon price passed to the land use system Varies land 
use emissions sinks and alters the economic balance 
struck with net emissions from the energy system. 

Allows the energy 
system to emit more 
to reach the same 
mitigation goals 

This 
study 

Socio-
economic 

Population 
and GDP 

Reference: SSP2 
Sensitivities: SSP1, SSP3, 
SSP4, SSP5 

Five paired socioeconomic pathways are used, 
consistent with the five SSP representations in GCAM. 
Note that only population and GDP are varied here; 
these parameters are decoupled from the full SSP 
scenarios. 

Varies the magnitude 
of economic activity 
which affects nearly 
all sectors 

Calvin et 
al., 2017 

Institutional Institutional 
Factors 

Reference: equal 
investment risk 
Risk: differences across 
regions & technologies 

Modeling differences in regional and technological 
investment risk by affecting the cost of financing clean 
energy projects 

Reduced investment 
in renewables 

Iyer et 
al., 
2015a 

Techno-
economic 

Wind and 
Solar Capital 
Costs 

Reference: ATB moderate 
High cost: ATB 
conservative 
Low cost: ATB advanced 

Forecast of overnight capital costs for wind and solar 
technologies, varied together and consistent with core 
sensitivities available in GCAM. 

Influences adoption of 
wind and solar, cost of 
electricity, and 
mitigation costs 

NREL, 
2019 

Direct Air 
Capture Cost 

Reference: SSP2 
consistent 
High cost: SSP3 consistent 

Varying cost of Direct Air Capture, a key negative 
emissions technology. Attempting to completely 
remove CCS and DAC from the model caused a 
majority of NDC + LTS scenarios to become 
infeasible. 

Reduced CDR, higher 
carbon price, 
increased hydrogen 
and electricity from 
biomass 

Fuhrman 
et al., 
2021 

Advanced 
Hydrogen 

Reference: GCAM core 
assumptions 
Advanced hydrogen: see 
Ref. 

Modeling advanced scaling of hydrogen in the energy 
system through centralized hydrogen transport and 
distribution infrastructure, represented by pipeline. 

Increased hydrogen 
production and use 

Wolfram 
et al., 
2022 

Demand 
Side 

Industry 
Energy 
Efficiency 

Reference: GCAM core 
assumptions 
High efficiency gains: see 
Ref. 

Energy efficiency improvements over time across 
industries including cement, iron and steel, chemicals, 
fertilizer, aluminum, and other aggregate end uses of 
industry. Modeled as reduced input energy, reduced 
feedstock use, reduced carbon intensity of cement, and 
adjustments to income elasticity. 

Reduced energy and 
electricity 
consumption in 
industry, lower CO2 
emissions, lower 
cement production 

Gambhir 
et al., 
2022 

Buildings 
Energy 
Efficiency 

Reference: GCAM core 
assumptions 
High efficiency gains: see 
Ref. 

Energy efficiency improvements over time in the 
buildings sector. Modeled as higher heating and 
cooling efficiency improvements, reduced plug load in 
households, reduced floor space. 

Reduced final energy 
in buildings, lower 
CO2 emissions and 
electricity use 

Gambhir 
et al., 
2022 

Transport 
Electrification 

Reference: GCAM core 
assumptions 
High electrification: see 
Ref. 

Advanced electrification of transport sector. Modeled 
as increased share of electric vehicles over time, 
phaseout of liquid fuel vehicles, increasingly 
electrified freight transport by truck and rail, demand 
shifts towards transit, ride-sharing, and less aviation 
and shipping. 

Reduced final energy 
in transport, lower 
CO2 emissions, 
increased hydrogen 

Gambhir 
et al., 
2022 



Climate 
Impacts on 
Demand 

Reference: no impacts 
Impacted demand (no 
climate pledges): RCP6.0  
Impacted demand (climate 
pledges): RCP2.6 

Varying heating and cooling degree days in each 
region according to global climate model (GCM) 
outputs. Sensitivity case is consistent with RCP6.0 for 
runs with no emissions policy, and with RCP2.6 for 
runs with emissions policy. HadGEM2-ES was chosen 
as roughly a median case from among a set of GCMs. 

Marginal increases in 
building electricity 
consumption and total 
climate forcing 

Hartin et 
al., 2021 

 206 

3.2.1. Climate mitigation 207 

As part of the climate mitigation sensitivity, we consider countries’ emission mitigation pledges. 208 
Specifically, we use assumptions from the "Updated pledges - Continued ambition" scenario in 209 
(Iyer et al., 2022; Ou et al., 2021). This constraint assumes that countries achieve stated long-210 
term strategies, shorter-term pledges, and net-zero targets, followed by a minimum 211 
decarbonization rate thereafter. 212 

Another sensitivity we include only for simulations with climate pledges implemented is the 213 
Level of Land Use Sinks, implemented through policy action by adjusting the rate at which land 214 
use change emissions are priced. Increasing this rate incentivizes afforestation, allowing the 215 
energy system to emit more CO2 (Calvin et al., 2014; Wise et al., 2009). 216 

3.2.2. Socioeconomic factors 217 

Here, we implement changes in population and GDP consistent with assumptions in the five 218 
Shared Socioeconomic Pathways (SSPs) (Calvin et al., 2017; O’Neill et al., 2017, 2014; Riahi et 219 
al., 2017). The SSP scenarios include numerous components in addition to these socioeconomic 220 
markers, driven by narrative descriptions of diverging development strategies across sectors. 221 
Note that the resulting model sensitivities applied in this study are not full representations of the 222 
SSPs, but rather the socioeconomic components of population and GDP are disaggregated and 223 
used as a separate uncertainty. 224 

3.2.3. Institutional factors 225 

We consider the quality of institutions as well as technology-specific risks in providing 226 
comparative advantage for securing mitigation investment and development across regions. 227 
Following the methodology in Iyer et al. (Iyer et al., 2015a), we apply 1) regional variations in 228 
investment risks to the energy sector via the cost of capital based on a GDP-weighted model of 229 
institutional quality, here constructed with data from the World Bank (World Bank, 2020); and 230 
2) premiums on “high-risk” clean energy technologies to represent, e.g., regulatory challenges 231 
and market uncertainty. 232 

3.2.4. Techno-economic sensitivities 233 

Cost of Wind and Solar is varied between low, medium, and high levels, consistent with the core 234 
forecast assumptions present in GCAM created from the National Renewable Energy 235 
Laboratory’s Annual Technology Baseline (ATB) report (NREL, 2019). Advanced Hydrogen 236 



assumes an advanced scaling of hydrogen in the energy system through centralized transport and 237 
distribution infrastructure (pipeline) and increases the share of hydrogen vehicles adopted; it is 238 
adapted from the advanced hydrogen GCAM assumptions in (Wolfram et al., 2022). Direct Air 239 
Capture Cost increases the costs of Direct Air Capture (DAC) from the reference level to a 240 
"high" level consistent with the SSP3 formulation parameterized in (Fuhrman et al., 2021). 241 
Carbon dioxide removal (CDR) technologies such as DAC and bioenergy with carbon capture 242 
and storage (BECCS) have been previously identified as a significant factor in affecting net-zero 243 
pathways (Iyer et al., 2021). 244 

3.2.5. Demand-side sensitivities 245 

Industry Energy Efficiency and Buildings Energy Efficiency are separate sensitivities which 246 
reduce energy in industrial and buildings end-use sectors by adjusting coefficients related to 247 
energy efficiency and use. These two sensitivities are implemented based on assumptions in 248 
(Gambhir et al., 2022). Electrification of Transport models an increased share of electric vehicles 249 
and freight transport over time as well as shifts towards transit, ridesharing, and lower aviation 250 
and shipping demand, also using assumptions from (Gambhir et al., 2022). Climate Impacts on 251 
Demand updates the number of heating and cooling degree days (and thus building energy 252 
demands) in each region using output from the HadGEM2-ES climate model. These impacts are 253 
calibrated to RCP6.0 (a pathway with significant 3-4°C warming) for simulations with no 254 
mitigation policy, and to RCP2.6 (a sub-2°C warming pathway) for emissions-constrained runs. 255 
Refer to (Hartin et al., 2021) for details on the methodology. Climate-impacted electricity supply 256 
generated from wind and solar PV was also considered but ultimately excluded from this study, 257 
as previous work found potential climate impacts and their associated uncertainty to have only a 258 
modest impact on future generation compared to other uncertainties considered (Santos Da Silva 259 
et al., 2021; Zapata et al., 2022). 260 

3.3. Output metrics 261 

The bottom panel of Figure 1 lists energy-economic metrics used in the analysis, which represent 262 
commonly reported benchmarks, performance metrics, and quantitative descriptors of the bulk 263 
electric power system and broader energy system. We compute these metrics at the regional 264 
level, though in some cases present them as global aggregations. Electricity Price is given as the 265 
marginal cost of generation (analogous to a wholesale price exclusive of regional tariffs or 266 
subsidies), an important benchmark for estimating energy costs over time, and is weighted by 267 
total electricity generation when aggregated across regions. Electricity Share gives the rate of 268 
electrification in a region as a percentage of total final energy. Increased electrification is 269 
necessary for incorporating more renewables in the energy mix, while sectors which cannot 270 
easily be electrified are considered “hard-to-abate” (Paltsev et al., 2021). Energy Burden is 271 
calculated in each region as per capita spending on residential energy use divided by per capita 272 
GDP, and is a widely used metric for energy equity and energy justice considerations (Baker et 273 
al., 2023). Capacity Investments and Stranded Assets are economic metrics reporting the costs of 274 
new capacity additions and premature capacity retirements in the power sector, respectively, due 275 
to implementing climate pledges (Binsted et al., 2020; Iyer et al., 2015b; Zhao et al., 2021). 276 
Finally, Level of CO2 Removal and LUC Emissions quantify the global CO2 budget pathway for 277 



mitigation in each realization. Level of CO2 Removal includes the negative emissions 278 
technologies BECCS and DAC, while LUC Emissions reports negative emissions from land use 279 
carbon sinks. In order to meet emissions pledges, CO2 from the energy system must be reduced 280 
through a combination of clean generation (e.g., wind and solar), carbon capture (of thermal 281 
generation point sources), negative emissions technologies (BECCS and DAC), and natural 282 
carbon sinks (e.g., forest cover). Increased removal of CO2 from the atmosphere would allow the 283 
energy system to emit more to reach the same goal; conversely, decarbonization efforts in the 284 
energy sector can reduce the need for CO2 removal technologies. Further detail on how each 285 
metric is computed from GCAM outputs is given in the Supplemental Information. 286 

3.4. Scenario discovery 287 

We perform scenario discovery to identify combinations of features which drive relevant 288 
outcomes in our ensemble. Quantifying the influence of individually varied uncertain factors can 289 
be generally referred to as a feature importance analysis, another model-agnostic collection of 290 
techniques that compute the relative strength of the effect a feature has on the ability to predict a 291 
specific variable or metric (Saarela and Jauhiainen, 2021). This is often done through fitting a 292 
machine learning model using, e.g., classification and regression trees (CART), logistic 293 
regression, or the patient rule induction method (PRIM) (Breiman et al., 1984; Lempert et al., 294 
2008; Kwakkel and Cunningham, 2016; Friedman and Fisher, 1999), and evaluating that model 295 
by computing scores or ranks for feature importance using indicators such as squared error 296 
reduction, Shapley values, classification rate, permutation importance, or Gini index (Chen et al., 297 
2023; Parr et al., 2024). In this study, we train a random forest model (Breiman, 2001) to 298 
quantify the relative importance of each uncertain factor in determining energy system outcomes, 299 
both globally and for aggregated regions. Feature importance for this model is computed using 300 
the mean reduction in squared prediction error achieved by including a given feature. Rather than 301 
fit a binary classification model to assess only the most extreme outcomes, we use regression to 302 
characterize the full distribution of futures supplied by our ensemble. 303 

3.5. Outcome space under mitigation pledges 304 

The modeled climate pledges result in a fundamental transformation of the global economy and 305 
accelerate a low-carbon energy transition. Model realizations with mitigation pledges show 306 
consistent emissions reductions over time, while unconstrained scenarios exhibit wide variability 307 
in their peak emissions and associated climate forcing, highlighting the deep uncertainty in the 308 
future energy system in the absence of policy (Supplementary Figure S1). Similarly, land use 309 
emissions generally plummet under the climate pledges during the short- (2030) to medium-term 310 
(2050) transition to offset energy system emissions (Supplementary Figure S2). The global 311 
electricity generation mix reveals that climate pledges cause wind and solar to be the primary 312 
generation sources to replace fossil fuels as the leading source of electricity (Supplementary 313 
Figure S3 and Figure S4). Fossil fuels remain relevant, however, due to countries without 314 
stringent emissions reductions as well as maturation of technologies to remove CO2 from the 315 
atmosphere or capture it from point sources. Supplementary Figure S5 and Figure S6 illustrate 316 
the adoption of two negative emissions technologies for emissions-constrained simulations, 317 
along with scenarios from IPCC AR6 shown in black (Riahi, 2022). The rise in these 318 



technologies after mid-century coincides with the relaxation of land use sinks seen in 319 
Supplementary Figure S2. 320 

4. Results 321 

Our study highlights three key findings as discussed in the following sections: 322 

• Costs of the energy transition, as measured by multiple metrics, can be unevenly 323 
distributed across a wide range of future states of the world. 324 

• Regional investment risk has global implications for mitigation pathways. 325 
• The scale of CDR determines how much the energy system can continue to emit, but the 326 

relative role of different CDR options in meeting decarbonization goals varies across 327 
regions. 328 

4.1. Costs of the energy transition, as measured by multiple metrics, can be 329 
unevenly distributed across a wide range of future states of the world 330 

4.1.1. Electricity price 331 

The top panel of Figure 2 shows distributions of electricity price in 2050 across all model 332 
realizations both with and without climate pledges for each aggregated region in GCAM, as well 333 
as weighted (by total generation) averages globally. Globally, future electricity prices tend to 334 
decrease from the 2015 (calibration year) average in the absence of policy, while usually 335 
increasing when mitigation pledges are met. There is some overlap between the two boxplots, 336 
meaning that the lowest-price NDC + LTS cases can experience lower costs than the most 337 
expensive No Policy cases. The increase in electricity price due to mitigation policy as well as 338 
the deviation from historical prices varies considerably across regions. Russia and the Middle 339 
East (regions without stringent emissions reductions by 2050 at the time of writing) have a 340 
significant proportion (92% and 76%, respectively) of NDC + LTS simulations with prices 341 
below historical levels due to relatively low carbon prices and no economic incentive to adopt 342 
potentially more costly clean technologies. China and India, two highly populated and rapidly 343 
developing regions with ambitious decarbonization pledges, experience the greatest cost 344 
increases. Notably, while the price variability in the No Policy cases is large, the introduction of 345 
climate pledges greatly increases the variance of electricity price outcomes in all regions. This 346 
suggests the need for more adaptive policy planning or better regional coordination to manage 347 
this uncertainty. 348 

In addition to the impacts on the electric power system imposed by emissions pledges, electricity 349 
price is also driven by many assumptions related to technology costs and performance, demand 350 
levels, and the enabling environment for new solutions. The bottom panel in Figure 2 illustrates 351 
the results of a random forest analysis quantifying the impact of the scenario factors on global 352 
weighted average electricity prices in 2050. Resembling a decision tree, this alluvial diagram 353 
divides the full 5,760-member ensemble into subsets based on the four most influential drivers of 354 
electricity price, in order of importance. The vertical axis is scaled and color-coded to show 355 
average prices for different scenario combinations, with the global average for the full ensemble 356 



marked with a dashed line. Factor branches for each split are reported at the bottom of the figure. 357 
Thus, the national emissions pledges (NDCs + LTS) rank as the most critical driver of electricity 358 
prices in 2050, followed by the Institutional Factors sensitivity, Cost of Wind and Solar (high vs. 359 
medium or low), and Socioeconomic Factors (SSP1/5 vs. SSP2/3/4). The range of average prices 360 
is quite wide, showing that different combinations of inputs can have significant effects on 361 
global price outcomes. Electricity prices are highest when investment costs (Institutional 362 
Factors) are regionally and technologically differentiated and the Cost of Wind and Solar is high, 363 
in combination with either low population (SSP1) or high GDP (SSP5). Additionally, this plot 364 
reveals the subset of realizations which implement emissions pledges and still result in a lower 365 
global average electricity price in 2050 (uniform institutions and low or medium VRE cost). A 366 
more complete picture of feature importance across sensitivities, metrics, time periods, and 367 
regions is shown in Supplementary Figure S7 and Figure S8. 368 



 369 
Figure 2: (top) Regional and global weighted electricity price for model regions, split between scenarios 370 
with and without climate pledges implemented. Model calibration year 2015 prices are shown for 371 
comparison; (bottom) most influential drivers of global weighted average electricity price ($/MWh) in 372 
2050, defined as marginal cost of generation. Similar to a decision tree, the full scenario ensemble is divided 373 
into subsets based on the scenario features shown below each split, with earlier splits corresponding to 374 
higher influence. The width of each path segment is scaled according to the number of model realizations 375 
traveling through it, while the vertical midpoint of each splitting node corresponds to the average price on 376 
the right. The global average price for the full scenario ensemble is marked with a dashed gray line; prices 377 



above this level are shaded red, while lower prices are shaded blue. Splits are determined using a random 378 
forest implementation in R. "Other OECD" includes Canada, Japan, South Korea, Australia, and New 379 
Zealand. “Asia” includes Pakistan, Indonesia, Central Asia, South Asia, and Southeast Asia. “LAC” refers 380 
to Latin America and the Caribbean. 381 

4.1.2. Stranded assets 382 

Stranded assets in the form of premature retirements of electric generating capacity are shown in 383 
Figure 3. The left panel shows a global time series through 2100, while the right panel gives a 384 
snapshot of 2050 across regions. Climate mitigation pledges increase stranded assets in all cases, 385 
consistent with previous work (Binsted et al., 2020), but significant variability is observed 386 
throughout the wide range of transition pathways sampled. Globally, most premature retirements 387 
happen in the shorter-term period of rapid transition from the present until around 2050. 388 
Regionally, larger economies and developed regions with net-zero pledges show the greatest 389 
stranded assets, while regions with less strict climate goals suffer fewer stranded assets. 390 
Interestingly, these results were found to change very little when scaled by regional GDP, rather 391 
than reporting total value of the stranded assets. Thus, this metric suggests that regional 392 
variability in climate pledge ambition can also manifest as disproportionate differences in 393 
stranded assets, independent of other factors and across a broad uncertainty space. Several of 394 
these regions, especially India and China, also experience the highest increase in electricity 395 
prices as shown in Figure 2. 396 



 397 
Figure 3: (left) Cumulative stranded assets (costs associated with premature retirements of generating 398 
capacity) globally over time due to implementing climate pledges, with the year 2050 highlighted; (right) 399 
cumulative stranded assets in 2050 for aggregated global regions due to implementing climate pledges. 400 
Values are computed as the difference between pairs of scenarios which differ only by the inclusion of 401 
national emissions pledges. "Other OECD" includes Canada, Japan, South Korea, Australia, and New 402 
Zealand. “Asia” includes Pakistan, Indonesia, Central Asia, South Asia, and Southeast Asia. “LAC” refers 403 
to Latin America and the Caribbean. 404 

4.1.3. Energy burden 405 

Distributions of average household energy burden in NDC + LTS scenarios are plotted over time 406 
in the left panel of Figure 4. Though this metric represents an oversimplification of energy equity 407 
measures, these long-term aggregate trends reveal temporal patterns as well as systemic 408 
differences across regions. Energy burden is decreasing over time, robust to our ensemble of 409 
uncertainties, even though electricity costs tend to rise as a result of mitigation efforts. The clear 410 
outlier is Africa (especially in the near-term), due in part to a high usage of traditional biomass, 411 
which is tracked in GCAM as a separate commodity in certain regions. Additionally, as for many 412 
developing regions, lower rates of access to energy and financial markets obscure this already 413 
aggregated measure when viewed per capita. However, despite the regional differences seen 414 
early on, energy burden in 2100 becomes more homogeneous across regions (in terms of both the 415 
mean and the spread of the outcomes), due to the minimum continued mitigation ambition built 416 



into the NDC + LTS policy scenario (Ou et al., 2021). The right panel of Figure 4 gives the 417 
difference in energy burden in 2050 due to climate pledges (darker boxes, mostly increases) as 418 
well as Buildings Energy Efficiency (pale boxes, exclusively decreases). Although mitigation 419 
policy tends to increase energy burden, increased energy efficiency in buildings is seen to offset 420 
these increases. Regions with the highest energy burden in the left panel tend to also experience 421 
the greatest benefits from increasing energy efficiency. 422 

 423 
Figure 4: (left) Residential energy burden, computed as a ratio of residential energy spending to GDP per 424 
capita, for aggregated global regions for three model periods, showing the 3,840 simulations with climate 425 
pledges; (right) Change in energy burden caused by two scenario sensitivities (climate pledges and 426 
Buildings Energy Efficiency) for each model configuration, computed as the difference between pairs of 427 
realizations which differ only by inclusion/exclusion of these two scenario levers. Note that the changes 428 
shown are absolute changes in the energy burden, which carries units of percent, rather than percent changes 429 
in energy burden. "Other OECD" includes Canada, Japan, South Korea, Australia, and New Zealand. “Asia” 430 
includes Pakistan, Indonesia, Central Asia, South Asia, and Southeast Asia. “LAC” refers to Latin America 431 
and the Caribbean. 432 

The feature importance heatmap for energy burden in Figure S7 identifies a similar list of critical 433 
drivers as seen for electricity price. In this case, however, the influence of Socioeconomic 434 
Factors outweighs both Institutional Factors and Cost of Wind and Solar, and is roughly equal in 435 
importance to Buildings Energy Efficiency. The emergence of this sensitivity in driving energy 436 



burden is a result of energy burden being tied to residential energy use. Although Buildings 437 
Energy Efficiency does not show up as a top driver of electricity prices, its uncertainty can still 438 
have hidden implications for the average household, and could help alleviate economic strain 439 
caused by rising costs of energy. Passenger transport service costs, another potential measure of 440 
energy burden, are shown in Figure S9. 441 

4.2. Regional investment risk has global implications for mitigation pathways 442 

Figure 5 maps cumulative distribution functions (CDFs) of the standardized difference in global 443 
2050 model outcomes resulting from regionally and technologically differentiated investment 444 
costs. These observed differences are specifically a result of the Institutional Factors sensitivity, 445 
which represents one manifestation of the variability in accessing capital for low-carbon 446 
development due to investment risk. This metric is highlighted for its prominence in driving 447 
economic outcomes, as shown through feature importance in Figure S7. For most metrics, the 448 
curve lies to one side of zero; these cases show a consistent impact of Institutional Factors 449 
across the ensemble (e.g., electricity price always increases, consistent with Figure 2). Across a 450 
broad range of uncertainties, a higher energy burden is seen as well, along with lower 451 
electrification rate and stranded assets; these results follow intuitively considering the higher 452 
costs of capital experienced in these scenarios. Because less investment is garnered for low-453 
carbon energy and negative emissions technologies, the resulting carbon price increases to offset 454 
the emissions, and thus more land use emissions sinks are utilized. If clean energy investments 455 
are stifled through disparities in institutional quality in a region, attempts to offset the continuing 456 
emissions can result in further cost increases under mitigation policy. Supplementary Figure S10 457 
shows CDFs for individual regions. 458 

 459 
Figure 5: CDF plot showing standardized changes in the values of select metrics when institutional factors 460 
are switched on in each scenario configuration (only showing scenarios with NDCs + LTS implemented). 461 
Values on the horizontal axis represent the number of standard deviations from the mean for each metric. 462 
A curve lying entirely to the right (left) of zero implies that institutional factors always increase (decrease) 463 
that metric. These curves are not intended to represent probabilities of exceedance, but rather are empirical 464 
distributions of model output constructed from differences between pairs of model realizations. Note that a 465 
steep CDF curve suggests that varying this sensitivity results in a very consistent change in the outcome; it 466 
does not represent underlying variability of the outcome itself. 467 



4.3. CDR deployment determines allowable energy system emissions, but the 468 
relative role of different CDR options in meeting decarbonization goals 469 
varies across regions 470 

Figure 6 shows emissions and sinks over time and the distribution of the timing of net-zero CO2 471 
across our scenario ensemble under national climate pledges. CO2 from the energy system is 472 
reduced through a combination of clean generation, carbon capture, CDR, and natural carbon 473 
sinks; allowable energy system emissions are therefore determined by net CO2 removal. On 474 
average, global net-zero CO2 is achieved around 2060 under the modeled emissions trajectories. 475 
Figure S11 and Figure S12 show the variability in the timing of net-zero CO2 across each 476 
sensitivity and across regions, respectively; the most critical drivers globally are Socioeconomic 477 
Factors and Direct Air Capture Cost. 478 

 479 
Figure 6: The use of negative emissions technologies and terrestrial carbon sinks to offset energy system 480 
emissions. Error bars show the full range of outcomes across the scenario ensemble for the 3,840 481 
realizations that implement climate pledges. The pale shaded region in the background gives the range for 482 
net CO2 emissions by summing the individual components. The boxplot at the bottom of the figure shows 483 
the distribution of years in which global net-zero CO2 is achieved. 484 

Tradeoffs affecting energy system CO2 emissions are further illustrated in Figure 7 through a 485 
parallel axis plot, which shows the cumulative net sum by 2050 of each emissions component 486 
from Figure 6 across the NDC + LTS simulations in our ensemble. Each line represents a single 487 
realization and is grouped by color based on the Direct Air Capture Cost and Level of Land Use 488 
Sinks sensitivities. Thicker lines depict a “representative” scenario from each group following a 489 
mean pathway. By 2050, the amount of CO2 sequestered by terrestrial carbon sinks shows the 490 
strongest tradeoff with energy system CO2 emissions (first two columns of Figure 7). This 491 
illustrates the flexibility afforded to the energy system by the land use system in the form of land 492 
use sinks. Additionally, a tradeoff emerges between these land use sinks and deployment of CDR 493 



technologies, confirming the complementary roles of these decarbonization solutions (i.e., 494 
deploying more BECCS or DAC requires fewer land use sinks to meet the same goal, and vice-495 
versa). Finally, high-cost DAC scenarios are shown to deploy very little of this technology by 496 
2050, leading to a system favoring other CDR options and reduced emissions from energy. 497 

 498 
Figure 7: Parallel axis plot showing cumulative CO2 emissions budget contributions under climate pledges 499 
in 2050. Scenarios are grouped according to the Direct Air Capture Cost and Level of Land Use Sinks 500 
sensitivities, and each column is scaled independently according to each metric’s minimum and maximum 501 
values. Thicker lines depict a “representative” scenario from each group following a mean pathway. Each 502 
column is oriented according to its net contribution to CO2 emissions, such that the bottom of the plot is the 503 
direction of net negative emissions. 504 

Quantifying the direct effect of the Level of Land Use Sinks in each region across our ensemble 505 
is one way to examine the robustness of the results. Figure 8 plots CDFs for the difference in two 506 
outcomes between pairs of NDC + LTS realizations which differ only by this sensitivity, which 507 
updates the carbon pricing scheme to place a higher value on reducing emissions in the land use 508 
system. These curves are constructed for the year 2050, before Direct Air Capture Cost becomes 509 
the dominant driver of CDR investment. Differences are standardized rather than showing a 510 
percent change, due to the values for CDR adoption and LUC emissions sinks approaching zero 511 
in many scenarios. 512 



Figure 8 shows the complementarity of CDR technologies and terrestrial carbon sinks, 513 
confirming broadly that increased land use sinks is tied to reduced deployment of BECCS and 514 
DAC regionally, consistent with the global finding. However, this is not a universal result, as 515 
some scenarios show these metrics increasing or decreasing together in certain regions, such as 516 
in Africa or the Other OECD countries. The horizontal range of these curves shows regional 517 
variability as well as wide-ranging effects of the sensitivity on these outcomes, suggesting that 518 
the role of different CDR options in meeting decarbonization goals varies across regions, 519 
considerable uncertainty remains in how a policy targeting land use emissions sinks would affect 520 
a region’s mitigation pathway.  521 

 522 
Figure 8: CDF plot showing standardized regional changes in the values of CDR adoption (“BECCS and 523 
DAC Employed”) and land use sinks (“LUC Emissions Sinks”) when the Level of Land Use Sinks 524 
sensitivity is implemented (only for scenarios with climate pledges). A curve lying entirely to the right (left) 525 
of zero implies that this LUC emissions sensitivity always increases (decreases) that metric's value. Positive 526 
values correspond to greater emissions reduction via that method. "Other OECD" includes Canada, Japan, 527 
South Korea, Australia, and New Zealand. “Asia” includes Pakistan, Indonesia, Central Asia, South Asia, 528 
and Southeast Asia. 529 

5. Conclusion 530 

5.1. Discussion of results 531 

Curbing anthropogenic carbon emissions to limit temperature increase is a global objective, 532 
requiring sustained effort from all nations. However, international commitments and pledges can 533 
unevenly distribute responsibility and/or the financial burden of decarbonization among 534 
countries and regions due to comparative advantages in renewable resources, favorable 535 
institutions, and how ambitious each country's mitigation pledges are (Marino and Ribot, 2012; 536 
Markkanen and Anger-Kraavi, 2019; Sovacool, 2021). This work establishes a new large 537 
ensemble of model realizations which vary a broad suite of energy-related sensitivities with 538 
countries' NDC + LTS pledges in order to gather robust insights into energy transition pathways 539 
as governments begin to implement climate mitigation measures to meet Paris Agreement 540 
temperature goals. Our results suggest that the costs of the energy transition, as measured by 541 
multiple metrics, can be unevenly distributed across regions and scenario-dependent in both 542 



magnitude and relative impact throughout a wide range of future states of the world. The variable 543 
increase in electricity prices and stranded assets across regions due to the implementation of 544 
national emissions pledges exemplifies this result, as shown in Figure 2 and Figure 3, 545 
respectively. 546 

Stranded assets in particular represent an economic risk associated with transitioning away from 547 
a fossil-fuel based energy system. Strategic long-term planning of energy infrastructure is a 548 
significant challenge given the relatively long economic lifetimes of projects compared to the 549 
agreed upon time frames in which CO2 emissions reductions are necessary. Forced or premature 550 
retirements of generating capacity due to policy drivers (e.g., enforcing emissions reductions) 551 
can have implications for energy prices, as levelized costs are generally computed over full 552 
economic lifetimes. We find that larger economies and developed regions with net-zero pledges 553 
(e.g., USA, Europe, India, and China) show the greatest losses here, while regions with less 554 
ambitious climate goals suffer fewer stranded assets. In addition to high electricity costs and 555 
stranded assets, some developing countries (e.g., Africa and India) also consistently experience 556 
greater increases in energy burden to meet their decarbonization goals. 557 

In determining the most critical drivers for our outcomes of interest across the NDC + LTS 558 
simulations, we find regionally and technologically differentiated investment costs (Institutional 559 
Factors) to carry a high importance for several metrics, as seen in Supplementary Figure S7 and 560 
Figure S8. Our results indicate that negative outcomes emerge (higher electricity costs and 561 
energy burden, lower electrification, more land use sinks needed to meet emissions goals) when 562 
the cost of capital for clean energy projects is adjusted to reflect regional variations in 563 
institutional quality and investment risk, especially for developing countries and regions which 564 
carry generally higher risks. Additionally, such regions could be less resilient to such economic 565 
strain, especially under emissions constraints. These findings are consistent with work from 566 
which our Institutional Factors sensitivity was adapted (Iyer et al., 2015a) across a broad 567 
uncertainty space. These findings also underscore the role of lowering investment risks 568 
(especially in developing regions) through public institutions to encourage private investment or 569 
otherwise incentivize development. 570 

The wide variety of investment pathways to meet national emissions pledges is closely tied to the 571 
scale and type of CDR. The speed at which technologies like DAC mature can be a limiting 572 
factor in their use over relevant near- to medium-term mitigation timeframes. Across our 573 
ensemble, the strongest tradeoff controlling energy system emissions through 2050 is the global 574 
stock of land use sinks. Given the complementarity of these natural carbon sinks with engineered 575 
CDR technologies, the adoption and diffusion of BECCS and DAC can help alleviate the burden 576 
on the land use system, while a larger global stock of terrestrial carbon sinks can dampen the 577 
need for these technologies. 578 

5.2. Future work 579 

Our new ensemble can be used as a novel dataset to inform international climate strategies and 580 
research for decision support, and can be expanded or narrowed in focus to other individual 581 
regions or additional sensitivities. The broad global and regional dynamics characterized in this 582 
work can benchmark further analyses and provide insight on the impact of various uncertainties 583 



on the robustness of a given pathway, while model outputs can be used for multi-model 584 
comparisons. Further, this ensemble can be used to provide boundary conditions to inform finer-585 
scale decarbonization modeling exercises with, e.g., more detailed power system models. 586 

Some of the limitations of this study lend themselves to future work. First, we made several 587 
simplifying assumptions to assemble a wide range of uncertainties and maintain computational 588 
tractability while leveraging the strengths of our chosen modeling platform. We limited the 589 
number of unique cases for each sensitivity to allow for higher dimensionality. Some sensitivities 590 
(e.g., Cost of Wind and Solar) represent specific forecasted predictions, while others (e.g., Level 591 
of Land Use Sinks) are modeled to capture an upper bound. A more thorough continuous 592 
sampling of sensitivities could yield a more detailed ensemble, but would prohibitively increase 593 
the size of the ensemble without necessarily adding additional insight. Future work could further 594 
examine the cross-sectoral consequences of this uncertainty space across the food-energy water 595 
nexus using additional parametric sensitivities. Although the sensitivities considered in our 596 
ensemble generally focus on the energy system, the coupled feedbacks observed in our 597 
simulations reveal noteworthy implications across sectors (e.g., water availability, food prices) 598 
that were not explored here. 599 

Second, we quantified metrics at aggregated scales. For example, electricity price impacts and 600 
considerations of energy inequities such as energy burden can become hidden when spatial 601 
scales are aggregated, and populations are homogenized. While research in this space generally 602 
resolves to much finer spatial scales from neighborhood- to household-level (Ross et al., 2018), 603 
aggregate analyses such as the present study can still illuminate systemic differences across 604 
regions, especially as they relate to national energy pathways and decarbonization strategies. 605 
These insights still hold relevance on an intergovernmental policy scale. Future work could apply 606 
downscaling techniques on the model outputs or soft-coupling to a higher-resolution model to 607 
explore distributional outcomes and compare metrics across scales. 608 

Finally, our study does not attempt to capture emergent behaviors, disruptive innovations, or 609 
other potential system shocks due to e.g., climate change, which could add additional deep 610 
uncertainty and complexity to the system. Other frameworks such as agent-based modeling could 611 
be integrated or coupled with GCAM to capture such dynamics, but would add significant 612 
complexity and computational burden. Nonetheless, this work provides a rich dataset for the 613 
advancement of scenario research, to which other machine learning methodologies could be 614 
applied. 615 

  616 
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Appendix A. Supplemental Information 1 

A.1. Literature Review 2 

Since the adoption of the Paris Agreement and the emergence of Nationally Determined 3 
Contributions (NDCs) and Long-term Strategies (LTS), model-based research has actively 4 
explored the feasibility, implications, and opportunities surrounding these policies and other 5 
emissions reduction pathways. Many of these studies focus on the policy implementation while 6 
relying on business-as-usual assumptions in other areas of the modeling framework. (Iyer et al., 7 
2015b) examine the NDCs in 2015 and the energy-economic implications across policy scenarios 8 
which vary the timing of mitigation actions. (Fawcett et al., 2015) also assess these NDC pledges 9 
by computing probabilistic temperature outcomes with a global climate model based on several 10 
scenarios constructed with an integrated assessment model. (Ou et al., 2021) then evaluate the 11 
updated 2020 NDC pledges using additional simulations, emphasizing that additional ambition is 12 
needed to achieve long-term goals. These studies use a limited number of scenarios in 13 
determining emissions trajectories, trading off the evaluation of uncertainty with finely-tuned 14 
scenario pathways. (Gambhir et al., 2022) approach emissions mitigation using several 15 
temperature target scenarios as well as an NDC scenario to identify transition risk metrics within 16 
an integrated assessment framework. The authors find that different types of risks emerge as 17 
being most sensitive to the future temperature pathway on different timescales. (Binsted et al., 18 
2020) used NDC scenarios to quantify the economic implications of stranded assets under the 19 
Paris Agreement, finding significant cost burdens associated with the policies. (Santos Da Silva 20 
et al., 2019) model two NDC scenarios using an integrated assessment framework in which one 21 
scenario does not have access to CCS technologies, and evaluates resulting food-energy-water 22 
nexus outcomes. 23 

There exists also a broad literature of uncertainty and sensitivity analysis centered around 24 
climate mitigation modeling research. However, many of these studies evaluate only a few 25 
deeply uncertain factors in their simulations, often only implemented individually rather than 26 
through a factorial ensemble. (Iyer et al., 2015a) explore varying the cost of financing clean 27 
energy projects in the electric power sector across regions due to investment risk and variations 28 
in institutional quality under a generic 50% emissions reduction policy. This study found that 29 
these disparities in investment risks significantly affected the total costs of mitigation, and that 30 
more industrialized regions take on a greater share of the mitigation requirements. (Kanyako and 31 
Baker, 2021) perform an uncertainty analysis on wind energy costs for a carbon tax and a 1.5° 32 
scenario, exploring impacts on wind generation share across a distribution of cost forecasts. (Ou 33 
et al., 2018) compare two low-carbon pathways (each comprised of several technology 34 
assumptions) in the US under two different mid-century emissions reductions targets, evaluated 35 
with water consumption and air pollution metrics. (Moksnes et al., 2019) prepare an ensemble of 36 
324 scenarios varying six uncertain factors related to energy systems (including a simple CO2 37 
target) and perform scenario discovery on the resulting cost and capacity mix outcomes. 38 

Several studies use an ensemble of model realizations in climate mitigation contexts. McJeon et 39 
al., 2011 uses a large, 768-member ensemble and scenario discovery to explore the impacts of 40 
technology assumptions on stabilization costs under two temperature stabilization scenarios. 41 
Groves et al., 2020 develops 3,003 realizations of Costa Rica’s decarbonization plan to assess the 42 



economic value of the plan independent of international pledges. Although many previous 43 
modeling efforts have examined impacts of climate mitigation measures and parametric 44 
uncertainties on energy-economic outcomes, there remains a gap in evaluating countries' NDC + 45 
LTS pledges across a wide range of deeply uncertain factors in a large ensemble framework. 46 
This study seeks to confirm the results of prior research in a robust NDC- + LTS-consistent 47 
mitigation context, as well as examine interactive effects of previously independent sensitivity 48 
factors in a large ensemble of model realizations. 49 

Table S1: Non-exhaustive list of existing work. 50 
Authors Short Description Approach to Uncertainty 

McJeon et 
al., 2011 

768-member large ensemble of GCAM runs exploring 
impacts of technology assumptions on stabilization costs 

Scenario discovery, reporting density 
and coverage statistics on extreme 
outcomes 

Fawcett et 
al., 2015 

600-member temperature projection ensemble applied to 
several GCAM Paris Agreement scenarios 

Temperature outcomes presented 
probabilistically 

Isley et al., 
2015 

XLRM framework generating 6,000 combinations of 
uncertain parameters and 6 policies in agent-based model 

Exploratory modeling to explore 
decarbonization rates and policy 
choices 

Iyer et al., 
2015b 

Four GCAM scenarios varying model assumptions to 
explore Paris Agreement implications on 2°C 

Using a small number of detailed 
representative scenarios to assess 
implications of INDCs 

McFarland 
et al., 2015 

Set of temperature projections applied to GCAM-USA, 
ReEDS, IPM to look at electricity supply/demand Multi-model comparison 

Wilkerson et 
al., 2015 

Carbon price scenarios applied to GCAM, MERGE, and 
EPPA Multi-model comparison 

Kober et al., 
2016 

Climate policies centered on Latin America, using 
GCAM, POLES, TIAM-ECN, and TIAM-WORLD Multi-model comparison 

Lucena et 
al., 2016 

Five scenarios of Brazil’s energy mix using EPPA, 
GCAM, MESSAGE-Brazil, Phoenix, POLES, and 
TIAM-ECN 

Multi-model comparison 

Van Der 
Zwaan et al., 
2016 

Five scenarios of energy technology deployment in Latin 
America using EPPA, GCAM, Phoenix, POLES, TIAM-
ECN, and TIAM-WORLD 

Multi-model comparison 

Pietzcker et 
al., 2017 

Integration of wind and solar in IAMs using AIM/CGE, 
IMAGE, MESSAGE, POLES, REMIND, and WITCH Multi-model comparison 

Kriegler et 
al., 2018 

Strengthening short-term goals to meet Paris Agreement 
with 13 scenarios across three policy dimensions using 
REMIND-MAgPIE 

Constructing representative scenarios 
with detailed sectoral assumptions to 
assess policy impacts 

Lamontagne 
et al., 2018 

33,750-member ensemble of GCAM runs splitting SSP 
assumptions into individually sampled elements Scenario discovery using CART 

Arango-
Aramburo et 
al., 2019 

Climate-impacted hydropower in Colombia using two 
GCMs, two RCPs, and 4 IAMs: GCAM, TIAM-ECN, 
MEG4C, Phoenix 

Multi-model comparison 

Lamontagne 
et al., 2019 

5,200,000-member ensemble using DICE, sampling 24 
uncertain factors and growth rate of global abatement Time-varying sensitivity analysis 

Moksnes et 
al., 2019 

324-member ensemble using OSeMOSYS-SAMBA to 
explore South American electricity infrastructure 

Scenario discovery using a Gaussian 
mixture model and PRIM 

Binsted et 
al., 2020 

Four global GHG mitigation scenarios using GCAM to 
explore stranded assets in Latin America 

Used 36 sensitivity scenarios to 
perform sensitivity analysis 



Burleyson et 
al., 2020 

Four scenarios each run using GCAM-USA and BEND to 
explore US buildings electricity consumption Two-model comparison 

Groves et 
al., 2020 

3,003-member ensemble varying over 300 uncertainties 
to explore Costa Rica’s national decarbonization plan 

Scenario discovery using PRIM to 
identify vulnerabilities 

Dolan et al., 
2021 

3,000-member ensemble of GCAM runs varying seven 
dimensions of uncertainties to explore impacts of water 
scarcity 

Scenario discovery using CART 

Kanyako 
and Baker, 
2021 

1,000-member ensemble of GCAM runs with technology 
costs sampled from expert elicitation data  

Uncertainty propagation from expert 
elicitation data 

Ou et al., 
2021 

Five emissions scenarios using GCAM coupled with 
simple climate model MAGICC 

Probabilistic temperature outcomes 
using detailed emissions scenarios 

Solano-
Rodríguez et 
al., 2021 

XLRM framework generating 480 alternatives for oil 
production in Latin America using BUEGO 

Latin hypercube sampling to generate 
ensemble of alternatives 

Birnbaum et 
al., 2022 

3,000-member ensemble of GCAM runs exploring water 
scarcity in Latin America Scenario discovery using CART 

Gambhir et 
al., 2022 

11 scenarios of temperature outcomes and 
socioeconomic/technological choices for 2°C pathways 
using GCAM 

Comparison of risk metrics across 
detailed representative scenarios 

Browning et 
al., 2023 

Using three scenarios to analyze net-zero by 2050 in the 
US across 16 models 

Multi-model (and multi-modeling 
team) comparison of detailed 
representative scenarios 

Huang et al., 
2023 

28,706-member ensemble of GCAM runs coupled with 
TM5-FASST to explore air quality implications from 
climate mitigation under uncertainty 

Large ensemble scenario analysis and 
model coupling 

van de Ven 
et al., 2023 

Three scenarios of climate action applied to GCAM-PR, 
GEMINI-E3, MUSE, and TIAM-Grantham 

Multi-model comparison to explore 
feasibility of climate ambition 

Woodard et 
al., 2023 

3,989-member ensemble of GCAM runs varying 12 
uncertainties chosen from expert elicitation Scenario discovery using CART 
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A.2. Computing Metrics from GCAM Ensemble 52 

Table S2: Descriptions of each metric and how each is calculated from GCAM outputs. 53 

Metric Short Description 

Electricity Price 
Marginal levelized cost of new generation (analogous to wholesale electricity 
costs). When aggregated from several regions, a weighted average based on total 
regional electricity generation is applied. Queried directly from GCAM outputs. 

Electricity Share 
in Final Energy 

Also termed “Electrification Rate”, the proportion of total final energy delivered to 
end use sectors as electricity in each region. When aggregated from several regions, 
a weighted average based on total regional final energy is applied. Total final 
energy is queried directly from GCAM outputs, from which the proportion of 
electricity can be computed. 

Stranded Assets 

The cumulative costs of premature retirement of electric generating capacity over 
time in each region. Can be split by technology. Premature retirement refers to a 
generating unit being forced offline before the end of its economic life (e.g., due to 
mitigation policy constraining emissions or increasing costs to inefficient levels). 
Results from individual regions can be summed. Stranded assets are computed 
from GCAM outputs using the “plutus” R package (Zhao et al., 2021). 

Capacity 
Investments 

The cumulative capital costs of new electric generating capacity over time in each 
region. This metric gives one angle of a policy’s economic impacts, and can be 
split by technology. Capacity investments are computed from GCAM outputs using 
the “plutus” R package (Zhao et al., 2021). 

Energy Burden 

An aggregated metric of distributional energy justice, computed as a residential 
energy burden by dividing per capita residential energy expenditures by per capita 
GDP. From GCAM outputs, residential energy expenditures are computed using 
residential building service costs (which includes levelized installed costs of 
service equipment in addition to fuel costs) and final energy consumption in 
residential sectors. Population and GDP are exogenous inputs to GCAM. This 
metric does not include transport service costs. 

Level of CO2 
Removal 

The quantity (mass of CO2) removed from the atmosphere via Bioenergy with CCS 
(BECCS) and Direct Air Capture (DAC). Results from individual regions can be 
summed. Queried directly from GCAM outputs. 

Land Use 
Change 

Emissions 

The net quantity (mass of CO2) of land use change emissions, representing regional 
and global carbon stocks. Results from individual regions can be summed. Queried 
directly from GCAM outputs. 
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A.3. Supplemental Figures 55 

 56 
Figure S1: CO2 emissions trajectories across regions and globally, split by climate pledge policy 57 
sensitivity. "Other OECD" includes Canada, Japan, South Korea, Australia, and New Zealand. “Asia” 58 
includes Pakistan, Indonesia, Central Asia, South Asia, and Southeast Asia. “LAC” refers to Latin America 59 
and the Caribbean. 60 

 61 
Figure S2: Land use change emissions trajectories across regions and globally, split by climate pledge 62 
policy sensitivity. "Other OECD" includes Canada, Japan, South Korea, Australia, and New Zealand. 63 
“Asia” includes Pakistan, Indonesia, Central Asia, South Asia, and Southeast Asia. “LAC” refers to Latin 64 
America and the Caribbean. 65 



 66 
Figure S3: Evolution of the electricity generation mix as a split violin plot for No Policy cases (top) and 67 
climate pledge scenarios (bottom). Fossil fuels remain dominant in the No Policy case, although renewables 68 
still increase over time. In the NDC + LTS case, wind and solar trade places with fossil generation to 69 
become the leading producer of electricity. Fossil generation does not go to zero, partially because not every 70 
country has committed to NDC/LTS pledges, but also because of the significant amount of CO2 removal 71 
technologies employed in the model. Variability for other generation types is relatively small; these are 72 
shown instead as dotted lines representing the mean. 73 



 74 
Figure S4: Generation share violin plots similar to Figure S3, split out into ten aggregated global regions. 75 



 76 
Figure S5: Bioenergy with CCS (BECCS) for climate pledge scenarios as percentiles. Negative values 77 
represent CO2 being removed. Black lines show scenarios from IPCC AR6 (Riahi, 2022). 78 

 79 
Figure S6: Direct Air Capture (DAC) for climate pledge scenarios as percentiles. Negative values represent 80 
CO2 being removed. Black lines show scenarios from IPCC AR6 (Riahi, 2022). 81 



 82 
Figure S7: Feature importance analysis for seven representative metrics across the 3,840 simulations 83 
implementing national climate pledges. Each panel is presented as a heatmap quantifying relative influence 84 
by the scenario sensitivities in each row on each output metric over time. A higher score (darker color) 85 
indicates higher influence in the random forest model from the inclusion of each feature (listed in bottom 86 
left of figure). Because only NDC + LTS scenarios are examined here, this sensitivity is not listed. In 87 
general, Socioeconomic Factors is a relevant driver in nearly all outcome metrics, as it controls the scale of 88 
economic activity as well as resource demand. The electricity price panel confirms the critical drivers seen 89 
in Error! Reference source not found., while also notable is the increasing potential role of Industry 90 
Energy Efficiency, which affects industrial sectors including iron & steel, cement, aluminum, chemicals, 91 
and fertilizer production. This sensitivity also has an increasing importance in several other economic 92 
metrics as well as negative emissions. Feature importance is quantified by the average improvement in 93 
mean squared error (MSE) achieved in the random forest model from permuting each feature in out-of-bag 94 
samples, scaled to sum to one in each timestep. Feature importance here does not in itself indicate the 95 
direction of influence. 96 



 97 
Figure S8: Feature importance analysis for seven representative metrics across the 3,840 simulations 98 
implementing national climate pledges, split by region (column) and only showing values for 2030, 2050, 99 
and 2100. Each panel is presented as a heatmap quantifying relative influence by the scenario sensitivities 100 
in each row on each output metric. A higher score (darker color) indicates higher influence in the random 101 
forest model from the inclusion of each feature. Because only NDC + LTS scenarios are examined here, 102 
this sensitivity is not listed. 103 



 104 
Figure S9: (left) Cost of transport services in the passenger transport sector for aggregated global regions 105 
in three model periods, showing all 5,760 simulations; (right) Change in passenger transport service costs 106 
caused by two scenario sensitivities (climate pledges and Electrification of Transport) for each model 107 
configuration, computed as the difference between pairs of realizations which differ only by 108 
inclusion/exclusion of these two scenario levers. Developed regions tend to experience the highest costs, a 109 
trend which does not change over time. Passenger transport service costs increase over time across regions, 110 
but total expenditures remain relatively stable when scaled by GDP. "Other OECD" includes Canada, Japan, 111 
South Korea, Australia, and New Zealand. “Asia” includes Pakistan, Indonesia, Central Asia, South Asia, 112 
and Southeast Asia. “LAC” refers to Latin America and the Caribbean. 113 



 114 
Figure S10: CDF plot showing standardized changes in the values of select metrics when investment costs 115 
are regionally and technologically differentiated in each scenario configuration (only showing scenarios 116 
with NDCs + LTS implemented). A curve lying entirely to the right (left) of zero implies that institutional 117 
factors always increase (decrease) that metric. Thicker lines refer to global weighted means, while thinner 118 
lines refer to ten aggregated global regions (legend at bottom right). Note that a steep CDF curve here 119 
suggests that varying this sensitivity results in a very consistent change in the outcome; it does not represent 120 
the underlying variability of the outcome itself. 121 



 122 
Figure S11: Year in which global net-zero CO2 emissions is achieved across all realizations with national 123 
emissions pledges, split by scenario sensitivity. Visually, Socioeconomic Factors and Direct Air Capture 124 
Cost show the greatest variability, followed by Industry Energy Efficiency and Cost of Wind and Solar 125 
(VRE Cost). Net-zero year is determined by linear interpolation between GCAM’s five-year timesteps. 126 

 127 
Figure S12: Year in which net-zero CO2 emissions is achieved across aggregate regions, for all realizations 128 
with national emissions pledges. Russia, Asia, and Middle East do not reach net-zero in any simulation due 129 
to one or more countries within each region not reaching net-zero. For LAC, 93 realizations out of 3,840 130 
do not reach net-zero by 2100. For Africa, 103 realizations out of 3,840 do not reach net-zero by 2100. 131 


