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Abstract

In the Anthropocene, humans are the largest drivers of change in vegetation fire regimes. Humans influence fire regimes

both directly, by starting, managing and extinguishing fires, and also indirectly by altering fuel composition and connectivity.

However, whilst vegetation fire is a coupled socio-ecological process, representation of human influences on fire regimes in

global-scale modelling remains limited. This places a fundamental constraint on our ability to understand how human and

natural processes combine to create observed patterns of vegetation fire, and how such processes may interact under future

scenarios of socioeconomic and environmental change. Here, we respond to this challenge by presenting a novel integration of

two global and process-based models. The first is the Wildfire Human Agency Model (WHAM!), which draws on agent-based

approaches to represent anthropogenic fire use and management. The second is JULES-INFERNO, a fire-enabled dynamic global

vegetation model, which takes a physically-grounded approach to the representation of vegetation-fire dynamics. The WHAM-

INFERNO combined model suggests that as much as half of all global burned area is generated by managed anthropogenic fires

– typically small fires that are lit and then spread according to land user objectives. Furthermore, we demonstrate that including

representation of managed anthropogenic fires in a coupled socio-ecological simulation can improve understanding of the drivers

of unmanaged wildfires. Overall, findings presented here have substantial implications for understanding of present-day and

future fire regimes, indicating that socio-economic change may be as important as climate change in determining the future

trajectory of fire on Earth.
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Key Points: 11 

• Representing managed fire in global-scale fire models has represented a substantial 12 

research challenge in fire science 13 

• We address this through the offline coupling of a global agent-based model of human fire 14 

use with a dynamic global vegetation model 15 

• The coupling improves performance of modelled burned area and allows exploration of 16 

drivers of change in global fire regimes  17 
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Abstract 18 

In the Anthropocene, humans are the largest drivers of change in vegetation fire regimes. 19 

Humans influence fire regimes both directly, by starting, managing and extinguishing fires, and 20 

also indirectly by altering fuel composition and connectivity. However, whilst vegetation fire is a 21 

coupled socio-ecological process, representation of human influences on fire regimes in global-22 

scale modelling remains limited. This places a fundamental constraint on our ability to 23 

understand how human and natural processes combine to create observed patterns of vegetation 24 

fire, and how such processes may interact under future scenarios of socioeconomic and 25 

environmental change. Here, we respond to this challenge by presenting a novel integration of 26 

two global and process-based models. The first is the Wildfire Human Agency Model 27 

(WHAM!), which draws on agent-based approaches to represent anthropogenic fire use and 28 

management. The second is JULES-INFERNO, a fire-enabled dynamic global vegetation model, 29 

which takes a physically-grounded approach to the representation of vegetation-fire dynamics. 30 

The WHAM-INFERNO combined model suggests that as much as half of all global burned area 31 

is generated by managed anthropogenic fires – typically small fires that are lit and then spread 32 

according to land user objectives. Furthermore, we demonstrate that including representation of 33 

managed anthropogenic fires in a coupled socio-ecological simulation can improve 34 

understanding of the drivers of unmanaged wildfires. Overall, findings presented here have 35 

substantial implications for understanding of present-day and future fire regimes, indicating that 36 

socio-economic change may be as important as climate change in determining the future 37 

trajectory of fire on Earth. 38 

 39 

Plain Language Summary 40 

For millennia, humans have used fire as a tool to manage land and they continue to do so across 41 

the world today. However, global-scale models which are used to understand how vegetation fire 42 

may respond to climate change have not yet robustly accounted for this. So, we built a new 43 

model that represents how humans use and manage fire globally and coupled it with a global fire 44 

model. We find that improved representation of human impacts on fire significantly improves the 45 

model and sheds new light on what is driving change in vegetation fire globally. In particular, 46 

our results suggest current global fire models may have underestimated the sensitivity of fire to 47 

climate change.  48 

  49 
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1 Introduction 50 

Vegetation fire is a coupled socio-ecological process, in which humans are the largest 51 

driver of change in its global distribution (Andela et al., 2017; Kelley et al., 2019). Perhaps the 52 

central example of this is that, whilst the planet has warmed under recent anthropogenic climate 53 

change, the area burned globally each year has decreased, particularly in savannas and grasslands 54 

(Chen et al., 2023). Drivers of this phenomenon are complex and uncertain (Zubkova et al., 55 

2023), ranging from cropland conversion (Andela et al., 2017) to changes in anthropogenic fire 56 

use (Smith et al., 2022), from increased grazing intensity (Archibald & Hempson, 2016) to the 57 

CO2 fertilisation effect (Ripley et al., 2022; Stevens et al., 2016). A lack of clarity around the 58 

drivers of declining global burned area has made attribution of changes in global fire regimes a 59 

significant challenge (Jones et al., 2022). This, in turn, limits understanding of how fire may 60 

evolve in the future, including its potential role as a positive feedback to climate change (Lasslop 61 

et al., 2019). 62 

At the heart of this uncertainty are the huge diversity of ways in which humans use and 63 

manage fire. Human fire use ranges from burning of agricultural residues in intensive land use 64 

systems (Kumar et al., 2023) to cultural uses such as religious ceremonies (Smith et al., 2022). 65 

Human fire management is similarly diverse, ranging from pro-active indigenous ‘patch-66 

burning’ methods (Laris, 2002) to industrial fire suppression. As such, fire can broadly be 67 

categorised into managed or ‘landscape’ fires - which are typically small, controlled, and can be 68 

beneficial to humans - and unmanaged wildfires, which are larger and burn more intensely 69 

(UNEP 2022). Furthermore, human fire use is itself undergoing substantial change, with shifts 70 

away from more subsistence-oriented fire uses (Smith et al., 2022) and possibly an overall 71 

decline in fire use driven by agricultural intensification (Perkins et al., 2023). Consequently, 72 

Shuman et al., (2022) argue that incorporating managed fire into models at all spatial scales is an 73 

important step towards equipping fire science for the Anthropocene. 74 

In addition to direct anthropogenic influences on fire, humans also have many indirect 75 

influences on fire regimes. For example, multiple authors have argued that anthropogenic 76 

fragmentation of vegetated landscapes is a key process shaping the evolution of global fire 77 

(Archibald et al., 2012; Driscoll et al., 2021; Harrison et al., 2021). Fragmentation can have 78 

opposite effects across ecosystems – with logging and degradation increasing fire in otherwise 79 

fire-independent forests, and reduced fuel connectivity decreasing burned area in grassland and 80 

savannah ecosystems (Rosan et al., 2022). As such, understanding the drivers of change within 81 

global fire regimes requires consideration not only of biophysical factors, but also of both direct 82 

and indirect human impacts.  83 

Global-scale fire models have struggled to reproduce the observed decline in global 84 

burned area (Hantson et al., 2020). Indeed, in the first intercomparison project of the global fire 85 

model community (FireMIP; Rabin et al., 2017), models largely disagreed about both centennial 86 

trends, and more recent decadal trends, in global burned area (Teckentrup et al., 2019). 87 

Underlying this lack of consensus have been substantial limitations in the representation of 88 

human impacts on the fire modules of dynamic global vegetation models (DGVMs; Ford et al., 89 

2021). Typically, these have been restricted to global functions relating population density to 90 

numbers of fires in satellite observations (Rabin et al., 2017). This ignores the diversity of human 91 

fire use and management, and hence limits the capability of DGVMs to advance understanding 92 

of socio-ecological dynamics of present-day fire regimes and how human and biophysical factors 93 

may interact in the future (Shuman et al., 2022).  94 
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The Wildfire Human Agency Model (WHAM!; Perkins et al., 2023) is the first formal 95 

model to represent present-day anthropogenic fire use and management at global scale. Drawing 96 

on agent-based approaches, WHAM! is a geospatial behavioural model that captures the 97 

underlying land system drivers of anthropogenic fire use and management to simulate human fire 98 

use decision-making from the bottom-up (Perkins et al., 2022). As WHAM! only represents 99 

human influences on global fire regimes, it was designed to be integrated with fire-enabled 100 

DGVMs, such as the JULES-INFERNO model (Mangeon et al., 2016), which capture the 101 

biophysical drivers of fire. Here we present the first coupling between WHAM! and JULES-102 

INFERNO, such that biophysical, direct and indirect human drivers of fire regimes are all 103 

explicitly represented in an integrated simulation for the first time.  104 

WHAM! takes its empirical basis from the Database of Anthropogenic Fire Impacts 105 

(DAFI; Perkins & Millington, 2021). DAFI is the product of a literature meta-analysis of 1809 106 

case studies from 504 academic papers, government and NGO reports (Millington et al., 2022). 107 

This dataset addresses a previous barrier to improved representation of anthropogenic fire in 108 

DGVMs: the lack of a systematic data set on which to base new parameterisations (Forkel et al., 109 

2019). Alongside development of DAFI, the 5th version of the Global Fire Emissions Database 110 

(GFED5; Chen et al., 2023) accounts for smaller fires than previous versions and therefore 111 

enables more robust evaluation of global-scale modelling of human fire interactions. Previous 112 

iterations of GFED have been based on a combination of MODIS for burned area and VIRS for 113 

active fire detection (Giglio et al., 2013). As such, they have not been able to systematically 114 

detect anthropogenic fires: DAFI suggests that >50% of anthropogenic fires are smaller than the 115 

21ha threshold above which MODIS can detect (Millington et al., 2022). GFED5 incorporates 116 

higher resolution remote sensing (principally from Landsat and Sentinel-2), and hence is much 117 

more effective at capturing small fires: global burned area in GFED5 is a 61% increase over 118 

GFED4s (Chen et al., 2023). Therefore, with DAFI providing an empirical-basis for bottom-up 119 

modelling of human-fire interactions, and GFED5 better able to detect them from space, a 120 

comprehensive and empirically-grounded assessment of the role of managed anthropogenic fire 121 

in global fire regimes is now possible. 122 

This paper presents the integration of WHAM! with JULES-INFERNO and its 123 

application to understand the spatiotemporal drivers of global fire regimes. Section 2 (Methods) 124 

focuses on describing the integration of outputs from the two models. Model calibration is 125 

described briefly in the main text with further details provided in Supplementary Information A. 126 

In Section 3 (Results), we present a brief evaluation of the outputs of the coupled model to 127 

establish its credibility, before focusing on understanding how human and biophysical factors 128 

combine to produce observed distributions of fire globally. Discussion (section 4) focuses on 129 

insights relevant to the question of declining global burned area, and in particular to 130 

understanding the relative contribution of direct human influences (starting and suppressing 131 

fires), indirect human influences (i.e. landscape fragmentation) and biophysical factors (i.e. 132 

climate and vegetation flammability).  133 

  134 
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2 Methods 135 

Our methods are presented in five sections, which respectively describe the inputs, 136 

structure, calibration, evaluation, and analysis of the WHAM-JULES-INFERNO combined 137 

model (hereafter WHAM-INFERNO).  A schematic overview of the processes represented in 138 

WHAM-INFERNO is presented in Figure 1. Calculations of the fire regime at each timestep 139 

combine three elements: 1) WHAM! outputs for managed and unmanaged anthropogenic fires 140 

and fire suppression; 2) JULES-INFERNO outputs for lightning ignitions, flammability and 141 

plant functional types; and 3) a representation of vegetation fragmentation derived from 142 

secondary data and WHAM! outputs for logging. These are each detailed further in Section 2.1. 143 

Importantly, two versions of WHAM-INFERNO are presented and assessed: WHAM-144 

INFERNO-JULES (hereafter WI-JULES) and WHAM-INFERNO-Earth Observation (hereafter 145 

WI-EO). The difference between these two versions is that in WI-JULES, WHAM! is 146 

parameterised using biophysical inputs directly from JULES, whilst in WI-EO, WHAM! takes 147 

these inputs from remote sensing. Specifically, inputs for potential evapotranspiration, net 148 

primary production and the bare soil fraction are replaced with Earth observation data. The 149 

differences between these two versions of WHAM! are described in detail in Perkins et al. (2023; 150 

Supplementary Information A). 151 

The primary purpose of the comparison of WI-JULES and WI-EO is to allow 152 

interrogation of the robustness of inferences made about the drivers of global fire regimes. For 153 

example, if trends are identified in WI-JULES but not in WI-EO, then they may be attributable to 154 

underlying model error in JULES’ representation of ecosystem dynamics. Similarly, assessing 155 

the difference in performance (as measured against GFED5) allows exploration of how far 156 

underlying error in the hydrological and vegetation outputs of DGVMs may constrain the 157 

capacity of their fire modules to reproduce remotely sensed observations (Hantson et al., 2020). 158 

Code to run and analyse WHAM-INFERNO is written in R version 4.2.2 (R Core Team 159 

2022), using the ‘raster’ library version 3.6-20 (Hijmans et al., 2023). Code and data to run and 160 

analyse outputs of both versions of WHAM-INFERNO are made available on Zenodo (Perkins 161 

et al., 2023b). 162 

2.1 Inputs to the coupled model 163 

WHAM-INFERNO takes inputs from WHAM!, JULES-INFERNO and from secondary 164 

data sources. Each of these inputs are described in turn below (Sections 2.1.1-2.1.3), and an 165 

overview is given in Table 1. WHAM! outputs are annual, whilst as per results in the sixth 166 

coupled model intercomparison project (CMIP6), JULES-INFERNO outputs are aggregated 167 

monthly means. Therefore, WHAM-INFERNO runs at a monthly timestep, with WHAM! 168 

outputs for a given year assumed to be uniformly distributed across calendar months.  169 
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Figure 1: Processes represented in the WHAM-INFERNO combined model. Solid arrows denote 170 

dynamic model calculations, whilst dashed lines denote static exchange of information. Socio-171 

economic data and biophysical inputs to WHAM! (Potential Evapotranspiration (PET), Net 172 

Primary Production (NPP) and Plant Functional Types (PFTs)) are passed offline. In WHAM-173 

INFERNO-JULES (WI-JULES) these data are taken from JULES outputs, whilst in WHAM-174 

INFERNO-Earth Observation (WI-EO) PET and NPP inputs are taken from remote sensing. 175 

Roman numerals (i-iv) correspond to numbers given in section 2.1.1 of the text. 176 

2.1.1 WHAM! inputs to the coupled model 177 

WHAM! inputs to the coupled model comprise i) managed burned area as a fraction of 178 

each cell, ii) numbers of unmanaged fires (count km-2 yr-1), iii) fire suppression intensity (0-1), 179 

and iv) the presence of selective logging as a fraction of the tree cover in each cell (see 180 

corresponding numerals in Figure 1). WHAM! inputs used were those presented in Perkins et al., 181 

(2023). 182 

2.1.2 JULES-INFERNO inputs to the coupled model 183 

INFERNO (Mangeon et al., 2016) is the fire module of the JULES dynamic global 184 

vegetation model. INFERNO calculates burned area from fires with two key components. The 185 

first is mean global burned area per fire per Plant Functional Type (PFT), a set of PFT-specific 186 

model free parameters. Model parameters for burned area per PFT were as in Burton et al. 187 

(2019). The second component of INFERNO burned area calculations is fuel flammability, 188 

which INFERNO calculates as a function of leaf carbon and soil carbon pools, temperature, 189 

relative humidity, precipitation, and soil moisture (Mangeon et al., 2016). Flammability is 190 

therefore important in capturing the impact of both climate and spatial heterogeneity in 191 

vegetation on fire regimes. Flammability is calculated per PFT in each model pixel at each 192 

timestep. JULES outputs are from the model set-up used in CMIP6 (Wiltshire et al., 2020). 193 

(iv) (iii) (i & ii) 
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2.1.3 Ancillary inputs to the coupled model from secondary data 194 

In addition to the calculations from the two models, three sets of secondary data were 195 

used as inputs: lightning ground strikes, anthropogenic land covers – cropland, pasture, 196 

rangeland and urban – and road density. Firstly, as in JULES-INFERNO standalone (Mathison et 197 

al., 2023), counts of lightning strikes were sourced from the Lightning Imaging Sensor—Optical 198 

Transient Detector (LIS/OTD, Christian et al., 2003). Secondly, as in CMIP6, anthropogenic 199 

land cover was taken from the LUH2 dataset (Hurtt et al., 2020). Finally, Haas et al. (2022) 200 

demonstrated that road density was effective in capturing vegetation fragmentation effects on fire 201 

regimes at global scale; road density data were therefore taken from the GRIP global road 202 

database (Meijer et al., 2018). 203 

 204 

Table 1: Overview of inputs to the WHAM!-INFERNO combined model. PFT is plant 205 

functional type. Data inputs for lightning strikes, road density and anthropogenic land covers 206 

were rescaled to the resolution of WHAM!-INFERNO (1.875º x 1.25º). Differing temporal 207 

resolutions of inputs were reconciled as noted in Section 2.1. 208 

 209 

Coupled model input Source  Units 

Temporal 

resolution 

Managed burned area WHAM! Cell fraction (0-1)  Annual 

Unmanaged anthropogenic fires WHAM! Fires km-2 Annual 

Fire suppression WHAM! Cell fraction (0-1) Annual 

Selective logging WHAM! Cell fraction (0-1) Annual 

Distribution of PFTs JULES-INFERNO Cell fraction (0-1)  Monthly 

Flammability per PFT JULES-INFERNO Dimensionless (0-1) Monthly 

Burned area per fire per PFT JULES-INFERNO km2 Fixed (n/a) 

Lightning – ground strikes Christian et al., (2003) strikes km-2  
Fixed (single 

daily mean) 

Road density Meijer et al., (2018) m2 km-2 Annual 

Anthropogenic land cover Hurtt et al., (2020) Cell fraction (0-1) Annual 

 210 

  211 
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2.2 WHAM-INFERNO Structure 212 

The coupled WHAM-INFERNO model is a ‘prescribed’ model coupling (sensu Robinson 213 

et al., 2018) such that whilst simulations of global burned area depend on calculations involving 214 

outputs of both models, dynamic information transfer is only one way - from WHAM! to 215 

INFERNO (see Section 2.2.1). Specifically, for each simulated year, annual burned area from 216 

managed fire is taken directly from WHAM!, with 
1

12
 assigned to each calendar month. But to 217 

calculate unmanaged fire burned area, the original JULES-INFERNO calculations are modified 218 

by the number of anthropogenic fires (km-2 yr-1) provided by WHAM!. Therefore, description of 219 

model coupling here first describes calculation of burned area from unmanaged fires (Section 220 

2.2.1). Then, as burned area from unmanaged fires is also impacted by anthropogenic landscape 221 

fragmentation, the representation of such processes is then described in Section 2.2.2. Finally, 222 

the calculation of overall burned area combining both managed and unmanaged fire is described 223 

in Section 2.2.3. 224 

2.2.1 Unmanaged fire 225 

The calculation of burned area from unmanaged fires is presented in two parts: firstly the 226 

calculation of numbers of unmanaged fires, and secondly the calculation of their respective 227 

burned area. An overview of this process is given in Figure 2. 228 

2.2.1.1 Number of fires 229 

In the original Mangeon et al. (2016) conception of INFERNO, the numbers of ignitions 230 

from lightning strikes are calculated as follows:  231 

 232 

𝐼𝐿 = 7.7 × 𝐿𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔 × (1 − 𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)     (1) 233 

where 𝐼𝐿is the number of ignitions from lightning strikes in a given model timestep, 𝐿𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔 234 

is the number of lightning strikes and 𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 is a population density-dependent 235 

suppression function. The structure of this calculation is retained with two changes: firstly, the 236 

suppression function is replaced with an empirically-defined representation of suppression 237 

intensity (Section 2.2.2); and secondly the empirically-defined linear scaling parameter (=7.7) 238 

from Mangeon et al. (2016) is replaced with a free parameter (𝜆) to allow re-calibration. A 239 

complete set of model free parameters is given in Supplementary Information Table S1. 240 
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Figure 2: Calculation of burned area from unmanaged fires in the WHAM-INFERNO combined 241 

model. 242 

  243 
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In the WHAM-INFERNO combined model, calculation of lightning fires is integrated 244 

with unmanaged anthropogenic fire numbers from WHAM! as follows: 245 

 246 

𝐹𝑖𝑟𝑒𝑠𝑈𝑀 = 𝐴𝑟𝑠𝑜𝑛 + 𝐸𝑠𝑐𝑎𝑝𝑒𝑑 + (1 − 𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛) ∗  (𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 +  𝐿𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔) (2) 247 

where 𝐹𝑖𝑟𝑒𝑠𝑈𝑀 is the annual number of unmanaged fires per grid box per year, 𝐴𝑟𝑠𝑜𝑛 and 248 

𝐸𝑠𝑐𝑎𝑝𝑒𝑑 fire numbers are the number of fires km-2 yr-1 taken from WHAM! outputs, and 249 

𝐿𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔 is the number of lightning fires calculated from mean daily ground strikes as in 250 

equation (1). Finally, 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑, is a small globally constant rate used to capture fires that 251 

are not arson, lightning or escaped managed fires. The constant rate maintains an aspect of 252 

INFERNO, in which a uniform ‘ignition’ rate is an option. 253 

Fire suppression in the coupled model (Section 2.2.2) is applied to background and 254 

lightning fires, but not to arson and escaped fires. This is for ontological reasons, as follows. 255 

INFERNO assumes that suppressed ignitions have no burned area. However, in DAFI, the 256 

database used to develop WHAM!’s calculation of arson and escaped fires, numbers of fires are 257 

recorded, therefore by definition these have burned area > 0. As such, it is illogical to apply 258 

modelled suppression to them. By contrast, as the background rate was calculated using a 259 

constant, clearly this did not account for the impact of suppression. Similarly, lightning remains 260 

calculated based on ignitions rather than fires and hence could be suppressed before beginning to 261 

burn.  262 

2.2.1.2 Burned area per unmanaged fire 263 

After calculation of the numbers of unmanaged fires per pixel (𝐹𝑖𝑟𝑒𝑠𝑈𝑀), these are then 264 

converted to burned area. In its original conception, INFERNO calculates the number of fires as: 265 

 266 

𝐹𝑖𝑟𝑒𝑠 = 𝐼𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝑠 ∗ 𝐹𝑙𝑎𝑚𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (3) 267 

 268 

In other words, both humans and lightning are conceptualised as producing ignitions, 269 

which may or may not become fires based on the flammability of the surrounding vegetation. By 270 

contrast, because most human fires are started deliberately, WHAM! does not output numbers of 271 

ignitions, but numbers of fires directly (Figure 2). However, whilst vegetation flammability plays 272 

the ontological role of translating ignitions to fires in INFERNO, it also plays an important 273 

functional role: capturing geographic variation in the capacity and tendency of the vegetation to 274 

sustain unmanaged fire. This is because INFERNO calculates burned area per fire with a simple 275 

global mean value per Plant Functional Type. Therefore, simply removing flammability from the 276 

calculation and taking numbers of unmanaged fires from WHAM! was not possible. 277 

  278 
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The solution adopted is to multiply WHAM! unmanaged fires by INFERNO 279 

flammability, but to rescale with a free parameter. This leaves a burned area calculation from 280 

unmanaged fires of: 281 

 282 

𝐵𝐴𝑈𝑀 = 𝐹𝑖𝑟𝑒𝑠𝑈𝑀 ∗ 𝛷 ∗ ∑ 𝑃𝐹𝑇 ∗  𝐹𝑙𝑎𝑚𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑃𝐹𝑇 ∗ 𝐵𝐴𝑃𝐹𝑇

𝑃𝐹𝑇=𝑛

𝑃𝐹𝑇 =1

 (4) 283 

where 𝐵𝐴𝑈𝑀is the annual burned area from unmanaged fires as a fraction of each model pixel; 284 

𝑃𝐹𝑇 is the fraction of each model pixel (0-1) occupied by a given PFT; 𝐹𝑙𝑎𝑚𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑃𝐹𝑇is a 285 

PFT-specific dimensionless adjustment (0-1) reflecting spatiotemporal differences in the 286 

combustibility of vegetation; 𝐵𝐴𝑃𝐹𝑇 is the PFT-specific mean burned area per fire from JULES-287 

INFERNO; and 𝛷 is a scaling factor reflecting the differing model ontologies of WHAM! and 288 

JULES-INFERNO. 289 

2.2.2 Fragmentation  290 

The impact of landscape fragmentation effects was restricted to unmanaged fires; 291 

managed burned area was not altered for fragmentation effects, as these would already be 292 

implicitly accounted for in the observations captured in DAFI.  Representation of fragmentation 293 

is done in three ways. Firstly, as WHAM! accounts for anthropogenic cropland fires, to account 294 

for the role of cropland conversion in fragmenting more flammable fuels, burned area per 295 

unmanaged fire was set to 0 for cropland PFTs.  296 

Secondly, Haas et al., (2022) demonstrate the importance of road density in reducing both 297 

fire sizes and burned area. This finding was implemented in the coupled model by adjusting 298 

burned area per fire with a simple negative exponential function: 299 

 300 

𝐵𝐴𝑈𝑀_𝑓𝑟𝑎𝑔 =  𝐵𝐴𝑈𝑀 ∗ (1 −
ln(𝑅𝐷)

𝜌
) (5) 301 

where 𝐵𝐴𝑈𝑀 and 𝐵𝐴𝑈𝑀_𝑓𝑟𝑎𝑔 are annual burned area per pixel (0-1) from unmanaged fire before 302 

and after adjustment for fragmentation effects, 𝑅𝐷 is road density and 𝜌 a free parameter.  303 

By contrast, logging of wet, fire-prone forests can lead to increased fire (both numbers of 304 

fires and fire size), as gaps in the canopy lead to drying on the forest floor (Cochrane & Barber, 305 

2009; Lapola et al., 2023). A simple representation of this was implemented by increasing the 306 

mean burned area per fire for broadleaf tree PFTs given the presence of the Logging AFT in 307 

WHAM! outputs. The values of mean burned area for broadleaf tree PFTs therefore become: 308 

 309 

𝐵𝐴𝑏𝑟𝑜𝑎𝑑𝑙𝑒𝑎𝑓| 𝑙𝑜𝑔𝑔𝑖𝑛𝑔 =  𝐵𝐴𝑏𝑟𝑜𝑎𝑑𝑙𝑒𝑎𝑓 ∗  Λ(𝐿𝑜𝑔𝑔𝑖𝑛𝑔) (6) 310 

where 𝐵𝐴𝑏𝑟𝑜𝑎𝑑𝑙𝑒𝑎𝑓 is the burned area per fire for broadleaf tree PFTs;  𝐵𝐴𝑏𝑟𝑜𝑎𝑑𝑙𝑒𝑎𝑓| 𝑙𝑜𝑔𝑔𝑖𝑛𝑔 is 311 

this parameter value when adjusted for logging, 𝐿𝑜𝑔𝑔𝑖𝑛𝑔 is the fraction of tree cover in a cell 312 

occupied by WHAM’s logging AFT, and Λ a free parameter. 313 
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2.2.3 Combining managed and unmanaged fire 314 

JULES-INFERNO typically runs at a timestep of between 30-60 minutes (Clark et al., 315 

2011). This is required for the stability of model equations and has the advantage of capturing 316 

temporal fluctuations in vegetation flammability. As such, INFERNO increases the amount of 317 

bare soil in a given model pixel when a fire burns, which reduces fuel availability and the 318 

amount of area burned from subsequent fires until vegetation resprouts (Burton et al., 2019). 319 

However, as it is not meaningful to model human land use decision-making at such short 320 

durations (Arneth et al., 2014), managed fire is output at an annual timestep by WHAM!. For 321 

these reasons, calculating the combined burned area of managed and unmanaged fires requires an 322 

adjustment to account for the effect of preceding fires:  323 

 324 

𝐵𝐴𝑡𝑜𝑡 = 𝐵𝐴𝑀𝑎𝑛𝑎𝑔𝑒𝑑 + 𝐵𝐴𝑈𝑀 ∗  𝛾 (7) 325 

where 𝐵𝐴𝑀𝑎𝑛𝑎𝑔𝑒𝑑 is burned area from managed fire, 𝐵𝐴𝑡𝑜𝑡 is total burned area and 𝛾 a function 326 

representing the impact of preceding fires on unmanaged burned area. Managed fire was not 327 

adjusted for effects of antecedent fire for several reasons: firstly, because WHAM! has its own 328 

internal calculation for including fuel limitations in agent calculations; secondly, because 329 

WHAM! outputs are empirically grounded, derived from data that would capture such 330 

limitations to a degree. Thirdly, many managed anthropogenic fires are lit to reduce the intensity 331 

and spread of unmanaged fire (e.g. prescribed fire or indigenous patch burning mosaics). The 𝛾 332 

function was calculated using a linear function after a threshold:  333 

 334 

        𝛾 = {
1  𝑖𝑓 𝐵𝐴𝑈𝑀 ≤ 𝛼     

𝛽      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}       (8) 335 

where 𝛼 is a free parameter representing a threshold burned fraction of a cell below which fuel 336 

availability is not limiting, whilst 𝛽 is a further free parameter capturing the rate of decay in 337 

burned area once this threshold is reached. This functional form was chosen as it approximates 338 

the behaviour observed by Archibald et al. (2012), who explored the impact of fragmentation on 339 

burned area in flammable ecosystems.  340 

 341 

2.3 WHAM-INFERNO Calibration 342 

The model structure set out in Section 2.2 resulted in 20 free parameters (Supplementary 343 

Table S1), which formed the basis of a perturbed parameter ensemble for model calibration. A 344 

total of 10,000 perturbed parameter sets were created with a maximin latin hypercube sampling 345 

design (Carnell 2022). Using the resulting parameter sets, 10,000 model runs were conducted 346 

(i.e. one for each perturbed parameter combination) for both versions of the WHAM-INFERNO 347 

ensemble.  348 

  349 
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The outputs of each run were compared with the recent GFED5 global burned area 350 

product (Chen et al., 2023). Firstly, ‘implausible’ parameter sets were ruled using history 351 

matching with the overall magnitude of global burned area in GFED5. Remaining parameter sets 352 

were then treated as ‘not ruled out yet’ (NROY; Rougier & Beven, 2013). Secondly, as well as 353 

global burned area, Pearson’s correlation (r) was calculated with a square root transformation 354 

applied. These two metrics were those used in the FireMIP (Teckentrup et al., 2019), and hence 355 

were adopted here to define a pareto-optimal parameter space capturing the trade-offs in 356 

maximising performance against each metric. This approach allows, firstly, the evaluation of 357 

different model processes in capturing observed fire regimes of the recent past, and secondly 358 

overall evaluation of the performance of the WHAM-INFERNO ensemble. The mean outputs of 359 

WI-JULES and WI-EO in the pareto parameter space then formed the basis of further analysis. 360 

Fuller detail of model calibration is given in Supplementary Information A. 361 

 362 

2.4 WHAM-INFERNO Evaluation 363 

WHAM-INFERNO is evaluated in two broad ways, firstly by output corroboration 364 

through comparison of model outputs with remotely sensed burned area from GFED5 (as 365 

described above) and secondly by model benchmarking against a null or baseline model. The 366 

baseline model was an offline version of INFERNO (as presented in Mangeon et al., 2016). As 367 

INFERNO was originally calibrated using GFED4 data, in which burned area was 49% lower 368 

than the more recent GFED5 burned area product, a process of recalibration required. The re-369 

calibration of this INFERNO offline model (hereafter, ‘baseline model’) followed broadly the 370 

same steps as WHAM-INFERNO combined model: 10,000 parameter sets were used to define a 371 

perturbed parameter ensemble, from which both NROY and pareto-optimal parameter spaces 372 

were defined using GFED5 burned area. Detailed description of the setup of the baseline model, 373 

including how its free parameters differ from WHAM-INFERNO, is described in Supplementary 374 

Information A. 375 

 376 

2.5 Historical run setup and analysis 377 

As with the WHAM! standalone historical simulations presented in Perkins et al. (2023), 378 

WHAM-INFERNO runs span 1990-2014. These two years mark the beginning of the data 379 

recorded in the DAFI database of global anthropogenic fire impacts (i.e. 1990; Millington et al., 380 

2022) that was used to parameterise WHAM!, and the end of the CMIP6 historical period (i.e. 381 

2014), respectively. Both models were run at the spatial resolution that JULES-INFERNO 382 

adopted in the FireMIP (1.875° x 1.25°). Model outputs are evaluated during the overlapping 383 

period in WHAM-INFERNO historical runs and the GFED5 record (2001-2014); GFED5 data 384 

were aggregated to the spatial resolution of WHAM-INFERNO. 385 

Analysis of outputs focuses on understanding spatial and temporal variation in the drivers 386 

of global fire regimes. Spatial analysis focuses on understanding how managed anthropogenic 387 

fire and unmanaged fire combine to produce observed fire regimes across global regions. 388 

Similarly, temporal analysis first assessed how far managed fire and unmanaged fire contribute 389 

to interannual variability in fire regimes. This was calculated by detrending the global total 390 

burned area from GFED5 and WHAM-INFERNO model outputs before calculating the 391 

correlation and standard deviation of the residual variabilities. 392 
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Then, drivers of longer-term (decadal) change were assessed. Perkins et al. (2023) 393 

present analysis of the drivers of change in WHAM! managed fire outputs. Results pointed to 394 

land use intensification as a global dampening effect on fire use, whilst conversely land use 395 

extensification - particularly for livestock farming - led to increased fire use. Therefore, analysis 396 

of temporal trends here focuses on change in unmanaged fire in relation to the human and 397 

physical drivers represented in the coupled models. These are annual changes in numbers of 398 

unmanaged fires, road density (fragmentation; Haas et al., 2022), vegetation flammability, fire 399 

suppression and cropland conversion. The relative influence of these drivers was assessed at a 400 

pixel-level firstly by comparing the Kendall’s Tau correlations of their interannual changes with 401 

interannual change in unmanaged burned area (for each of WI-JULES and WI-EO). Secondly, 402 

using these same independent variables, linear models of pixel-level change in unmanaged 403 

burned area were fit for both interannual and overall change between 2001-2014. T-values of the 404 

independent variables were used to assess the relative strength of their relationships to changes in 405 

unmanaged burned area. 406 

 407 

3 Results 408 

3.1 Model evaluation 409 

Measured by correlation with the GFED5 record during 2001-2014, both WI-JULES and 410 

WI-EO perform significantly better than the baseline model (Z Tests; both p < 0.001, n = 10, 14). 411 

Specifically, the mean correlation of the pareto-optimal parameter space is 0.81 for WI-EO and 412 

0.76 for WI-JULES, compared with 0.58 for the baseline model (Figure 3). This result also 413 

compares favourably with INFERNO v1.0 presented in the FireMIP, in which INFERNO had a 414 

correlation of 0.70 against GFEDv4 and 0.64 against GFEDv4s (Teckentrup et al., 2019). As 415 

such, inclusion of WHAM! seemingly improves INFERNO both in an absolute sense, when 416 

compared to GFED5, but also relatively against INFERNO’s performance based on the 417 

observational data available at the time of its original development. 418 

Furthermore, almost 70% of the baseline model ensemble’s runs are ruled out, primarily 419 

due to simulating burned area too low to achieve acceptable coherence with the GFED5 record 420 

(mean of ruled out runs was 276 Mha vs 802 Mha in GFED5). By contrast, only 182 of WI-EO 421 

and 124 of WI-JULES runs are ruled out. In the pareto parameter space, WI-EO has a slight 422 

overprediction bias (+11 Mha) and WI-JULES has a slight underprediction bias (-10 Mha), 423 

compared to a bias of -52 Mha in the baseline model. Overall, we conclude that the WHAM 424 

integration improves the structural capacity of INFERNO to capture the magnitude and 425 

distribution of global fire regimes.  426 

  427 
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 428 

Figure 3: Outputs of WHAM-INFERNO in comparison with a baseline model (INFERNO_V1): 429 

a) simulated global burned area and b) Pearson correlation with GFED5. For burned area, the 430 

baseline model has many runs ruled out for burned area being too low in comparison with 431 

GFED5, whilst in both versions of WHAM-INFERNO a smaller number of runs are ruled out. 432 

The two versions of WHAM-INFERNO both produce higher correlations than the baseline 433 

model across all three tranches of parameter sets (ruled out, NROY and pareto-optimal). NROY 434 

refers to “not ruled out yet”. 435 

  436 

a) 
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3.2 Analysis of WHAM-INFERNO outputs 437 

3.2.1 Spatial Analysis 438 

Across the pareto parameter runs, simulated burned area in both coupled models is split 439 

approximately evenly between managed and unmanaged fires. Over the historical period (1990-440 

2014) in WI-JULES a mean of 442 Mha (54%) comes from unmanaged fires and 379 Mha 441 

(46%) from managed fires. Similarly, in WI-EO, 405 Mha (47%) comes from unmanaged fires, 442 

and 453 Mha (53%) comes from managed fires.  443 

Furthermore, there is substantial heterogeneity in the spatial location of burned area due 444 

to managed versus unmanaged fires (Figure 4). For example, across 1990-2014 at the level of 445 

World Bank regions, in sub-Saharan Africa WI-JULES suggests 65% of mean annual burned 446 

area is from unmanaged fires (56% in WHAM-EO; Figure 5). Conversely, in South Asia (which 447 

includes India), WI-JULES suggests just 28% of burned area is from unmanaged fires (19% in 448 

WI-EO; Figure 5). The predominance of managed fire is driven by large-scale crop-residue 449 

burning in the region (Hall et al., 2023; Perkins et al., 2023). Furthermore, there is also regional 450 

heterogeneity in the trends in managed and unmanaged fire. For example, in both WI-JULES and 451 

WI-EO, managed fire is increasing in South Asia, whilst decreasing in Latin America and the 452 

Caribbean (Figure 5).  453 

Perhaps the two most notable differences in sources of burned area between the two 454 

models’ (WI-JULES and WI-EO) simulations come in Latin America & the Caribbean and sub-455 

Saharan Africa. The difference in Latin America is that WI-JULES simulates higher unmanaged 456 

burned area than WI-EO (81 Mha vs 56 Mha) particularly in the Caatinga region of Brazil 457 

(Figure 6), which is due to a known anomaly in JULES’ hydrological cycle in the region 458 

(Perkins et al., 2023). By contrast, in sub-Saharan Africa WI-EO simulates higher unmanaged 459 

burned area than WI-JULES (209 Mha vs 132 Mha), attributable to the more homogeneous 460 

spatial distribution in WI-EO outputs – particularly in the Guinean Savanna – compared to the 461 

comparatively heterogeneous WI-JULES outputs (Figures 4 & 6). 462 

  463 
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Figure 4: Distribution of managed and unmanaged fire in WHAM-INFERNO-Earth Observation 464 

(WI-EO) and WHAM-INFERNO-JULES (WI-JULES) shown as the burned fraction of each 465 

pixel. The arithmetic mean of model outputs was taken across the historical model run period 466 

(1990-2014). Principle differences between the two versions of WHAM-INFERNO are seen in 467 

the managed fire outputs of WI-EO in sub-Saharan Africa, which have a more homogeneous 468 

distribution than WI-JULES’s more sporadic spatial pattern. Other anomalies between models 469 

are seen in the Caatinga region of Brazil and in the Northern Territories of Australia.  470 

  471 
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Figure 5: Trends in managed and unmanaged fire across the World Bank global regions. The 472 

largest gap between managed and unmanaged fire is seen in sub-Saharan Africa, where 473 

unmanaged fire dominates. Conversely, South Asia (including India) is dominated by managed 474 

fires, particularly crop residue fires (as shown in Perkins et al., 2023). Key: Eu. & Central Asia = 475 

Europe & Central Asia; Lat. Am & Car = Latin America & Caribbean; MENA = Middle East 476 

and North Africa. 477 

  478 
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Figure 6: Burned area in GFED5, WI-EO and WI-JULES as a fraction of each pixel. Values 479 

shown are the mean of the period (2001-2014). Three clear anomalies between models and 480 

GFED5 are present: firstly in the Caatinga region of Brazil, secondly in southern Russia, and 481 

thirdly in India. This latter discrepancy is due to differences in burned area from crop residue 482 

burning between WHAM! and GFED5 (Perkins et al., 2023). 483 

  484 
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3.2.2 Temporal analysis 485 

Across the overlapping period with GFED5 (2001-2014), WI-EO global burned area 486 

declines by 137 Mha, WI-JULES burned area declines by 52 Mha, and the baseline model 487 

declines by 30Mha. This compares with a decline of 193 Mha in GFED5. In WI-EO, this global 488 

decline is primarily attributable to the trend in sub-Saharan Africa (Figure 7), where burned area 489 

declines by 61 Mha (compared to 112 Mha in GFED5). By contrast, in WI-JULES burned area 490 

in sub-Saharan Africa declines by just 9 Mha (Figure 7). This lack of decline in sub-Saharan 491 

Africa is in part due to managed fires, which increase by 10 Mha as crop residue burning 492 

increases in the region in this model. A similar trend is seen in sub-Saharan African crop-residue 493 

burning in WI-EO, but this is offset by a steeper decline in pasture fires (Perkins et al., 2023). 494 

Further, WI-JULES seemingly overestimates the rate of declining burned area in Latin America 495 

& Caribbean (-42 Mha; GFED5 -18 Mha), whilst WI-EO captures a similar rate of decline to 496 

GFED5 (-20 Mha). As such, WI-EO is best able to reproduce the observed decline in burned 497 

area, followed by WI-JULES, and then the baseline model. The drivers of this modelled decline 498 

are explored in detail below. 499 

Globally, both WI-JULES and WI-EO underestimate the magnitude of interannual 500 

variability (IAV) in burned area. The standard deviation of detrended model outputs (i.e. with 501 

mean = 0) was 9.5Mha in WI-EO and 9.7Mha in WI-JULES. However, the correlation of the 502 

detrended outputs with GFED5 was 0.81 in WI-EO and 0.41 in WI-JULES: indicating that 503 

although the magnitude of IAV is underestimated in both models, WI-EO is substantially better 504 

at capturing the direction of fluctuations in burned area. IAV in both model is driven by 505 

unmanaged fire. Detrended global outputs for unmanaged fire correlate with detrended global 506 

burned area in GFED5 (WI-EO: r = 0.74, WI-JULES: r = 0.53); however there is no meaningful 507 

relationship for IAV in GFED5 and detrended outputs for managed fire (r <= 0.11).  508 

Based on the variable with the strongest Kendall’s Tau correlation in each pixel, inter-509 

annual change in burned area due to unmanaged fire is most strongly associated with 510 

flammability (Figure 8). In WI-JULES, flammability has the highest Tau value across 9,644 Mha 511 

(~70% of global land area; Table 2), whilst cropland conversion, which has the strongest 512 

relationship over the second largest area, has the highest Tau value across 1,037 Mha (~8% of 513 

global land area). A similar trend is seen in WI-EO, where flammability has the highest Tau 514 

value across 9,414 Mha and cropland conversion has the highest Tau value across 1,052 Mha.  515 

However, whilst change in burned area is most closely correlated with flammability over 516 

the largest area, these areas are seemingly weighted towards model pixels with less overall 517 

change in burned area. For both WI-EO and WI-JULES, in linear regression models of 518 

interannual variability absolute t-values for flammability are more than twice as large as any 519 

other variable (Table 2). By contrast, for the overall change over 2001-2014, t-values are closer 520 

between variables, with ignitions having the largest absolute t-values for both models. Similarly, 521 

variables with a negative impact on burned area have a larger impact on the overall 2001-2014 522 

change than interannual variation (Table 2). Road density seemingly has the largest impact on 523 

declining burned area (t-values: -21.7 & -19.3), followed by cropland conversion (t-values: -16.1 524 

& -19.1) respectively. Fire suppression has only a marginal influence and indeed shows little 525 

relationship with the long-term trend in WI-JULES (t = 0.433). 526 

  527 
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 528 

Figure 7: Burned area by World Bank region in GFED5 and the two versions of the WHAM-529 

INFERNO model ensemble (WHAM-EO, WI-JULES). WI-EO is best able to reproduce the 530 

observed decline in burned area in sub-Saharan Africa, with WI-JULES showing an essentially 531 

static burned area. Conversely, both WI-EO and WI-JULES overestimate burned area in Latin 532 

America, though the trend of declining burned area is captured strongly. Both models show 533 

generally poor performance in Europe & Central Asia, showing limited discernible trend. Model 534 

outputs for WI-EO and WI-JULES are the sum of the managed and unmanaged burned area 535 

presented in Figure 5. Key: Lat. Am & Car = Latin America & Caribbean; MENA = Middle East 536 

and North Africa.   537 
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Figure 8: Relationship of changes in unmanaged burned area to independent variables. a) 538 

Variable with highest absolute correlation (τ) with change in burned area from unmanaged fire; 539 

values were filtered for pixels with at least 0.1% of the land area burned. b) Change in burned 540 

area between 2001-2014. Although flammability is most closely correlated with changes in 541 

burned area across the largest geographic space, the influence of other factors – particularly 542 

cropland conversion – is clustered towards pixels with the largest changes in burned area. A non-543 

linear stretch was applied to the colour scale in b) to show differences between smaller absolute 544 

values.  545 

a) 
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Table 2: Relationship of changes in burned area from unmanaged fires to explanatory variables. 546 

Area gives the total land surface over which each variable was most strongly correlated with 547 

changing burned area. T-values are from linear models of change in burned area to change in the 548 

independent variable; IAV (interannual variation) is for linear models of year-on-year change 549 

between 2001-2014, whilst trend denotes overall change during the same period. 550 

 551 

 WI-EO 

(area; 

Mha) 

WI-EO 

(t-value; 

IAV) 

WI-EO  

(t-value; 

trend) 

WI-JULES 

(area; 

Mha) 

WI-JULES 

(t-value; 

IAV) 

WI-JULES 

(t-value; 

trend) 

Cropland 

conversion 

1052 -10.4 -16.1 1037 -13.8 -19.1 

Fire suppression 244 -2.78 3.26 377 -1.9 0.43 

Flammability 9414 162.3 24.4 9644 267.2 46.0 

Ignitions 736 70.61 25.7 522 87.5 46.6 

Road density 206 -5.1 -21.7 209 -8.0 -19.3 

 552 

4 Discussion 553 

This paper has presented the first integration of a global-scale behavioural model of 554 

human fire use and management coupled with a dynamic global vegetation model. Discussion 555 

focuses on advances made for global understanding of human drivers of vegetation fire regimes 556 

through this technical advance, before addressing its limitations and possible future directions for 557 

development of WHAM-INFERNO.  558 

4.1 WHAM-INFERNO: Insights for global-human fire interactions 559 

The WHAM-INFERNO model integration reveals both the extent and the diversity of the 560 

socio-ecological dynamics of global fire regimes. In pareto model runs of WHAM-INFERNO, 561 

managed and unmanaged fire contribute approximately equal amounts of global burned area. 562 

Furthermore, the spatiotemporal distribution of anthropogenic managed fire, and its relationship 563 

with unmanaged (‘wild’) fires differs substantially across space. Whilst anthropogenic fire use, 564 

primarily for crop residue burning, dominates the South Asian World Bank Region, in sub-565 

Saharan Africa more than half of burned area is from unmanaged fires (Figure 5). Such 566 

differences have profound implications for understanding of global fire regimes and illustrates 567 

that effective fire management policies and climate adaptation strategies must be based on 568 

detailed understanding of how human livelihoods and associated fire use systems contribute to 569 

existing fire regimes. At the very least, the large extent of managed anthropogenic fire around 570 

the world implied by these results is demonstration of the inadequacy of model approaches 571 

seeking to represent direct anthropogenic influence on fire regimes as simple functions of 572 

population density (Rabin et al., 2017). 573 
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Furthermore, combined global-scale simulations of both managed and unmanaged fire 575 

presented here add weight to the finding from Earth observation that small fires have declined 576 

less than larger ones (Chen et al., 2023). Managed fire declines by just 35% and 52% of the rate 577 

of unmanaged fire in WI-JULES and WI-EO respectively. Data from empirical studies indicates 578 

that the two largest sources of burned area from managed human fires – crop residue burning and 579 

pasture management – have mean sizes of 5 ha and 34 ha respectively (Millington et al., 2022), 580 

whilst in JULES-INFERNO mean burned area per fire for unmanaged fires varies from 170 ha to 581 

320 ha. This result seems to give weight to findings of Smith et al., (2022) and Perkins et al., 582 

(2023), that managed fire is changing in line with socio-ecological forces that are distinct from 583 

those driving change in unmanaged fire. 584 

In addition, the finding that unmanaged fire is primarily responsible for interannual 585 

variability in burned area (Section 3.2.2) is consistent with the findings of Randerson et al., 586 

(2012), who find less fluctuation in small fires than those detectable by MODIS (i.e. <21 ha). 587 

This is intuitive, as crop residue fires, for example, occur annually according to the logic of 588 

cropping systems rather than fluctuations in climate (Millington et al., 2022). However, this 589 

opens an intriguing possibility for fire-enabled DGVMs, which have typically struggled with 590 

interannual variability whilst also not including representation of managed human fires – the 591 

more static part of the regime (Li et al., 2019). In effect, DGVMs may have been doubly 592 

underestimating the sensitivity of burned area from unmanaged fires to interannual climate 593 

variability. This underrepresentation of the sensitivity of unmanaged fires to climate volatility 594 

may contribute to the difficulty of attributing changes in global fire regimes to global warming 595 

(Jones et al., 2022), although a lack of representation of peat fires may also be a partial 596 

explanation (Blackford et al., 2023; Li et al., 2019). 597 

By accounting for the less temporally variable and more spatially homogeneous signal of 598 

burned area due to managed fires (Figures 4 & 5), the WHAM-INFERNO integration advances 599 

understanding of the drivers of declining global burned area. Whilst interannual variability is 600 

primarily driven by changes in vegetation flammability, longer-term change in burned area 601 

highlights the important role played by the fragmentation of natural and semi-natural vegetation 602 

through road building and cropland conversion (Figure 8). This result coheres strongly with that 603 

of Andela et al., (2017) who find that interannual variability is closely linked to precipitation, 604 

whilst cropland fraction is strongly associated with declining burned area. Furthermore, WHAM-605 

INFERNO can identify the processes underlying the finding of Andela that cropland has a 606 

spatially heterogeneous impact on burned area. For example, increased burned area in croplands 607 

in South Asia and Northeastern China is due to large-scale agricultural residue burning, whilst 608 

decreased fire in savanna grasslands is due to landscape fragmentation and the subsequent 609 

reduced capacity of savanna grasslands to sustain unmanaged fires.      610 
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4.2 Model performance and limitations 612 

Both versions of the WHAM-INFERNO ensemble represent a significant improvement in 613 

the capacity of INFERNO to reproduce historical global annual burned area over the baseline 614 

model (Figure 3), and indeed over the performance of INFERNO against GFED4 presented in 615 

FIREMIP (r= 0.70; Mangeon et al., 2016; Teckentrup et al., 2019). This demonstrates the 616 

fundamental importance of a process-based approach to understanding and representing human-617 

fire interactions in global modelling. Furthermore, the improvements made in WHAM-618 

INFERNO over the baseline version allow the impact of landscape fragmentation in global 619 

burned area to be incorporated and understood (Figures 2 & 8). Indeed, the WHAM-INFERNO 620 

integration, and particular WI-EO seems to advance capacity for DGVMs to reproduce the 621 

observed decline in global burned area (Hantson et al., 2020).   622 

However, representation of landscape fragmentation, its interaction with different 623 

ecosystem types, and other anthropogenic pressures remains incomplete. One way that WHAM-624 

INFERNO represents fragmentation is through the role of roads in reducing fire size (Haas et al., 625 

2022), by applying a road density correction to fire sizes per PFT. Although useful in 626 

constraining the model pareto parameter space through restricting burned area in more densely 627 

populated areas (Supplementary Information; Figure S1) this single global function is a 628 

somewhat simplistic way of capturing such effects, resulting in a substantially larger impact on 629 

WHAM-INFERNO burned area outputs than on correlation with GFED5 (Supplementary 630 

Information; Figure S2). Hence, the road density parameterisation in WHAM-INFERNO 631 

employed to capture fragmentation effects is analogous to representations of anthropogenic 632 

‘ignitions’ as a global function of population density in previous fire-enabled DGVMs: they are 633 

both a first step with outstanding issues to be addressed. By contrast, the representation of 634 

selective logging on the flammability of fire-prone tropical forests in WHAM-INFERNO has 635 

been more successful. Although having a small impact on global burned area, including this 636 

process leads to an improved global correlation between WHAM-INFERNO outputs and GFED5 637 

(Supplementary Information; Figure S2). Representation of logging was derived from WHAM! 638 

outputs, hence illustrating the value of process-based representation of anthropogenic impacts on 639 

fire regimes, as opposed to the top-down road density parameterisation. 640 

Finally, it is notable that WI-EO performs more strongly than WI-JULES at reproducing 641 

the magnitude, spatial distribution and temporal dynamics of burned area found in GFED5. On 642 

one hand, this illustrates the benefits of a well-specified parameterisation of managed human 643 

fire: by better accounting for this aspect of the observed burned area signal, WI-EO is better able 644 

to reproduce the inter-annual variability of unmanaged fire, and its pronounced global decline. 645 

Yet the weaker performance of WI-JULES perhaps also illustrates the potential for underlying 646 

error in the representation of ecosystems within DGVMs to lead to misleading conclusions being 647 

drawn from their fire modules (Hantson et a., 2020). Continued model intercomparison projects 648 

and use of model ensembles are likely to remain the most effective means to apply the fire 649 

outputs of DGVMs (e.g. Burton et al., 2023). Overall, the large scale of anthropogenic managed 650 

fire entails that careful consideration should be given to how future socioeconomic scenarios, 651 

and their limitations, inform our projections of how global fire regimes may evolve under a 652 

warming climate (Keys et al., 2024).   653 
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5 Conclusion 655 

This paper has presented the first integration of a global behavioural model of human fire 656 

use and management with a dynamic global vegetation model. Overall, model evaluation 657 

highlights the strong benefits of coupled socio-ecological modelling approaches for reproducing 658 

the observed spatial and temporal patterns of burned area globally. Furthermore, findings 659 

demonstrate the extent and complexity of human-fire interactions. Results imply that managed 660 

anthropogenic fire accounts for as much as half of all global burned area, whilst the trends and 661 

distribution of, and relationship between, managed and unmanaged fires is highly spatially 662 

heterogeneous. Such complexities demonstrate that socio-ecological modelling is vital to 663 

advance understanding of present-day and future fire regimes. A key area for future work 664 

identified here is in developing more nuanced representation of landscape fragmentation, 665 

particularly in grazing lands in sub-Saharan Africa, which remain a central contributor to global 666 

burned area. 667 
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Key Points: 11 

• Representing managed fire in global-scale fire models has represented a substantial 12 

research challenge in fire science 13 

• We address this through the offline coupling of a global agent-based model of human fire 14 

use with a dynamic global vegetation model 15 

• The coupling improves performance of modelled burned area and allows exploration of 16 

drivers of change in global fire regimes  17 
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Abstract 18 

In the Anthropocene, humans are the largest drivers of change in vegetation fire regimes. 19 

Humans influence fire regimes both directly, by starting, managing and extinguishing fires, and 20 

also indirectly by altering fuel composition and connectivity. However, whilst vegetation fire is a 21 

coupled socio-ecological process, representation of human influences on fire regimes in global-22 

scale modelling remains limited. This places a fundamental constraint on our ability to 23 

understand how human and natural processes combine to create observed patterns of vegetation 24 

fire, and how such processes may interact under future scenarios of socioeconomic and 25 

environmental change. Here, we respond to this challenge by presenting a novel integration of 26 

two global and process-based models. The first is the Wildfire Human Agency Model 27 

(WHAM!), which draws on agent-based approaches to represent anthropogenic fire use and 28 

management. The second is JULES-INFERNO, a fire-enabled dynamic global vegetation model, 29 

which takes a physically-grounded approach to the representation of vegetation-fire dynamics. 30 

The WHAM-INFERNO combined model suggests that as much as half of all global burned area 31 

is generated by managed anthropogenic fires – typically small fires that are lit and then spread 32 

according to land user objectives. Furthermore, we demonstrate that including representation of 33 

managed anthropogenic fires in a coupled socio-ecological simulation can improve 34 

understanding of the drivers of unmanaged wildfires. Overall, findings presented here have 35 

substantial implications for understanding of present-day and future fire regimes, indicating that 36 

socio-economic change may be as important as climate change in determining the future 37 

trajectory of fire on Earth. 38 

 39 

Plain Language Summary 40 

For millennia, humans have used fire as a tool to manage land and they continue to do so across 41 

the world today. However, global-scale models which are used to understand how vegetation fire 42 

may respond to climate change have not yet robustly accounted for this. So, we built a new 43 

model that represents how humans use and manage fire globally and coupled it with a global fire 44 

model. We find that improved representation of human impacts on fire significantly improves the 45 

model and sheds new light on what is driving change in vegetation fire globally. In particular, 46 

our results suggest current global fire models may have underestimated the sensitivity of fire to 47 

climate change.  48 
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1 Introduction 50 

Vegetation fire is a coupled socio-ecological process, in which humans are the largest 51 

driver of change in its global distribution (Andela et al., 2017; Kelley et al., 2019). Perhaps the 52 

central example of this is that, whilst the planet has warmed under recent anthropogenic climate 53 

change, the area burned globally each year has decreased, particularly in savannas and grasslands 54 

(Chen et al., 2023). Drivers of this phenomenon are complex and uncertain (Zubkova et al., 55 

2023), ranging from cropland conversion (Andela et al., 2017) to changes in anthropogenic fire 56 

use (Smith et al., 2022), from increased grazing intensity (Archibald & Hempson, 2016) to the 57 

CO2 fertilisation effect (Ripley et al., 2022; Stevens et al., 2016). A lack of clarity around the 58 

drivers of declining global burned area has made attribution of changes in global fire regimes a 59 

significant challenge (Jones et al., 2022). This, in turn, limits understanding of how fire may 60 

evolve in the future, including its potential role as a positive feedback to climate change (Lasslop 61 

et al., 2019). 62 

At the heart of this uncertainty are the huge diversity of ways in which humans use and 63 

manage fire. Human fire use ranges from burning of agricultural residues in intensive land use 64 

systems (Kumar et al., 2023) to cultural uses such as religious ceremonies (Smith et al., 2022). 65 

Human fire management is similarly diverse, ranging from pro-active indigenous ‘patch-66 

burning’ methods (Laris, 2002) to industrial fire suppression. As such, fire can broadly be 67 

categorised into managed or ‘landscape’ fires - which are typically small, controlled, and can be 68 

beneficial to humans - and unmanaged wildfires, which are larger and burn more intensely 69 

(UNEP 2022). Furthermore, human fire use is itself undergoing substantial change, with shifts 70 

away from more subsistence-oriented fire uses (Smith et al., 2022) and possibly an overall 71 

decline in fire use driven by agricultural intensification (Perkins et al., 2023). Consequently, 72 

Shuman et al., (2022) argue that incorporating managed fire into models at all spatial scales is an 73 

important step towards equipping fire science for the Anthropocene. 74 

In addition to direct anthropogenic influences on fire, humans also have many indirect 75 

influences on fire regimes. For example, multiple authors have argued that anthropogenic 76 

fragmentation of vegetated landscapes is a key process shaping the evolution of global fire 77 

(Archibald et al., 2012; Driscoll et al., 2021; Harrison et al., 2021). Fragmentation can have 78 

opposite effects across ecosystems – with logging and degradation increasing fire in otherwise 79 

fire-independent forests, and reduced fuel connectivity decreasing burned area in grassland and 80 

savannah ecosystems (Rosan et al., 2022). As such, understanding the drivers of change within 81 

global fire regimes requires consideration not only of biophysical factors, but also of both direct 82 

and indirect human impacts.  83 

Global-scale fire models have struggled to reproduce the observed decline in global 84 

burned area (Hantson et al., 2020). Indeed, in the first intercomparison project of the global fire 85 

model community (FireMIP; Rabin et al., 2017), models largely disagreed about both centennial 86 

trends, and more recent decadal trends, in global burned area (Teckentrup et al., 2019). 87 

Underlying this lack of consensus have been substantial limitations in the representation of 88 

human impacts on the fire modules of dynamic global vegetation models (DGVMs; Ford et al., 89 

2021). Typically, these have been restricted to global functions relating population density to 90 

numbers of fires in satellite observations (Rabin et al., 2017). This ignores the diversity of human 91 

fire use and management, and hence limits the capability of DGVMs to advance understanding 92 

of socio-ecological dynamics of present-day fire regimes and how human and biophysical factors 93 

may interact in the future (Shuman et al., 2022).  94 
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The Wildfire Human Agency Model (WHAM!; Perkins et al., 2023) is the first formal 95 

model to represent present-day anthropogenic fire use and management at global scale. Drawing 96 

on agent-based approaches, WHAM! is a geospatial behavioural model that captures the 97 

underlying land system drivers of anthropogenic fire use and management to simulate human fire 98 

use decision-making from the bottom-up (Perkins et al., 2022). As WHAM! only represents 99 

human influences on global fire regimes, it was designed to be integrated with fire-enabled 100 

DGVMs, such as the JULES-INFERNO model (Mangeon et al., 2016), which capture the 101 

biophysical drivers of fire. Here we present the first coupling between WHAM! and JULES-102 

INFERNO, such that biophysical, direct and indirect human drivers of fire regimes are all 103 

explicitly represented in an integrated simulation for the first time.  104 

WHAM! takes its empirical basis from the Database of Anthropogenic Fire Impacts 105 

(DAFI; Perkins & Millington, 2021). DAFI is the product of a literature meta-analysis of 1809 106 

case studies from 504 academic papers, government and NGO reports (Millington et al., 2022). 107 

This dataset addresses a previous barrier to improved representation of anthropogenic fire in 108 

DGVMs: the lack of a systematic data set on which to base new parameterisations (Forkel et al., 109 

2019). Alongside development of DAFI, the 5th version of the Global Fire Emissions Database 110 

(GFED5; Chen et al., 2023) accounts for smaller fires than previous versions and therefore 111 

enables more robust evaluation of global-scale modelling of human fire interactions. Previous 112 

iterations of GFED have been based on a combination of MODIS for burned area and VIRS for 113 

active fire detection (Giglio et al., 2013). As such, they have not been able to systematically 114 

detect anthropogenic fires: DAFI suggests that >50% of anthropogenic fires are smaller than the 115 

21ha threshold above which MODIS can detect (Millington et al., 2022). GFED5 incorporates 116 

higher resolution remote sensing (principally from Landsat and Sentinel-2), and hence is much 117 

more effective at capturing small fires: global burned area in GFED5 is a 61% increase over 118 

GFED4s (Chen et al., 2023). Therefore, with DAFI providing an empirical-basis for bottom-up 119 

modelling of human-fire interactions, and GFED5 better able to detect them from space, a 120 

comprehensive and empirically-grounded assessment of the role of managed anthropogenic fire 121 

in global fire regimes is now possible. 122 

This paper presents the integration of WHAM! with JULES-INFERNO and its 123 

application to understand the spatiotemporal drivers of global fire regimes. Section 2 (Methods) 124 

focuses on describing the integration of outputs from the two models. Model calibration is 125 

described briefly in the main text with further details provided in Supplementary Information A. 126 

In Section 3 (Results), we present a brief evaluation of the outputs of the coupled model to 127 

establish its credibility, before focusing on understanding how human and biophysical factors 128 

combine to produce observed distributions of fire globally. Discussion (section 4) focuses on 129 

insights relevant to the question of declining global burned area, and in particular to 130 

understanding the relative contribution of direct human influences (starting and suppressing 131 

fires), indirect human influences (i.e. landscape fragmentation) and biophysical factors (i.e. 132 

climate and vegetation flammability).  133 

  134 
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2 Methods 135 

Our methods are presented in five sections, which respectively describe the inputs, 136 

structure, calibration, evaluation, and analysis of the WHAM-JULES-INFERNO combined 137 

model (hereafter WHAM-INFERNO).  A schematic overview of the processes represented in 138 

WHAM-INFERNO is presented in Figure 1. Calculations of the fire regime at each timestep 139 

combine three elements: 1) WHAM! outputs for managed and unmanaged anthropogenic fires 140 

and fire suppression; 2) JULES-INFERNO outputs for lightning ignitions, flammability and 141 

plant functional types; and 3) a representation of vegetation fragmentation derived from 142 

secondary data and WHAM! outputs for logging. These are each detailed further in Section 2.1. 143 

Importantly, two versions of WHAM-INFERNO are presented and assessed: WHAM-144 

INFERNO-JULES (hereafter WI-JULES) and WHAM-INFERNO-Earth Observation (hereafter 145 

WI-EO). The difference between these two versions is that in WI-JULES, WHAM! is 146 

parameterised using biophysical inputs directly from JULES, whilst in WI-EO, WHAM! takes 147 

these inputs from remote sensing. Specifically, inputs for potential evapotranspiration, net 148 

primary production and the bare soil fraction are replaced with Earth observation data. The 149 

differences between these two versions of WHAM! are described in detail in Perkins et al. (2023; 150 

Supplementary Information A). 151 

The primary purpose of the comparison of WI-JULES and WI-EO is to allow 152 

interrogation of the robustness of inferences made about the drivers of global fire regimes. For 153 

example, if trends are identified in WI-JULES but not in WI-EO, then they may be attributable to 154 

underlying model error in JULES’ representation of ecosystem dynamics. Similarly, assessing 155 

the difference in performance (as measured against GFED5) allows exploration of how far 156 

underlying error in the hydrological and vegetation outputs of DGVMs may constrain the 157 

capacity of their fire modules to reproduce remotely sensed observations (Hantson et al., 2020). 158 

Code to run and analyse WHAM-INFERNO is written in R version 4.2.2 (R Core Team 159 

2022), using the ‘raster’ library version 3.6-20 (Hijmans et al., 2023). Code and data to run and 160 

analyse outputs of both versions of WHAM-INFERNO are made available on Zenodo (Perkins 161 

et al., 2023b). 162 

2.1 Inputs to the coupled model 163 

WHAM-INFERNO takes inputs from WHAM!, JULES-INFERNO and from secondary 164 

data sources. Each of these inputs are described in turn below (Sections 2.1.1-2.1.3), and an 165 

overview is given in Table 1. WHAM! outputs are annual, whilst as per results in the sixth 166 

coupled model intercomparison project (CMIP6), JULES-INFERNO outputs are aggregated 167 

monthly means. Therefore, WHAM-INFERNO runs at a monthly timestep, with WHAM! 168 

outputs for a given year assumed to be uniformly distributed across calendar months.  169 
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Figure 1: Processes represented in the WHAM-INFERNO combined model. Solid arrows denote 170 

dynamic model calculations, whilst dashed lines denote static exchange of information. Socio-171 

economic data and biophysical inputs to WHAM! (Potential Evapotranspiration (PET), Net 172 

Primary Production (NPP) and Plant Functional Types (PFTs)) are passed offline. In WHAM-173 

INFERNO-JULES (WI-JULES) these data are taken from JULES outputs, whilst in WHAM-174 

INFERNO-Earth Observation (WI-EO) PET and NPP inputs are taken from remote sensing. 175 

Roman numerals (i-iv) correspond to numbers given in section 2.1.1 of the text. 176 

2.1.1 WHAM! inputs to the coupled model 177 

WHAM! inputs to the coupled model comprise i) managed burned area as a fraction of 178 

each cell, ii) numbers of unmanaged fires (count km-2 yr-1), iii) fire suppression intensity (0-1), 179 

and iv) the presence of selective logging as a fraction of the tree cover in each cell (see 180 

corresponding numerals in Figure 1). WHAM! inputs used were those presented in Perkins et al., 181 

(2023). 182 

2.1.2 JULES-INFERNO inputs to the coupled model 183 

INFERNO (Mangeon et al., 2016) is the fire module of the JULES dynamic global 184 

vegetation model. INFERNO calculates burned area from fires with two key components. The 185 

first is mean global burned area per fire per Plant Functional Type (PFT), a set of PFT-specific 186 

model free parameters. Model parameters for burned area per PFT were as in Burton et al. 187 

(2019). The second component of INFERNO burned area calculations is fuel flammability, 188 

which INFERNO calculates as a function of leaf carbon and soil carbon pools, temperature, 189 

relative humidity, precipitation, and soil moisture (Mangeon et al., 2016). Flammability is 190 

therefore important in capturing the impact of both climate and spatial heterogeneity in 191 

vegetation on fire regimes. Flammability is calculated per PFT in each model pixel at each 192 

timestep. JULES outputs are from the model set-up used in CMIP6 (Wiltshire et al., 2020). 193 

(iv) (iii) (i & ii) 
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2.1.3 Ancillary inputs to the coupled model from secondary data 194 

In addition to the calculations from the two models, three sets of secondary data were 195 

used as inputs: lightning ground strikes, anthropogenic land covers – cropland, pasture, 196 

rangeland and urban – and road density. Firstly, as in JULES-INFERNO standalone (Mathison et 197 

al., 2023), counts of lightning strikes were sourced from the Lightning Imaging Sensor—Optical 198 

Transient Detector (LIS/OTD, Christian et al., 2003). Secondly, as in CMIP6, anthropogenic 199 

land cover was taken from the LUH2 dataset (Hurtt et al., 2020). Finally, Haas et al. (2022) 200 

demonstrated that road density was effective in capturing vegetation fragmentation effects on fire 201 

regimes at global scale; road density data were therefore taken from the GRIP global road 202 

database (Meijer et al., 2018). 203 

 204 

Table 1: Overview of inputs to the WHAM!-INFERNO combined model. PFT is plant 205 

functional type. Data inputs for lightning strikes, road density and anthropogenic land covers 206 

were rescaled to the resolution of WHAM!-INFERNO (1.875º x 1.25º). Differing temporal 207 

resolutions of inputs were reconciled as noted in Section 2.1. 208 

 209 

Coupled model input Source  Units 

Temporal 

resolution 

Managed burned area WHAM! Cell fraction (0-1)  Annual 

Unmanaged anthropogenic fires WHAM! Fires km-2 Annual 

Fire suppression WHAM! Cell fraction (0-1) Annual 

Selective logging WHAM! Cell fraction (0-1) Annual 

Distribution of PFTs JULES-INFERNO Cell fraction (0-1)  Monthly 

Flammability per PFT JULES-INFERNO Dimensionless (0-1) Monthly 

Burned area per fire per PFT JULES-INFERNO km2 Fixed (n/a) 

Lightning – ground strikes Christian et al., (2003) strikes km-2  
Fixed (single 

daily mean) 

Road density Meijer et al., (2018) m2 km-2 Annual 

Anthropogenic land cover Hurtt et al., (2020) Cell fraction (0-1) Annual 

 210 

  211 
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2.2 WHAM-INFERNO Structure 212 

The coupled WHAM-INFERNO model is a ‘prescribed’ model coupling (sensu Robinson 213 

et al., 2018) such that whilst simulations of global burned area depend on calculations involving 214 

outputs of both models, dynamic information transfer is only one way - from WHAM! to 215 

INFERNO (see Section 2.2.1). Specifically, for each simulated year, annual burned area from 216 

managed fire is taken directly from WHAM!, with 
1

12
 assigned to each calendar month. But to 217 

calculate unmanaged fire burned area, the original JULES-INFERNO calculations are modified 218 

by the number of anthropogenic fires (km-2 yr-1) provided by WHAM!. Therefore, description of 219 

model coupling here first describes calculation of burned area from unmanaged fires (Section 220 

2.2.1). Then, as burned area from unmanaged fires is also impacted by anthropogenic landscape 221 

fragmentation, the representation of such processes is then described in Section 2.2.2. Finally, 222 

the calculation of overall burned area combining both managed and unmanaged fire is described 223 

in Section 2.2.3. 224 

2.2.1 Unmanaged fire 225 

The calculation of burned area from unmanaged fires is presented in two parts: firstly the 226 

calculation of numbers of unmanaged fires, and secondly the calculation of their respective 227 

burned area. An overview of this process is given in Figure 2. 228 

2.2.1.1 Number of fires 229 

In the original Mangeon et al. (2016) conception of INFERNO, the numbers of ignitions 230 

from lightning strikes are calculated as follows:  231 

 232 

𝐼𝐿 = 7.7 × 𝐿𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔 × (1 − 𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)     (1) 233 

where 𝐼𝐿is the number of ignitions from lightning strikes in a given model timestep, 𝐿𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔 234 

is the number of lightning strikes and 𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 is a population density-dependent 235 

suppression function. The structure of this calculation is retained with two changes: firstly, the 236 

suppression function is replaced with an empirically-defined representation of suppression 237 

intensity (Section 2.2.2); and secondly the empirically-defined linear scaling parameter (=7.7) 238 

from Mangeon et al. (2016) is replaced with a free parameter (𝜆) to allow re-calibration. A 239 

complete set of model free parameters is given in Supplementary Information Table S1. 240 
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Figure 2: Calculation of burned area from unmanaged fires in the WHAM-INFERNO combined 241 

model. 242 

  243 
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In the WHAM-INFERNO combined model, calculation of lightning fires is integrated 244 

with unmanaged anthropogenic fire numbers from WHAM! as follows: 245 

 246 

𝐹𝑖𝑟𝑒𝑠𝑈𝑀 = 𝐴𝑟𝑠𝑜𝑛 + 𝐸𝑠𝑐𝑎𝑝𝑒𝑑 + (1 − 𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛) ∗  (𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 +  𝐿𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔) (2) 247 

where 𝐹𝑖𝑟𝑒𝑠𝑈𝑀 is the annual number of unmanaged fires per grid box per year, 𝐴𝑟𝑠𝑜𝑛 and 248 

𝐸𝑠𝑐𝑎𝑝𝑒𝑑 fire numbers are the number of fires km-2 yr-1 taken from WHAM! outputs, and 249 

𝐿𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔 is the number of lightning fires calculated from mean daily ground strikes as in 250 

equation (1). Finally, 𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑, is a small globally constant rate used to capture fires that 251 

are not arson, lightning or escaped managed fires. The constant rate maintains an aspect of 252 

INFERNO, in which a uniform ‘ignition’ rate is an option. 253 

Fire suppression in the coupled model (Section 2.2.2) is applied to background and 254 

lightning fires, but not to arson and escaped fires. This is for ontological reasons, as follows. 255 

INFERNO assumes that suppressed ignitions have no burned area. However, in DAFI, the 256 

database used to develop WHAM!’s calculation of arson and escaped fires, numbers of fires are 257 

recorded, therefore by definition these have burned area > 0. As such, it is illogical to apply 258 

modelled suppression to them. By contrast, as the background rate was calculated using a 259 

constant, clearly this did not account for the impact of suppression. Similarly, lightning remains 260 

calculated based on ignitions rather than fires and hence could be suppressed before beginning to 261 

burn.  262 

2.2.1.2 Burned area per unmanaged fire 263 

After calculation of the numbers of unmanaged fires per pixel (𝐹𝑖𝑟𝑒𝑠𝑈𝑀), these are then 264 

converted to burned area. In its original conception, INFERNO calculates the number of fires as: 265 

 266 

𝐹𝑖𝑟𝑒𝑠 = 𝐼𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝑠 ∗ 𝐹𝑙𝑎𝑚𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (3) 267 

 268 

In other words, both humans and lightning are conceptualised as producing ignitions, 269 

which may or may not become fires based on the flammability of the surrounding vegetation. By 270 

contrast, because most human fires are started deliberately, WHAM! does not output numbers of 271 

ignitions, but numbers of fires directly (Figure 2). However, whilst vegetation flammability plays 272 

the ontological role of translating ignitions to fires in INFERNO, it also plays an important 273 

functional role: capturing geographic variation in the capacity and tendency of the vegetation to 274 

sustain unmanaged fire. This is because INFERNO calculates burned area per fire with a simple 275 

global mean value per Plant Functional Type. Therefore, simply removing flammability from the 276 

calculation and taking numbers of unmanaged fires from WHAM! was not possible. 277 

  278 
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The solution adopted is to multiply WHAM! unmanaged fires by INFERNO 279 

flammability, but to rescale with a free parameter. This leaves a burned area calculation from 280 

unmanaged fires of: 281 

 282 

𝐵𝐴𝑈𝑀 = 𝐹𝑖𝑟𝑒𝑠𝑈𝑀 ∗ 𝛷 ∗ ∑ 𝑃𝐹𝑇 ∗  𝐹𝑙𝑎𝑚𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑃𝐹𝑇 ∗ 𝐵𝐴𝑃𝐹𝑇

𝑃𝐹𝑇=𝑛

𝑃𝐹𝑇 =1

 (4) 283 

where 𝐵𝐴𝑈𝑀is the annual burned area from unmanaged fires as a fraction of each model pixel; 284 

𝑃𝐹𝑇 is the fraction of each model pixel (0-1) occupied by a given PFT; 𝐹𝑙𝑎𝑚𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑃𝐹𝑇is a 285 

PFT-specific dimensionless adjustment (0-1) reflecting spatiotemporal differences in the 286 

combustibility of vegetation; 𝐵𝐴𝑃𝐹𝑇 is the PFT-specific mean burned area per fire from JULES-287 

INFERNO; and 𝛷 is a scaling factor reflecting the differing model ontologies of WHAM! and 288 

JULES-INFERNO. 289 

2.2.2 Fragmentation  290 

The impact of landscape fragmentation effects was restricted to unmanaged fires; 291 

managed burned area was not altered for fragmentation effects, as these would already be 292 

implicitly accounted for in the observations captured in DAFI.  Representation of fragmentation 293 

is done in three ways. Firstly, as WHAM! accounts for anthropogenic cropland fires, to account 294 

for the role of cropland conversion in fragmenting more flammable fuels, burned area per 295 

unmanaged fire was set to 0 for cropland PFTs.  296 

Secondly, Haas et al., (2022) demonstrate the importance of road density in reducing both 297 

fire sizes and burned area. This finding was implemented in the coupled model by adjusting 298 

burned area per fire with a simple negative exponential function: 299 

 300 

𝐵𝐴𝑈𝑀_𝑓𝑟𝑎𝑔 =  𝐵𝐴𝑈𝑀 ∗ (1 −
ln(𝑅𝐷)

𝜌
) (5) 301 

where 𝐵𝐴𝑈𝑀 and 𝐵𝐴𝑈𝑀_𝑓𝑟𝑎𝑔 are annual burned area per pixel (0-1) from unmanaged fire before 302 

and after adjustment for fragmentation effects, 𝑅𝐷 is road density and 𝜌 a free parameter.  303 

By contrast, logging of wet, fire-prone forests can lead to increased fire (both numbers of 304 

fires and fire size), as gaps in the canopy lead to drying on the forest floor (Cochrane & Barber, 305 

2009; Lapola et al., 2023). A simple representation of this was implemented by increasing the 306 

mean burned area per fire for broadleaf tree PFTs given the presence of the Logging AFT in 307 

WHAM! outputs. The values of mean burned area for broadleaf tree PFTs therefore become: 308 

 309 

𝐵𝐴𝑏𝑟𝑜𝑎𝑑𝑙𝑒𝑎𝑓| 𝑙𝑜𝑔𝑔𝑖𝑛𝑔 =  𝐵𝐴𝑏𝑟𝑜𝑎𝑑𝑙𝑒𝑎𝑓 ∗  Λ(𝐿𝑜𝑔𝑔𝑖𝑛𝑔) (6) 310 

where 𝐵𝐴𝑏𝑟𝑜𝑎𝑑𝑙𝑒𝑎𝑓 is the burned area per fire for broadleaf tree PFTs;  𝐵𝐴𝑏𝑟𝑜𝑎𝑑𝑙𝑒𝑎𝑓| 𝑙𝑜𝑔𝑔𝑖𝑛𝑔 is 311 

this parameter value when adjusted for logging, 𝐿𝑜𝑔𝑔𝑖𝑛𝑔 is the fraction of tree cover in a cell 312 

occupied by WHAM’s logging AFT, and Λ a free parameter. 313 
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2.2.3 Combining managed and unmanaged fire 314 

JULES-INFERNO typically runs at a timestep of between 30-60 minutes (Clark et al., 315 

2011). This is required for the stability of model equations and has the advantage of capturing 316 

temporal fluctuations in vegetation flammability. As such, INFERNO increases the amount of 317 

bare soil in a given model pixel when a fire burns, which reduces fuel availability and the 318 

amount of area burned from subsequent fires until vegetation resprouts (Burton et al., 2019). 319 

However, as it is not meaningful to model human land use decision-making at such short 320 

durations (Arneth et al., 2014), managed fire is output at an annual timestep by WHAM!. For 321 

these reasons, calculating the combined burned area of managed and unmanaged fires requires an 322 

adjustment to account for the effect of preceding fires:  323 

 324 

𝐵𝐴𝑡𝑜𝑡 = 𝐵𝐴𝑀𝑎𝑛𝑎𝑔𝑒𝑑 + 𝐵𝐴𝑈𝑀 ∗  𝛾 (7) 325 

where 𝐵𝐴𝑀𝑎𝑛𝑎𝑔𝑒𝑑 is burned area from managed fire, 𝐵𝐴𝑡𝑜𝑡 is total burned area and 𝛾 a function 326 

representing the impact of preceding fires on unmanaged burned area. Managed fire was not 327 

adjusted for effects of antecedent fire for several reasons: firstly, because WHAM! has its own 328 

internal calculation for including fuel limitations in agent calculations; secondly, because 329 

WHAM! outputs are empirically grounded, derived from data that would capture such 330 

limitations to a degree. Thirdly, many managed anthropogenic fires are lit to reduce the intensity 331 

and spread of unmanaged fire (e.g. prescribed fire or indigenous patch burning mosaics). The 𝛾 332 

function was calculated using a linear function after a threshold:  333 

 334 

        𝛾 = {
1  𝑖𝑓 𝐵𝐴𝑈𝑀 ≤ 𝛼     

𝛽      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}       (8) 335 

where 𝛼 is a free parameter representing a threshold burned fraction of a cell below which fuel 336 

availability is not limiting, whilst 𝛽 is a further free parameter capturing the rate of decay in 337 

burned area once this threshold is reached. This functional form was chosen as it approximates 338 

the behaviour observed by Archibald et al. (2012), who explored the impact of fragmentation on 339 

burned area in flammable ecosystems.  340 

 341 

2.3 WHAM-INFERNO Calibration 342 

The model structure set out in Section 2.2 resulted in 20 free parameters (Supplementary 343 

Table S1), which formed the basis of a perturbed parameter ensemble for model calibration. A 344 

total of 10,000 perturbed parameter sets were created with a maximin latin hypercube sampling 345 

design (Carnell 2022). Using the resulting parameter sets, 10,000 model runs were conducted 346 

(i.e. one for each perturbed parameter combination) for both versions of the WHAM-INFERNO 347 

ensemble.  348 

  349 
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The outputs of each run were compared with the recent GFED5 global burned area 350 

product (Chen et al., 2023). Firstly, ‘implausible’ parameter sets were ruled using history 351 

matching with the overall magnitude of global burned area in GFED5. Remaining parameter sets 352 

were then treated as ‘not ruled out yet’ (NROY; Rougier & Beven, 2013). Secondly, as well as 353 

global burned area, Pearson’s correlation (r) was calculated with a square root transformation 354 

applied. These two metrics were those used in the FireMIP (Teckentrup et al., 2019), and hence 355 

were adopted here to define a pareto-optimal parameter space capturing the trade-offs in 356 

maximising performance against each metric. This approach allows, firstly, the evaluation of 357 

different model processes in capturing observed fire regimes of the recent past, and secondly 358 

overall evaluation of the performance of the WHAM-INFERNO ensemble. The mean outputs of 359 

WI-JULES and WI-EO in the pareto parameter space then formed the basis of further analysis. 360 

Fuller detail of model calibration is given in Supplementary Information A. 361 

 362 

2.4 WHAM-INFERNO Evaluation 363 

WHAM-INFERNO is evaluated in two broad ways, firstly by output corroboration 364 

through comparison of model outputs with remotely sensed burned area from GFED5 (as 365 

described above) and secondly by model benchmarking against a null or baseline model. The 366 

baseline model was an offline version of INFERNO (as presented in Mangeon et al., 2016). As 367 

INFERNO was originally calibrated using GFED4 data, in which burned area was 49% lower 368 

than the more recent GFED5 burned area product, a process of recalibration required. The re-369 

calibration of this INFERNO offline model (hereafter, ‘baseline model’) followed broadly the 370 

same steps as WHAM-INFERNO combined model: 10,000 parameter sets were used to define a 371 

perturbed parameter ensemble, from which both NROY and pareto-optimal parameter spaces 372 

were defined using GFED5 burned area. Detailed description of the setup of the baseline model, 373 

including how its free parameters differ from WHAM-INFERNO, is described in Supplementary 374 

Information A. 375 

 376 

2.5 Historical run setup and analysis 377 

As with the WHAM! standalone historical simulations presented in Perkins et al. (2023), 378 

WHAM-INFERNO runs span 1990-2014. These two years mark the beginning of the data 379 

recorded in the DAFI database of global anthropogenic fire impacts (i.e. 1990; Millington et al., 380 

2022) that was used to parameterise WHAM!, and the end of the CMIP6 historical period (i.e. 381 

2014), respectively. Both models were run at the spatial resolution that JULES-INFERNO 382 

adopted in the FireMIP (1.875° x 1.25°). Model outputs are evaluated during the overlapping 383 

period in WHAM-INFERNO historical runs and the GFED5 record (2001-2014); GFED5 data 384 

were aggregated to the spatial resolution of WHAM-INFERNO. 385 

Analysis of outputs focuses on understanding spatial and temporal variation in the drivers 386 

of global fire regimes. Spatial analysis focuses on understanding how managed anthropogenic 387 

fire and unmanaged fire combine to produce observed fire regimes across global regions. 388 

Similarly, temporal analysis first assessed how far managed fire and unmanaged fire contribute 389 

to interannual variability in fire regimes. This was calculated by detrending the global total 390 

burned area from GFED5 and WHAM-INFERNO model outputs before calculating the 391 

correlation and standard deviation of the residual variabilities. 392 
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Then, drivers of longer-term (decadal) change were assessed. Perkins et al. (2023) 393 

present analysis of the drivers of change in WHAM! managed fire outputs. Results pointed to 394 

land use intensification as a global dampening effect on fire use, whilst conversely land use 395 

extensification - particularly for livestock farming - led to increased fire use. Therefore, analysis 396 

of temporal trends here focuses on change in unmanaged fire in relation to the human and 397 

physical drivers represented in the coupled models. These are annual changes in numbers of 398 

unmanaged fires, road density (fragmentation; Haas et al., 2022), vegetation flammability, fire 399 

suppression and cropland conversion. The relative influence of these drivers was assessed at a 400 

pixel-level firstly by comparing the Kendall’s Tau correlations of their interannual changes with 401 

interannual change in unmanaged burned area (for each of WI-JULES and WI-EO). Secondly, 402 

using these same independent variables, linear models of pixel-level change in unmanaged 403 

burned area were fit for both interannual and overall change between 2001-2014. T-values of the 404 

independent variables were used to assess the relative strength of their relationships to changes in 405 

unmanaged burned area. 406 

 407 

3 Results 408 

3.1 Model evaluation 409 

Measured by correlation with the GFED5 record during 2001-2014, both WI-JULES and 410 

WI-EO perform significantly better than the baseline model (Z Tests; both p < 0.001, n = 10, 14). 411 

Specifically, the mean correlation of the pareto-optimal parameter space is 0.81 for WI-EO and 412 

0.76 for WI-JULES, compared with 0.58 for the baseline model (Figure 3). This result also 413 

compares favourably with INFERNO v1.0 presented in the FireMIP, in which INFERNO had a 414 

correlation of 0.70 against GFEDv4 and 0.64 against GFEDv4s (Teckentrup et al., 2019). As 415 

such, inclusion of WHAM! seemingly improves INFERNO both in an absolute sense, when 416 

compared to GFED5, but also relatively against INFERNO’s performance based on the 417 

observational data available at the time of its original development. 418 

Furthermore, almost 70% of the baseline model ensemble’s runs are ruled out, primarily 419 

due to simulating burned area too low to achieve acceptable coherence with the GFED5 record 420 

(mean of ruled out runs was 276 Mha vs 802 Mha in GFED5). By contrast, only 182 of WI-EO 421 

and 124 of WI-JULES runs are ruled out. In the pareto parameter space, WI-EO has a slight 422 

overprediction bias (+11 Mha) and WI-JULES has a slight underprediction bias (-10 Mha), 423 

compared to a bias of -52 Mha in the baseline model. Overall, we conclude that the WHAM 424 

integration improves the structural capacity of INFERNO to capture the magnitude and 425 

distribution of global fire regimes.  426 

  427 
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 428 

Figure 3: Outputs of WHAM-INFERNO in comparison with a baseline model (INFERNO_V1): 429 

a) simulated global burned area and b) Pearson correlation with GFED5. For burned area, the 430 

baseline model has many runs ruled out for burned area being too low in comparison with 431 

GFED5, whilst in both versions of WHAM-INFERNO a smaller number of runs are ruled out. 432 

The two versions of WHAM-INFERNO both produce higher correlations than the baseline 433 

model across all three tranches of parameter sets (ruled out, NROY and pareto-optimal). NROY 434 

refers to “not ruled out yet”. 435 

  436 

a) 
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3.2 Analysis of WHAM-INFERNO outputs 437 

3.2.1 Spatial Analysis 438 

Across the pareto parameter runs, simulated burned area in both coupled models is split 439 

approximately evenly between managed and unmanaged fires. Over the historical period (1990-440 

2014) in WI-JULES a mean of 442 Mha (54%) comes from unmanaged fires and 379 Mha 441 

(46%) from managed fires. Similarly, in WI-EO, 405 Mha (47%) comes from unmanaged fires, 442 

and 453 Mha (53%) comes from managed fires.  443 

Furthermore, there is substantial heterogeneity in the spatial location of burned area due 444 

to managed versus unmanaged fires (Figure 4). For example, across 1990-2014 at the level of 445 

World Bank regions, in sub-Saharan Africa WI-JULES suggests 65% of mean annual burned 446 

area is from unmanaged fires (56% in WHAM-EO; Figure 5). Conversely, in South Asia (which 447 

includes India), WI-JULES suggests just 28% of burned area is from unmanaged fires (19% in 448 

WI-EO; Figure 5). The predominance of managed fire is driven by large-scale crop-residue 449 

burning in the region (Hall et al., 2023; Perkins et al., 2023). Furthermore, there is also regional 450 

heterogeneity in the trends in managed and unmanaged fire. For example, in both WI-JULES and 451 

WI-EO, managed fire is increasing in South Asia, whilst decreasing in Latin America and the 452 

Caribbean (Figure 5).  453 

Perhaps the two most notable differences in sources of burned area between the two 454 

models’ (WI-JULES and WI-EO) simulations come in Latin America & the Caribbean and sub-455 

Saharan Africa. The difference in Latin America is that WI-JULES simulates higher unmanaged 456 

burned area than WI-EO (81 Mha vs 56 Mha) particularly in the Caatinga region of Brazil 457 

(Figure 6), which is due to a known anomaly in JULES’ hydrological cycle in the region 458 

(Perkins et al., 2023). By contrast, in sub-Saharan Africa WI-EO simulates higher unmanaged 459 

burned area than WI-JULES (209 Mha vs 132 Mha), attributable to the more homogeneous 460 

spatial distribution in WI-EO outputs – particularly in the Guinean Savanna – compared to the 461 

comparatively heterogeneous WI-JULES outputs (Figures 4 & 6). 462 

  463 
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Figure 4: Distribution of managed and unmanaged fire in WHAM-INFERNO-Earth Observation 464 

(WI-EO) and WHAM-INFERNO-JULES (WI-JULES) shown as the burned fraction of each 465 

pixel. The arithmetic mean of model outputs was taken across the historical model run period 466 

(1990-2014). Principle differences between the two versions of WHAM-INFERNO are seen in 467 

the managed fire outputs of WI-EO in sub-Saharan Africa, which have a more homogeneous 468 

distribution than WI-JULES’s more sporadic spatial pattern. Other anomalies between models 469 

are seen in the Caatinga region of Brazil and in the Northern Territories of Australia.  470 

  471 
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Figure 5: Trends in managed and unmanaged fire across the World Bank global regions. The 472 

largest gap between managed and unmanaged fire is seen in sub-Saharan Africa, where 473 

unmanaged fire dominates. Conversely, South Asia (including India) is dominated by managed 474 

fires, particularly crop residue fires (as shown in Perkins et al., 2023). Key: Eu. & Central Asia = 475 

Europe & Central Asia; Lat. Am & Car = Latin America & Caribbean; MENA = Middle East 476 

and North Africa. 477 

  478 
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Figure 6: Burned area in GFED5, WI-EO and WI-JULES as a fraction of each pixel. Values 479 

shown are the mean of the period (2001-2014). Three clear anomalies between models and 480 

GFED5 are present: firstly in the Caatinga region of Brazil, secondly in southern Russia, and 481 

thirdly in India. This latter discrepancy is due to differences in burned area from crop residue 482 

burning between WHAM! and GFED5 (Perkins et al., 2023). 483 

  484 
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3.2.2 Temporal analysis 485 

Across the overlapping period with GFED5 (2001-2014), WI-EO global burned area 486 

declines by 137 Mha, WI-JULES burned area declines by 52 Mha, and the baseline model 487 

declines by 30Mha. This compares with a decline of 193 Mha in GFED5. In WI-EO, this global 488 

decline is primarily attributable to the trend in sub-Saharan Africa (Figure 7), where burned area 489 

declines by 61 Mha (compared to 112 Mha in GFED5). By contrast, in WI-JULES burned area 490 

in sub-Saharan Africa declines by just 9 Mha (Figure 7). This lack of decline in sub-Saharan 491 

Africa is in part due to managed fires, which increase by 10 Mha as crop residue burning 492 

increases in the region in this model. A similar trend is seen in sub-Saharan African crop-residue 493 

burning in WI-EO, but this is offset by a steeper decline in pasture fires (Perkins et al., 2023). 494 

Further, WI-JULES seemingly overestimates the rate of declining burned area in Latin America 495 

& Caribbean (-42 Mha; GFED5 -18 Mha), whilst WI-EO captures a similar rate of decline to 496 

GFED5 (-20 Mha). As such, WI-EO is best able to reproduce the observed decline in burned 497 

area, followed by WI-JULES, and then the baseline model. The drivers of this modelled decline 498 

are explored in detail below. 499 

Globally, both WI-JULES and WI-EO underestimate the magnitude of interannual 500 

variability (IAV) in burned area. The standard deviation of detrended model outputs (i.e. with 501 

mean = 0) was 9.5Mha in WI-EO and 9.7Mha in WI-JULES. However, the correlation of the 502 

detrended outputs with GFED5 was 0.81 in WI-EO and 0.41 in WI-JULES: indicating that 503 

although the magnitude of IAV is underestimated in both models, WI-EO is substantially better 504 

at capturing the direction of fluctuations in burned area. IAV in both model is driven by 505 

unmanaged fire. Detrended global outputs for unmanaged fire correlate with detrended global 506 

burned area in GFED5 (WI-EO: r = 0.74, WI-JULES: r = 0.53); however there is no meaningful 507 

relationship for IAV in GFED5 and detrended outputs for managed fire (r <= 0.11).  508 

Based on the variable with the strongest Kendall’s Tau correlation in each pixel, inter-509 

annual change in burned area due to unmanaged fire is most strongly associated with 510 

flammability (Figure 8). In WI-JULES, flammability has the highest Tau value across 9,644 Mha 511 

(~70% of global land area; Table 2), whilst cropland conversion, which has the strongest 512 

relationship over the second largest area, has the highest Tau value across 1,037 Mha (~8% of 513 

global land area). A similar trend is seen in WI-EO, where flammability has the highest Tau 514 

value across 9,414 Mha and cropland conversion has the highest Tau value across 1,052 Mha.  515 

However, whilst change in burned area is most closely correlated with flammability over 516 

the largest area, these areas are seemingly weighted towards model pixels with less overall 517 

change in burned area. For both WI-EO and WI-JULES, in linear regression models of 518 

interannual variability absolute t-values for flammability are more than twice as large as any 519 

other variable (Table 2). By contrast, for the overall change over 2001-2014, t-values are closer 520 

between variables, with ignitions having the largest absolute t-values for both models. Similarly, 521 

variables with a negative impact on burned area have a larger impact on the overall 2001-2014 522 

change than interannual variation (Table 2). Road density seemingly has the largest impact on 523 

declining burned area (t-values: -21.7 & -19.3), followed by cropland conversion (t-values: -16.1 524 

& -19.1) respectively. Fire suppression has only a marginal influence and indeed shows little 525 

relationship with the long-term trend in WI-JULES (t = 0.433). 526 

  527 
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 528 

Figure 7: Burned area by World Bank region in GFED5 and the two versions of the WHAM-529 

INFERNO model ensemble (WHAM-EO, WI-JULES). WI-EO is best able to reproduce the 530 

observed decline in burned area in sub-Saharan Africa, with WI-JULES showing an essentially 531 

static burned area. Conversely, both WI-EO and WI-JULES overestimate burned area in Latin 532 

America, though the trend of declining burned area is captured strongly. Both models show 533 

generally poor performance in Europe & Central Asia, showing limited discernible trend. Model 534 

outputs for WI-EO and WI-JULES are the sum of the managed and unmanaged burned area 535 

presented in Figure 5. Key: Lat. Am & Car = Latin America & Caribbean; MENA = Middle East 536 

and North Africa.   537 
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Figure 8: Relationship of changes in unmanaged burned area to independent variables. a) 538 

Variable with highest absolute correlation (τ) with change in burned area from unmanaged fire; 539 

values were filtered for pixels with at least 0.1% of the land area burned. b) Change in burned 540 

area between 2001-2014. Although flammability is most closely correlated with changes in 541 

burned area across the largest geographic space, the influence of other factors – particularly 542 

cropland conversion – is clustered towards pixels with the largest changes in burned area. A non-543 

linear stretch was applied to the colour scale in b) to show differences between smaller absolute 544 

values.  545 

a) 
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Table 2: Relationship of changes in burned area from unmanaged fires to explanatory variables. 546 

Area gives the total land surface over which each variable was most strongly correlated with 547 

changing burned area. T-values are from linear models of change in burned area to change in the 548 

independent variable; IAV (interannual variation) is for linear models of year-on-year change 549 

between 2001-2014, whilst trend denotes overall change during the same period. 550 

 551 

 WI-EO 

(area; 

Mha) 

WI-EO 

(t-value; 

IAV) 

WI-EO  

(t-value; 

trend) 

WI-JULES 

(area; 

Mha) 

WI-JULES 

(t-value; 

IAV) 

WI-JULES 

(t-value; 

trend) 

Cropland 

conversion 

1052 -10.4 -16.1 1037 -13.8 -19.1 

Fire suppression 244 -2.78 3.26 377 -1.9 0.43 

Flammability 9414 162.3 24.4 9644 267.2 46.0 

Ignitions 736 70.61 25.7 522 87.5 46.6 

Road density 206 -5.1 -21.7 209 -8.0 -19.3 

 552 

4 Discussion 553 

This paper has presented the first integration of a global-scale behavioural model of 554 

human fire use and management coupled with a dynamic global vegetation model. Discussion 555 

focuses on advances made for global understanding of human drivers of vegetation fire regimes 556 

through this technical advance, before addressing its limitations and possible future directions for 557 

development of WHAM-INFERNO.  558 

4.1 WHAM-INFERNO: Insights for global-human fire interactions 559 

The WHAM-INFERNO model integration reveals both the extent and the diversity of the 560 

socio-ecological dynamics of global fire regimes. In pareto model runs of WHAM-INFERNO, 561 

managed and unmanaged fire contribute approximately equal amounts of global burned area. 562 

Furthermore, the spatiotemporal distribution of anthropogenic managed fire, and its relationship 563 

with unmanaged (‘wild’) fires differs substantially across space. Whilst anthropogenic fire use, 564 

primarily for crop residue burning, dominates the South Asian World Bank Region, in sub-565 

Saharan Africa more than half of burned area is from unmanaged fires (Figure 5). Such 566 

differences have profound implications for understanding of global fire regimes and illustrates 567 

that effective fire management policies and climate adaptation strategies must be based on 568 

detailed understanding of how human livelihoods and associated fire use systems contribute to 569 

existing fire regimes. At the very least, the large extent of managed anthropogenic fire around 570 

the world implied by these results is demonstration of the inadequacy of model approaches 571 

seeking to represent direct anthropogenic influence on fire regimes as simple functions of 572 

population density (Rabin et al., 2017). 573 
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Furthermore, combined global-scale simulations of both managed and unmanaged fire 575 

presented here add weight to the finding from Earth observation that small fires have declined 576 

less than larger ones (Chen et al., 2023). Managed fire declines by just 35% and 52% of the rate 577 

of unmanaged fire in WI-JULES and WI-EO respectively. Data from empirical studies indicates 578 

that the two largest sources of burned area from managed human fires – crop residue burning and 579 

pasture management – have mean sizes of 5 ha and 34 ha respectively (Millington et al., 2022), 580 

whilst in JULES-INFERNO mean burned area per fire for unmanaged fires varies from 170 ha to 581 

320 ha. This result seems to give weight to findings of Smith et al., (2022) and Perkins et al., 582 

(2023), that managed fire is changing in line with socio-ecological forces that are distinct from 583 

those driving change in unmanaged fire. 584 

In addition, the finding that unmanaged fire is primarily responsible for interannual 585 

variability in burned area (Section 3.2.2) is consistent with the findings of Randerson et al., 586 

(2012), who find less fluctuation in small fires than those detectable by MODIS (i.e. <21 ha). 587 

This is intuitive, as crop residue fires, for example, occur annually according to the logic of 588 

cropping systems rather than fluctuations in climate (Millington et al., 2022). However, this 589 

opens an intriguing possibility for fire-enabled DGVMs, which have typically struggled with 590 

interannual variability whilst also not including representation of managed human fires – the 591 

more static part of the regime (Li et al., 2019). In effect, DGVMs may have been doubly 592 

underestimating the sensitivity of burned area from unmanaged fires to interannual climate 593 

variability. This underrepresentation of the sensitivity of unmanaged fires to climate volatility 594 

may contribute to the difficulty of attributing changes in global fire regimes to global warming 595 

(Jones et al., 2022), although a lack of representation of peat fires may also be a partial 596 

explanation (Blackford et al., 2023; Li et al., 2019). 597 

By accounting for the less temporally variable and more spatially homogeneous signal of 598 

burned area due to managed fires (Figures 4 & 5), the WHAM-INFERNO integration advances 599 

understanding of the drivers of declining global burned area. Whilst interannual variability is 600 

primarily driven by changes in vegetation flammability, longer-term change in burned area 601 

highlights the important role played by the fragmentation of natural and semi-natural vegetation 602 

through road building and cropland conversion (Figure 8). This result coheres strongly with that 603 

of Andela et al., (2017) who find that interannual variability is closely linked to precipitation, 604 

whilst cropland fraction is strongly associated with declining burned area. Furthermore, WHAM-605 

INFERNO can identify the processes underlying the finding of Andela that cropland has a 606 

spatially heterogeneous impact on burned area. For example, increased burned area in croplands 607 

in South Asia and Northeastern China is due to large-scale agricultural residue burning, whilst 608 

decreased fire in savanna grasslands is due to landscape fragmentation and the subsequent 609 

reduced capacity of savanna grasslands to sustain unmanaged fires.      610 
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4.2 Model performance and limitations 612 

Both versions of the WHAM-INFERNO ensemble represent a significant improvement in 613 

the capacity of INFERNO to reproduce historical global annual burned area over the baseline 614 

model (Figure 3), and indeed over the performance of INFERNO against GFED4 presented in 615 

FIREMIP (r= 0.70; Mangeon et al., 2016; Teckentrup et al., 2019). This demonstrates the 616 

fundamental importance of a process-based approach to understanding and representing human-617 

fire interactions in global modelling. Furthermore, the improvements made in WHAM-618 

INFERNO over the baseline version allow the impact of landscape fragmentation in global 619 

burned area to be incorporated and understood (Figures 2 & 8). Indeed, the WHAM-INFERNO 620 

integration, and particular WI-EO seems to advance capacity for DGVMs to reproduce the 621 

observed decline in global burned area (Hantson et al., 2020).   622 

However, representation of landscape fragmentation, its interaction with different 623 

ecosystem types, and other anthropogenic pressures remains incomplete. One way that WHAM-624 

INFERNO represents fragmentation is through the role of roads in reducing fire size (Haas et al., 625 

2022), by applying a road density correction to fire sizes per PFT. Although useful in 626 

constraining the model pareto parameter space through restricting burned area in more densely 627 

populated areas (Supplementary Information; Figure S1) this single global function is a 628 

somewhat simplistic way of capturing such effects, resulting in a substantially larger impact on 629 

WHAM-INFERNO burned area outputs than on correlation with GFED5 (Supplementary 630 

Information; Figure S2). Hence, the road density parameterisation in WHAM-INFERNO 631 

employed to capture fragmentation effects is analogous to representations of anthropogenic 632 

‘ignitions’ as a global function of population density in previous fire-enabled DGVMs: they are 633 

both a first step with outstanding issues to be addressed. By contrast, the representation of 634 

selective logging on the flammability of fire-prone tropical forests in WHAM-INFERNO has 635 

been more successful. Although having a small impact on global burned area, including this 636 

process leads to an improved global correlation between WHAM-INFERNO outputs and GFED5 637 

(Supplementary Information; Figure S2). Representation of logging was derived from WHAM! 638 

outputs, hence illustrating the value of process-based representation of anthropogenic impacts on 639 

fire regimes, as opposed to the top-down road density parameterisation. 640 

Finally, it is notable that WI-EO performs more strongly than WI-JULES at reproducing 641 

the magnitude, spatial distribution and temporal dynamics of burned area found in GFED5. On 642 

one hand, this illustrates the benefits of a well-specified parameterisation of managed human 643 

fire: by better accounting for this aspect of the observed burned area signal, WI-EO is better able 644 

to reproduce the inter-annual variability of unmanaged fire, and its pronounced global decline. 645 

Yet the weaker performance of WI-JULES perhaps also illustrates the potential for underlying 646 

error in the representation of ecosystems within DGVMs to lead to misleading conclusions being 647 

drawn from their fire modules (Hantson et a., 2020). Continued model intercomparison projects 648 

and use of model ensembles are likely to remain the most effective means to apply the fire 649 

outputs of DGVMs (e.g. Burton et al., 2023). Overall, the large scale of anthropogenic managed 650 

fire entails that careful consideration should be given to how future socioeconomic scenarios, 651 

and their limitations, inform our projections of how global fire regimes may evolve under a 652 

warming climate (Keys et al., 2024).   653 
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5 Conclusion 655 

This paper has presented the first integration of a global behavioural model of human fire 656 

use and management with a dynamic global vegetation model. Overall, model evaluation 657 

highlights the strong benefits of coupled socio-ecological modelling approaches for reproducing 658 

the observed spatial and temporal patterns of burned area globally. Furthermore, findings 659 

demonstrate the extent and complexity of human-fire interactions. Results imply that managed 660 

anthropogenic fire accounts for as much as half of all global burned area, whilst the trends and 661 

distribution of, and relationship between, managed and unmanaged fires is highly spatially 662 

heterogeneous. Such complexities demonstrate that socio-ecological modelling is vital to 663 

advance understanding of present-day and future fire regimes. A key area for future work 664 

identified here is in developing more nuanced representation of landscape fragmentation, 665 

particularly in grazing lands in sub-Saharan Africa, which remain a central contributor to global 666 

burned area. 667 
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Introduction  

This supplementary information provides further context to the calibration of the WHAM-

INFERNO model ensemble presented in the main text. Specifically, it describes the set-up of 

the perturbed parameter ensembles used to define model free parameters and how these 

parameter values relate to results presented in the main text. It then briefly describes the 

setup of a baseline model used to benchmark performance of WHAM-INFERNO, before 

showing how free parameters vary across parameter spaces. 

Text S1. 

1. Definition of perturbed parameter ensemble 

Four categories of model parameter were included in the perturbed ensemble. These are 

firstly parameters whose values were defined heuristically in the first version of INFERNO 

(Mangeon et al., 2016). These comprise the burned area per fire for each plant functional 

type in the model (seven parameters; Table SI1). Burned area for cropland PFTs was set to 0, 

as WHAM! represents anthropogenic cropland burning. The second set of parameters 

included were those that were required to integrate WHAM! with JULES-INFERNO either 

structurally or ontologically. These are the 𝛷 parameter for accounting for differences in 

conceptualisation of anthropogenic ignitions (INFERNO) vs anthropogenic fires (WHAM!) 

and parameters accounting for previous fires within a given calendar year (α, β).  

Thirdly, parameters are included for aspects of WHAM! for which no initial external 

verification was possible, as presented in Perkins et al., (2023). For example, whilst 

assessment of WHAM! crop residue burning outputs was possible with the new GFED5 crop 

fires algorithm (Hall et al., 2023), assessment of managed pasture fires and managed 

vegetation fires (comprising crop field preparation, hunting and gathering, pyrome 

management and vegetation clearance) was not possible with currently available remote 

sensing data products or other data sources. As such, two free parameters were added 

reflecting the unexplored uncertainty in these WHAM outputs. No free parameter was added 

to the rate of escaped fires (Main text, section 2.2.1) because the rate of escaped fires is 

implicitly changed with the rate of managed burned area and altering both processes would 

have led to implausibly high rates of escaped fire in some model parameter sets. Other 

WHAM! outputs to which free parameters were applied were the rates of background and 

arson fires, as well as fire suppression.   
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Fourthly, and finally, free parameters were included in the perturbed parameter ensemble 

relevant to representations of landscape fragmentations described in the main text. These 

are a scaling parameter for the impact of road density in reducing fire size (ρ) and for the 

impact of logging in increasing flammability of tropical forests (Λ). 

 

2. Setup of the perturbed parameter ensembles 

2.1 Defining and sampling parameter distributions 

Having defined the variables to be included in the perturbed parameter ensembles, 

probability distributions for their values were defined. Given the large degree of uncertainty 

surrounding initial values for parameters, these were set as uniform distributions with upper 

and lower bounds +- 50% of the initial value. Where possible, parameter values were taken 

from previously defined estimates – as such parameter values for burned area per fire per 

PFT were taken from Burton et al., (2019). Whilst in the INFERNO baseline model, initial 

parameter values for anthropogenic and lightning ignitions were those given in Mangeon et 

al. (2016). Furthermore, WHAM! parameters for fire suppression could be defined on a 

narrower range than other parameter values, as the impact of limited and moderate fire 

suppression must ontologically be less than that of intensive fire suppression (see Perkins et 

al., 2023 for details). Similarly, it was not logically consistent for the role of logging to reduce 

flammability of tropical forests, and hence values <1 were excluded. Elsewhere, parameters 

for WHAM! were defined heuristically. For example, the initial value of the road density 

scaling parameter (𝜌) was the global maximum of its own natural logarithm; whilst the initial 

value of the fire-ignitions scaling parameter (𝛷) was defined from the reciprocal of the 

global mean flammability in JULES-INFERNO. 

Having defined sampling distributions for model parameters, a Latin Hypercube sampling 

strategy was taken using a minmax sampling design (Carnell 2022). Such a sampling design 

allows for robust exploration of the model parameter space in a computationally efficient 

way (Florian, 1992). 10,000 parameter sets were defined for WHAM-INFERNO and INFERNO 

offline, and model runs were conducted for each parameter set.  
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2.2 Assessing model outputs from the perturbed ensemble 

Model outputs were assessed in two ways. Firstly, a process of history matching was 

conducted to remove implausible parameter sets from consideration. Secondly, a pareto-

optimal parameter space was defined, which then became the basis of analysis presented in 

the main text.  

2.2.1 History matching for implausibility assessment  

History matching is the process of constraining the parameter space of a model using 

observations (Craig et al., 1997). A common method of constraining model parameter spaces 

is to ‘rule out’ implausible parameter combinations which result in model outputs that are 

inconsistent with observations (Williamson et al., 2013). Parameter sets that satisfy the 

implausibility criteria are deemed ‘not yet ruled out’, whilst in the event an implausibility 

assessment returns a null parameter space, the model is assessed to be structurally 

unsuitable (Williamson et al., 2015). Model implausibility, the measure used to rule out 

parameter sets, is denoted as I and is calculated as: 

      𝐼 = |
𝑦𝑚𝑜𝑑 −𝑦𝑜𝑏𝑠

√(𝜎𝑚𝑜𝑑
2 + 𝜎𝑜𝑏𝑠

2)
|         (𝑆1) 

where 𝑦𝑚𝑜𝑑and 𝑦𝑜𝑏𝑠 are the model outputs and observations respectively; and 𝜎𝑚𝑜𝑑 and 𝜎𝑜𝑏𝑠 

are the model and observational error, respectively. Applying the 𝐼 calculation on a pixel-by-

pixel basis requires complicated assessment of spatial and temporal autocorrelations, given 

the non-independence of observations and model outputs (Rougier and Beven, 2013). 

Furthermore, the goal of implausibility assessment here is not to optimise model parameter 

values, but rather to provide an initial filtering of parameter space. Therefore, the mean 

global burned area across 2001-2014 is used as the basis of the implausibility calculation.  

As such, observational error can be measured directly and here has a value of 106.72 – the 

product of the mean annual burned area in the GFED5 product (802.5Mha) and the Dice 

similarity coefficient of Sentinel-2 burned area observations (0.133). The Dice similarity 

coefficient (also known as the F1-Score) is used as a measure of true positive detection 

accuracy in image processing (Lin et al., 2020). The resulting value (106.72Mha) is a 

conservative estimate of observational error: GFED5, against which model evaluation was 

conducted, does not use Sentinel-2 burned area directly, but rather scales MODIS burned 

area observations to Sentinel-2 and Landsat outputs using empirical relationships (Chen et 
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al., 2023). Given this, the GFED5 product does not report observational error directly, and so 

the underlying Sentinel-2 error is used (Roteta et al., 2019).  

Model error, also referred to as structural error, is used to define acceptable divergence from 

observations, and therefore must be set by the modeller in relation to the domain and 

research question (Kennedy & O’Hagan 2001; McNeall et al., 2016). Here, we adopt the error 

in the ensemble of models from the first Fire Model Intercomparison Project (FIREMIP; 

Teckentrup et al., 2019) – specifically the median disagreement between the mean burned 

area of the model ensemble and the three remote sensing products used for evaluation – 

68.33Mha. The median was chosen to down-weight outlier outputs from the FIREMIP 

ensemble. The result was a denominator value for (6.9) of 126.72 - i.e. √(68.332 + 106.722). 

Adopting a commonly-used and theoretically-robust threshold (Pukelsheim, 1994), 

parameter sets that produced an I value greater than 3 (equivalent to +-380.2Mha) were 

taken as implausible, with remaining parameter combinations taken as not ruled out yet 

(NROY). 

2.2.2 Defining a pareto optimal parameter space 

From the set of parameters ‘not ruled-out yet’ by the implausibility assessment (hereafter 

NROY), the pareto optimal parameter set was defined. Intuitively, pareto optimality refers to 

a trade-off space between multiple criteria in which one criteria cannot be further increased 

without reducing performance of another (Gupta et al., 1998). Or, more formally, a parameter 

space in which alternative sets are all ‘non-dominated’ against a set of objective functions 

(Lu et al., 2011). A parameter set 𝑥1 ∈ 𝑋 is considered to dominate another parameter set 

𝑥2 ∈ 𝑋 if for a vector of objective functions 𝑦⃗ of length 𝐿: 

∀𝑖 ∈ {1, 2 … 𝐿} 

𝑦𝑖(𝑥1) ≥  𝑦𝑖(𝑥2)  (𝑆2) 

Hence in a pareto parameter space, no parameter sets would satisfy the inequality in (𝑆2).  

Here, the two criteria chosen for assessing model performance were those used in the recent 

FIREMIP: global burned area and Pearson’s r (Teckentrup et al., 2019). The global burned 

area metric used was simply the difference in Mha between WHAM!-INFERNO outputs and 

GFED5 global burned area (802.5Mha). For Pearson’s r, as in Teckentrup et al., (2019), a 

square root transformation was applied to both GFED5 burned area and WHAM!-INFERNO 

outputs before calculating correlations. Therefore, model outputs for NROY parameter sets 
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outside of the pareto parameter space contained more disagreement with observations (as 

measured by either global burned area or their pixel-based correlation) than those within the 

pareto parameter space.  

 

2.2.3 Understanding the pareto optimal parameter space 

In order to understand how model parameters were contributing to defining the pareto 

parameter spaces, Kruskall-Wallis tests were used to assess which parameters differed 

significantly across NROY and pareto optimal parameter sets. Significant differences were set 

as those with p-values <0.0025: 0.05 with a Bonferroni correction applied to reflecting 

multiple testing across 20 parameters. Furthermore, to understand if there were parameters 

with small impacts on global burned area, but nonetheless meaningful impacts in capturing 

observed patterns of fire, correlations between parameter values and the correlation of 

outputs with GFED5 were calculated, and divided by the correlation of parameter values to 

the amplitude of global burned area:  

𝑐𝑜𝑟_𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑖 =
𝑐𝑜𝑟_𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑖

𝑐𝑜𝑟_𝐵𝐴𝑖
   (𝑆3) 

where 𝑐𝑜𝑟_𝐵𝐴𝑖is the correlation coefficient between the values of parameter i and the 

amplitude of burned area in model outputs; 𝑐𝑜𝑟_𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑖 is the correlation coefficient of 

the values of parameter i and the model correlation with GFED5, and 𝑐𝑜𝑟_𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑖 is a 

measure of how far a given parameter impacts model performance relative to its overall 

impact on model outputs. This ensured that identification of the role of model parameters in 

defining the pareto parameter space was not merely an exercise in understanding sensitivity 

of the model structure, but also which processes may be most pertinent to capturing the 

distribution of global fire regimes.  
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2.3 Setup and evaluation of INFERNO baseline model 

INFERNO v1.0 (Mangeon et al., 2016) calculates burned area as: 

      𝐵𝐴𝐼𝑁𝐹𝐸𝑅𝑁𝑂 = 𝐼𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝑠 ∗ 𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ∗ 𝐹𝑙𝑎𝑚𝑚𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝐵𝐴̂𝑃𝐹𝑇  (𝑆4) 

Therefore, flammability and burned area per PFT (𝐵𝐴̂𝑃𝐹𝑇) were taken from the same sources 

as WHAM-INFERNO (Main text; Table 1). As in the WHAM-INFERNO integration, lightning 

ignitions were calculated following Mangeon et al., (2016) as:  

                𝐼𝐿 = 7.7 × 𝐿𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔 × (1 − 𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)                             (𝑆5) 

where 𝐼𝐿is the number of ignitions from lightning strikes in a given model timestep, 

𝐿𝑖𝑔ℎ𝑡𝑛𝑖𝑛𝑔 is the number of lightning strikes and 𝑆𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 is a population density 

dependent suppression function. Similarly, as in Mangeon et al., (2016), anthropogenic 

ignitions and suppression were calculated respectively as: 

               𝐼𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝑠𝐴 = (6.8 ∗ 𝑃𝐷−0.6) ∗ (0.03 ∗ 𝑃𝐷)                                 (𝑆6) 

        𝑆𝑢𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 1 − 7.7 ∗ (0.05 + 0.9 ∗ 𝑒−0.05∗𝑃𝐷)                             (𝑆7) 

where 𝐼𝑔𝑛𝑖𝑡𝑖𝑜𝑛𝑠𝐴are anthropogenic ignitions, and PD is population density. Two scaling 

factors {6.8, 7.7} in these equations were first defined by Pechony and Shindell (2009) to 

calibrate population density with observed fire counts in GFED v4. Therefore, these were 

replaced by free parameters to enable recalibration with the new GFED5 (Table S2).     

As in WHAM-INFERNO, equations in the main text (7) and (8) were used to account for prior 

fires restricting the connectivity and availability of vegetation. Outputs from the baseline 

model were analysed in the same way to the WHAM-INFERNO ensemble – firstly by ruling 

out implausible parameter combinations, and secondly by defining a pareto optimal 

parameter space. The performance of the baseline model(s) and the two versions of WHAM-

INFERNO in this pareto space was then compared.  

The parameters in the perturbed ensemble for the baseline version of INFERNO – INFERNO 

v1.0 recalibrated to GFED5 – were as follows (Table S2). Parameters from the WHAM-

INFERNO ensemble that related to uncertain aspects of WHAM! outputs and vegetation 

fragmentation were removed. These were replaced with two additional parameters, which 

allowed recalibration of INFERNO fire counts to GFED5 (𝜎1, 𝜆, 𝑆𝑢𝑝). The original values of 

these parameters were derived from calibrating lightning strikes and human population 
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density to fire counts observed in GFED v4. As such, with much greater capacity to detect 

anthropogenic fires in GFED5, these each need recalibration. Further, as WHAM! crop fires 

did not contribute to the baseline model, burned area parameters per PFT were reintroduced 

for cropland PFTs.  

 

3. Characteristics of parameter spaces in the perturbed parameter 

ensembles 

Based-on Wilcox tests between pareto and other parameter sets, across the three model 

setups there are five parameters with significantly different values in the pareto sets (Figure 

S1). For both WHAM-INFERNO and WHAM-EO, road density shows a strong difference, with 

pareto parameter sets (mean = 6.00, 6.51) showing lower values than other sets (mean = 9). 

This has the effect of lowering the threshold at which road density effects apply, and hence 

increasing its constraint on burned area. Similarly, values for the scaling parameter that 

corrects for the double counting of flammability effects in the model ensemble are weighted 

towards the upper end of the parameter range in the perturbed ensemble (Figure S1). 

Overall, this suggests that increasing the impact of climate (through vegetation flammability) 

and vegetation fragmentation (through road density) are important in defining the pareto 

parameter spaces for the two coupled models.  

However, when individual parameter correlations with overall WHAM!-GFED5 correlation are 

calculated and weighted by their respective impact on burned area, a more complex picture 

emerges (Figure S2). Weighted by impact on overall burned area, for logging, suppression, 

shrub PFT burned area per fire, and previous fires have the most impact on correlations 

between WI-JULES, WHAM-EO and GFED5. By contrast, road density and the rate of 

unmanaged fires, which have a large impact on burned area, have correspondingly less 

weighted impact on correlations. Therefore, some aspects of the coupled model ensemble 

have a small impact on overall burned area, but nevertheless pick up meaningful aspects of 

the burned area record in GFED5.  
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Figure S1: Comparison of parameter distributions across models and parameter tranches. 

Distributions shown had Wilcox tests with p<0.05 (Bonferroni correction applied). Under 

WHAM coupling, road density is important in constraining the distribution of fire in, but this 

effect is not captured in the baseline model (INFERNO_baseline).   
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Figure S2: Effect of model parameters on model correlation with GFED5 across 

NROY & pareto runs for a) WI-EO and b) WI-JULES. Whilst they have limited impact 

on global burned area parameters for logging, suppression, shrub PFT burned area 

per fire, and previous fires are effective at capturing the relative spatio-temporal 

distribution of fire. By contrast, in WI-JULES, pasture PFTs prove useful in capturing 

the distribution of fire in GFED5, but this effect is not present in WI-EO.  

 

Key: cor.BA – correlation (r) of parameter with global burned area; cor.cor – 

correlation of parameter values with overall model correlation; cor.weight – 

correlation of parameter values with overall correlation, weighted by parameter 

impact on burned area. 

  

a) 
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Table S1: Model free parameters, their initial, maximum and minimum values in WHAM!-

INFERNO calibration. There is no mean burned area for cropland PFTs as it was 0 in all cases, 

and replaced by outputs from WHAM! Given the substantial uncertainty around parameter 

values, values were sampled from a uniform distribution around an initial value. Grass and 

pasture burned area per PFT were given two values for C3 and C4 respectively. 

 

Parameter name Parameter function Initial value 
 

Minimum 
value 

Maximum 
value 

TreeBL_BA 
Mean global BA for 
broadleaf trees 

1.7 0.85 2.55 

TreeNL_BA 
Mean global BA for 
needleleaf trees 

1.7 0.85 2.55 

Grass_BA 
Mean global BA for grass 
PFTs (C3 & C4) 

3.2 1.6 4.8 

Shrub_BA 
Mean global BA for 
shrubs 

3.2 1.6 4.8 

Pasture_BA 
Mean global BA for 
pasture PFTs (C3 & C4) 

2.7 1.35 4.05 

δ1 
Scaling managed burned 
area from pasture fires 

1 0.5 1.5 

δ2 
Scaling managed burned 
area from vegetation fires 

1 0.5 1.5 

𝜎1 
Rate of background 
ignitions 

0.03 0.01 0.05 

𝜎2 Scaling arson fires 30 15 45 

𝜆 
Scaling parameter for 
lightning strikes 

7.7 3.85 11.55 

𝛷 
Harmonising model 
ontologies of ignitions & 
fires 

650 400 900 

Sup_PI 
Rate of extinguished fires 
for the pre-industrial AFR 

0 0 0.05 

Sup_Trans 
Rate of extinguished fires 
for the transitional AFR 

0.05 0 0.1 

Sup_Intense 
Rate of extinguished fires 
for the industrial AFR 

0.9 0.8 1 

𝜌 
Scaling impact of road 
density on fire sizes 

8.91 4.455 13.4 

Λ 
Impact of logging on 
burned area in forests  

1.5 1 2.25 

𝛼 
Threshold for impact of 
prior fires on fire size 

0.2 0.1 0.4 

𝛽 
Rate of decline in fire size 
due to prior fires 

0.2 0.1 0.4 
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Table S2: Free parameters in INFERNO v1.0 offline -  a baseline model used for evaluation of 

performance of WHAM!-INFERNO. Parameters’ initial, maximum and minimum values in 

model calibration are shown. The baseline model was run with and without the use of road 

density in constraining global fire sizes. Given the substantial uncertainty around parameter 

values, values were sampled from a uniform distribution around an initial value. Cropland, 

grass and pasture burned area per PFT were given two values for C3 and C4 respectively. 

 

Parameter name Parameter function Initial value 
 

Minimum 
value 

Maximum 
value 

TreeBL_BA 
Mean global BA for 
broadleaf trees 

1.7 0.85 2.55 

TreeNL_BA 
Mean global BA for 
needleleaf trees 

1.7 0.85 2.55 

Grass_BA 
Mean global BA for grass 
PFTs (C3 & C4) 

3.2 1.6 4.8 

Shrub_BA 
Mean global BA for 
shrubs 

3.2 1.6 4.8 

Pasture_BA 
Mean global BA for 
pasture PFTs (C3 & C4) 

2.7 1.35 4.05 

Cropland_BA 
Mean global BA for 
cropland PFTs (C3 & C4) 

3.2 1.6 4.8 

𝜎1 
Scaling parameter for 
anthropogenic ignitions 

1 1.5 0.5 

𝜆 
Scaling parameter for 
lightning strikes 

7.7 3.85 11.55 

Sup 
Suppression scaling 
parameter 

1 0.5 1.5 

𝜌 
Scaling impact of road 
density on fire sizes 

8.91 4.455 13.4 

𝛼 
Threshold for impact of 
prior fires on fire size 

0.2 0.1 0.4 

𝛽 
Rate of decline in fire size 
due to prior fires 

0.2 0.1 0.4 


