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Abstract

Ensemble data assimilation methods, such as the Ensemble Kalman Filter (EnKF), are well suited for climate reanalysis because

they feature flow-dependent covariance. However, because Earth System Models are heavy computationally, the method uses a

few tens of members. Sampling error in the covariance matrix can introduce biases in the deep ocean, which may cause a drift in

the reanalysis and in the predictions. Here, we assess the potential of the hybrid covariance approach (EnKF-OI) to counteract

sampling error. The EnKF-OI combines the flow-dependent covariance computed from a dynamical ensemble with another

covariance matrix that is static but less prone to sampling error. We test the method within the Norwegian Climate Prediction

Model (NorCPM), which combines the Norwegian Earth System Model (NorESM) and the EnKF. We test the performance

of the reanalyses in an idealised twin experiment, where we assimilate synthetic sea surface temperature observations monthly

over 1980-2010. The dynamical and static ensembles consist respectively of 30 members and 315 seasonal members sampled

from a pre-industrial run. We compare the performance of the EnKF to an EnKF-OI with a global hybrid coefficient, referred

to as standard hybrid, and an EnKF-OI with adaptive hybrid coefficients estimated in space and time. Both hybrid covariance

methods cure the bias introduced by the EnKF at intermediate and deep water. The adaptive EnKF-OI performs best overall,

and that by doing smaller updates than the standard hybrid version. In the adaptive EnKF-OI, the hybrid coefficient remains

nearly constant throughout the reanalysis, with only a weak seasonal variability.
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Abstract14

Ensemble data assimilation methods, such as the Ensemble Kalman Filter, are well suited15

for climate reanalysis and predictions because they feature flow-dependent covariance,16

and the ensemble can be used to estimate the uncertainty of the system. However, be-17

cause Earth System Models are heavy computationally, the method typically uses a few18

tens of members. Sampling error in the covariance matrix can introduce biases in the19

unobserved regions (e.g. in the deep ocean), which may cause a drift in the reanalysis20

and in the predictions. Here, we assess the potential of the hybrid covariance approach21

(EnKF-OI) to counteract sampling error and rank deficiencies. The EnKF-OI linearly22

combines the superior flow-dependent covariance computed from a dynamical ensemble23

with another covariance matrix that is static but less prone to sampling error. We test24

the method within the Norwegian Climate Prediction Model (NorCPM), which combines25

the Norwegian Earth System Model (NorESM) and the Ensemble Kalman Filter (EnKF).26

We test the performance of the reanalyses in an idealised twin experiment, where we as-27

similate synthetic sea surface temperature observations monthly for the period 1980-2010.28

The dynamical ensemble consists of 30 members, and the static ensemble is composed29

of 315 seasonal members sampled from a long stable pre-industrial run. We compare the30

performance of the EnKF to 1) an EnKF-OI with a global hybrid coefficient tuned em-31

pirically, referred to as standard hybrid and 2) an EnKF-OI with adaptive hybrid co-32

efficients explicitly estimated in space and time. Both hybrid covariance methods cure33

the bias introduced by the EnKF at intermediate and deep water. The adaptive EnKF-34

OI performs best overall, and that by doing smaller updates than the standard hybrid35

version. In the adaptive EnKF-OI, the hybrid coefficient remains nearly constant through-36

out the reanalysis, with only a weak seasonal variability.37

Plain Language Summary38

Data assimilation is a statistical method that reduces uncertainty in a model, based39

on observations. A popular method for climate reanalysis and prediction are ensemble40

method that relies on statistics from a finite ensemble of model realisations. However,41

observations are sparse – mostly near the surface – and the sampling error from data as-42

similation method introduces a degradation in the deep ocean. We use a method that43

complements this ensemble with an pre-existing database of model states to reduce sam-44

pling error. We show that the approach substantially reduces error at the intermediate45

and deep ocean. The method typically requires the tunning of a parameter, but we show46

that it can be estimated online, achieving the best performance.47

1 Introduction48

Data assimilation estimates the state of a model (called the analysis) that approaches49

the “unknown true state” of the system based on observations, a prior model estimate,50

and statistical information on their uncertainties. Data assimilation is applied sequen-51

tially/recursively to provide a reanalysis, which can also be used to understand the mech-52

anisms of variability and initialise predictions. Data assimilation has been one of the key53

ingredients in the progress of numerical weather prediction (Bauer et al., 2015) and is54

now used in a wide range of geosciences applications (Carrassi et al., 2018), including55

climate prediction. The ensemble Kalman Filter (EnKF, Evensen, 2003), is an advanced56

data assimilation method that provides flow-dependent covariance – i.e., that can evolve57

in time and space with a transient state or a regime shift – and the ensemble provides58

a quantification of the uncertainty of the system. These properties are well suited for cli-59

mate reanalysis and predictions, and the method is becoming increasingly popular in that60

field (e.g., Zhang et al., 2009; Counillon et al., 2014; Brune et al., 2015; Karspeck et al.,61

2018; O’Kane et al., 2019).62

–2–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Ensemble-based data assimilation methods (e.g., the EnKF) approximate the fore-63

cast error covariance matrix using a finite-size ensemble from a Monte Carlo integration64

step. Rank deficiencies and sampling errors emerge and deteriorate the performance of65

the system, causing an artificial reduction of the ensemble spread and may even lead to66

filter divergence. Several ad-hoc methods have been introduced to counteract sampling67

errors. Localization (Houtekamer & Mitchell, 2001; Evensen, 2003; Ott et al., 2004; An-68

derson, 2007) limits the spatial extent of the corrections, based on the approximation69

that the covariance function decays as a function of the distance – and can be seen as70

a way to effectively reduce the degree of freedom of the system. Inflation (Anderson, 2001;71

Whitaker & Hamill, 2012; Raanes et al., 2019) counteracts the spread-collapse by arti-72

ficially inflating the ensemble spread at every assimilation step. The last method is the73

covariance hybridization method, which is the topic of our paper.74

Covariance hybridization (Hamill & Snyder, 2000) combines linearly the flow-dependent75

covariance computed from a finite Monte-Carlo ensemble with another covariance ma-76

trix that is less prone to sampling error. The static matrix can be parameterized (Hamill77

& Snyder, 2000; Weaver & Courtier, 2001), computed from a long model simulation (Counillon78

et al., 2009), computed as the average of the background error covariance matrices from79

a previous data assimilation run (Carrió et al., 2021) or computed from a dynamical en-80

semble at a lower resolution (Rainwater & Hunt, 2013). The hybrid covariance method81

achieves better performance than the standalone EnKF, particularly for small ensem-82

bles, and performance converges to that of the EnKF for large ensembles (X. Wang et83

al., 2007; Counillon et al., 2009; Raboudi et al., 2019). The computational cost of the84

hybrid covariance methods is customizable to the desired cost.85

The linear coefficients combining the static and the dynamic covariance are called86

the ”hybridization coefficients”, which optimally balances the superior but noisy sam-87

ple covariance with that of less noisy but static covariance. To achieve optimal perfor-88

mance, it is crucial to tune these coefficients (X. Wang et al., 2007; Counillon et al., 2009;89

Raboudi et al., 2019; Gharamti et al., 2014). The optimal values of these coefficients de-90

pend on the non-stationarity of the dynamical system as well as the data assimilation91

settings, such as the dynamical ensemble size, localisation and inflation settings. As such,92

it is expected that the optimal value of the hybridization coefficients should vary in space93

and time. A first attempt to estimate spatial and time-varying hybridization coefficient94

has been developed (Gharamti, 2020) with a Bayesian framework (using fixed localisa-95

tion settings). They found that a spatially heterogeneous hybridization coefficient for-96

mulation outperforms a homogeneous formulation. Ménétrier and Auligné (2015) and97

Ménétrier et al. (2015) formulated the problem of hybridization as a linear filtering prob-98

lem of the background error covariance matrix to optimize both the localization and the99

hybridization coefficients simultaneously.100

In this work, we aim to investigate the benefit of background error covariance hy-101

bridization for climate reanalysis and climate prediction systems, as for example with102

the CMIP6 Decadal Climate Prediction Project (DCPP, Boer et al., 2016). We use the103

Norwegian Climate Prediction Model (NorCPM, Counillon et al., 2014, 2016) that pro-104

vides coupled reanalysis and contributed to CMIP6 DCPP (Bethke et al., 2021). Here,105

we focus on long coupled reanalysis as NorCPM will produce such a reanalysis from 1850106

to the present. Sea surface temperature (SST) dominates the ocean observation network107

before the emergence of altimetry in the 90s and Argo data in the 2000s. Using only SST,108

NorCPM can control the upper ocean heat content, and major indices of climate vari-109

ability in the North Atlantic well (Counillon et al., 2016). Two features of NorCPM, flow-110

dependent assimilation and assimilation in isopycnal coordinates, were found to be par-111

ticularly important in that success. However, it also yields an unrealistic update of the112

intermediate water masses in the North Atlantic Subpolar Gyre (SPG) (typically below113

1000m) (Counillon et al., 2016), which subsequently causes a drift in the multi-year pre-114
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dictions in the North Atlantic SPG region (Bethke et al., 2018). We aim to address this115

limitation in our current assimilation system.116

We test the performance of NorCPM for coupled reanalysis in the framework of ide-117

alised twin experiments with the assimilation of SST. We assess whether 1) hybrid co-118

variance can solve this issue and compare the performance of a 31-year coupled reanal-119

ysis produced with the EnKF (currently used in NorCPM) and hybrid covariance meth-120

ods, 2) compare robustness and optimality of two flavours of hybrid covariance meth-121

ods: one using an empirically tuned globally constant hybridization coefficient and one122

where the hybridization coefficients are estimated adaptively in space and time (Ménétrier123

et al., 2015; Ménétrier & Auligné, 2015; Ménétrier, 2021).124

The results show that the hybridization method – both with fixed and adaptive hy-125

bridization coefficients – performs equally or better than the EnKF in most places and126

depths, and substantially improves results in intermediate and deep water masses. The127

adaptive hybrid performs better than its counterpart with fixed hybridization factors.128

This paper is organised as follows. Section 2 presents the Earth System Model (ESM)129

used in this work, the Norwegian Earth System Model (NorESM). Section 3 presents the130

deterministic EnKF, and its practical implementation within the NorCPM. Section 4 de-131

scribes hybridization with a static covariance matrix. Section 5 describes the adaptive132

covariance hybridization method and its practical implementation within NorCPM for133

SST assimilation. In section 6, we introduce the experimental design and the evaluation134

metrics. The numerical results are presented in section 7. Section 8, provides a conclu-135

sion, discussion and future perspective to this work.136

2 Model system: the Norwegian Earth System Model137

NorESM1-ME (Bentsen et al., 2013) is based on version 1.0.4 of the Community Earth138

System Model (Hurrell et al., 2013). Its atmosphere component is the CAM4-OSLO, the139

ocean component is the Bergen Layered Ocean Model, BLOM, (Bentsen et al., 2013),140

the land component is the Community Land Model, CLM4, (Lawrence et al., 2011), the141

sea ice component is the Los Alamos Sea Ice Model, CICE4, (Bitz et al., 2012), and the142

coupler is CPL7 (Craig et al., 2012).143

The atmosphere and the land components have 1.9◦×2.5◦ latitude-longitude res-144

olution. The atmosphere component has 26 hybrid sigma-pressure levels ranging from145

the surface up to 3 hPa. The ocean and the sea ice components have a 1◦ horizontal res-146

olution in both latitude and longitude with a bipolar grid. BLOM comprises in the ver-147

tical a stack of 51 isopycnic layers and two layers for representing the bulk mixed layer.148

Before 2005, the forcings are the CMIP5 historical forcings (Taylor et al., 2012), while149

after 2005, they are the representative Concentration Pathway 8.5 forcings (van Vuuren150

et al., 2011).151

3 The deterministic ensemble Kalman filter152

Let X ∈ Rn×N an ensemble of N model states (x1,x2, . . . ,xN ), x ∈ Rn the en-153

semble mean and A ∈ Rn×N the ensemble anomalies. We note n the model state di-154

mension. x and A are given by Eq. (1) and (2):155

x =
1

N
X1, (1)156

A = X

(
I− 1

N
11T

)
, (2)157
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where I ∈ RN×N is the identity matrix and 1 ∈ RN is a vector with all elements equal158

to 1. In the following equations, the superscripts f and a stand respectively for the fore-159

casted and analysed states of the mean and the anomalies.160

We note xt the true state of the system. The observations y are defined by Eq. (3):161

y = Hxt + ε, ε ∼ N (0,R) , (3)162

where H ∈ Hp×n is the observation operator, R ∈ Rp×p is the observation error co-163

variance matrix, and p is the number of observations.164

In this study, the deterministic EnKF (DEnKF) introduced by Sakov and Oke (2008)165

is used. The DEnKF is a square-root (deterministic) flavour of the EnKF that solves the166

analysis without the need for perturbation of the observations. It inflates the error by167

construction and is intended to perform well in applications where corrections are small168

(Sakov & Oke, 2008). The scheme has been robustly tested and validated (Sakov et al.,169

2012; Counillon et al., 2016; Bethke et al., 2021). The DEnKF decomposes into two steps:170

a forecast step and an analysis step. In the forecast step, each analyzed member xa
i is171

integrated forward in time, which becomes the prior xf
i at the following assimilation cy-172

cle:173

xf
i = M (xa

i ) , i = 1, . . . , N, (4)174

where M is an operator that stands for the model integration.175

The analysis step of the DEnKF proceeds in two steps, the update of the ensemble176

mean, Eq. (5), and the update of the ensemble anomalies, Eq. (6):177

xa = xf +K
(
y −Hxf

)
, (5)178

Aa = Af − 1

2
KHAf , (6)179

where:180

K = PfHT
(
HPfHT + R

)−1

, (7)181

Pf =
Af

(
Af

)T

N − 1
, (8)182

are respectively the Kalman gain matrix and the background error covariance matrix es-183

timated from the ensemble anomalies.184

In the following, the DEnKF will be referred to as EnKF since general conclusions185

of this work are independent of the flavour of the EnKF analysis scheme used.186

Applying an EnKF with a large dimensional system requires few ad-hoc implemen-187

tations. In order to avoid a too abrupt start of assimilation, the variance of the obser-188

vation error is multiplied by a factor 8 at the first assimilation cycle and is then reduced189

by 1 every two months until it reaches 1 over the course of 14 months. We use the rfac-190

tor inflation scheme (Sakov et al., 2012), for which the observation error is inflated by191

2 when updating the ensemble anomaly in Eq. 6. We also use pre-screening of the ob-192

servation; i.e., the observation error variance is inflated so that the analysis remains within193

–5–
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2 standard deviations of the forecast error from the ensemble mean of the forecasts (Sakov194

et al., 2012). We also used the upscaling method (Y. Wang et al., 2016) that handles the195

update of the water layers thickness (truncated Gaussian) and better preserve mass, heat196

and salt. For producing long reanalysis (from 1850) with SST assimilation, we use the197

Hadley Centre Sea Ice and Sea Surface Temperature (HadISST2.1.0.0) available from198

1850–present. This type of product is practical because it handles the biases between199

different data set and provide a grided ensemble SST that can be used to quantify the200

uncertainty. Still, it is constructed by statistical interpolation/extrapolation from the201

raw data and the neighbouring observation errors are highly correlated. Our assimila-202

tion code assumes the observation error to be independent (i.e., R is diagonal) and it203

was therefore decided to only retain the nearest SST observation to update the water204

column (we speak of ”strong localization”). For more details about the implementation205

of the EnKF within NorCPM, see Counillon et al. (2014) and Counillon et al. (2016).206

4 Background error covariance matrix hybridization207

The dynamical covariance matrix Pf
d is estimated from the dynamic ensemble Xd.208

The size of Xd is limited to 30 members in the current version of NorCPM. Such a small209

ensemble size results in spurious covariances (Anderson, 2007; Bishop & Hodyss, 2007)210

and rank deficiencies (Oke et al., 2007). Background error covariance hybridization was211

initially introduced by Hamill and Snyder (2000) to combine an EnKF with a 3DVar and212

bring some flow-dependency in variational data assimilation. Covariance hybridization213

has been used in sequential ensemble data assimilation by X. Wang et al. (2007), Counillon214

et al. (2009) and Gharamti et al. (2014) (hereafter referred to as EnKF-OI) as a way to215

limit the impact of under-sampling and rank deficiency. The background error covari-216

ance matrix combines linearly a dynamical covariance matrix Pf
d with another covari-217

ance matrix Pf
s (where the subscript s stands for static) computed from a climatolog-218

ical ensemble of size Ns, Xs (where Ns ≫ Nd). That static ensemble is constructed by219

gathering model output before running the assimilation experiment. As such, the EnKF-220

OI does not increase the computational cost of the integration step and has only a lim-221

ited impact on the computational cost of the analysis step (Counillon et al., 2009). In222

the special case of the EnKF-OI in NorCPM the CPU-time of the EnKF-OI is 7% larger223

than that of the standard EnKF; we discuss in Section 8 possible ways to reduce the com-224

putational cost of the EnKF-OI in NorCPM. We denote Pf
h the hybrid covariance ma-225

trix:226

Pf
h = αdP

f
d + αsP

f
s, αd, αs ≥ 0 (9)227

Unless explicitly mentioned, the sum of the coefficients αd and αs can be different228

from 1.229

The update of the mean and the anomalies with the EnKF-OI writes:230

xa
d = xf

d +Kh

(
y −Hxf

d

)
, (10)231

Aa
d = Af

d −
1

2
KhHAf

d, (11)232

where Kh is the hybrid Kalman gain,233

Kh = Pf
hH

T
(
HPf

hH
T + R

)−1

. (12)234

In practice, we do not compute explicitly the hybrid covariance matrix Ph:235

–6–
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Ph =
Ah (Ah)

T

Nh − 1
, (13)236

where Ah stands for the hybrid anomalies (Counillon et al., 2009):237

Ah =
√
Nh − 1

[√
αd

Nd − 1
Ad,

√
αs

Ns − 1
As

]
, (14)238

and [., .] stand for the concatenation of two sets of vectors. Therefore, the EnKF-OI is239

implemented within NorCPM following Evensen (2003) and Sakov et al. (2010).240

5 Adaptive covariance hybridization241

5.1 Explicit optimality of the hybridization coefficients242

In this section, we build on the work of Ménétrier et al. (2015); Ménétrier and Auligné243

(2015) and adapt a method proposed in Ménétrier (2021) to determine the optimal hy-244

bridization coefficients.245

We take advantage of the strong localization setting (see Section 3) to consider only246

the covariance between a single point at the surface of the ocean, and the multivariate247

state vector of the water column below so that the covariance matrix in each point re-248

duces to a vector. In the following, we note P the true covariance vector at a given point249

(which would be obtained with an infinite ensemble). We use the subscript i to refer to250

the ith element of the covariance vector (e.g., Pi for the ith element of the true covari-251

ance vector). We define the scalar product of two random vectors X and Y as E [X · Y ] =252 ∑p
i=1 E [XiYi]. We assume that Pd and P are realizations of two independent random253

processes and that the sampling error of Pd, i.e., Pd−P, is unbiased, and orthogonal254

to the truth, (see Ménétrier et al. (2015), Eqs. (20a)-(20b)). Therefore:255

E [Pd − P] = 0, (15a)256

E [(Pd − P) · P] = 0. (15b)257

The optimal hybridization coefficients (αd, αs) are defined as those minimizing, in258

a statistical sense, the square of the error between Ph and P, i.e., (αd, αs) minimize the259

function e:260

e(αd, αs) = E
[
∥Ph − P∥2

]
= E

[
∥αdPd + αsPs − P∥2

]
, (16)261

where ∥.∥ stands for the L2-norm of a vector. It can be shown (see Appendix A) that262

minimizing the function e is equivalent to solving a system of two equations, with un-263

known αd and αs, whose solution is given by:264

(αd, αs) =
(nd

∆
,
ns

∆

)
, (17)265

where:266

∆ = ∥Ps∥2 E
[
∥Pd∥2

]
− E [Pd · Ps]

2
, (18)267

nd = ∥Ps∥2 E
[
∥P∥2

]
− E [Pd · Ps]

2
, (19)268

ns =
(
E
[
∥Pd∥2

]
− E

[
∥P∥2

])
E [Pd · Ps] . (20)269
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5.2 Properties270

The properties highlighted by Ménétrier et al. (2015) in the case of the dual optimiza-271

tion of localization and hybridization hold here:272

1. Behavior of the hybridization coefficients: if the static covariance is mul-273

tiplied by a factor λ, then αs is divided by λ, while αd remains unchanged. As such,274

it is not necessary to tune the static covariance with a scalar a priori, as done in275

Evensen (2003), Oke et al. (2008) and Counillon et al. (2009).276

2. Asymptotic behavior: with an infinite ensemble, E
[
∥Pd∥2

]
= E

[
∥P∥2

]
. We277

can replace E
[
∥Pd∥2

]
by E

[
∥P∥2

]
in Eqs. (19)-(20), and obtain (αd, αs) = (1, 0)278

as expected – there is no need for hybridization.279

3. Benefits of hybridization: whatever the choice of the static covariance (see Ap-280

pendix B),281

e(1, 0) ≥ e(αd, αs), (21)282

showing the superiority of the hybrid scheme over the standalone EnKF.283

4. Optimality condition: we can show that Ph verifies the following optimality284

condition:285 
∂e

∂αd
= 0

∂e

∂αs
= 0

⇔ E [(Pd − Ps) · (Ph − P)] = 0. (22)286

This means from a statistical point of view that Ph is the orthogonal projection287

of the true covariance P onto a sub-space defined as Pd+µ (Ps − Pd) where µ ∈288

R, see Fig. 1.289

Figure 1. Geometrical representation of the orthogonal projection of the true covariance P

onto the sub-space generated by the dynamic covariance Pd and the static covariance Ps.

Here are some remarks:290

–8–
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1. if αd ̸= 1, Ph can be interpreted as the linear interpolation between Pd and λPs,291

where:292

λ =
αs

1− αd
, (23)293

thus, λ ≥ 1 (resp ≤ 1) is equivalent to αd+αs ≥ 1 (resp. ≤ 1). λ acts as an in-294

flation or deflation term for the matrix Ps and Ph is the linear interpolation be-295

tween Pd and the inflated/deflated Ps.296

2. From Eqs (15a)-(15b), it follows that the errors Pd−P and Ps−P are uncorre-297

lated: E [(Pd − P) · (Ps − P)] = 0. As a consequence, the triplet (Pd,P,Ps) forms298

a triangle rectangle in P, see Fig. 1.299

3. The numerator of αd, nd, can be interpreted as a measure of the collinearity of300

the static covariance Ps, and the expectation of the true covariance P. Hence, nd301

is equal to 0 if and only if Var(P) = 0 and P and Ps are collinear (or linearly de-302

pendent). Conversely, if E [Pd · Ps] = 0, then P and Ps are orthogonal (see Ap-303

pendix C).304

4. It follows from Eq. (15b) that (see Appendix B, Eqs. (B1)-(B2)):305

E
[
∥Pd − P∥2

]
= E

[
∥Pd∥2

]
− E

[
∥P∥2

]
≥ 0. (24)306

Therefore, the difference E
[
∥Pd∥2

]
−E

[
∥P∥2

]
can be interpreted as a measure307

of the optimality (or the non-optimality) of the covariance function computed from308

the dynamic ensemble Pd: the smaller the difference, the smaller the distance ∥Pd − P∥309

in a statistical sense. Conversely, the larger the difference, the larger the distance310

∥Pd − P∥.311

5. It follows from remarks 3 and 4 that the hybridization coefficients αd and αs are312

the combination of the optimality of the dynamic covariance function Pd and the313

collinearity/orthogonality of the static covariance Ps and the true covariance P.314

6. As a consequence of Eq.(24) and Appendix C, 0 ≤ αd ≤ 1. We can not give sim-315

ilar upper and lower boundaries for the values of αs, as the term E [Pd · Ps] can316

be negative and we do not know its lower bound. Numerical simulations showed317

that this term is almost always positive (not shown). We can just say that αs is318

maximal when ∆ is minimal and therefore E [Pd · Ps] is maximal. In that case,319

αd is minimal.320

5.3 Practical implementation321

Quantities in Eq. (19) and Eq. (20) can not be computed directly as they are a function322

of E
[
∥P∥2

]
, E [Pd · Ps], and E

[
∥Pd∥2

]
that are unknown.323

Nonetheless, the sampling theory developed in Ménétrier (2021) allows us to express324

E
[
P2

i

]
, i = 1, . . . , p as a function of the covariance and variance of the dynamic ensem-325

ble. Using Eq. (101b) of Ménétrier (2021) one can write:326

E
[
P2

i

]
=

(Nd − 1)
2

(Nd − 2) (Nd + 1)
E
[
P2

di

]
− Nd − 1

(Nd − 2) (Nd + 1)
E [vdivd1] , (25)327

where vdi is the variance of the dynamic ensemble for the i-th element of the model state.328

The quantities nd, ns, and ∆ are then fully expressed as a function of the static covari-329

ance and the expectation of the variance and covariance of the dynamic ensemble.330

The expectation terms in Eq. (18), (19), (20), and (25) are estimated under a sim-331

plifying assumption of ”local homogeneity”: it is assumed that in an area surrounding332

the water column, the vertical covariance functions are representative of the covariance333

function of the water column. The expectation terms are then estimated as the average334

–9–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

of the surrounding vertical covariance functions. Numerical tests have shown that at least335

500 covariance functions are necessary to compute reliable statistics. In this work, we336

consider covariance functions in a radius up to 1000 km around the water column, which337

usually provides between 500 and 1000 covariance functions to compute the expectation338

terms.339

In order to limit the computational burden of estimating the hybridization coeffi-340

cients, they are computed on a subgrid of the domain (every 5 grid cells). The hybridiza-341

tion coefficients are then interpolated to the remaining wet points using linear interpo-342

lation of the neighbouring wet points.343

The hybridization coefficients are estimated based on both temperature and salin-344

ity. Doing so yields a lower root mean square error than when computing the hybridiza-345

tion coefficients solely based on the temperature (not shown).346

6 Experimental design and evaluation metrics347

6.1 Experimental design348

The free ensemble run (hereafter referred to as FREE), consists of 30 members run349

with transient forcing from 1850 to 2014. The true run (hereafter referred to as TRUE)350

is created by spawning one member (adding noise to surface temperature) on member351

1 of FREE in 1960 and running it up to 2010. It was verified in Y. Wang et al. (2022)352

that TRUE and member 1 of FREE were fully de-synchronised at the start of the ex-353

periment in 1980. The synthetic observations of SST are generated by adding white noise354

to the monthly SST of TRUE. The amplitude of the noise is set equal to the observa-355

tion uncertainty (in space and time) of HadISST2. As in the real framework for assim-356

ilation of SST, we do not use SST data under sea ice.357

We produce reanalyses with monthly assimilation of SST observations from January358

1980 to December 2010. All experiments start with the same initial dynamic ensemble359

(taken from FREE in January 1980). The static ensemble is made from the monthly restarts360

of a 315 years long stable pre-industrial run (monthly varying static ensemble). The ex-361

periments are separated into three categories:362

• EnKF: the standard EnKF used in NorCPM (Counillon et al., 2016).363

• Standard hybrid: a constant and global hybridization coefficients (see Section364

4). The sum of αd and αs is 1. We performed 7 reanalyses with αd = 0, 0.2, 0.4, 0.6, 0.8, 0.9, 1.365

The case where αd = 0 is equivalent to an ensemble of EnOI, and the case where366

αd = 1 is equivalent to the standard EnKF.367

• Adaptive hybrid: the hybridization coefficients are estimated at each assimi-368

lation cycle, they vary spatially and their sum is not imposed equal to 1 (see Sec-369

tion 5).370

6.2 Evaluation metrics371

The accuracy of the reanalyses is estimated based on the root mean square error (RMSE).372

The RMSE is computed as:373

RMSE =

√√√√ N∑
i=1

ωi (xi − xt
i)

2
. (26)374

In the following, the RMSE is computed either over a time series at a given point375

(in which case ωi = 1
N ), or over the whole domain at a given time (in which case ωi376

is the relative size of the grid cell).377
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In order to easily compare RMSE between the nine different schemes (see Section 6.1),378

we introduce the Mean Skill Score of one configuration i, MSSi. It is the relative reduc-379

tion of RMSE compared to the mean of the RMSE of the nine configurations, Eq. (27):380

MSSi = 1− RMSEi

1
9

∑9
j=1 RMSEj

, (27)381

where RMSEi is the RMSE of one of the schemes. The MSS is 1 if the scheme is per-382

fect (RMSE is equal to 0), between 0 and 1 if the scheme performs better than the mean383

of the other schemes and negative otherwise.384

Another important metric to evaluate the relative efficiency of different data assim-385

ilation schemes is to consider the “degrees of freedom for signal” (DFS, Cardinali et al.,386

2004; Wahba et al., 1995). It can be interpreted as the number of modes of variability387

reduced from the ensemble by the assimilation (i.e. the assimilation change). The DFS388

is defined as follows:389

DFS =
∂Hxa

d

∂y
= Tr (KH) (28)390

The DFS is between 0 (i.e., the observations have no impact on the ensemble), and391

the total number of degrees of freedom (i.e., observations has collapsed the number of392

modes of variability into a single one, Xie et al., 2018). The total number of degrees of393

freedom is the minimum between the ensemble size and the number of observations used394

for the local assimilation. In NorCPM, in the context of strong localisation (where we395

retain only the nearest observation, see Section 3), it implies that the DFS is between396

0 and 1 (independently of the ensemble size). This allows for an inter-comparison of the397

DFS even though the schemes have different ensemble sizes.398

7 Results399

7.1 Stability of the adaptive covariance hybridization400

The adaptive covariance hybridization method (see Section 5) estimates adaptive hy-401

bridization coefficients both in space and time.402

Figure 2 shows the time series of globally averaged αd, αs, and αd+αs (sea ice-covered403

points where there are no SST data are masked). After a spin-up period of approximately404

three years, the averaged values of the hybridization coefficients converge to a global av-405

erage of 0.7 for αd, and 0.175 for αs. This shows that the mean values of αd and αs are406

stable in time and display a limited temporal variability despite an important spatial vari-407

ability, and so does the sum αd+αs. Hence, the mean values of αd and αs computed408

in specific basins show similar behaviour and converge within 3 years (not shown). The409

global averaged value of αd + αs is roughly 0.875. Following remark 1 in Section 5.2,410

it implies that the static ensemble has a larger error variance than the error growth within411

one assimilation cycle and needs to be reduced - in agreement with Oke et al. (2008),412

Counillon and Bertino (2009), and Evensen (2003).413
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Figure 2. Time series of the global average values of αd, αs, and αd + αs. Ice-covered regions

are masked.

Figures 3 shows the pointwise averaged map of αd and αs computed over the years414

1983 to 2010 for January and July. The values of αd display an important spatial vari-415

ability with values ranging approximately from 0.4 up to 1. Regions where αd is small416

coincide with places where αs is large. The spatial variations of the values of αd and αs417

(Section 5.2) can be explained from the perspective of the optimality of the dynamic co-418

variance Pd (depending on the sampling error in the dynamical ensemble), and the collinear-419

ity between the static covariance Ps and the true covariance P (meaning that static co-420

variance is sufficient). Larger values of αd are found in locations where the dynamic is421

non-stationary and internal variability is large; e.g., in the Northern part of the Atlantic422

Ocean (Gulf Stream pathway, Subpolar Gyre, near the ice edge), the North Pacific, El423

Niño–Southern Oscillation and in the Southern Ocean. Conversely, there are relatively424

low values of αd in the Indian Ocean where variability is primarily externally forced (Guemas425

et al., 2013), the decadal fluctuations are less pronounced than in the Atlantic or the Pa-426

cific Ocean and where the Pacific Ocean teleconnections dominate the regionally driven427

variability (Frankcombe et al., 2015). In the tropical Atlantic, the model is performing428

very poorly and has no skill (Counillon et al., 2021); it is thus not surprising that αd is429

also low.430
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(a) (b)

(c) (d)

Figure 3. Pointwise averaged estimate of αd (top row), and of αs (bottom row) computed

over 1983–2010 for the months of January and July.

In Fig. 4, we analyse the interannual de-seasoned standard deviation of the hybrid431

coefficient beyond year 3 (once it has converged). We can see that the variability is very432

small, except in a few places, e.g. in the Arctic, in Indian Ocean and in the tropical At-433

lantic and Pacific Gyre. In those places, the performance between the standard hybrid434

coefficient method is relatively small (not shown).435

7.2 Intercomparison of the performance of the EnKF and the hybrid co-436

variance schemes437

Figure 5 shows the MSS (see Section 6.2) of ocean heat and salt content for the dif-438

ferent schemes at different depth ranges (0-200m, 200-500m, ..., 2000-4000m). We in-439

clude the EnKF (αd = 1 and αs = 0) and the ensemble of EnOI (αd = 0 and αs = 1)440

as particular cases of the standard hybrid covariance method. A red cell (resp. blue cell)441

indicates that the scheme provides a reduction (resp. an increase) of RMSE compared442

to the average performance of all the schemes for a given depth range. For example, the443

adaptive hybrid and the standard hybrid scheme with αd = 0.9 reduces the RMSE of444

the temperature at depth 500-1000m by 10% compared to the average performance, while445

the standard hybrid with αd = 0 increases the RMSE at the depth 200-500m by 15%.446

The results for heat and salt content are very similar. As expected, the EnKF is out-447

performing the ensemble of EnOI (i.e., αd = 0), showing the superiority of flow-dependent448

covariance over static covariance. It also shows the importance of tuning the hybrid co-449

efficient as for a large span of standard hybrid coefficient values, the hybrid covariance450

methods perform poorer than the EnKF. When αd is larger than 0.8 (αd = 0.9 being451

optimal), the standard hybrid covariance outperforms the EnKF; notably between 2000452

and 4000m. In the latter, a bias is gradually increasing due to spurious covariance at453
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(a) (b)

Figure 4. Standard-deviation of the de-seasoned values of αd (a), and of αs (b) computed

over 1983–2010.

depth (Y. Wang et al., 2022; Bethke et al., 2018). The adaptive hybrid covariance method454

performs best at nearly all depth levels for heat and salt content. In the following, we455

will therefore present the adaptive hybrid and assess the spatial distribution of the im-456

provements over the EnKF, but results with the best standard hybrid are nearly com-457

parable (not shown).458
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Figure 5. MSS of all the schemes for temperature (a) and salinity (b) at different depth in-

tervals. αd = 0, αd = 0.2, . . . , αd = 0.9 refer to the hybridization coefficient of the standard

hybrid. αd = 0 is the ensemble of EnOI, full static case, and αd = 1 is the EnKF – the de-

fault scheme used in NorCPM. ”α adp” stands for the adaptive hybridization scheme. The warm

colour indicates that the scheme performs better than the average skill of all systems.
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The adaptive hybrid and the EnKF achieve similar performance in the top 1000m459

(Figure 5), and we focus on performance below this depth range. We compare the re-460

duction of RMSE of the EnKF and the adaptive hybrid compared to that of FREE for461

two depths range.462

Between 1000 and 2000m (Fig. 6), the EnKF reduces the error overall (warmer value463

is predominant) compared to FREE. Still, there are few places where it increases the RMSE464

of temperature, e.g.: in the North Pacific, the subtropical Atlantic, and near the Wed-465

dell Sea. Results are relatively comparable for salt content (see Fig. 6-b). The overall466

pattern is similar with the adaptive hybrid. Still, it yields further improvement, as in467

the North Atlantic subpolar gyre and it mitigates the degradation in the aforementioned468

regions. The degradation in the Weddell Sea is nearly completely removed.469

(a) (b)

(c) (d)

Figure 6. RMSE difference between FREE and the EnKF (a,b), and FREE and the adaptive

hybrid (c,d) between 1000 and 2000m depth for the temperature (left column) and the salinity

(right column). Warm colour indicates that assimilation reduces error compared to FREE.
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Between 2000 and 4000m (Fig. 7), the EnKF degrades overall performance compared470

to FREE. The degradation is larger in the North Pacific, the North Atlantic, and the471

Southern Ocean for both the temperature and the salinity. The improvements are also472

limited to the South Atlantic Ocean. The adaptive hybrid corrects or mitigates these bi-473

ases. Some degradation remains (in the North Atlantic subpolar gyre, the Sea of Japan474

in particular for salinity), but the assimilation yields an overall improvement over FREE.475

(a) (b)

(c) (d)

Figure 7. Same as fig. 6 but for 2000–4000m depth interval.
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An ideal assimilation system achieves minimal error while making the smallest change476

possible during the assimilation. Figure 8 shows the difference of DFS (that quantifies477

the assimilation change) between the EnKF and the best standard hybrid (αd = 0.9)478

(panel a) and between the EnKF and the adaptive hybrid (panel b). The standard hy-479

brid has a larger DFS value than the EnKF (negative values), implying that the data480

assimilation induces more change. This is most notable in the Southern Ocean and the481

tropical Pacific. In the Southern Ocean, the standard hybrid covariance method performs482

better than the EnKF, so it can be argued that the larger corrections are beneficial. How-483

ever, in the tropical Pacific, the ∆RMSE of the two remains quite close, meaning the anal-484

ysis induces more changes without improving performance. On the contrary, the adap-485

tive hybrid, Fig. 8-(b), has a DFS close to that of the EnKF. There are some slight dif-486

ferences (in the North Pacific, the North Atlantic, and the Southern Ocean), with a max-487

imum in the Irminger Sea, where it strongly outperforms the EnKF (e.g., 1000–2000m).488

It implies that the adaptive hybrid induces only change where this yields improved per-489

formance.490

(a) (b)

Figure 8. Difference of DFS between the EnKF and the standard hybrid covariance with

αd = 0.9 (a), and between EnKF and adaptive hybrid covariance (b). The cold colour indicates

that the hybrid covariance yields a larger reduction of DFS than with the EnKF.
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8 Discussion and conclusion491

In this work, we compare two different versions of hybrid covariance data assimila-492

tion with the standard EnKF for producing climate reanalysis. We use the Norwegian493

Climate Prediction Model (NorCPM) and work in an idealised twin experiment frame-494

work. The reanalyses are performed with sole assimilation of SST for the period 1980-495

2010. In the first hybrid coefficient method, the hybridization coefficients are tuned em-496

pirically to optimize the performance, while in the second, the hybridization coefficients497

are estimated adaptively, both in space and time. The two hybrid coefficient methods498

outperform the standard EnKF and mitigate the degradation it introduces in the inter-499

mediate and deep ocean compared to unassimilated simulations. The adaptive performs500

best and is doing so by making smaller corrections than the standard hybrid. The hy-501

bridization coefficients with the adaptive hybrid are converging quickly (less than 3 years)502

to stable values and only show small seasonal variations.503

Other alternatives have been developed in parallel to address the sampling error with504

the EnKF in NorCPM – namely the isopycnal vertical localization (Y. Wang et al., 2022).505

The latter limits the assimilation update of temperature and salinity to a fixed isopy-506

cnal level and was shown to mitigate the degradation seen in the standard EnKF. Com-507

bining the two approaches is straightforward and will be tested in the future. However,508

the isopycnal vertical localization detailed in Y. Wang et al. (2022) was tuned for an en-509

semble size of 30 members, while now the ensemble size is much larger (350 members).510

The vertical tapering will thus need to be revised.511

The adaptive hybrid coefficients method is slightly more expensive than the stan-512

dard hybrid as it requires additional computation related to the estimation of the hy-513

brid coefficient at each assimilation step. Here, the hybridization coefficients are estimated514

at every 5 grid cells, but we could have estimated them at every 10 grid cells (reducing515

the cost by 4) with a comparable solution (not shown). Furthermore, as these coefficients516

converge rapidly to stable estimates (within 3 model years, showing only a weak seasonal517

variability). They could be stored and directly used instead of being recalculated every518

time. As such, we do not consider that the additional computational cost would be much519

larger than the standard hybrid, which also has an additional cost (empirical estimation520

of the global coefficient).521

In this study, the estimation of the hybridization coefficients in the adaptive method522

is constant in the vertical. Nonetheless, adapting the method to estimate different hy-523

bridization coefficients for different vertical levels or variables would be relatively triv-524

ial. Furthermore, we tested the method for the particular case of assimilation of SST ob-525

jective analysis, where we update a single water column with a single observation, (i.e.,526

”strong localization”). For the assimilation of temperature/salinity profile data, the ob-527

servation error is uncorrelated, and a larger localisation radius is used in NorCPM, the528

method can be adjusted following Ménétrier (2021).529

A critical assumption made with the adaptive hybrid covariance method is that mod-530

els are unbiased and that for an infinite ensemble size, the ensemble covariance matrix531

converges with the true covariance matrix. These assumptions fall apart with Earth Sys-532

tem Models with considerable biases (Palmer & Stevens, 2019). It remains to be veri-533

fied how the method would perform in a real framework. Verification of the method in534

a real framework, both for coupled reanalysis and testing the impact on prediction ini-535

tialised from it, will be tested in the future.536

Appendix A Minimization of the function e537

The function e is defined as:538
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e(αd, αs) = E
[
∥αdPd + αsPs − P∥2

]
. (A1)539

By linearity of the expectation operator and by definition of the L2-norm ∥.∥, we can540

write:541

e(αd, αs) = α2
dE

[
∥Pd∥2

]
+ αs ∥Ps∥2 + E

[
∥P∥2

]
542

+2αdαsE [Pd · Ps]− 2αdE [Pd · P]− 2αsE [P · Ps] . (A2)543

It follows from Eq. (15b) that:544

E [Pd · P] = E
[
∥P∥2

]
(A3)545

Replacing Eq. (A3) in Eq. (A2), we obtain the following expression of e:546

e(αd, αs) = α2
dE

[
∥Pd∥2

]
+ α2

s ∥Ps∥2 + (1− 2αd)E
[
∥P∥2

]
+ 2αs(αd − 1)E [Pd · Ps] . (A4)547

e being a quadratic function of two variables, αd and αs, with positive coefficients548

associated to α2
d and α2

s, its has a unique minimum where both the partial derivatives549

with respect to αd and αs are null. Hence, minimizing the function e is equivalent to solve550

the following system of two equations:551


∂e(αd, αs)

∂αd
= 0

∂e(αd, αs)

∂αs
= 0

(A5)552

The partial derivatives of e with respect to αd and αs are given by Eq. (A6) and (A7):553

∂e(αd, αs)

∂αd
= 2αdE

[
∥Pd∥2

]
+ 2αsE [Ps · Pd]− 2E

[
∥P∥2

]
, (A6)554

∂e(αd, αs)

∂αs
= 2αdE [Ps · Pd] + 2αs ∥Ps∥2 − 2E [Ps · Pd] . (A7)555

From which it follows that minimizing the function e is equivalent to solving the sys-556

tem of two equations:557


αdE

[
∥Pd∥2

]
+ αsE [Pd · Ps] = E

[
∥P∥2

]
αdE [Pd · Ps] + αs ∥Ps∥2 = E [Pd · Ps] ,

(A8)558

Appendix B Benefits of hybridization559

By definition of the function e:560

e(1, 0) = E
[
∥Pd − P∥2

]
. (B1)561
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By linearity of the expectation operator and by definition of the L2-norm, we can562

show that563

e(1, 0) = E
[
∥Pd∥2

]
+ E

[
∥P∥2

]
− 2E [Pd · P] . (B2)564

Replacing Eq. (A3) in Eq. (B2) we get:565

e(1, 0) = E
[
∥Pd∥2

]
− E

[
∥P∥2

]
(B3)566

From which we can express the difference of the errors between the EnKF and the567

hybrid scheme:568

e(1, 0)− e(αd, αs) = (1− α2
d)E

[
∥Pd∥2

]
− 2(1− αd)E

[
∥P∥2

]
− α2

s ∥Ps∥2 − 2αs(αd − 1)E [Ps · Pd] .

(B4)

569

570

For the sake of simplicity, we note:571

α = E
[
∥P∥2

]
, (B5)572

β = ∥Ps∥2 , (B6)573

γ = E [Pd · Ps] , (B7)574

δ = E
[
∥Pd∥2

]
. (B8)575

Eq. (B4) rewrites:576

e(1, 0)− e(αd, αs) = (1− α2
d)δ − 2(1− αd)α− α2

sβ − 2αs(αd − 1)γ. (B9)577

Given that αd = nd

∆ and αs =
ns

∆ :578

e(1, 0)− e(αd, αs) =

(
∆2 − n2

d

)
δ − 2

(
∆2 −∆nd

)
α− n2

sβ − 2ns (nd −∆) γ

∆2
. (B10)579

∆2 being positive, showing that e(1, 0)− e(αd, αs) ≥ 0 is equivalent to show that:580

(
∆2 − n2

d

)
δ − 2

(
∆2 −∆nd

)
α− n2

sβ − 2ns (nd −∆) γ ≥ 0. (B11)581

On the other hand, nd, ns, and ∆ write:582

nd = αβ − γ2, (B12)583

ns = γδ − αγ, (B13)584

∆ = βδ − γ2. (B14)585

Replacing nd, ns, and ∆ by their expression given by Eqs. (B12), (B13), and (B14)586

in the left hand side of Eq. (B11), and developing all the terms we can show that Eq. (B11)587

is verified if and only if:588
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β(βδ − γ2)(δ − α)2 ≥ 0. (B15)589

β ≥ 0 as a sum of squares and (δ − α)2 ≥ 0 as a square. Showing that e(1, 0) −590

e(αd, αs) ≥ 0 is then equivalent to show that βδ ≥ γ2 i-e ∥Ps∥2 E
[
∥Pd∥2

]
−E [Pd · Ps]

2 ≥591

0. This inequality holds, see Appendix C, Eq. (C10), and replacing P by Pd. As a con-592

sequence, e(1, 0) ≥ e(αd, αs).593

Appendix C Collinearity/orthogonality of E [P] and Ps594

We write Pd as P plus some error ε, and we assume that the static covariance Ps595

is independent from that error, i-e: E [Ps · ε] = 0. Therefore:596

E [Pd · Ps] = E [P · Ps + Ps · ε] = E [P · Ps] + E [Ps · ε] = E [P · Ps] . (C1)597

Thus, if E [Pd · Ps] = 0 then E [P · Ps] = 0 and P and Ps are orthogonal in a sta-598

tistical sense.599

Following Eq. (C1), we have:600

∥Ps∥2 E
[
∥P∥2

]
− E [Pd · Ps]

2
= ∥Ps∥2 E

[
∥P∥2

]
− E [P · Ps] . (C2)601

By definition of ∥Ps∥2 and E
[
∥P∥2

]
:602

∥Ps∥2 E
[
∥P∥2

]
=

p∑
i=1

P2
siE

[
P2

i

]
+

∑
1≤i ̸=j≤p

P2
siE

[
P2

j

]
, (C3)603

∥Ps∥2 E
[
∥P∥2

]
=

p∑
i=1

P2
si

(
Var (Pi) + E [Pi]

2
)

604

+
∑

1≤i̸=j≤p

P2
si

(
Var (Pj) + E [Pj ]

2
)
, (C4)605

∥Ps∥2 E
[
∥P∥2

]
=

p∑
i=1

P2
siE [Pi]

2
+

∑
1≤i ̸=j≤p

P2
siE [Pj ]

2
+

p∑
i=1

P2
siVar (Pi)606

+
∑

1≤i̸=j≤p

P2
siVar (Pj) . (C5)607

On the other hand:608

E [P · Ps]
2
=

p∑
i=1

P2
siE [Pi]

2
+ 2

∑
1≤i<j≤p

PsiE [Pi]PsjE [Pj ] . (C6)609

Therefore:610
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∥Ps∥2 E
[
∥P∥2

]
− E [P · Ps]

2
=

p∑
i=1

P2
siVar (Pi) +

∑
1≤i̸=j≤p

P2
siVar (Pj)611

+
∑

1≤i ̸=j≤p

P2
siE [Pj ]

2
612

−2
∑

1≤i<j≤p

PsiE [Pi]PsjE [Pj ] , (C7)613

∥Ps∥2 E
[
∥P∥2

]
− E [P · Ps]

2
=

p∑
i=1

P2
siVar (Pi) +

∑
1≤i ̸=j≤p

P2
siVar (Pj)614

+
∑

1≤i<j≤p

P2
siE [Pj ]

2
+ P2

sjE [Pi]
2

615

−2
∑

1≤i<j≤p

PsiE [Pi]PsjE [Pj ] , (C8)616

∥Ps∥2 E
[
∥P∥2

]
− E [P · Ps]

2
=

p∑
i=1

P2
siVar (Pi) +

∑
1≤i ̸=j≤p

P2
siVar (Pj)617

+
∑

1≤i<j≤p

(PsiE [Pj ]− PsjE [Pi])
2

(C9)618

As a consequence,619

∥Ps∥2 E
[
∥P∥2

]
− E [P · Ps]

2 ≥ 0, (C10)620

as the sum of positive terms, and ∥Ps∥2 E
[
∥P∥2

]
−E [P · Ps]

2
is equal to 0 if and only621

if Var (Pi) = 0 for all i = 1, . . . , p and (PsiE [Pj ]− PsjE [Pi])
2
= 0 for all 1 ≤ i < j ≤622

p. In particular, this condition is equivalent to:623

Ps1E [Pj ] = PsjE [P1] , j = 2, . . . , p, (C11)624

which means that Ps and E [P] are collinear.625
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Abstract14

Ensemble data assimilation methods, such as the Ensemble Kalman Filter, are well suited15

for climate reanalysis and predictions because they feature flow-dependent covariance,16

and the ensemble can be used to estimate the uncertainty of the system. However, be-17

cause Earth System Models are heavy computationally, the method typically uses a few18

tens of members. Sampling error in the covariance matrix can introduce biases in the19

unobserved regions (e.g. in the deep ocean), which may cause a drift in the reanalysis20

and in the predictions. Here, we assess the potential of the hybrid covariance approach21

(EnKF-OI) to counteract sampling error and rank deficiencies. The EnKF-OI linearly22

combines the superior flow-dependent covariance computed from a dynamical ensemble23

with another covariance matrix that is static but less prone to sampling error. We test24

the method within the Norwegian Climate Prediction Model (NorCPM), which combines25

the Norwegian Earth System Model (NorESM) and the Ensemble Kalman Filter (EnKF).26

We test the performance of the reanalyses in an idealised twin experiment, where we as-27

similate synthetic sea surface temperature observations monthly for the period 1980-2010.28

The dynamical ensemble consists of 30 members, and the static ensemble is composed29

of 315 seasonal members sampled from a long stable pre-industrial run. We compare the30

performance of the EnKF to 1) an EnKF-OI with a global hybrid coefficient tuned em-31

pirically, referred to as standard hybrid and 2) an EnKF-OI with adaptive hybrid co-32

efficients explicitly estimated in space and time. Both hybrid covariance methods cure33

the bias introduced by the EnKF at intermediate and deep water. The adaptive EnKF-34

OI performs best overall, and that by doing smaller updates than the standard hybrid35

version. In the adaptive EnKF-OI, the hybrid coefficient remains nearly constant through-36

out the reanalysis, with only a weak seasonal variability.37

Plain Language Summary38

Data assimilation is a statistical method that reduces uncertainty in a model, based39

on observations. A popular method for climate reanalysis and prediction are ensemble40

method that relies on statistics from a finite ensemble of model realisations. However,41

observations are sparse – mostly near the surface – and the sampling error from data as-42

similation method introduces a degradation in the deep ocean. We use a method that43

complements this ensemble with an pre-existing database of model states to reduce sam-44

pling error. We show that the approach substantially reduces error at the intermediate45

and deep ocean. The method typically requires the tunning of a parameter, but we show46

that it can be estimated online, achieving the best performance.47

1 Introduction48

Data assimilation estimates the state of a model (called the analysis) that approaches49

the “unknown true state” of the system based on observations, a prior model estimate,50

and statistical information on their uncertainties. Data assimilation is applied sequen-51

tially/recursively to provide a reanalysis, which can also be used to understand the mech-52

anisms of variability and initialise predictions. Data assimilation has been one of the key53

ingredients in the progress of numerical weather prediction (Bauer et al., 2015) and is54

now used in a wide range of geosciences applications (Carrassi et al., 2018), including55

climate prediction. The ensemble Kalman Filter (EnKF, Evensen, 2003), is an advanced56

data assimilation method that provides flow-dependent covariance – i.e., that can evolve57

in time and space with a transient state or a regime shift – and the ensemble provides58

a quantification of the uncertainty of the system. These properties are well suited for cli-59

mate reanalysis and predictions, and the method is becoming increasingly popular in that60

field (e.g., Zhang et al., 2009; Counillon et al., 2014; Brune et al., 2015; Karspeck et al.,61

2018; O’Kane et al., 2019).62
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Ensemble-based data assimilation methods (e.g., the EnKF) approximate the fore-63

cast error covariance matrix using a finite-size ensemble from a Monte Carlo integration64

step. Rank deficiencies and sampling errors emerge and deteriorate the performance of65

the system, causing an artificial reduction of the ensemble spread and may even lead to66

filter divergence. Several ad-hoc methods have been introduced to counteract sampling67

errors. Localization (Houtekamer & Mitchell, 2001; Evensen, 2003; Ott et al., 2004; An-68

derson, 2007) limits the spatial extent of the corrections, based on the approximation69

that the covariance function decays as a function of the distance – and can be seen as70

a way to effectively reduce the degree of freedom of the system. Inflation (Anderson, 2001;71

Whitaker & Hamill, 2012; Raanes et al., 2019) counteracts the spread-collapse by arti-72

ficially inflating the ensemble spread at every assimilation step. The last method is the73

covariance hybridization method, which is the topic of our paper.74

Covariance hybridization (Hamill & Snyder, 2000) combines linearly the flow-dependent75

covariance computed from a finite Monte-Carlo ensemble with another covariance ma-76

trix that is less prone to sampling error. The static matrix can be parameterized (Hamill77

& Snyder, 2000; Weaver & Courtier, 2001), computed from a long model simulation (Counillon78

et al., 2009), computed as the average of the background error covariance matrices from79

a previous data assimilation run (Carrió et al., 2021) or computed from a dynamical en-80

semble at a lower resolution (Rainwater & Hunt, 2013). The hybrid covariance method81

achieves better performance than the standalone EnKF, particularly for small ensem-82

bles, and performance converges to that of the EnKF for large ensembles (X. Wang et83

al., 2007; Counillon et al., 2009; Raboudi et al., 2019). The computational cost of the84

hybrid covariance methods is customizable to the desired cost.85

The linear coefficients combining the static and the dynamic covariance are called86

the ”hybridization coefficients”, which optimally balances the superior but noisy sam-87

ple covariance with that of less noisy but static covariance. To achieve optimal perfor-88

mance, it is crucial to tune these coefficients (X. Wang et al., 2007; Counillon et al., 2009;89

Raboudi et al., 2019; Gharamti et al., 2014). The optimal values of these coefficients de-90

pend on the non-stationarity of the dynamical system as well as the data assimilation91

settings, such as the dynamical ensemble size, localisation and inflation settings. As such,92

it is expected that the optimal value of the hybridization coefficients should vary in space93

and time. A first attempt to estimate spatial and time-varying hybridization coefficient94

has been developed (Gharamti, 2020) with a Bayesian framework (using fixed localisa-95

tion settings). They found that a spatially heterogeneous hybridization coefficient for-96

mulation outperforms a homogeneous formulation. Ménétrier and Auligné (2015) and97

Ménétrier et al. (2015) formulated the problem of hybridization as a linear filtering prob-98

lem of the background error covariance matrix to optimize both the localization and the99

hybridization coefficients simultaneously.100

In this work, we aim to investigate the benefit of background error covariance hy-101

bridization for climate reanalysis and climate prediction systems, as for example with102

the CMIP6 Decadal Climate Prediction Project (DCPP, Boer et al., 2016). We use the103

Norwegian Climate Prediction Model (NorCPM, Counillon et al., 2014, 2016) that pro-104

vides coupled reanalysis and contributed to CMIP6 DCPP (Bethke et al., 2021). Here,105

we focus on long coupled reanalysis as NorCPM will produce such a reanalysis from 1850106

to the present. Sea surface temperature (SST) dominates the ocean observation network107

before the emergence of altimetry in the 90s and Argo data in the 2000s. Using only SST,108

NorCPM can control the upper ocean heat content, and major indices of climate vari-109

ability in the North Atlantic well (Counillon et al., 2016). Two features of NorCPM, flow-110

dependent assimilation and assimilation in isopycnal coordinates, were found to be par-111

ticularly important in that success. However, it also yields an unrealistic update of the112

intermediate water masses in the North Atlantic Subpolar Gyre (SPG) (typically below113

1000m) (Counillon et al., 2016), which subsequently causes a drift in the multi-year pre-114
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dictions in the North Atlantic SPG region (Bethke et al., 2018). We aim to address this115

limitation in our current assimilation system.116

We test the performance of NorCPM for coupled reanalysis in the framework of ide-117

alised twin experiments with the assimilation of SST. We assess whether 1) hybrid co-118

variance can solve this issue and compare the performance of a 31-year coupled reanal-119

ysis produced with the EnKF (currently used in NorCPM) and hybrid covariance meth-120

ods, 2) compare robustness and optimality of two flavours of hybrid covariance meth-121

ods: one using an empirically tuned globally constant hybridization coefficient and one122

where the hybridization coefficients are estimated adaptively in space and time (Ménétrier123

et al., 2015; Ménétrier & Auligné, 2015; Ménétrier, 2021).124

The results show that the hybridization method – both with fixed and adaptive hy-125

bridization coefficients – performs equally or better than the EnKF in most places and126

depths, and substantially improves results in intermediate and deep water masses. The127

adaptive hybrid performs better than its counterpart with fixed hybridization factors.128

This paper is organised as follows. Section 2 presents the Earth System Model (ESM)129

used in this work, the Norwegian Earth System Model (NorESM). Section 3 presents the130

deterministic EnKF, and its practical implementation within the NorCPM. Section 4 de-131

scribes hybridization with a static covariance matrix. Section 5 describes the adaptive132

covariance hybridization method and its practical implementation within NorCPM for133

SST assimilation. In section 6, we introduce the experimental design and the evaluation134

metrics. The numerical results are presented in section 7. Section 8, provides a conclu-135

sion, discussion and future perspective to this work.136

2 Model system: the Norwegian Earth System Model137

NorESM1-ME (Bentsen et al., 2013) is based on version 1.0.4 of the Community Earth138

System Model (Hurrell et al., 2013). Its atmosphere component is the CAM4-OSLO, the139

ocean component is the Bergen Layered Ocean Model, BLOM, (Bentsen et al., 2013),140

the land component is the Community Land Model, CLM4, (Lawrence et al., 2011), the141

sea ice component is the Los Alamos Sea Ice Model, CICE4, (Bitz et al., 2012), and the142

coupler is CPL7 (Craig et al., 2012).143

The atmosphere and the land components have 1.9◦×2.5◦ latitude-longitude res-144

olution. The atmosphere component has 26 hybrid sigma-pressure levels ranging from145

the surface up to 3 hPa. The ocean and the sea ice components have a 1◦ horizontal res-146

olution in both latitude and longitude with a bipolar grid. BLOM comprises in the ver-147

tical a stack of 51 isopycnic layers and two layers for representing the bulk mixed layer.148

Before 2005, the forcings are the CMIP5 historical forcings (Taylor et al., 2012), while149

after 2005, they are the representative Concentration Pathway 8.5 forcings (van Vuuren150

et al., 2011).151

3 The deterministic ensemble Kalman filter152

Let X ∈ Rn×N an ensemble of N model states (x1,x2, . . . ,xN ), x ∈ Rn the en-153

semble mean and A ∈ Rn×N the ensemble anomalies. We note n the model state di-154

mension. x and A are given by Eq. (1) and (2):155

x =
1

N
X1, (1)156

A = X

(
I− 1

N
11T

)
, (2)157
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where I ∈ RN×N is the identity matrix and 1 ∈ RN is a vector with all elements equal158

to 1. In the following equations, the superscripts f and a stand respectively for the fore-159

casted and analysed states of the mean and the anomalies.160

We note xt the true state of the system. The observations y are defined by Eq. (3):161

y = Hxt + ε, ε ∼ N (0,R) , (3)162

where H ∈ Hp×n is the observation operator, R ∈ Rp×p is the observation error co-163

variance matrix, and p is the number of observations.164

In this study, the deterministic EnKF (DEnKF) introduced by Sakov and Oke (2008)165

is used. The DEnKF is a square-root (deterministic) flavour of the EnKF that solves the166

analysis without the need for perturbation of the observations. It inflates the error by167

construction and is intended to perform well in applications where corrections are small168

(Sakov & Oke, 2008). The scheme has been robustly tested and validated (Sakov et al.,169

2012; Counillon et al., 2016; Bethke et al., 2021). The DEnKF decomposes into two steps:170

a forecast step and an analysis step. In the forecast step, each analyzed member xa
i is171

integrated forward in time, which becomes the prior xf
i at the following assimilation cy-172

cle:173

xf
i = M (xa

i ) , i = 1, . . . , N, (4)174

where M is an operator that stands for the model integration.175

The analysis step of the DEnKF proceeds in two steps, the update of the ensemble176

mean, Eq. (5), and the update of the ensemble anomalies, Eq. (6):177

xa = xf +K
(
y −Hxf

)
, (5)178

Aa = Af − 1

2
KHAf , (6)179

where:180

K = PfHT
(
HPfHT + R

)−1

, (7)181

Pf =
Af

(
Af

)T

N − 1
, (8)182

are respectively the Kalman gain matrix and the background error covariance matrix es-183

timated from the ensemble anomalies.184

In the following, the DEnKF will be referred to as EnKF since general conclusions185

of this work are independent of the flavour of the EnKF analysis scheme used.186

Applying an EnKF with a large dimensional system requires few ad-hoc implemen-187

tations. In order to avoid a too abrupt start of assimilation, the variance of the obser-188

vation error is multiplied by a factor 8 at the first assimilation cycle and is then reduced189

by 1 every two months until it reaches 1 over the course of 14 months. We use the rfac-190

tor inflation scheme (Sakov et al., 2012), for which the observation error is inflated by191

2 when updating the ensemble anomaly in Eq. 6. We also use pre-screening of the ob-192

servation; i.e., the observation error variance is inflated so that the analysis remains within193
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2 standard deviations of the forecast error from the ensemble mean of the forecasts (Sakov194

et al., 2012). We also used the upscaling method (Y. Wang et al., 2016) that handles the195

update of the water layers thickness (truncated Gaussian) and better preserve mass, heat196

and salt. For producing long reanalysis (from 1850) with SST assimilation, we use the197

Hadley Centre Sea Ice and Sea Surface Temperature (HadISST2.1.0.0) available from198

1850–present. This type of product is practical because it handles the biases between199

different data set and provide a grided ensemble SST that can be used to quantify the200

uncertainty. Still, it is constructed by statistical interpolation/extrapolation from the201

raw data and the neighbouring observation errors are highly correlated. Our assimila-202

tion code assumes the observation error to be independent (i.e., R is diagonal) and it203

was therefore decided to only retain the nearest SST observation to update the water204

column (we speak of ”strong localization”). For more details about the implementation205

of the EnKF within NorCPM, see Counillon et al. (2014) and Counillon et al. (2016).206

4 Background error covariance matrix hybridization207

The dynamical covariance matrix Pf
d is estimated from the dynamic ensemble Xd.208

The size of Xd is limited to 30 members in the current version of NorCPM. Such a small209

ensemble size results in spurious covariances (Anderson, 2007; Bishop & Hodyss, 2007)210

and rank deficiencies (Oke et al., 2007). Background error covariance hybridization was211

initially introduced by Hamill and Snyder (2000) to combine an EnKF with a 3DVar and212

bring some flow-dependency in variational data assimilation. Covariance hybridization213

has been used in sequential ensemble data assimilation by X. Wang et al. (2007), Counillon214

et al. (2009) and Gharamti et al. (2014) (hereafter referred to as EnKF-OI) as a way to215

limit the impact of under-sampling and rank deficiency. The background error covari-216

ance matrix combines linearly a dynamical covariance matrix Pf
d with another covari-217

ance matrix Pf
s (where the subscript s stands for static) computed from a climatolog-218

ical ensemble of size Ns, Xs (where Ns ≫ Nd). That static ensemble is constructed by219

gathering model output before running the assimilation experiment. As such, the EnKF-220

OI does not increase the computational cost of the integration step and has only a lim-221

ited impact on the computational cost of the analysis step (Counillon et al., 2009). In222

the special case of the EnKF-OI in NorCPM the CPU-time of the EnKF-OI is 7% larger223

than that of the standard EnKF; we discuss in Section 8 possible ways to reduce the com-224

putational cost of the EnKF-OI in NorCPM. We denote Pf
h the hybrid covariance ma-225

trix:226

Pf
h = αdP

f
d + αsP

f
s, αd, αs ≥ 0 (9)227

Unless explicitly mentioned, the sum of the coefficients αd and αs can be different228

from 1.229

The update of the mean and the anomalies with the EnKF-OI writes:230

xa
d = xf

d +Kh

(
y −Hxf

d

)
, (10)231

Aa
d = Af

d −
1

2
KhHAf

d, (11)232

where Kh is the hybrid Kalman gain,233

Kh = Pf
hH

T
(
HPf

hH
T + R

)−1

. (12)234

In practice, we do not compute explicitly the hybrid covariance matrix Ph:235
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Ph =
Ah (Ah)

T

Nh − 1
, (13)236

where Ah stands for the hybrid anomalies (Counillon et al., 2009):237

Ah =
√
Nh − 1

[√
αd

Nd − 1
Ad,

√
αs

Ns − 1
As

]
, (14)238

and [., .] stand for the concatenation of two sets of vectors. Therefore, the EnKF-OI is239

implemented within NorCPM following Evensen (2003) and Sakov et al. (2010).240

5 Adaptive covariance hybridization241

5.1 Explicit optimality of the hybridization coefficients242

In this section, we build on the work of Ménétrier et al. (2015); Ménétrier and Auligné243

(2015) and adapt a method proposed in Ménétrier (2021) to determine the optimal hy-244

bridization coefficients.245

We take advantage of the strong localization setting (see Section 3) to consider only246

the covariance between a single point at the surface of the ocean, and the multivariate247

state vector of the water column below so that the covariance matrix in each point re-248

duces to a vector. In the following, we note P the true covariance vector at a given point249

(which would be obtained with an infinite ensemble). We use the subscript i to refer to250

the ith element of the covariance vector (e.g., Pi for the ith element of the true covari-251

ance vector). We define the scalar product of two random vectors X and Y as E [X · Y ] =252 ∑p
i=1 E [XiYi]. We assume that Pd and P are realizations of two independent random253

processes and that the sampling error of Pd, i.e., Pd−P, is unbiased, and orthogonal254

to the truth, (see Ménétrier et al. (2015), Eqs. (20a)-(20b)). Therefore:255

E [Pd − P] = 0, (15a)256

E [(Pd − P) · P] = 0. (15b)257

The optimal hybridization coefficients (αd, αs) are defined as those minimizing, in258

a statistical sense, the square of the error between Ph and P, i.e., (αd, αs) minimize the259

function e:260

e(αd, αs) = E
[
∥Ph − P∥2

]
= E

[
∥αdPd + αsPs − P∥2

]
, (16)261

where ∥.∥ stands for the L2-norm of a vector. It can be shown (see Appendix A) that262

minimizing the function e is equivalent to solving a system of two equations, with un-263

known αd and αs, whose solution is given by:264

(αd, αs) =
(nd

∆
,
ns

∆

)
, (17)265

where:266

∆ = ∥Ps∥2 E
[
∥Pd∥2

]
− E [Pd · Ps]

2
, (18)267

nd = ∥Ps∥2 E
[
∥P∥2

]
− E [Pd · Ps]

2
, (19)268

ns =
(
E
[
∥Pd∥2

]
− E

[
∥P∥2

])
E [Pd · Ps] . (20)269
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5.2 Properties270

The properties highlighted by Ménétrier et al. (2015) in the case of the dual optimiza-271

tion of localization and hybridization hold here:272

1. Behavior of the hybridization coefficients: if the static covariance is mul-273

tiplied by a factor λ, then αs is divided by λ, while αd remains unchanged. As such,274

it is not necessary to tune the static covariance with a scalar a priori, as done in275

Evensen (2003), Oke et al. (2008) and Counillon et al. (2009).276

2. Asymptotic behavior: with an infinite ensemble, E
[
∥Pd∥2

]
= E

[
∥P∥2

]
. We277

can replace E
[
∥Pd∥2

]
by E

[
∥P∥2

]
in Eqs. (19)-(20), and obtain (αd, αs) = (1, 0)278

as expected – there is no need for hybridization.279

3. Benefits of hybridization: whatever the choice of the static covariance (see Ap-280

pendix B),281

e(1, 0) ≥ e(αd, αs), (21)282

showing the superiority of the hybrid scheme over the standalone EnKF.283

4. Optimality condition: we can show that Ph verifies the following optimality284

condition:285 
∂e

∂αd
= 0

∂e

∂αs
= 0

⇔ E [(Pd − Ps) · (Ph − P)] = 0. (22)286

This means from a statistical point of view that Ph is the orthogonal projection287

of the true covariance P onto a sub-space defined as Pd+µ (Ps − Pd) where µ ∈288

R, see Fig. 1.289

Figure 1. Geometrical representation of the orthogonal projection of the true covariance P

onto the sub-space generated by the dynamic covariance Pd and the static covariance Ps.

Here are some remarks:290
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1. if αd ̸= 1, Ph can be interpreted as the linear interpolation between Pd and λPs,291

where:292

λ =
αs

1− αd
, (23)293

thus, λ ≥ 1 (resp ≤ 1) is equivalent to αd+αs ≥ 1 (resp. ≤ 1). λ acts as an in-294

flation or deflation term for the matrix Ps and Ph is the linear interpolation be-295

tween Pd and the inflated/deflated Ps.296

2. From Eqs (15a)-(15b), it follows that the errors Pd−P and Ps−P are uncorre-297

lated: E [(Pd − P) · (Ps − P)] = 0. As a consequence, the triplet (Pd,P,Ps) forms298

a triangle rectangle in P, see Fig. 1.299

3. The numerator of αd, nd, can be interpreted as a measure of the collinearity of300

the static covariance Ps, and the expectation of the true covariance P. Hence, nd301

is equal to 0 if and only if Var(P) = 0 and P and Ps are collinear (or linearly de-302

pendent). Conversely, if E [Pd · Ps] = 0, then P and Ps are orthogonal (see Ap-303

pendix C).304

4. It follows from Eq. (15b) that (see Appendix B, Eqs. (B1)-(B2)):305

E
[
∥Pd − P∥2

]
= E

[
∥Pd∥2

]
− E

[
∥P∥2

]
≥ 0. (24)306

Therefore, the difference E
[
∥Pd∥2

]
−E

[
∥P∥2

]
can be interpreted as a measure307

of the optimality (or the non-optimality) of the covariance function computed from308

the dynamic ensemble Pd: the smaller the difference, the smaller the distance ∥Pd − P∥309

in a statistical sense. Conversely, the larger the difference, the larger the distance310

∥Pd − P∥.311

5. It follows from remarks 3 and 4 that the hybridization coefficients αd and αs are312

the combination of the optimality of the dynamic covariance function Pd and the313

collinearity/orthogonality of the static covariance Ps and the true covariance P.314

6. As a consequence of Eq.(24) and Appendix C, 0 ≤ αd ≤ 1. We can not give sim-315

ilar upper and lower boundaries for the values of αs, as the term E [Pd · Ps] can316

be negative and we do not know its lower bound. Numerical simulations showed317

that this term is almost always positive (not shown). We can just say that αs is318

maximal when ∆ is minimal and therefore E [Pd · Ps] is maximal. In that case,319

αd is minimal.320

5.3 Practical implementation321

Quantities in Eq. (19) and Eq. (20) can not be computed directly as they are a function322

of E
[
∥P∥2

]
, E [Pd · Ps], and E

[
∥Pd∥2

]
that are unknown.323

Nonetheless, the sampling theory developed in Ménétrier (2021) allows us to express324

E
[
P2

i

]
, i = 1, . . . , p as a function of the covariance and variance of the dynamic ensem-325

ble. Using Eq. (101b) of Ménétrier (2021) one can write:326

E
[
P2

i

]
=

(Nd − 1)
2

(Nd − 2) (Nd + 1)
E
[
P2

di

]
− Nd − 1

(Nd − 2) (Nd + 1)
E [vdivd1] , (25)327

where vdi is the variance of the dynamic ensemble for the i-th element of the model state.328

The quantities nd, ns, and ∆ are then fully expressed as a function of the static covari-329

ance and the expectation of the variance and covariance of the dynamic ensemble.330

The expectation terms in Eq. (18), (19), (20), and (25) are estimated under a sim-331

plifying assumption of ”local homogeneity”: it is assumed that in an area surrounding332

the water column, the vertical covariance functions are representative of the covariance333

function of the water column. The expectation terms are then estimated as the average334
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of the surrounding vertical covariance functions. Numerical tests have shown that at least335

500 covariance functions are necessary to compute reliable statistics. In this work, we336

consider covariance functions in a radius up to 1000 km around the water column, which337

usually provides between 500 and 1000 covariance functions to compute the expectation338

terms.339

In order to limit the computational burden of estimating the hybridization coeffi-340

cients, they are computed on a subgrid of the domain (every 5 grid cells). The hybridiza-341

tion coefficients are then interpolated to the remaining wet points using linear interpo-342

lation of the neighbouring wet points.343

The hybridization coefficients are estimated based on both temperature and salin-344

ity. Doing so yields a lower root mean square error than when computing the hybridiza-345

tion coefficients solely based on the temperature (not shown).346

6 Experimental design and evaluation metrics347

6.1 Experimental design348

The free ensemble run (hereafter referred to as FREE), consists of 30 members run349

with transient forcing from 1850 to 2014. The true run (hereafter referred to as TRUE)350

is created by spawning one member (adding noise to surface temperature) on member351

1 of FREE in 1960 and running it up to 2010. It was verified in Y. Wang et al. (2022)352

that TRUE and member 1 of FREE were fully de-synchronised at the start of the ex-353

periment in 1980. The synthetic observations of SST are generated by adding white noise354

to the monthly SST of TRUE. The amplitude of the noise is set equal to the observa-355

tion uncertainty (in space and time) of HadISST2. As in the real framework for assim-356

ilation of SST, we do not use SST data under sea ice.357

We produce reanalyses with monthly assimilation of SST observations from January358

1980 to December 2010. All experiments start with the same initial dynamic ensemble359

(taken from FREE in January 1980). The static ensemble is made from the monthly restarts360

of a 315 years long stable pre-industrial run (monthly varying static ensemble). The ex-361

periments are separated into three categories:362

• EnKF: the standard EnKF used in NorCPM (Counillon et al., 2016).363

• Standard hybrid: a constant and global hybridization coefficients (see Section364

4). The sum of αd and αs is 1. We performed 7 reanalyses with αd = 0, 0.2, 0.4, 0.6, 0.8, 0.9, 1.365

The case where αd = 0 is equivalent to an ensemble of EnOI, and the case where366

αd = 1 is equivalent to the standard EnKF.367

• Adaptive hybrid: the hybridization coefficients are estimated at each assimi-368

lation cycle, they vary spatially and their sum is not imposed equal to 1 (see Sec-369

tion 5).370

6.2 Evaluation metrics371

The accuracy of the reanalyses is estimated based on the root mean square error (RMSE).372

The RMSE is computed as:373

RMSE =

√√√√ N∑
i=1

ωi (xi − xt
i)

2
. (26)374

In the following, the RMSE is computed either over a time series at a given point375

(in which case ωi = 1
N ), or over the whole domain at a given time (in which case ωi376

is the relative size of the grid cell).377
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In order to easily compare RMSE between the nine different schemes (see Section 6.1),378

we introduce the Mean Skill Score of one configuration i, MSSi. It is the relative reduc-379

tion of RMSE compared to the mean of the RMSE of the nine configurations, Eq. (27):380

MSSi = 1− RMSEi

1
9

∑9
j=1 RMSEj

, (27)381

where RMSEi is the RMSE of one of the schemes. The MSS is 1 if the scheme is per-382

fect (RMSE is equal to 0), between 0 and 1 if the scheme performs better than the mean383

of the other schemes and negative otherwise.384

Another important metric to evaluate the relative efficiency of different data assim-385

ilation schemes is to consider the “degrees of freedom for signal” (DFS, Cardinali et al.,386

2004; Wahba et al., 1995). It can be interpreted as the number of modes of variability387

reduced from the ensemble by the assimilation (i.e. the assimilation change). The DFS388

is defined as follows:389

DFS =
∂Hxa

d

∂y
= Tr (KH) (28)390

The DFS is between 0 (i.e., the observations have no impact on the ensemble), and391

the total number of degrees of freedom (i.e., observations has collapsed the number of392

modes of variability into a single one, Xie et al., 2018). The total number of degrees of393

freedom is the minimum between the ensemble size and the number of observations used394

for the local assimilation. In NorCPM, in the context of strong localisation (where we395

retain only the nearest observation, see Section 3), it implies that the DFS is between396

0 and 1 (independently of the ensemble size). This allows for an inter-comparison of the397

DFS even though the schemes have different ensemble sizes.398

7 Results399

7.1 Stability of the adaptive covariance hybridization400

The adaptive covariance hybridization method (see Section 5) estimates adaptive hy-401

bridization coefficients both in space and time.402

Figure 2 shows the time series of globally averaged αd, αs, and αd+αs (sea ice-covered403

points where there are no SST data are masked). After a spin-up period of approximately404

three years, the averaged values of the hybridization coefficients converge to a global av-405

erage of 0.7 for αd, and 0.175 for αs. This shows that the mean values of αd and αs are406

stable in time and display a limited temporal variability despite an important spatial vari-407

ability, and so does the sum αd+αs. Hence, the mean values of αd and αs computed408

in specific basins show similar behaviour and converge within 3 years (not shown). The409

global averaged value of αd + αs is roughly 0.875. Following remark 1 in Section 5.2,410

it implies that the static ensemble has a larger error variance than the error growth within411

one assimilation cycle and needs to be reduced - in agreement with Oke et al. (2008),412

Counillon and Bertino (2009), and Evensen (2003).413
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Figure 2. Time series of the global average values of αd, αs, and αd + αs. Ice-covered regions

are masked.

Figures 3 shows the pointwise averaged map of αd and αs computed over the years414

1983 to 2010 for January and July. The values of αd display an important spatial vari-415

ability with values ranging approximately from 0.4 up to 1. Regions where αd is small416

coincide with places where αs is large. The spatial variations of the values of αd and αs417

(Section 5.2) can be explained from the perspective of the optimality of the dynamic co-418

variance Pd (depending on the sampling error in the dynamical ensemble), and the collinear-419

ity between the static covariance Ps and the true covariance P (meaning that static co-420

variance is sufficient). Larger values of αd are found in locations where the dynamic is421

non-stationary and internal variability is large; e.g., in the Northern part of the Atlantic422

Ocean (Gulf Stream pathway, Subpolar Gyre, near the ice edge), the North Pacific, El423

Niño–Southern Oscillation and in the Southern Ocean. Conversely, there are relatively424

low values of αd in the Indian Ocean where variability is primarily externally forced (Guemas425

et al., 2013), the decadal fluctuations are less pronounced than in the Atlantic or the Pa-426

cific Ocean and where the Pacific Ocean teleconnections dominate the regionally driven427

variability (Frankcombe et al., 2015). In the tropical Atlantic, the model is performing428

very poorly and has no skill (Counillon et al., 2021); it is thus not surprising that αd is429

also low.430
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(a) (b)

(c) (d)

Figure 3. Pointwise averaged estimate of αd (top row), and of αs (bottom row) computed

over 1983–2010 for the months of January and July.

In Fig. 4, we analyse the interannual de-seasoned standard deviation of the hybrid431

coefficient beyond year 3 (once it has converged). We can see that the variability is very432

small, except in a few places, e.g. in the Arctic, in Indian Ocean and in the tropical At-433

lantic and Pacific Gyre. In those places, the performance between the standard hybrid434

coefficient method is relatively small (not shown).435

7.2 Intercomparison of the performance of the EnKF and the hybrid co-436

variance schemes437

Figure 5 shows the MSS (see Section 6.2) of ocean heat and salt content for the dif-438

ferent schemes at different depth ranges (0-200m, 200-500m, ..., 2000-4000m). We in-439

clude the EnKF (αd = 1 and αs = 0) and the ensemble of EnOI (αd = 0 and αs = 1)440

as particular cases of the standard hybrid covariance method. A red cell (resp. blue cell)441

indicates that the scheme provides a reduction (resp. an increase) of RMSE compared442

to the average performance of all the schemes for a given depth range. For example, the443

adaptive hybrid and the standard hybrid scheme with αd = 0.9 reduces the RMSE of444

the temperature at depth 500-1000m by 10% compared to the average performance, while445

the standard hybrid with αd = 0 increases the RMSE at the depth 200-500m by 15%.446

The results for heat and salt content are very similar. As expected, the EnKF is out-447

performing the ensemble of EnOI (i.e., αd = 0), showing the superiority of flow-dependent448

covariance over static covariance. It also shows the importance of tuning the hybrid co-449

efficient as for a large span of standard hybrid coefficient values, the hybrid covariance450

methods perform poorer than the EnKF. When αd is larger than 0.8 (αd = 0.9 being451

optimal), the standard hybrid covariance outperforms the EnKF; notably between 2000452

and 4000m. In the latter, a bias is gradually increasing due to spurious covariance at453
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(a) (b)

Figure 4. Standard-deviation of the de-seasoned values of αd (a), and of αs (b) computed

over 1983–2010.

depth (Y. Wang et al., 2022; Bethke et al., 2018). The adaptive hybrid covariance method454

performs best at nearly all depth levels for heat and salt content. In the following, we455

will therefore present the adaptive hybrid and assess the spatial distribution of the im-456

provements over the EnKF, but results with the best standard hybrid are nearly com-457

parable (not shown).458

d
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d
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d
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d
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d
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d
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d
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d
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d
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d
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0.00
0.05
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0.15
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(a) (b)

Figure 5. MSS of all the schemes for temperature (a) and salinity (b) at different depth in-

tervals. αd = 0, αd = 0.2, . . . , αd = 0.9 refer to the hybridization coefficient of the standard

hybrid. αd = 0 is the ensemble of EnOI, full static case, and αd = 1 is the EnKF – the de-

fault scheme used in NorCPM. ”α adp” stands for the adaptive hybridization scheme. The warm

colour indicates that the scheme performs better than the average skill of all systems.
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The adaptive hybrid and the EnKF achieve similar performance in the top 1000m459

(Figure 5), and we focus on performance below this depth range. We compare the re-460

duction of RMSE of the EnKF and the adaptive hybrid compared to that of FREE for461

two depths range.462

Between 1000 and 2000m (Fig. 6), the EnKF reduces the error overall (warmer value463

is predominant) compared to FREE. Still, there are few places where it increases the RMSE464

of temperature, e.g.: in the North Pacific, the subtropical Atlantic, and near the Wed-465

dell Sea. Results are relatively comparable for salt content (see Fig. 6-b). The overall466

pattern is similar with the adaptive hybrid. Still, it yields further improvement, as in467

the North Atlantic subpolar gyre and it mitigates the degradation in the aforementioned468

regions. The degradation in the Weddell Sea is nearly completely removed.469

(a) (b)

(c) (d)

Figure 6. RMSE difference between FREE and the EnKF (a,b), and FREE and the adaptive

hybrid (c,d) between 1000 and 2000m depth for the temperature (left column) and the salinity

(right column). Warm colour indicates that assimilation reduces error compared to FREE.
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Between 2000 and 4000m (Fig. 7), the EnKF degrades overall performance compared470

to FREE. The degradation is larger in the North Pacific, the North Atlantic, and the471

Southern Ocean for both the temperature and the salinity. The improvements are also472

limited to the South Atlantic Ocean. The adaptive hybrid corrects or mitigates these bi-473

ases. Some degradation remains (in the North Atlantic subpolar gyre, the Sea of Japan474

in particular for salinity), but the assimilation yields an overall improvement over FREE.475

(a) (b)

(c) (d)

Figure 7. Same as fig. 6 but for 2000–4000m depth interval.
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An ideal assimilation system achieves minimal error while making the smallest change476

possible during the assimilation. Figure 8 shows the difference of DFS (that quantifies477

the assimilation change) between the EnKF and the best standard hybrid (αd = 0.9)478

(panel a) and between the EnKF and the adaptive hybrid (panel b). The standard hy-479

brid has a larger DFS value than the EnKF (negative values), implying that the data480

assimilation induces more change. This is most notable in the Southern Ocean and the481

tropical Pacific. In the Southern Ocean, the standard hybrid covariance method performs482

better than the EnKF, so it can be argued that the larger corrections are beneficial. How-483

ever, in the tropical Pacific, the ∆RMSE of the two remains quite close, meaning the anal-484

ysis induces more changes without improving performance. On the contrary, the adap-485

tive hybrid, Fig. 8-(b), has a DFS close to that of the EnKF. There are some slight dif-486

ferences (in the North Pacific, the North Atlantic, and the Southern Ocean), with a max-487

imum in the Irminger Sea, where it strongly outperforms the EnKF (e.g., 1000–2000m).488

It implies that the adaptive hybrid induces only change where this yields improved per-489

formance.490

(a) (b)

Figure 8. Difference of DFS between the EnKF and the standard hybrid covariance with

αd = 0.9 (a), and between EnKF and adaptive hybrid covariance (b). The cold colour indicates

that the hybrid covariance yields a larger reduction of DFS than with the EnKF.
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8 Discussion and conclusion491

In this work, we compare two different versions of hybrid covariance data assimila-492

tion with the standard EnKF for producing climate reanalysis. We use the Norwegian493

Climate Prediction Model (NorCPM) and work in an idealised twin experiment frame-494

work. The reanalyses are performed with sole assimilation of SST for the period 1980-495

2010. In the first hybrid coefficient method, the hybridization coefficients are tuned em-496

pirically to optimize the performance, while in the second, the hybridization coefficients497

are estimated adaptively, both in space and time. The two hybrid coefficient methods498

outperform the standard EnKF and mitigate the degradation it introduces in the inter-499

mediate and deep ocean compared to unassimilated simulations. The adaptive performs500

best and is doing so by making smaller corrections than the standard hybrid. The hy-501

bridization coefficients with the adaptive hybrid are converging quickly (less than 3 years)502

to stable values and only show small seasonal variations.503

Other alternatives have been developed in parallel to address the sampling error with504

the EnKF in NorCPM – namely the isopycnal vertical localization (Y. Wang et al., 2022).505

The latter limits the assimilation update of temperature and salinity to a fixed isopy-506

cnal level and was shown to mitigate the degradation seen in the standard EnKF. Com-507

bining the two approaches is straightforward and will be tested in the future. However,508

the isopycnal vertical localization detailed in Y. Wang et al. (2022) was tuned for an en-509

semble size of 30 members, while now the ensemble size is much larger (350 members).510

The vertical tapering will thus need to be revised.511

The adaptive hybrid coefficients method is slightly more expensive than the stan-512

dard hybrid as it requires additional computation related to the estimation of the hy-513

brid coefficient at each assimilation step. Here, the hybridization coefficients are estimated514

at every 5 grid cells, but we could have estimated them at every 10 grid cells (reducing515

the cost by 4) with a comparable solution (not shown). Furthermore, as these coefficients516

converge rapidly to stable estimates (within 3 model years, showing only a weak seasonal517

variability). They could be stored and directly used instead of being recalculated every518

time. As such, we do not consider that the additional computational cost would be much519

larger than the standard hybrid, which also has an additional cost (empirical estimation520

of the global coefficient).521

In this study, the estimation of the hybridization coefficients in the adaptive method522

is constant in the vertical. Nonetheless, adapting the method to estimate different hy-523

bridization coefficients for different vertical levels or variables would be relatively triv-524

ial. Furthermore, we tested the method for the particular case of assimilation of SST ob-525

jective analysis, where we update a single water column with a single observation, (i.e.,526

”strong localization”). For the assimilation of temperature/salinity profile data, the ob-527

servation error is uncorrelated, and a larger localisation radius is used in NorCPM, the528

method can be adjusted following Ménétrier (2021).529

A critical assumption made with the adaptive hybrid covariance method is that mod-530

els are unbiased and that for an infinite ensemble size, the ensemble covariance matrix531

converges with the true covariance matrix. These assumptions fall apart with Earth Sys-532

tem Models with considerable biases (Palmer & Stevens, 2019). It remains to be veri-533

fied how the method would perform in a real framework. Verification of the method in534

a real framework, both for coupled reanalysis and testing the impact on prediction ini-535

tialised from it, will be tested in the future.536

Appendix A Minimization of the function e537

The function e is defined as:538
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e(αd, αs) = E
[
∥αdPd + αsPs − P∥2

]
. (A1)539

By linearity of the expectation operator and by definition of the L2-norm ∥.∥, we can540

write:541

e(αd, αs) = α2
dE

[
∥Pd∥2

]
+ αs ∥Ps∥2 + E

[
∥P∥2

]
542

+2αdαsE [Pd · Ps]− 2αdE [Pd · P]− 2αsE [P · Ps] . (A2)543

It follows from Eq. (15b) that:544

E [Pd · P] = E
[
∥P∥2

]
(A3)545

Replacing Eq. (A3) in Eq. (A2), we obtain the following expression of e:546

e(αd, αs) = α2
dE

[
∥Pd∥2

]
+ α2

s ∥Ps∥2 + (1− 2αd)E
[
∥P∥2

]
+ 2αs(αd − 1)E [Pd · Ps] . (A4)547

e being a quadratic function of two variables, αd and αs, with positive coefficients548

associated to α2
d and α2

s, its has a unique minimum where both the partial derivatives549

with respect to αd and αs are null. Hence, minimizing the function e is equivalent to solve550

the following system of two equations:551


∂e(αd, αs)

∂αd
= 0

∂e(αd, αs)

∂αs
= 0

(A5)552

The partial derivatives of e with respect to αd and αs are given by Eq. (A6) and (A7):553

∂e(αd, αs)

∂αd
= 2αdE

[
∥Pd∥2

]
+ 2αsE [Ps · Pd]− 2E

[
∥P∥2

]
, (A6)554

∂e(αd, αs)

∂αs
= 2αdE [Ps · Pd] + 2αs ∥Ps∥2 − 2E [Ps · Pd] . (A7)555

From which it follows that minimizing the function e is equivalent to solving the sys-556

tem of two equations:557


αdE

[
∥Pd∥2

]
+ αsE [Pd · Ps] = E

[
∥P∥2

]
αdE [Pd · Ps] + αs ∥Ps∥2 = E [Pd · Ps] ,

(A8)558

Appendix B Benefits of hybridization559

By definition of the function e:560

e(1, 0) = E
[
∥Pd − P∥2

]
. (B1)561
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By linearity of the expectation operator and by definition of the L2-norm, we can562

show that563

e(1, 0) = E
[
∥Pd∥2

]
+ E

[
∥P∥2

]
− 2E [Pd · P] . (B2)564

Replacing Eq. (A3) in Eq. (B2) we get:565

e(1, 0) = E
[
∥Pd∥2

]
− E

[
∥P∥2

]
(B3)566

From which we can express the difference of the errors between the EnKF and the567

hybrid scheme:568

e(1, 0)− e(αd, αs) = (1− α2
d)E

[
∥Pd∥2

]
− 2(1− αd)E

[
∥P∥2

]
− α2

s ∥Ps∥2 − 2αs(αd − 1)E [Ps · Pd] .

(B4)

569

570

For the sake of simplicity, we note:571

α = E
[
∥P∥2

]
, (B5)572

β = ∥Ps∥2 , (B6)573

γ = E [Pd · Ps] , (B7)574

δ = E
[
∥Pd∥2

]
. (B8)575

Eq. (B4) rewrites:576

e(1, 0)− e(αd, αs) = (1− α2
d)δ − 2(1− αd)α− α2

sβ − 2αs(αd − 1)γ. (B9)577

Given that αd = nd

∆ and αs =
ns

∆ :578

e(1, 0)− e(αd, αs) =

(
∆2 − n2

d

)
δ − 2

(
∆2 −∆nd

)
α− n2

sβ − 2ns (nd −∆) γ

∆2
. (B10)579

∆2 being positive, showing that e(1, 0)− e(αd, αs) ≥ 0 is equivalent to show that:580

(
∆2 − n2

d

)
δ − 2

(
∆2 −∆nd

)
α− n2

sβ − 2ns (nd −∆) γ ≥ 0. (B11)581

On the other hand, nd, ns, and ∆ write:582

nd = αβ − γ2, (B12)583

ns = γδ − αγ, (B13)584

∆ = βδ − γ2. (B14)585

Replacing nd, ns, and ∆ by their expression given by Eqs. (B12), (B13), and (B14)586

in the left hand side of Eq. (B11), and developing all the terms we can show that Eq. (B11)587

is verified if and only if:588
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β(βδ − γ2)(δ − α)2 ≥ 0. (B15)589

β ≥ 0 as a sum of squares and (δ − α)2 ≥ 0 as a square. Showing that e(1, 0) −590

e(αd, αs) ≥ 0 is then equivalent to show that βδ ≥ γ2 i-e ∥Ps∥2 E
[
∥Pd∥2

]
−E [Pd · Ps]

2 ≥591

0. This inequality holds, see Appendix C, Eq. (C10), and replacing P by Pd. As a con-592

sequence, e(1, 0) ≥ e(αd, αs).593

Appendix C Collinearity/orthogonality of E [P] and Ps594

We write Pd as P plus some error ε, and we assume that the static covariance Ps595

is independent from that error, i-e: E [Ps · ε] = 0. Therefore:596

E [Pd · Ps] = E [P · Ps + Ps · ε] = E [P · Ps] + E [Ps · ε] = E [P · Ps] . (C1)597

Thus, if E [Pd · Ps] = 0 then E [P · Ps] = 0 and P and Ps are orthogonal in a sta-598

tistical sense.599

Following Eq. (C1), we have:600

∥Ps∥2 E
[
∥P∥2

]
− E [Pd · Ps]

2
= ∥Ps∥2 E

[
∥P∥2

]
− E [P · Ps] . (C2)601

By definition of ∥Ps∥2 and E
[
∥P∥2

]
:602

∥Ps∥2 E
[
∥P∥2

]
=

p∑
i=1

P2
siE

[
P2

i

]
+

∑
1≤i ̸=j≤p

P2
siE

[
P2

j

]
, (C3)603

∥Ps∥2 E
[
∥P∥2

]
=

p∑
i=1

P2
si

(
Var (Pi) + E [Pi]

2
)

604

+
∑

1≤i̸=j≤p

P2
si

(
Var (Pj) + E [Pj ]

2
)
, (C4)605

∥Ps∥2 E
[
∥P∥2

]
=

p∑
i=1

P2
siE [Pi]

2
+

∑
1≤i ̸=j≤p

P2
siE [Pj ]

2
+

p∑
i=1

P2
siVar (Pi)606

+
∑

1≤i̸=j≤p

P2
siVar (Pj) . (C5)607

On the other hand:608

E [P · Ps]
2
=

p∑
i=1

P2
siE [Pi]

2
+ 2

∑
1≤i<j≤p

PsiE [Pi]PsjE [Pj ] . (C6)609

Therefore:610
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∥Ps∥2 E
[
∥P∥2

]
− E [P · Ps]

2
=

p∑
i=1

P2
siVar (Pi) +

∑
1≤i̸=j≤p

P2
siVar (Pj)611

+
∑

1≤i ̸=j≤p

P2
siE [Pj ]

2
612

−2
∑

1≤i<j≤p

PsiE [Pi]PsjE [Pj ] , (C7)613

∥Ps∥2 E
[
∥P∥2

]
− E [P · Ps]

2
=

p∑
i=1

P2
siVar (Pi) +

∑
1≤i ̸=j≤p

P2
siVar (Pj)614

+
∑

1≤i<j≤p

P2
siE [Pj ]

2
+ P2

sjE [Pi]
2

615

−2
∑

1≤i<j≤p

PsiE [Pi]PsjE [Pj ] , (C8)616

∥Ps∥2 E
[
∥P∥2

]
− E [P · Ps]

2
=

p∑
i=1

P2
siVar (Pi) +

∑
1≤i ̸=j≤p

P2
siVar (Pj)617

+
∑

1≤i<j≤p

(PsiE [Pj ]− PsjE [Pi])
2

(C9)618

As a consequence,619

∥Ps∥2 E
[
∥P∥2

]
− E [P · Ps]

2 ≥ 0, (C10)620

as the sum of positive terms, and ∥Ps∥2 E
[
∥P∥2

]
−E [P · Ps]

2
is equal to 0 if and only621

if Var (Pi) = 0 for all i = 1, . . . , p and (PsiE [Pj ]− PsjE [Pi])
2
= 0 for all 1 ≤ i < j ≤622

p. In particular, this condition is equivalent to:623

Ps1E [Pj ] = PsjE [P1] , j = 2, . . . , p, (C11)624

which means that Ps and E [P] are collinear.625
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