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Abstract

Rangelands provide significant environmental benefits through many ecosystem services, which may include soil organic carbon

(SOC) sequestration. However, quantifying SOC stocks and monitoring carbon (C) fluxes in rangelands are challenging due

to the considerable spatial and temporal variability tied to rangeland C dynamics, as well as limited data availability. We

developed a Rangeland Carbon Tracking and Management (RCTM) system to track long-term changes in SOC and ecosystem

C fluxes by leveraging remote sensing inputs and environmental variable datasets with algorithms representing terrestrial C-cycle

processes. Bayesian calibration was conducted using quality-controlled C flux datasets obtained from 61 Ameriflux and NEON

flux tower sites from Western and Midwestern U.S. rangelands, to parameterize the model according to dominant vegetation

classes (perennial and/or annual grass, grass-shrub mixture, and grass-tree mixture). The resulting RCTM system produced

higher model accuracy for estimating annual cumulative gross primary productivity (GPP) (R2 > 0.6, RMSE < 390 g C m-2)

than net ecosystem exchange of CO2 (NEE) (R2 > 0.4, RMSE < 180 g C m-2), and captured the spatial variability of surface

SOC stocks with R2 = 0.6 when validated against SOC measurements across 13 NEON sites. Our RCTM simulations indicated

slightly enhanced SOC stocks during the past decade, which is mainly driven by an increase in precipitation. Regression analysis

identified slope, soil texture, and climate factors as the main controls on model-predicted C sequestration rate. Future efforts

to refine the RCTM system will benefit from long-term network-based monitoring of rangeland vegetation biomass, C fluxes,

and SOC stocks.
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Key Points: 66 

 The Rangeland Carbon Tracking and Monitoring System was calibrated to simulate 67 

vegetation type-specific rangeland C dynamics  68 

 Regional variability in carbon fluxes and soil organic carbon is well represented by a 69 

remote sensing-driven process modeling approach  70 

 Soil organic carbon stocks in Western and Midwestern U.S. rangelands increased over 71 

the past 20 years due to increased precipitation 72 
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Abstract 74 

Rangelands provide significant environmental benefits through many ecosystem services, which 75 

may include soil organic carbon (SOC) sequestration. However, quantifying SOC stocks and 76 

monitoring carbon (C) fluxes in rangelands are challenging due to the considerable spatial and 77 

temporal variability tied to rangeland C dynamics, as well as limited data availability. We 78 

developed a Rangeland Carbon Tracking and Management (RCTM) system to track long-term 79 

changes in SOC and ecosystem C fluxes by leveraging remote sensing inputs and environmental 80 

variable datasets with algorithms representing terrestrial C-cycle processes. Bayesian calibration 81 

was conducted using quality-controlled C flux datasets obtained from 61 Ameriflux and NEON 82 

flux tower sites from Western and Midwestern U.S. rangelands, to parameterize the model 83 

according to dominant vegetation classes (perennial and/or annual grass, grass-shrub mixture, 84 

and grass-tree mixture). The resulting RCTM system produced higher model accuracy for 85 

estimating annual cumulative gross primary productivity (GPP) (R
2
 > 0.6, RMSE < 390 g C m

-2
) 86 

than net ecosystem exchange of CO2 (NEE) (R
2
 > 0.4, RMSE < 180 g C m

-2
), and captured the 87 

spatial variability of surface SOC stocks with R
2
 = 0.6 when validated against SOC 88 

measurements across 13 NEON sites. Our RCTM simulations indicated slightly enhanced SOC 89 

stocks during the past decade, which is mainly driven by an increase in precipitation. Regression 90 

analysis identified slope, soil texture, and climate factors as the main controls on model-91 

predicted C sequestration rate. Future efforts to refine the RCTM system will benefit from long-92 

term network-based monitoring of rangeland vegetation biomass, C fluxes, and SOC stocks. 93 

Plain Language Summary 94 

Rangelands play a crucial role in providing various ecosystem services, including the potentially 95 

significant but highly uncertain benefits associated with climate mitigation through increased 96 

SOC storage. Accurate estimates of long-term C storage and changes are challenged, however, 97 

by the diversity in rangelands and limited field observations currently available. In this work, we 98 

leveraged multiple publicly available datasets, including remote sensing observations, tower-99 

based carbon flux measurements from over 60 rangeland sites in the Western and Midwestern 100 

U.S., and other environmental datasets, to build the process-based Rangeland Carbon Tracking 101 

and Monitoring (RCTM) modeling system, for the simulation of 20 years of change in rangeland 102 

C. The regionally calibrated RCTM system performs well in estimating spatial and temporal 103 

rangeland C fluxes as well as spatial SOC storage. RCTM simulation results revealed increased 104 

SOC storage and rangeland productivity that is well represented by remote sensing signals and 105 

driven by annual precipitation patterns. Since the RCTM system developed by this work can be 106 

used to generate accurate spatial and temporal estimates of SOC storage and C fluxes at fine 107 

spatial (30 m) and temporal (every 5 days) resolutions, it will be well-suited for informing 108 

rangeland C management strategies and improving broad-scale policy making. 109 

Abbreviations 110 

C, carbon; DNDC, Denitrification-Decomposition; DSM, digital soil mapping; fPAR, fraction of 111 

absorbed photosynthetically active radiation; GEE, Google Earth Engine; GPP, Gross Primary 112 

Productivity; L4C, Level 4 Carbon; LOOCV, leave-one-out cross-validation; LUE, light use 113 

efficiency; MBE, mean bias error; NDVI, Normalized Difference Vegetation Index; NEE, net 114 

ecosystem exchange of carbon dioxide; NEON, National Ecological Observatory Network; NIR, 115 

near infrared band; NLCD, National Land Cover Database; NLDAS, North American Land Data 116 

Assimilation System; NPP, net primary productivity; PI, principal investigator; QC, quality 117 
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control; RAP, Rangeland Analysis Platform; RCTM, Rangeland Carbon Tracking and 118 

Management; RECO, ecosystem respiration; RMSE, Root Mean Square Error; RothC, 119 

Rothamsted Carbon; RS, remote sensing; SMAP, Soil Moisture Active-Passive; SMLR, stepwise 120 

multiple linear regression; SOC, soil organic carbon; SOM, soil organic matter; STARFM, 121 

Spatial and Temporal Adaptive Reflectance Fusion Model; VPD, vapor pressure deficit. 122 

 123 

1 Introduction 124 

Rangelands, which include a wide range of landscapes primarily composed of grasses, 125 

forbs, and shrubs that are often grazed or browsed by domestic livestock and/or wild animals, 126 

cover more than 30% of the land area (~ 2.7 million km
2
) of the contiguous United States and 127 

have a significant global presence (54%) (Chen et al., 2015; Olson et al., 2001; Reeves & 128 

Mitchell, 2011). It has been well established that rangelands provide many crucial ecosystem 129 

services, including habitat biodiversity, forage production, water retention, nutrient cycling, and 130 

carbon (C) sequestration and storage (Maher et al., 2021; Phukubye et al., 2022; Waterhouse et 131 

al., 2023). Unfortunately, grassland conversion to cropland and improper management (e.g., 132 

overgrazing) have historically contributed to land degradation and C loss in western U.S. 133 

rangelands, which can be further exacerbated by extreme climate events such as droughts 134 

(Holechek et al., 2020). Restoring degraded rangelands and improving land management are 135 

therefore high priority conservation goals having multiple ecosystem service benefits (Wilson et 136 

al., 2008). Improved rangeland management also holds possibly significant but highly uncertain 137 

potential for climate mitigation primarily through soil organic carbon (SOC) sequestration 138 

(Derner et al., 2019; Fargione et al., 2018). The uncertainty arises from factors such as extensive 139 

rangeland sizes, limited availability of in-situ field data, and substantial spatial and temporal 140 

variability associated with drivers of SOC change (i.e., environmental and management factors) 141 

such as moisture status and temperature, vegetation composition, soil properties, and grazing 142 

timing and intensity, (Booker et al., 2013; Derner & Schuman, 2007; Hill et al., 2006). In order 143 

to facilitate accurate estimates of rangeland C benefits, it is essential to develop a data-driven 144 

framework that combines process-based representation of rangeland C dynamics with multi-145 

source, observation-based environmental datasets.  146 

In-situ field measurements provide crucial observations of rangeland C dynamics. Flux 147 

tower observations are often used to quantify net ecosystem exchange (NEE), which represents C 148 

fluxes between land and atmosphere that can be further partitioned into gross primary 149 

productivity (GPP) and ecosystem respiration (RECO) (Oliphant, 2012; Tramontana et al., 150 

2020). Field sampling campaigns are essential for directly measuring SOC stocks and the 151 

associated changes (Nave et al., 2021), which complements C fluxes observed from flux towers. 152 

However, direct field measurements can be both expensive and labor-intensive to accurately 153 

capture the vast and complex rangeland landscape. Upscaling in-situ observations of C fluxes 154 

and SOC stocks, using models coupled with remote sensing (RS) and large-scale surveys-derived 155 

environmental variable datasets can estimate long-term C budgets at large geographic scales 156 

(Heuvelink et al., 2021; Krause et al., 2022; Sanderman et al., 2017; Turner et al., 2004), but 157 

approaches need to be carefully designed to maximize accuracy. 158 

The empirical, digital soil mapping (DSM) approach has been widely used for estimating 159 

SOC stocks by taking advantage of the connection between environmental variables and soil C 160 

dynamics (Minasny & McBratney, 2015; Santra et al., 2017). However, despite its rapid and 161 
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cost-effective nature, this approach is less frequently used for estimating changes in SOC stocks 162 

or C fluxes, primarily due to the scarcity of data on changes in SOC that are needed for statistical 163 

model training and verification. In contrast to purely data-driven empirical upscaling approaches, 164 

process-based models incorporate mathematical representations of underlying system processes, 165 

such as heat transfer, hydrologic flows, and C cycling (Doblas-Rodrigo et al., 2022; Khalil et al., 166 

2020; Yagasaki & Shirato, 2014). Consequently, they possess the capability to generate process-167 

based outcomes (e.g., SOC stock changes) and scenario-based estimates (e.g., C fluxes under 168 

different climate and management conditions) for longer term predictions. 169 

Process-based modeling of rangeland C fluxes and SOC stocks can be implemented using 170 

two options, namely a management-driven approach or a RS-driven approach. In the 171 

management-driven approach, activity data such as livestock numbers and grazing periods are 172 

combined with climate and soil information to simulate plant growth and soil C dynamics (Arndt 173 

et al., 2022; Smith et al., 2014; Zhang et al., 2017). Adopting this approach necessitates the 174 

collection of detailed management data, which can be extremely difficult for large-scale 175 

rangeland monitoring efforts. Even though there has been a major push to automate the 176 

collection of management data through the use of RS, tracking animal numbers and movements 177 

remains challenging (Ali et al., 2016; Lange et al., 2022; Stoy et al., 2021). Current rangeland 178 

modeling efforts used to estimate management effects on SOC typically rely on the use of 179 

default parameters and model structures, such as those used in DAYCENT (Chang et al., 2015; 180 

Parton et al., 1998), Denitrification-Decomposition (DNDC) (Li et al., 1994; Wang et al., 2022), 181 

or Rothamsted Carbon (RothC) (Coleman & Jenkinson, 1996; Jebari et al., 2021) because there 182 

is a general lack of calibration and validation data suited to represent specific management 183 

scenarios (e.g., adaptive grazing practices). Due to data limitations, their efforts cannot fully 184 

account for system variability and generate predictions at the scale that is relevant to 185 

management. 186 

The RS-driven process-based modeling approach is particularly helpful in situations 187 

where management datasets are unavailable or scarce, because RS data can be used as a proxy 188 

for vegetation productivity and growth, due to the close association between plant biomass and 189 

RS spectral bands or multi-band indices (Numata et al., 2007; Sibanda et al., 2016; Xu et al., 190 

2008). Moreover, RS datasets can provide more refined information regarding spatial variability, 191 

which would be difficult to capture using management datasets. Utilizing RS for rangeland 192 

monitoring assumes that RS can adequately capture management effects via changes in plant 193 

cover and productivity. However, there is significant uncertainty regarding the efficacy of RS to 194 

capture management, so ground-truth data is crucial for the parameterization and evaluation of 195 

RS-driven models for rangeland monitoring (Reinermann et al., 2020). Large datasets collected 196 

through network-based measurements, such as flux tower-based observations of C fluxes and 197 

field-based measurements of SOC stocks (Biederman et al., 2017; Chu et al., 2023; Hinckley et 198 

al., 2016), offer the best representation of rangeland C dynamics under different soil, climate, 199 

and vegetation conditions, and thus are well-suited for regional model calibration and validation.  200 

The RS-driven modeling approach has a long legacy for use in cropping and forest 201 

systems (Wang et al., 2011; Watts et al., 2023; Zhou et al., 2021) and global scale monitoring 202 

(Endsley et al., 2020); however, to the best of our knowledge, there has not been a RS-driven 203 

regional model that is designed and parameterized specifically to evaluate decadal-scale C 204 

dynamics and track SOC changes under different vegetation types for U.S. rangelands. The 205 

objective of our work was to bridge this gap with a framework that: (1) incorporates fine-206 
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resolution, long-term geospatial datasets that can be obtained either from publicly available data 207 

sources or through data fusion, as model inputs; (2) derives regional vegetation class-specific 208 

parameters through model calibration and validation using flux tower network datasets collected 209 

from Western and Midwestern U.S. rangelands; (3) performs model evaluation using SOC stock 210 

measurements; (4) provides estimates and visualizations of modeled rangeland C dynamics for 211 

the period from 2003 to present, and at a spatial scale relevant to land managers.  212 

 213 

2 Materials and Methods 214 

2.1 Overview of the Rangeland Carbon Tracking and Monitoring system 215 

To provide a framework tracking regional rangeland C dynamics, we developed a 216 

process-based RS-driven modeling system called the Rangeland Carbon Tracking and 217 

Monitoring (RCTM) model. The RCTM system integrates RS-informed geospatial datasets and 218 

in-situ field measurements with process-based representation of the carbon cycle (SI: Table A1). 219 

The RCTM system first estimates plant productivity using RS and environmental inputs. The 220 

estimates are then fed into a soil process-based model to simulate C dynamics. There are three 221 

main components involved in the system (Fig. 1): (1) The Spatial and Temporal Adaptive 222 

Reflectance Fusion Model (STARFM) algorithm (Gao et al., 2006; Watts et al., 2011) is utilized 223 

to derive estimates of fraction of absorbed photosynthetically active radiation (fPAR) at a 30 m 224 

resolution and at five-day intervals; (2) RS or survey-derived variables, including soil properties, 225 

climate factors, and vegetation types, are utilized in conjunction with fPAR through light-use 226 

efficiency (LUE) algorithms adapted from NASA’s Soil Moisture Active-Passive (SMAP) Level 227 

4 Carbon (L4C) model (Endsley et al., 2020) to derive estimates of GPP, where vegetation type-228 

specific parameters associated with environmental variable-based constraints on LUE are subject 229 

to model calibration; (3) Aboveground and belowground biomass are estimated from GPP using 230 

algorithms adapted from DAYCENT (Parton et al., 1998) and then allocated to different soil 231 

organic matter (SOM) pools specified within a process-based model structure adapted from the 232 

RothC model (Coleman & Jenkinson, 1996). This last step derives estimates of C fluxes and 233 

SOC stocks, with flux tower-based measurements of NEE used to parameterize factors 234 

associated with SOM decomposition.  235 

The main inputs for RCTM include soil properties (soil texture, moisture, and 236 

temperature), climate variables (air temperature, vapor pressure deficit (VPD), solar radiation), 237 

land cover type represented by fractional coverage of different vegetation types, and RS-derived 238 

fPAR (Table 1). Model outputs include 30 m resolution estimates of rangeland productivity 239 

represented by GPP at five-day intervals, net C fluxes represented by NEE at five-day intervals, 240 

and annual surface depth SOC stocks over the 20-year record (2003 – 2022). The development 241 

and application steps for RCTM are outlined in SI: Fig. A1.  242 
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 243 

Figure 1. Components of Rangeland Carbon Tracking and Monitoring (RCTM) system. The 244 

primary RCTM inputs include remote sensing images, soil properties, climate data, and 245 

vegetation type, while the outputs include spatial and temporal estimates of rangeland carbon 246 

dynamics.  247 

 248 
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Table 1. The input environmental datasets for the Rangeland Carbon Tracking and Monitoring (RCTM) system. 249 

Data type Variables a 

Original resolution 
Full temporal 

coverage 
Usage b Source and reference c 

Spatial Temporal 

Soil 

properties 

 

Clay% 100 m Only once in time  
Model spin-up, NEE calibration, SOC 

estimation, and site-based correlation analysis 

SoilGrids+ (Ramcharan et 

al., 2018) 

Surface and root 

zone soil moisture 

0.125° Hourly Since 1979 

GPP calibration, model spin-up, NEE 

calibration, SOC estimation, and site-based 

correlation analysis 
NLDAS (Xia et al., 2012) 

Surface soil 

temperature 

GPP calibration, model spin-up, NEE 

calibration, SOC estimation, and site-based 

correlation analysis 

Climate 

VPD 1 km Daily Since 1980 
GPP calibration and site-based correlation 

analysis 

DAYMET v4 (Thornton et 

al., 2022) 
Air temperature 

1km Daily Since 1980 Site-based correlation analysis 

Precipitation 

Solar Radiation 0.125° Hourly Since 1979 GPP calibration NLDAS (Xia et al., 2015) 

Biotic 
fPAR 

500 m Every 4 days Since 2002 
GPP calibration (coarse resolution) in SI: 

Appendix C 

MODIS (Schaaf & Wang, 

2015) 

30 m Every 5 days Since 2002 
GPP calibration (fine resolution) and site-

based correlation analysis 

STARFM (Gao et al., 2006; 

Watts et al., 2011)  

Land cover type% 30 m Annually Since 1984 Vegetation type assignment RAP (Jones et al., 2018) 

Topography 
Elevation 

30 m Only once in time Site-based correlation analysis SRTM (van Zyl, 2001) 
Slope 

a Clay%: soil clay content; fPAR: fraction of absorbed photosynthetically active radiation; VPD: vapor pressure deficit. 250 
b GPP: gross primary productivity; NEE: net ecosystem exchange; SOC: soil organic carbon. 251 
c DAYMET: Daily Surface Weather and Climatological Summaries; MODIS: Moderate Resolution Imaging Spectroradiometer; NLDAS: North American Land 252 

Data Assimilation System; RAP: Rangeland Analysis Platform; SRTM: Shuttle Radar Topography Mission. 253 
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2.2 Study sites and data sources 254 

For model parameterization, study sites were selected from the Ameriflux (Novick et al., 255 

2018; https://ameriflux.lbl.gov/) and National Ecological Observatory Network (NEON) 256 

networks (Keller et al., 2008; https://www.neonscience.org/) within the Western and Midwestern 257 

U.S. states (Fig. 2). We first identified all of the flux tower sites located within the region and 258 

classified as grasslands (‘GRA’), savannas (‘SAV’), or open shrublands (‘OSH’), as well as 259 

those identified under grassland or pasture-relevant classes according to the National Land Cover 260 

Database (NLCD) data layers (Homer et al., 2007; Homer et al., 2015). We then screened the 261 

identified sites to include only those dominated by grass coverage (≥ 50%) by surveying 262 

publications associated with the flux tower datasets, examining Phenocam images (Brown et al., 263 

2016) or online photos, and by reaching out to tower principal investigators (PIs) for 264 

confirmation. The retained 61 sites were then categorized into four different vegetation types: (1) 265 

perennial and/or annual grass; (2) managed hay and pasture; (3) grass-shrub mixture; (4) grass-266 

tree mixture. The classification was determined using land cover information extracted from the 267 

NLCD and Rangeland Analysis Platform (RAP) (Jones et al., 2018) supplemented with literature 268 

and PI-provided site information. Sites included in class (2) differ from native grasslands in that 269 

the sites are being actively managed meaning some combination of sown grass species, 270 

irrigation, and fertilization. The coverage threshold for shrubs and trees was set at 30% for 271 

classes (3) and (4). Additional details regarding the Ameriflux and NEON sites can be found in 272 

SI: Appendix B. 273 

 274 

Figure 2. Ameriflux and National Ecological Observatory Network (NEON) sites selected for 275 

model calibration and validation. The sites are divided into different groups based on data 276 

availability. Different USDA agricultural regions are delineated by thick black lines, and 277 

different land use types are color-coded according to the National Land Cover Database (NLCD) 278 

dataset. 279 

https://ameriflux.lbl.gov/
https://www.neonscience.org/
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 280 

We acquired flux observations and environmental variable datasets for the retained 281 

Ameriflux and NEON sites, either from the online portal (https://ameriflux.lbl.gov/) or directly 282 

from flux tower PIs. We also documented site location, soil and vegetation type, flux tower 283 

height, data coverage, and variable availability for each site (SI: Table B1). Based on data 284 

availability, the sites were further divided into three categories (Fig. 2): (1) those that include 285 

NEE measurements only, (2) those that include both NEE and model-partitioned GPP and RECO 286 

data, and (3) those that belong to the NEON network and therefore have not only NEE and 287 

GPP/RECO data but also SOC measurements (Hinckley et al., 2016). In some cases, tower PIs 288 

expressed concerns about the quality of GPP data due to flux partitioning issues (Desai et al., 289 

2008; Sulman et al., 2016). Consequently, we assigned these sites to the first category. Overall, 290 

we obtained data from 17, 31, and 13 sites in categories 1, 2, and 3, respectively. The flux 291 

datasets from the retained sites were quality controlled and harmonized using standard methods 292 

(Section 2.3) before being used for model calibration and validation (Sections 2.5 and 2.6).  293 

To represent the local representativeness of the flux towers, shapefiles were created in R 294 

(R Core Team, 2023) using small (90 m × 90 m) or large (510 m × 510 m) grid sizes determined 295 

by employing a threshold value based on the flux tower height of 8 m to approximate footprints 296 

(SI: Table B1). The shapefiles were used for extraction of MODIS and Landsat RS inputs, as 297 

well as variable inputs in subsequent steps (Fig. 1).  298 

2.3 Quality control of C flux datasets  299 

A number of quality control (QC) measures were applied to the C flux (NEE and GPP) 300 

datasets to alleviate bias that can influence subsequent model parameterization steps. First, daily 301 

GPP and NEE results, as well as the associated meteorological measurements (e.g., air 302 

temperature, precipitation), were plotted to allow the visual identification of potential outliers or 303 

noise including: (1) extended periods with GPP reported as zero, especially during the growing 304 

season; (2) multiple GPP peaks with similar magnitudes observed during the growing season; (3) 305 

irregular spikes or sudden changes in GPP or NEE, particularly during the non-growing season. 306 

For sites with observations falling within category (1), we worked with flux tower PIs to 307 

determine whether it was necessary to replace the identified data points with no-value (NAN) 308 

flags. In the case of data points identified through category (2), we consulted with flux tower PIs 309 

to confirm whether the presence of multiple peaks could be attributed to grazing or the growth of 310 

multiple vegetation species (e.g., C3 and C4) at the sites before determining whether to retain the 311 

data points. Finally, outlier peaks identified in category (3) were removed using a moving 312 

window approach adapted from the outlier removal methods designed for time series datasets 313 

(Hartigan et al., 2019; Kelley, 2013). This involved establishing the median value of a 15-day 314 

period as a reference value, and then any observation that deviated from its reference by more 315 

than twice the standard deviation of the flux measurements at the site level was removed. The 316 

quality controlled daily GPP and NEE datasets were then classified into the four vegetation types 317 

defined in Section 2.2. 318 

2.4 Remote sensing data extraction and processing 319 

We derived 30 m estimates of fPAR at five-day intervals by employing the STARFM 320 

algorithm (Gao et al., 2006; Watts et al., 2011), which leverages the high temporal resolution of 321 

MODIS inputs (500 m, daily) and high spatial resolution of Landsat images (30 m, every 8 322 

https://ameriflux.lbl.gov/
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days). We first extracted MODIS images from the Nadir Bidirectional Reflectance Distribution 323 

Function Adjusted Reflectance (NBAR) product (MCD43A4 V6) (Schaaf & Wang, 2015) for the 324 

study sites, followed by the application of standard QC measures, which included the removal of 325 

cloudy pixels using the cloud bitmask and the exclusion of snow-covered pixels based on the 326 

normalized difference snow index (Hall et al., 2002). Subsequently, we calculated temporal 327 

averages at the pixel level over a 20-day moving window as a smoothed dataset, which was used 328 

to replace missing data or cropped pixels from the previous step. The Landsat images were 329 

combined from Landsat 5, 7, and 8 surface reflectance products from Collection 2 (Kovalskyy & 330 

Roy, 2013; Roy et al., 2014; Williams et al., 2006) to derive long-term records with finer 8-day 331 

temporal fidelity than the standard 16-day repeat sampling from individual Landsat satellites. QC 332 

was carried out to first exclude cloudy and snow-covered pixels using the dilated cloud, cirrus, 333 

cloud shadow, and snow bitmasks. After applying the dilated cloud bitmask, haze and thin cloud 334 

edges were often still present based on visual assessment of Landsat imagery. These cloud 335 

remnants were removed by applying an additional 15-pixel radius buffer. Images containing 336 

considerable cloud and snow contamination (>60%) were removed from the time series. To 337 

account for Landsat 7 scan-line gaps and to recover image areas that were removed from the 338 

augmented cloud masking, the masked Landsat images were spatially gap-filled using local 339 

histogram matching (USGS, 2004). First, a median composite image was generated with the 340 

nearest two months of imagery. A linear regression determined the line of best fit between pixels 341 

in the composite image and pixels in the cloud-masked image within a 50-pixel moving window. 342 

Linear regression coefficients within each moving window were applied to the composite image 343 

to fill no data pixels in the masked image. Finally, pixels containing water were removed using 344 

the water bitmask. 345 

The extracted MODIS and Landsat scenes which overlapped on same dates were then 346 

utilized by the STARFM algorithm (Gao et al., 2006; Watts et al., 2011) to develop surface 347 

reflectance estimates at a 30 m spatial resolution and 5-day temporal frequency for individual 348 

bands. The red (RED) and near-infrared (NIR) bands were used to derive the estimates of 349 

normalized difference vegetation index (NDVI; Eq. 1) (Tucker, 1979) and scaled surface 350 

reflectance (SSR; Eq. 2). Erroneous NDVI observations were filtered by removing values where 351 

the rolling 14-day median was greater than two times the rolling 365-day standard deviation. 352 

This conservative filter mainly functioned to remove NDVI observations over snow and clouds 353 

that were missed during masking. Temporal gaps in NDVI were filled using linear interpolation. 354 

NDVI =  
NIR−RED

NIR+RED
     (Eq. 1) 355 

SSR =  
1+NDVI

1−NDVI
     (Eq. 2) 356 

Finally, fPAR was calculated using Eq. 3-5, with the minimum and maximum NDVI and 357 

SSR reference thresholds corresponding to the 2
nd

 and 98
th

 percentiles of the time series values 358 

for all retained Ameriflux sites. The minimum and maximum fPAR reference values were 359 

determined through Monte-Carlo analysis for each vegetation type. Specifically, potential 360 

reference values were randomly sampled from a uniform distribution and used to predict GPP. 361 

The predicted GPP was then compared with the observed GPP (see Section 2.5), and the optimal 362 

combination of values that resulted in the best-fitted vegetation type-specific model were 363 

determined as fPAR reference values.  364 

fPARNDVI =  
(NDVI−NDVImin)×(fPARmax−fPARmin)

(NDVImax−NDVImin)
     (Eq. 3) 365 
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fPARSSR =  
(SSR−SSRmin)×(fPARmax−fPARmin)

(SSRmax−SSRmin)
     (Eq. 4) 366 

fPAR =  
fPARNDVI+ fPARSSR

2
    (Eq. 5) 367 

The extraction and QC processing of both MODIS and Landsat data were implemented 368 

within the Google Earth Engine (GEE) platform (Gorelick et al., 2017), while the 369 

implementation of the STARFM algorithm and the following RS data processing steps were 370 

realized using Python (Rossum & Drake, 1995). All the codes used in this and subsequent 371 

sections are openly available via Github: https://github.com/xiayushu/RCTM-soil-carbon. 372 

2.5 GPP model estimation and calibration  373 

The LUE algorithms used for the GPP calculation were adapted from the SMAP’s L4C 374 

model (Endsley et al., 2020). In RCTM, the estimation of actual LUE is based on scaling the 375 

potential maximum LUE by modifiers including root zone (ca. 60 cm depth) soil moisture, 376 

surface 5 cm soil temperature, and VPD (SI: Fig. A2), where threshold values for these modifiers 377 

were established for both upper and lower bound values. The GPP is calculated based on 378 

estimated LUE, STARFM-derived fPAR detailed in Section 2.4, and shortwave incoming solar 379 

radiation (SW_IN) using Eq. 6. 380 

GPP = LUE × SW_IN × 0.45 × fPAR     (Eq. 6) 381 

Where GPP represents gross primary productivity (g C m
-2

), LUE represents light use 382 

efficiency (g C MJ
-1

) estimated based on maximum LUE adjusted by environmental modifiers, 383 

SW_IN represents shortwave incoming solar radiation (MJ m
-2

), fPAR represents fraction of 384 

absorbed photosynthetically active radiation, and 0.45 reflects the well-established observation 385 

that about 45% of incoming shortwave radiation is in photosynthetically active wavelengths (He 386 

et al., 2022).  387 

To facilitate GPP calibration, we extracted root zone soil moisture, soil temperature at 5 388 

cm surface depth, SW_IN from NLDAS (Xia et al., 2012), and VPD from Daymet V4 (Thornton 389 

et al., 2022) for the retained Ameriflux and NEON sites. We used GEE for the direct extraction 390 

of NLDAS-derived SW_IN and Daymet-derived VPD at a daily time step. Soil moisture and 391 

temperature were downloaded from the NASA Earthdata portal using the subset tools, then 392 

averaged to daily values in Google Colaboratory and stored in Google Cloud (Google Inc., CA, 393 

USA). The extracted environmental variable datasets were merged with STARFM fPAR every 5 394 

days. Next, the merged dataset was joined with GPP measurements processed from Section 2.3. 395 

This resulting calibration dataset had more GPP data for the perennial and/or annual grass and 396 

grass-shrub mixture sites. Fewer data points were available for the grass-tree mixture and 397 

managed hay and pasture sites. In total, 24,239 GPP records (302 site-year combinations) were 398 

retained from 47 sites (SI: Table B2).  399 

We carried out model calibration by adjusting vegetation type-based threshold values 400 

associated with the environmental modifiers, including maximum LUE as well as minimum and 401 

maximum root zone soil moisture, soil temperature, and VPD (SI: Fig. A2) based on GPP 402 

observations. The calibration was conducted using a Bayesian calibration scheme where initial 403 

values for model parameters were extracted from SMAP’s L4C model (Endsley et al., 2020) for 404 

grasslands, and initial parameter ranges were obtained from literature review. The procedure was 405 

implemented using the BayesianTools package in R (Hartig et al., 2023). Three Markov chain 406 
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Monte Carlo (MCMC) chains were run in parallel for 5,000 iterations to obtain posterior 407 

distributions of model parameters with the assumption that the priors were weakly informative. 408 

Model convergence was examined using the scale reduction factor (Gelman & Rubin, 1989). The 409 

vegetation type-based model fits and results from leave-one-out cross-validation (LOOCV) for 410 

daily and cumulative (monthly, seasonal, and annual) GPP estimation were reported as 411 

Coefficient of Determination (R
2
; Eq. 7), Root Mean Square Error (RMSE; Eq. 8), and Mean 412 

Bias Error (MBE; Eq. 9) for perennial and/or annual grass, grass-shrub mixture, and grass-tree 413 

mixture classes. For the managed hay and pasture class, evaluation was presented as model 414 

validation results using perennial and/or annual grass-specific parameters due to the limited 415 

number of available training sites within the managed hay and pasture class. The model 416 

calibration procedure was also carried out using MODIS fPAR inputs to enable a comparison 417 

with the use of STARFM inputs. Detailed model comparison results are presented in SI: 418 

Appendix C.   419 

R2 = 1 −
∑ (yi−ŷi)2n

i=1

∑ (yi−y̅)2n
i=1

      (Eq. 7) 420 

RMSE =  √
∑ (yi−ŷi)2n

i=1

n
     (Eq. 8) 421 

MBE =
∑ (yi−ŷi)n

i=1

n
      (Eq. 9) 422 

Where 𝑛 represents the number of samples, 𝑦𝑖 represents observed value of sample 𝑖, 𝑦̂𝑖 423 

represents the model predicted value of sample 𝑖, and 𝑦̅ represents the mean of observations. 424 

2.6 Carbon model spin-up, calibration, and validation  425 

The RCTM model adopts SMAP’s L4C scheme (Endsley et al., 2020) by allocating GPP 426 

into net primary productivity (NPP) and autotrophic respiration. The NPP was then partitioned 427 

into aboveground and belowground biomass according to the vegetation type-specific root to 428 

shoot ratio. To account for the distribution of litter over time, we adopted DAYCENT’s 429 

algorithms (Parton et al., 1998) to compute the amount of C transference from biomass pools 430 

into surface litter and dead roots for each time step. In this case, C flow is regulated by factors 431 

such as the day of the year and environmental modifiers including soil moisture and temperature. 432 

Subsequently, aboveground and belowground litter C were transferred into RCTM’s SOM 433 

module that is adapted from RothC (Coleman & Jenkinson, 1996), which includes particulate 434 

organic C, humus organic C, and resistant organic C pools. The C flows among SOM pools are 435 

controlled by factors including soil texture, soil moisture, and soil temperature (SI: Fig. A3).  436 

In RCTM, biomass and soil C pools were initialized by running the model for 2,000 years 437 

to reach an equilibrium that ensures the soil system is in equilibrium with the environmental 438 

conditions being simulated. The inputs for the spin-up were set to represent a “typical” condition 439 

for each site, for which we utilized STARFM fPAR, both surface 5 cm and root depth (ca. 60 440 

cm) soil moisture, 5 cm soil temperature, and clay content from the 2002-2005 period. Soil 441 

moisture and temperature data were extracted from the NLDAS database (Xia et al., 2012), and 442 

clay content were obtained from the SoilGrid+ product (Ramcharan et al., 2018) (Table 1). 443 

Before conducting NEE calibration, we performed model spin-up for all retained Ameriflux and 444 

NEON sites using default model parameters obtained from SMAP’s L4C, DAYCENT, and 445 

RothC models. GPP estimates, which are required for SOC calculation, were simulated using 446 
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vegetation type-specific, calibrated GPP parameters and inputs specified in Section 2.5. Both 447 

GPP and environmental variable datasets needed for model initialization were aggregated to a 5-448 

day time step by averaging the results across all years. The goal was to obtain site-specific 449 

estimates of initial C pools to expedite the subsequent NEE calibration process. 450 

The next step was to combine input datasets needed for NEE calibration with NEE 451 

measurements. The input data was generated at a five-day interval because of the STARFM 452 

output resolution. The combined dataset includes 22,820 NEE observations (364 site-year 453 

combinations) from 59 sites, while a larger number of observations were available for the 454 

perennial and/or annual grass and grass-shrub mixture sites compared to the grass-tree mixture or 455 

managed hay and pasture sites (SI: Table B2). We then carried out model calibration by 456 

optimizing vegetation type-specific parameters related to biomass partitioning, litterfall, and 457 

SOM decomposition (SI: Fig. A3) using NEE observations. In the calibration process, site-based 458 

estimates of initial C pools were used to spin up the model and then calculate C fluxes for 2002-459 

2022. The calibration was implemented following the same procedure used for the GPP model 460 

(See Section 2.5). Again, model calibration was also implemented using MODIS fPAR inputs to 461 

enable a comparison with the use of STARFM inputs, which is presented in SI: Appendix C. 462 

Moreover, we presented model performance for estimating RECO in SI: Appendix D, where the 463 

absolute values of RECO fluxes were calculated as the difference between GPP and NEE.  464 

After obtaining vegetation type-specific parameters through GPP and NEE calibrations, 465 

we ran RCTM for NEON sites to derive estimates of surface depth SOC stocks. Because the 466 

depth represented by RCTM cannot be clearly defined considering the various depths 467 

represented by model input layers, the results were compared against measurements of both 0-30 468 

cm and 0-100 cm SOC stocks from 13 NEON sites as an evaluation of model performance for 469 

ranking the amount of SOC stocks in space.  470 

2.7 Estimates of carbon fluxes for flux tower sites 471 

The calibrated RCTM model was applied to all retained Ameriflux and NEON sites to 472 

derive estimates of GPP, NEE, and SOC stocks for a 20-year period (2003-2022). After 473 

averaging model outputs to annual results, the Pearson correlation was calculated in R between 474 

model input variables and RCTM outputs for site-year combinations. The purpose of this 475 

analysis was to explore climate and soil controls on the spatio-temporal dynamics in C fluxes. 476 

We aggregated and visualized model simulation results with regards to changes in SOC and C 477 

fluxes over time by vegetation types and geographic regions. Trend significance and slope of the 478 

time series data (GPP, NEE, and SOC) were calculated using a non-parametric Mann-Kendall 479 

test that detects monotonic upward or downward trends (Yue et al., 2002). The test was 480 

implemented in R with the ‘zyp’ package (Bronaugh et al., 2023) and applied to both individual 481 

Ameriflux/NEON sites and vegetation groups (SI: Appendix B). We also computed the 482 

correlation between site-based 20-year change in SOC stocks and climate, soil, and topographic 483 

variables (Table 1) to identify regional controlling factors for SOC sequestration in rangelands. 484 

Finally, a linear model for estimating SOC stock changes was determined through the application 485 

of a stepwise multiple linear regression (SMLR) approach in R using the Akaike Information 486 

Criterion (Bozdogan, 1987).  487 

 488 
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3 Results 489 

3.1 Model accuracy for estimating rangeland productivity 490 

The model performance associated with rangeland productivity prediction was evaluated 491 

using GPP modeling results. The performance of the calibration model for estimating daily GPP 492 

was the best for the grass-shrub mixture sites (R
2
 = 0.70, RMSE = 0.9 g C m

-2
 day

-1
), followed 493 

by the grass-tree mixture (R
2
 = 0.60, RMSE = 1.1 g C m

-2
 day

-1
) and perennial and/or annual 494 

grass sites (R
2
 = 0.58, RMSE = 2.2 g C m

-2
 day

-1
) (Fig. 3). The perennial and/or annual grass-495 

specific model also obtained R
2
 = 0.55 and RMSE = 3.3 g C m

-2
 day

-1
 for estimating daily GPP 496 

from the managed hay and pasture sites. Using LOOCV, RCTM was shown to have R
2
 of 497 

approximately 0.60 for perennial and/or annual grass, grass-shrub mixture, and grass-tree 498 

mixture sites. The MBE values associated with the models revealed a slight underestimation of 499 

GPP using model outputs compared to flux tower measurements-derived estimates. This type of 500 

underestimation was the greatest for higher GPP observations. 501 

 502 

Figure 3. Gross primary productivity (GPP) model performance shown as coefficient of 503 

determination (R
2
), root mean square error (RMSE, C m

-2
 day

-1
), and mean bias error (MBE, C 504 

m
-2

 day
-1

) for different vegetation classes including (a) perennial and/or annual grass, (b) 505 

managed hay and pasture, (c) mixture of grass and shrub, and (d) mixture of grass and tree 506 

classes. Both model fits and leave-one-out cross-validation (LOOCV) results are presented. 507 

Different colors represent different Ameriflux/NEON study sites.  508 

 509 
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Model performance for estimating rangeland productivity is strongly impacted by the 510 

seasons (Fig. 4a and c). During the growing season, model performance represented by R
2
 was 511 

significantly higher (between 0.5 and 0.7) for all vegetation types compared to the winter season 512 

(Fig. 4a). The best model fit was achieved between June and August for perennial and/or annual 513 

grass and grass-tree mixture sites, while grass-shrub mixture sites had the best fit for March to 514 

May. However, it should be mentioned that the model RMSE was also noticeably higher during 515 

the growing season because winter GPP values were much lower in magnitude than those during 516 

the growing season. The results were similar among seasons for normalized RMSE values (Fig. 517 

4c).  518 

 519 

Figure 4. The model performance for estimating (a) gross primary productivity (GPP) 520 

represented by coefficient of determination (R
2
), (b) net ecosystem exchange of CO2 (NEE) 521 

represented by R
2
, (c) GPP represented by root mean square error (RMSE, C m

-2
 per seasonal 522 

cumulative), and NEE represented by RMSE. The results are averaged from sites grouped by 523 

four seasons including S1 (Dec, Jan, Feb), S2 (Mar, Apr, May), S3 (Jun, Jul, Aug), and S4 (Sep, 524 

Oct, Nov). The model performance is presented for perennial and/or annual grass (PAG) sites, 525 

grass and shrub mixture (GSM) sites, and grass and tree mixture (GTM) sites. Normalized 526 

RMSE in (c) is denoted as cross mark (X), which is calculated as RMSE divided by mean GPP 527 

of the season.  528 

 529 
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The annual cumulative GPP estimates were more accurate for grass-shrub mixture (R
2
 = 530 

0.72, RMSE = 199 g C m
-2

 year
-1

) than for the grass-tree mixture (R
2
 = 0.68, RMSE = 387 g C 531 

m
-2

 year
-1

) or perennial and/or annual grass (R
2
 = 0.61, RMSE = 329 g C m

-2
 year

-1
) sites (Table 532 

2), which is consistent with model performance ranking for estimating daily GPP (Fig. 3). 533 

Despite the better model fit (R
2
) in estimating daily GPP during the growing season, cumulative 534 

GPP estimates from April to October showed slightly lower accuracy compared to annual 535 

estimates, indicating that model bias might be reduced when integrating results from the growing 536 

and non-growing seasons. The model bias (MBE = 138 g C m
-2

 year
-1

) was larger for the 537 

estimates of annual GPP for grass-tree mixture sites, showing a significant underestimation 538 

(Table 2). The model performance for estimating monthly cumulative GPP was similar among 539 

different vegetation types, with R
2
 over 0.7. Again, model bias which indicates underestimation 540 

of GPP was higher for the grass-tree mixture sites.  541 

Table 2. Model performance for estimating annual, seasonal, and monthly cumulative gross 542 

primary productivity (GPP) and net ecosystem exchange of CO2 (NEE) shown as coefficient of 543 

determination (R
2
), root mean square error (RMSE), and mean bias error (MBE) averaged from 544 

sites within different vegetation types. The growing season is set from April to October for 545 

comparison. Mean values are also calculated for different categories. 546 

Vegetation class 
GPP  NEE 

Mean R2 RMSE MBE  Mean R2 RMSE MBE 

Annual cumulative fluxes (g C m-2 year-1) 

  Perennial and/or annual grass 1096 0.61 329.1 15.9  105 0.40 180.0 103.7 

  Grass-shrub mixture 498 0.72 199.1 21.9  70 0.65 103.1 81.5 

  Grass-tree mixture 659 0.68 387.3 137.6  59 0.42 174.9 100.3 

Growing season cumulative fluxes (g C m-2 per growing season) 

  Perennial and/or annual grass 748 0.56 256.0 7.6  125 0.45 155.5 72.3 

  Grass-shrub mixture 352 0.72 146.5 18.7  84 0.69 93.6 68.0 

  Grass-tree mixture 432 0.64 187.6 16.6  41 0.40 120.7 50.6 

Monthly cumulative fluxes (g C m-2 month-1) 

  Perennial and/or annual grass 79 0.72 49.8 2.0  9 0.42 34.2 8.6 

  Grass-shrub mixture 34 0.73 26.3 0.8  6 0.58 17.2 6.6 

  Grass-tree mixture 52 0.70 45.4 12.7  41 0.46 24.5 9.0 

The model performance (R
2
 between 0.6 and 0.7) for estimating cumulative annual or 547 

monthly RECO (SI: Table D1) was similar to that reported for GPP models (Table 2). Model 548 

estimates for RECO were more accurate for grass-shrub (R
2
 = 0.64) or perennial and/or annual 549 

grass (R
2
 = 0.60) sites compared to grass-tree (R

2
 = 0.38) mixture sites (SI: Fig. D1).  550 

3.2 Model accuracy for estimating net rangeland C fluxes and SOC stocks 551 

The model performed better for estimating daily NEE from grass-shrub mixture (R
2
 = 552 

0.47, RMSE = 0.6 g C m
-2

 day
-1

) and grass-tree mixture (R
2
 = 0.37, RMSE = 0.8 g C m

-2
 day

-1
) 553 

sites than the perennial and/or annual grass sites (R
2
 = 0.27, RMSE = 1.6 g C m

-2
 day

-1
) sites 554 

(Fig. 5). Daily NEE from the managed hay and pasture sites were estimated with limited 555 

accuracy using the perennial and/or annual grass -specific model (R
2
 = 0.21, RMSE = 2.1 g C m

-
556 

2
 day

-1
). The LOOCV results also suggest the need to further improve the NEE models, 557 

especially for the perennial and/or annual grass sites (R
2
 = 0.32, MBE ≥ 0.3 g C m

-2
 day

-1
).  558 
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 559 

Figure 5. Net ecosystem exchange (NEE) model performance shown as coefficient of 560 

determination (R
2
), root mean square error (RMSE, C m

-2
 day

-1
), and mean bias error (MBE, C 561 

m
-2

 day
-1

) for different vegetation classes including (a) perennial and/or annual grass, (b) 562 

managed hay and pasture, (c) mixture of grass and shrub, and (d) mixture of grass and tree 563 

classes. Positive NEE sign denotes ecosystem carbon sink activity. Both model fits and leave-564 

one-out-cross-validation (LOOCV) results are presented. Different colors represent different 565 

Ameriflux/NEON study sites.  566 

 567 

The model fit was also observed to be better for the growing season than for winter NEE 568 

estimates, with the exception of grass-tree mixture sites (Fig. 4b). Like GPP, model RMSE was 569 

higher for the growing season than for winter NEE (Fig. 4d). Even though the RCTM system 570 

showed limited success in estimating daily NEE flux (Fig. 5), the model performance was better 571 

for estimating monthly (R
2
 between 0.4 and 0.6), growing season cumulative (R

2
 between 0.4 572 

and 0.7), or annual cumulative (R
2
 between 0.4 and 0.7) NEE fluxes (Table 2). It is anticipated 573 

that the model performance was lower for NEE than for GPP or RECO considering that the 574 

model structure for estimating NEE is subject to uncertainty in simulating both grassland 575 

production and respiration, and that GPP and RECO might not have equivalent responses to 576 

climate conditions such as soil moisture and temperature (Table 3). Regardless of the temporal 577 

resolution (i.e., daily or cumulative) used for model performance evaluation, the RCTM 578 

performed consistently better for grass-shrub mixture sites.  579 
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The model-simulated surface SOC stocks agreed well with SOC measurements from 580 

NEON sites in terms of the ranking of the spatial dataset (R
2
 = 0.58, Fig. 6). However, the model 581 

simulation results were higher than observed 0-30 cm SOC stocks (MBE = -2535 g m
-2

). This is 582 

likely because RCTM inputs are not restricted to a specific depth layer (e.g., 30 cm) but are 583 

instead reflective of the integrated plant productivity signals due to the use of GPP and NEE data 584 

for model calibration. However, the RCTM simulated SOC stocks were significantly lower than 585 

those observed from the 0-100 cm depth (MBE = 7293 g m
-2

, SI: Fig C3b), meaning that SOC 586 

stocks from 0-100 cm were too deep for RCTM to capture.  587 

 588 

Figure 6. The model performance for estimating surface soil organic carbon (SOC) stocks for 589 

NEON grassland sites using calibrated Rangeland Carbon Tracking and Monitoring (RCTM) 590 

system.  591 

 592 

3.3 Rangeland C dynamics influenced by site and environmental factors  593 

The RCTM simulated annual cumulative GPP was strongly correlated with both surface 594 

(R = 0.7) and root zone soil moisture (R = 0.8), VPD (R = -0.4), and fPAR (R = 0.9) (Table 3). 595 

Strong correlations were observed between simulated annual average SOC and VPD (R = -0.4), 596 

soil temperature (R = -0.4), and fPAR (R = 0.6). The RCTM simulation also suggested 597 

significant correlations between RECO and all of the input variables investigated (P < 0.05). The 598 

annual cumulative NEE was less correlated with environmental variables used in the model (R < 599 

0.2), which might be explained by the close to steady-state conditions of the sites. As expected, 600 

model-simulated SOC was significantly correlated with both GPP and RECO (P < 0.05). 601 
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Table 3. Correlation among model estimated annual cumulative net ecosystem exchange (NEE), 602 

gross primary productivity (GPP), ecosystem respiration (RECO), annual average soil organic 603 

carbon (SOC) stocks, and model input variables including 0-5 cm soil moisture (SWC_sf), root 604 

zone soil moisture (SWC_rt), vapor pressure deficit (VPD), 0-5 cm soil temperature (ST), clay 605 

content (Clay), and fraction of absorbed photosynthetically active radiation (fPAR). 606 

 NEE GPP RECO SOC SWC_sf SWC_rt VPD ST Clay fPAR 

NEE 1          

GPP 0.26* 1         

RECO 0.15 0.99* 1        

SOC -0.01* 0.41* 0.42* 1       

SWC_sf 0.14* 0.70* 0.19* 0.19* 1      

SWC_rt 0.15* 0.78* 0.25* 0.25* 0.97* 1     

VPD -0.14* -0.44* -0.44* -0.44* -0.66* -0.60* 1    

ST -0.04 0.10* -0.44* -0.44* -0.23* -0.16* 0.71* 1   

Clay 0.01 0.09* -0.01* -0.01 0.10* 0.11* 0.09* 0.17* 1  

fPAR 0.20* 0.88* 0.56* 0.56* 0.62* 0.62* -0.50* -0.07* -0.03 1 
* The correlation is significant at P < 0.05.  607 

 608 

The RCTM simulation was carried out to explore temporal patterns of C fluxes and SOC 609 

over the period from 2003 to 2022 influenced by vegetation types and geographic regions. It 610 

appears that both GPP and SOC stocks showed an increasing trend for Ameriflux and NEON 611 

sites grouped in perennial and/or annual grass, managed hay and pasture, and grass-shrub 612 

mixture classes (Fig. 7). According to model simulation results, surface SOC stocks increased by 613 

4.7, 6.2, and 8.4 g C m
-2

 year
-1

, for perennial and/or annual grass, managed hay and pasture, and 614 

grass-shrub mixture sites, respectively (SI: Appendix B). Similar trends in SOC sequestration 615 

were simulated for the majority of the USDA agricultural regions (Cooter et al., 2012), including 616 

Northern Great Plains (6.2 g C m
-2

 year
-1

), Southern Great Plains (6.2 g C m
-2

 year
-1

), Mountain 617 

regions (6.7 g C m
-2

 year
-1

), and Midwest (10 g C m
-2

 year
-1

), which are tied to an increase in 618 

GPP over time (SI: Fig. E1). For individual Ameriflux/NEON sites, RCTM simulated a 619 

significant (P < 0.05) increase trend in surface SOC stocks for the majority (69%) of the sites, 620 

with a smaller percentage (13%) associated with SOC decrease (SI: Table B3). While a GPP 621 

increase was simulated for 80% of the sites, the increase was found to be significant for only 622 

16% of them. The most significant increases were found in Kellogg Biological Station sites in 623 

Michigan.  624 
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 625 

Figure 7. Model estimated temporal trends (2003-2022) in gross primary productivity (GPP), net 626 

ecosystem exchange (NEE), and surface soil organic carbon (SOC) stocks grouped by vegetation 627 

classes including (a) perennial and annual grass, (b) managed hay and pasture, (c) mixture of 628 

grass and shrub, and (d) mixture of grass and tree classes. The solid lines represent mean values 629 

averaged from all sites within the group, while the lighter-colored lines with areas filled within 630 

represent standard deviations for GPP and NEE estimates. The red line shows zero baseline for 631 

NEE where a positive NEE denotes ecosystem carbon sink activity. Different scales were used 632 

for SOC due to differences in data ranges among vegetation types.   633 

 634 

4 Discussion 635 

4.1 RCTM model performance compared to previous work 636 

In comparison to previous research on estimating broad-scale rangeland productivity, our 637 

GPP model demonstrated similar or better performance. For example, Jin et al. (2020) carried 638 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

22 

 

out a vegetation type-specific model calibration for the Mongolian Plateau, achieving a model 639 

performance of R
2
 = 0.57 in estimating grassland NPP. Zhang et al. (2015) compared four LUE-640 

type models with varying complexity and found less accurate model estimations for grasslands 641 

(R
2
 between 0.45 and 0.64; RMSE between 1.9 and 2.6 g C m

-2
 day

-1
) compared to croplands (R

2
 642 

between 0.59 and 0.73) using a global flux tower dataset. Also using a global flux tower dataset, 643 

Zhu et al. (2018) examined MODIS GPP products, which are also developed based on the LUE-644 

type algorithms. Their study found moderate model fit (R
2
 = 0.66) but relatively large RMSE, 645 

indicating an underestimation of grassland GPP. Work by Zhang et al. (2012) reported a model 646 

accuracy of R
2
 = 0.74 for estimating annual GPP using the MODIS LUE algorithm when tested 647 

against an earlier flux tower dataset from U.S. grasslands. Calibrated against both Ameriflux and 648 

EuroFlux network sites, the work of Yuan et al. (2007) demonstrated better model performance 649 

than ours (R
2 

= 0.77), likely because their dataset included not only grassland but also savanna 650 

and forest sites, allowing the LUE algorithms to better capture broader-scale climate and 651 

vegetation driving factors.  652 

In contrast to the extensive modeling efforts dedicated to rangeland productivity 653 

estimation, there have been limited research efforts on modeling rangeland NEE and SOC, 654 

especially with the use of a RS-driven, process-based modeling approach like RCTM. We 655 

performed a comparison between RCTM and L4C (Endsley et al., 2020) using the 656 

Ameriflux/NEON sites (SI: Appendix F) and found that RCTM outperformed L4C results in 657 

terms of NEE estimates for perennial and/or annual grass and grass-shrub mixture sites, while 658 

the performance was similar for grass-tree mixture sites. This is not surprising because in the 659 

global L4C land-cover map, the single ‘Grasslands’ vegetation type (i.e., plant functional type) 660 

represents fairly different bioclimatic settings. The L4C parameters were calibrated using a 661 

global FLUXNET dataset that may not necessarily capture the interactions between climate 662 

factors and rangeland soil dynamics within a smaller region. Another explanation is that the 663 

STARFM fPAR inputs utilized by RCTM can better capture management-associated changes in 664 

rangeland C dynamics.  665 

To compare our modeling results more broadly with rangeland modeling efforts, we 666 

identified several studies that focused on simulating regional-scale C dynamics using activity-667 

driven process-based models. Abdalla et al. (2013) used the DNDC model to simulate C 668 

dynamics within Irish grasslands and reported a model performance for estimating monthly 669 

cumulative C fluxes (R
2
 = 0.51) that is comparable to ours. The modeling work of Sándor et al. 670 

(2016) showed that both the biome-generic Biome-BGC (R
2
 = 0.28) and the grassland-specific 671 

Pasture Simulation model (R
2
 = 0.42) had limited model accuracy for estimating weekly NEE 672 

from European grassland sites, despite a higher model performance reported for GPP estimates 673 

(R
2
 > 0.75). Limited accuracy was reported for simulating RECO from grassland sites using the 674 

CENTURY model, unless a time-lag factor is considered to account for legacy climate impacts 675 

(Kelly et al., 2000). Regarding SOC, Zhang et al. (2007) reported that CENTURY-simulated 676 

surface SOC stocks agreed well (R
2
 = 0.68) with measurements at Qinghai-Tibetan Plateau sites. 677 

It should be noted that the variations in model performance between RCTM and these two 678 

studies can likely be attributed to differences in geographic coverage.  679 

4.2 Factors driving regional rangeland C dynamics 680 

The temporal trends observed for GPP and SOC changes are strongly controlled by the 681 

pattern observed in the RS-informed fPAR values. In perennial and/or annual grass, managed 682 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

23 

 

hay and pasture, and grass-shrub mixture sites, GPP and SOC remained relatively constant until 683 

2013 and then began to increase (Fig. 7). A similar trend was found for most of the regional-684 

level summaries (SI: Fig. E1), which aligned with fPAR changes shown in SI: Appendix F. The 685 

fPAR values are often used to represent vegetation greenness (Forkel et al., 2014; Twine & 686 

Kucharik, 2008). In this context, rangeland greenness can be influenced both by environmental 687 

conditions and management practices (Browning et al., 2019; Long et al., 2019; Shibia et al., 688 

2022).  689 

The annual average fPAR correlated strongly (R > 0.6) with soil moisture (Table 3), 690 

which is in line with the significant correlations (R > 0.5, P < 0.05) computed between fPAR and 691 

annual precipitation at the regional scale (SI: Fig. G1). Our simulation results suggest that 692 

increased rangeland greenness was often associated with higher annual precipitation levels, 693 

particularly at the grass-shrub mixture and grass-tree mixture sites. This finding is in line with 694 

previous work that reported enhanced rangeland productivity in wetter years (Golodets et al., 695 

2013; Liu et al., 2021; Scott et al., 2023). Strong correlation (R = 0.64) was also found between 696 

fPAR and air temperature for perennial and/or annual grass sites; however, this correlation was 697 

less certain for other vegetation types or aggregated at the regional scale (SI: Fig. G1). The 698 

uncertainty may stem from enhanced vegetation metabolism, increased SOM decomposition, and 699 

a prolonged growing season linked to higher temperatures, but is likely reversed by plant growth 700 

inhibition induced by heat or water stress (Izaurralde et al., 2011). In addition, vegetation 701 

composition (e.g., C3 versus C4) and ecoregion can often influence the magnitude and direction 702 

of climate effects on rangeland productivity and C dynamics (Fuhlendorf et al., 2000; Hossain & 703 

Li, 2021).    704 

Conservation practices such as prescribed grazing management, grassland restoration, 705 

removal of invasive species, and upgrades of rangeland infrastructure can enhance rangeland 706 

greenness through the promotion of vegetation growth, increased biodiversity and resilience, 707 

reduced risks of wildfires, and improved water supply (Rolfe et al., 2021; Schmelzer et al., 2014; 708 

Silverman et al., 2019), while practices that lead to rangeland degradation can cause reduced 709 

rangeland greenness (Paudel & Andersen, 2010; Smet & Ward, 2005). Unfortunately, 710 

distinguishing management effects from climate variability on rangeland greenness can be 711 

challenging (Li et al., 2018), especially when there is a lack of detailed temporal information of 712 

grazing management (i.e., timing, intensity, and duration) and vegetation composition from most 713 

of the sites. Running RCTM at a 30 m spatial resolution would be useful to identify local areas 714 

of change in C dynamics, but ideally, assessing long-term changes in rangeland productivity and 715 

SOC from reference sites alongside sites undergoing practice changes can help identify 716 

management influence on rangeland C dynamics more effectively.  717 

The simulation results showing a correlation between GPP and SOC stocks (Table 2) 718 

align with the expectation that productive rangeland can supply more C inputs to the soil. 719 

Elevated SOC levels were also explained by increased soil moisture at both depths, supporting 720 

the notion of higher rangeland productivity in response to higher moisture conditions. The 721 

negative correlation (R = -0.44, P < 0.05) between SOC and soil temperature likely reflects 722 

increased SOM decomposition tied to enhanced microbial activity in response to an increase in 723 

soil temperature (Hassan et al., 2015; Lal, 2004).  724 

Environmental drivers are crucial not only for SOC stocks but also for changes in stock 725 

levels. Our SMLR analysis of RCTM outputs demonstrated that the rate of surface SOC stock 726 

changes was primarily controlled by site characteristics including slope, soil texture, air 727 
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temperature, and VPD (Eq. 10). The empirical SMLR model (R
2
 = 0.58) developed on all 728 

retained Ameriflux and NEON sites suggested that rangeland SOC sequestration increased with 729 

clay content and air temperature but decreased with slope and VPD.  730 

∆𝑆𝑂𝐶 = 818 − 35 × slope + 6 × clay(%) + 50 × air temperature(℃) − 114
× VPD(hPa)    (Eq. 10) 

Where ∆𝑆𝑂𝐶 (𝑔 𝐶 𝑚−2) denotes RCTM-simulated changes in surface SOC stocks from 731 

2003 to 2022.  732 

It is not surprising that soils with higher clay contents are connected to a higher SOC 733 

sequestration rate, because finer-textured soils can better protect SOM from decomposition 734 

through physical protection and chemical adsorption (Blanco-Canqui & Lal, 2004; Hassink, 735 

1997). Likewise, studies have reported negative correlation between SOC accumulation and 736 

slope, which can be explained by enhanced biomass production tied to moisture and nutrient 737 

accumulation, as well as reduced erosion at lower-slope positions (Guillaume et al., 2021; 738 

Mensah et al., 2003). The higher SOC sequestration rate observed from warmer sites reflects 739 

increased rangeland productivity; however, temperature effects on SOC dynamics can be 740 

confounded by factors such as rangeland vegetation composition, soil texture, soil moisture, and 741 

grazing management practices (Bai & Cotrufo, 2022; Jones & Donnelly, 2004). Given that an 742 

increase in VPD indicates atmospheric drought, which is associated with soil moisture stress 743 

(Krishnan et al., 2012), it is anticipated that higher VPD values can lead to decreases in leaf 744 

conductance and assimilation rate and, subsequently, reduced grassland productivity and SOC 745 

sequestration rate (Shao et al., 2017; Zhang et al., 2023).    746 

4.3 Limitations and future work 747 

The discrepancy in modeled and measured SOC stocks points to the need to further refine 748 

RCTM to account for the diffusion and advection among different depth layers (Sanderman & 749 

Amundson, 2008; Yao Zhang et al., 2021) as well as the depth effects on SOC decomposition. 750 

The use of average environmental conditions from a relatively short period of time for model 751 

initialization, along with the fact that RS inputs might not fully capture management (e.g., 752 

irrigation) or legacy climate impacts on SOC dynamics (Delgado-Baquerizo et al., 2017; Nie et 753 

al., 2022), might also lead to estimation bias. It should be noted that RCTM or similar RS-driven 754 

process modeling approach-based systems are limited by the assumption that RS inputs can 755 

adequately capture management-driven (e.g., grazing, irrigation) changes in rangeland greenness. 756 

Future work should verify RCTM-simulated long-term trends in rangeland productivity with 757 

ground-truth biomass datasets. It would also be worthwhile to compare RCTM with activity-data 758 

driven models, such as DNDC (Li et al., 1994), DAYCENT (Parton et al., 1998), and MEMS 759 

(Robertson et al., 2019) to assess their accuracy and uncertainty in predicting the spatial and 760 

temporal C dynamics. Moreover, our modeling results found that RCTM had larger modeling 761 

bias for grass-tree mixture sites (Fig. 3), which might be associated with signal saturation in RS 762 

data caused by dense vegetation (Huete & Jackson, 1988; Zhu & Liu, 2015). The use of 763 

saturation or cloud-adjusted indices, as well as a combination of vegetation indices may be 764 

necessary to improve the accuracy of grass-tree mixture class-based modeling (Badgley et al., 765 

2019; Gu et al., 2013; Yang et al., 2012). Also tied to RS inputs, the relatively lower model fit 766 

observed in the estimation of winter GPP and NEE (Fig. 4a and b) might be explained by the fact 767 

that the STARFM fusion method is constrained by a reduced number of Landsat and MODIS 768 
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images and pixels passing the QC criteria during the winter periods. This underscores the need to 769 

better account for snow cover effects and implement noise-reduction techniques in the case of 770 

missing data (Cao et al., 2018; Huang et al., 2021). Furthermore, the modeling bias for 771 

estimating NEE (Fig. 5) and SOC (Fig. 6) is significant, as reflected by the deviation of 772 

measured versus modeled values from the 1:1 line. This can lead to less accurate predictions, 773 

particularly at the lower and higher ends, pointing to the need for further model parameterization 774 

and evaluation using datasets covering a wider range.  775 

There are several improvements that we believe can further increase the accuracy and 776 

applicability of RCTM. First, more accurate model input and parameter estimates, such as 777 

footprints calculated by Chu et al. (2021) and estimates of root:shoot ratio that are expressed as a 778 

function of climate factors (e.g., temperature, precipitation) and vegetation types (Hui & 779 

Jackson, 2006; Qi et al., 2019; Wang et al., 2021) for allocating modeled NPP into aboveground 780 

and belowground biomass, can be utilized. Parameterizing the RCTM for more detailed 781 

vegetation types such as annual versus perennial grass (Milne & Haynes, 2004), C3 versus C4 782 

grass (Zhang et al., 2007), tallgrass versus shortgrass (Pepper et al., 2005), and pastures with 783 

different qualities (de Oliveira et al., 2022) that are known to have varying vegetation growth 784 

and C dynamics (Guerschman et al., 2003; Otunga et al., 2019; Wang et al., 2014) may help 785 

improve performance. Better capturing management (e.g., grazing and irrigation) effects on 786 

vegetation growth (Hao & He, 2019; Su et al., 2022), litter quality (Gao et al., 2020), and SOC 787 

dynamics (Conant et al., 2017; McSherry & Ritchie, 2013; Sanderson et al., 2020) may also 788 

improve the models performance and applicability to managed livestock operations. For 789 

example, the DNDC-type algorithms (Li et al., 2012) can be incorporated to better describe the 790 

conversion from animal ingested biomass into manure and the partition of manure into SOM 791 

pools. The model calibration and validation can be further strengthened by taking advantage of 792 

datasets reflecting long-term SOC stock changes associated with grassland management once 793 

such datasets become available through long-term monitoring networks (Chang et al., 2015; 794 

Moll-Mielewczik et al., 2023). Finally, the RCTM needs to be further evaluated for site-level 795 

estimates of rangeland productivity and C dynamics in order to inform management decisions by 796 

utilizing finer resolution data such as downscaled soil moisture datasets (Garcia-Cardona et al., 797 

2022; Xia et al., 2022) as model inputs, and strategically selected local field samples for 798 

improved model calibration and validation. 799 

 800 

5 Conclusions 801 

The RCTM system is one of the first efforts to combine RS-driven LUE model outputs 802 

with a process-based soil model for the estimation of C dynamics and SOC stocks in rangeland 803 

systems. There is a potential to apply the system to estimate rangeland productivity and soil C 804 

dynamics for other regions of the world, after the system is calibrated and validated with datasets 805 

representing the application domain. The major advantages of RCTM include: (1) Applicability 806 

in situations where rangeland management datasets, such as grazing intensity and duration, are 807 

unavailable; (2) Capability to estimate long-term (20 years or more) rangeland C dynamics 808 

influenced by management and climate conditions; (3) Flexibility in the parameterization 809 

procedure which would allow continuous model improvement as new flux tower and SOC data 810 

become available; (4) Scalability in terms of its potential to be applied to different temporal 811 

scales and local or regional extents at relatively high spatial resolution (30 m) that would be 812 

relevant to management. The regional estimates of rangeland productivity and SOC sequestration 813 
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trends obtained from this work (e.g., increase in GPP and SOC tied to climate pattern) can be 814 

used to inform policy making and are suited to improve large scale rangeland C monitoring 815 

efforts, while it should also be possible to apply RCTM at the site level (individual operations) to 816 

improve management decisions, after parameterizing and verifying the system using site-level 817 

observations. High resolution, quality-controlled RS datasets and field observations capturing 818 

management effects on rangeland dynamics are essential to support the continuous improvement 819 

of RCTM and other RS-driven process-based modeling systems for rangeland C monitoring.  820 
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