Now casting Solar EUV Irradiance with Photospheric Magnetic Fields and the Mg II Index

Kara Kniezewski¹, Samuel Schonfeld², and Carl John Henney^2

 $^{1}\mathrm{Air}$ Force Institute of Technology $^{2}\mathrm{AFRL}$

April 09, 2024

Abstract

A new method to nowcast spectral irradiance in extreme ultraviolet (EUV) and far ultraviolet (FUV) bands is presented here, utilizing only solar

Nowcasting Solar EUV Irradiance with Photospheric Magnetic Fields and the Mg II Index

Kara L. Kniezewski¹, Samuel J. Schonfeld², Carl J. Henney²

 $^1\mathrm{Air}$ Force Institute of Technology, Wright-Patterson Air
 Force Base, Ohio, USA $^2\mathrm{Air}$ Force Research Lab/Space Vehicles Directorate, Kirtland AFB, NM, USA

6 Key Points:

1

2

3

4 5

12

7	• Improved nowcast models for commonly used extreme ultraviolet (EUV) and far
1	· inproved nowcast information in the second contraction of the v) and far
8	ultraviolet $(F \cup V)$ solar irradiance bands
9	• Utilization of well-calibrated Mg II observations decreases the error between the
10	modeled and observed EUV values
11	• Real-time EUV observations are not required to correct and improve the EUV ir-

radiance models

Corresponding author: Kara L. Kniezewski, kara.kniezewski@gmail.com

13 Abstract

A new method to nowcast spectral irradiance in extreme ultraviolet (EUV) and far ul-14 traviolet (FUV) bands is presented here, utilizing only solar photospheric magnetograms 15 and the Mg II index (i.e., the core-to-wing ratio). The EUV and FUV modeling outlined 16 here is a direct extension of the SIFT (Solar Indices Forecasting Tool) model, based on 17 Henney et al. (2015). SIFT estimates solar activity indices using the earth-side solar pho-18 tospheric magnetic field sums from global magnetic maps generated by the ADAPT (Air 19 Force Data Assimilative Photospheric Flux Transport) model. Utilizing strong and weak 20 magnetic field sums from ADAPT maps, Henney et al. (2015) showed that EUV & FUV 21 observations can also be well modeled using this technique. However, the original fore-22 casting method required a recent observation of each SIFT model output to determine 23 and apply a 0-day offset. The new method described here expands the SIFT and ADAPT 24 modeling to nowcast the observed Mg II index with a Pearson correlation coefficient of 25 0.982. By correlating the Mg II model-observation difference with the model-observation 26 difference in the EUV & FUV channels, Mg II can be used to apply the 0-day offset cor-27 rection yielding improvements in modeling each of the 37 studied EUV & FUV bands. 28 With daily global photospheric magnetic maps and Mg II index observations, this study 29 provides an improved method of nowcasting EUV & FUV bands used to drive thermo-30 spheric and ionospheric modeling. 31

³² 1 Plain Language Summary

Ultraviolet irradiance from the Sun can create variability in Earth's atmosphere 33 and cause problems, for example, with satellite communication and their orbital paths. 34 However, we are limited in measuring solar ultraviolet irradiance since it must be ob-35 served from space and therefore models of the irradiance are important. In this paper, 36 we present an improved way to model ultraviolet irradiance using solar magnetic fields 37 and a well-calibrated solar activity proxy. We find that models of the irradiance improve 38 when the proxy is used to correct daily variations compared to models driven using just 39 the magnetic fields. 40

$_{41}$ **2** Introduction

Solar irradiance, specifically the ultraviolet (UV) band vacuum UV (VUV; 0.1 to 42 200 nm) which includes X-ray UV (XUV; 0.1 to 10 nm), extreme UV (EUV; 10 to 120 43 nm) and far UV (FUV; 120 to 200 nm), is an important driver for modeling variability 44 in the earth's upper atmosphere. For example, the solar EUV flux causes ionization, dis-45 sociation, and excitation of the atoms and molecules in the terrestrial upper atmosphere 46 (Lilensten et al., 2008). All of these interactions lead to heating, and this solar irradi-47 ance both creates the ionosphere and is the main source of energy in the thermosphere 48 (Fuller-Rowell et al., 2004). The atmospheric variability induced by changes in the so-49 lar EUV irradiance can impact radio communications (due to an enhanced ionosphere 50 e.g., Klobuchar, 1985; McNamara, 1985) and atmospheric drag on satellites (due to in-51 creased density at high altitudes e.g., De Lafontaine & Garg, 1982). Because of these im-52 pacts, real-time knowledge of solar irradiance is necessary to drive nowcast models of the 53 terrestrial upper atmosphere (e.g., Goncharenko et al., 2021). 54

However, measurements of the solar EUV irradiance have serious limitations because these wavelengths are absorbed in the earth's upper atmosphere, so they must be observed from space. While such measurements began in the 1960s, this spectral range has been inconsistently observed and there are large gaps in both time and spectral coverage when no observatories were taking measurements (Pesnell, 2016). Furthermore, even when measurements exist, they are notoriously difficult to calibrate due to instrumental degradation (e.g., R. a. Hock et al., 2012). Because of these observational dif-

Figure 1. From top to bottom: the active and plage weighted magnetic sums, the Mg II nowcast model and observed values, and the Band 7 (15.5 - 22.4 nm), Band 9 (29.0 - 32.0 nm), and Band 26 (121.6 nm) EUV nowcast models and observed values. Note that the magnetic Plage Index variability, both long and short term, agrees with Mg II and the EUV Band 7, 9, and 26 time series over the full period. Similar figures for all 37 bands are available at Kniezewski et al. (2023).

ficulties, there is significant benefit to modeling rather than observing the solar EUV ir radiance spectrum.

Solar EUV originates in the solar atmosphere from plasma at a wide variety of tem peratures, from 50 kK in the upper chromosphere to 10 MK in the corona, and typically
 increases with solar activity. Many solar irradiance models use one (e.g., Richards et al.,
 1994) or more (e.g., P. C. Chamberlin et al., 2020) activity proxies and correlate them
 with individual channels of EUV irradiance spectra. Then, simply by measuring the proxy,
 select EUV and FUV spectral bands can be estimated. Two commonly used proxies are

the solar 10.7 cm (2.8 GHz) radio flux (Covington, 1947; Tapping, 2013), abbreviated as $F_{10.7}$ and the Mg II core-to-wing ratio (often referred to as the Mg II Index, and hereinafter referred to as Mg II; Heath & Schlesinger, 1986).

Besides using proxies similar to $F_{10.7}$, it is also possible to drive an EUV model us-73 ing solar magnetic field measurements (e.g., full-disk magnetograms and global magnetic 74 maps) since the magnetic fields provide the energy to heat the solar atmosphere that pro-75 duces the EUV irradiance. Henney et al. (2012, 2015, hereafter Henney2012 and Hen-76 ney2015, respectively) used earth-side weak and strong solar photospheric magnetic field 77 78 sums from global magnetic maps to estimate irradiance in EUV bands, along with $F_{10.7}$. Similar work by (Warren et al., 2021) utilized more bins in the magnetic field strength 79 combined with principle component analysis and demonstrated similar success model-80 ing $F_{10.7}$, Mg II, and selected EUV emission lines. 81

This paper expands on the nowcasting components of Henney2012 and Henney2015 82 by focusing on Mg II rather than $F_{10.7}$ and using it to correct EUV nowcasts. The Hen-83 ney2015 EUV forecast method required a recent EUV observation to determine and ap-84 ply a 0-day (nowcast) correction. The method described here instead uses the Mg II model 85 to estimate corrections to EUV nowcast models. The data used in this study are described 86 in Section 3. The addition of the Mg II modeling, its use as a corrective factor to the 87 Solar Indices Forecasting Tool (SIFT), and the results of this study are described in Sec-88 tion 4. We provide a summary of the results in Section 5. 89

⁹⁰ 3 Solar Data Sources

Beginning on January 22nd, 2002, the Thermosphere Ionosphere Mesosphere Energetic and Dynamics (TIMED) Solar EUV Experiment (SEE) observations define the start of our investigation period. Figure 1 shows the daily trend of solar activity during our period of investigation, from the maximum of Solar Cycle 23 through 2010 and the Cycle 23/24 minimum. This date range matches Henney2012 and Henney2015.

96 3.1 Mg II Index

For this study we use the Mg II daily composite index from the University of Bre-97 men (Snow et al., 2014), available online at http://www.iup.uni-bremen.de/gome/solar/ 98 MgII_composite.dat. The Bremen composite data set (Skupin et al., 2005) includes daily 99 indices back to 1978. The solar Mg II Index is derived by taking the ratio between the 100 spectral irradiance of the Mg II h and k absorption lines near 280 nm and the nearby 101 background solar continuum (Heath & Schlesinger, 1986). Mg II varies with solar activ-102 ity on many timescales (Dudok de Wit et al., 2008, 2009) and performs well as a proxy 103 for solar activity and for some EUV emission (i.e., 25.0 - 35.0 nm Viereck et al., 2001). 104 Since Mg II is generated from a ratio of measurements taken with the same instrument, 105 despite requiring a spacecraft UV observation, the Mg II index is robust against instru-106 ment degradation and aging. The Mg II data is recorded in a single 50 second observa-107 tion window daily at 1200 UT. No effort is made to remove the effects of solar flares in 108 these data. 109

110

3.2 EUV and FUV Irradiance

The irradiance data used in this study are from the TIMED/SEEobservations from the EUV Grating Spectrograph (EGS) and XUV Photometer System (XPS) (Woods et al., 1998). These data include low-resolution (~ 5 nm) diode measurements below 25 nm (XPS) and 0.4 nm resolution spectra between 25 and 195 nm (EGS) collected over ~ 3 minute observation windows once per ~ 90 -minute orbit. We use the calibration version 11 EGS level 3 and XPS level 4 data products for this study. These data are averaged

Figure 2. *Top*: An example ADAPT global photospheric magnetic map on October 5, 2003 at 20:00 UT, generated by data assimilating NSO SOLIS/VSM magnetograms. *Bottom*: The same ADAPT map with the Earth pointing side of the Sun delineated by the white box and the SIFT active region and plage fields highlighted in blue and red, respectively.

over a day to create this daily cadence data and flares have been removed. Additionally, we de-spike EUV Band 1 (i.e., range 0.05 - 0.4 nm) values above 0.7 $\mu W/m^2$, replacing them with the average of the previous and following days' data points. Four data points (i.e., large "spikes") are removed from Band 1 across the entire nine-year period.

For this study, we re-bin these data into 37 bands between 0.05 nm to 175 nm shown 121 in Table 1. These include the 22 bands defined in Solomon and Qian (2005) for input 122 in general thermosphere and ionosphere models, plus 14 additional bands which cover 123 the Shumann-Runge range (Torr et al., 1979), and the Lyman α line. While these 37 bands 124 include XUV, EUV, and FUV irradiance, we will refer to them all as EUV bands and 125 the spectrum they cover as the EUV for simplicity. The emission sources for each band 126 include atomic transitions from the chromosphere through the corona. Shorter wavelengths 127 (i.e., < 20 nm) are generally from coronal emission, and longer wavelengths (i.e., > 50128 nm) generally come from the chromosphere and upper transition region (Doschek & Feld-129 man, 2010), although this is not a sharp distinction. 130

3.3 Photospheric Magnetic Field

Following Henney2012 and Henney2015, the magnetic field data used for this study 132 are from global photospheric magnetic maps created by the ADAPT model (Arge et al., 133 2010, 2013; Hickmann et al., 2015). The ADAPT maps are generated by assimilating 134 observations when available and applying surface flux transport based on Worden and 135 Harvey (2000) to account for differential rotation, meridional circulation, and supergran-136 ulation flows between observations. The ADAPT model generates 12 realizations of the 137 photospheric magnetic field to represent the variable state of the Sun outside of the ob-138 served field of view. However, since the model nearside data is strongly dependent on 139 the observations directly assimilated into the models, the difference in the magnetic field 140 on the Earth-facing hemisphere in the 12 realizations is quite small. Therefor for sim-141 plicity, SIFT currently uses only the first realization of ADAPT to generate the mag-142 netic sums. 143

The ADAPT sequence used in this study assimilates line-of-sight magnetograms 144 from the Kitt Peak Vacuum Telescope (KPVT; Jones et al., 1992) and Vector Spectro-145 magnetograph (VSM; Henney et al., 2009). For this paper, the VSM magnetograms used 146 as input to ADAPT were reprocessed with improved calibration and new bias and scal-147 ing updates, as compared to the original VSM data used in Henney2012 and Henney2015. 148 The recalibration resulted in changes depending on center-to-limb variation and field strength. 149 These ground-based observations were obtained at irregular times, sometimes with many 150 days between observations. For the model and observation comparison in this study, we 151 applied a cubic spline interpolation to the TIMED/SEE EUV and Mg II daily indices 152 to sample these series only when new data was assimilated into ADAPT. 153

154 4 EUV Nowcasts

4.1 SIFT: Solar Indices Forecasting Tool

The SIFT model uses empirical linear relationships to nowcast and forecast solar 156 activity proxies and irradiance from photospheric magnetic fields. The fundamental as-157 sumption is that the magnetic field on the Earth-facing hemisphere of the Sun determines 158 the observed solar irradiance. Following Henney2012 and Henney2015, the Earth-facing 159 magnetic field in the ADAPT maps is summed into two bins corresponding to plage (20 160 $G < B_r < 150$ G), S_P , and active regions (150 G $\leq B_r$), S_A . Although Henney2012 and 161 Henney2015 started the plage bin at 25 G, we chose 20 G to remain consistent with the 162 current SIFT implementation. The difference is also negligible to model performance. 163 As outlined in Henney2012, the two sums are calculated as 164

$$S_p = \frac{1}{\sum \omega_{\theta}} \sum_{20G < |B_r|}^{|B_r| < 150G} |B_r| \omega_{\theta}$$
(1)

155

$$S_A = \frac{1}{\sum \omega_\theta} \sum_{|B_r| \ge 150G} |B_r| \ \omega_\theta, \tag{2}$$

where B_r is the radial magnetic field and ω_{θ} is an area weighting to account for the unequal pixel areas in the plate carée ADAPT map (180 latitude pixels by 360 longitude pixels). All of the sums are over only the Earth-facing pixels. An example ADAPT global magnetic map, generated with VSM magnetograms, is illustrated in Figure 2, where the Earth-facing side of the sun is delineated by the white box and the regions with plage and active region fields are highlighted in red and blue, respectively. We then use linear regression to determine the coefficients for a model of the following form:

$$I_{model}^{n} = m_0^n + m_1^n S_P + m_2^n S_A \tag{3}$$

where n is the solar index or irradiance band number modeled and m_0 , m_1 , and m_2 are best fit coefficients. In Henney2012 and Henney2015 these models were trained independently for nowcasts and forecasts out to seven days. In this work, we create only nowcast models, although the procedures described below should work equally well for forecasts.

178

4.2 Nowcasting the Mg II Index and EUV Irradiance

Using equation 3, independent models are generated for Mg II and each of the 37 179 EUV bands using the entire 9-year data set. Timeseries of the magnetic sums, Mg II ob-180 servations and model, and three EUV bands of interest observations and model are shown 181 in Figure 1. Since it is impractical to display all 37 EUV bands, we chose to display Band 182 7 (15.5 - 22.4 nm) for its strong coronal lines, Band 9 (29.0 - 32.0 nm) which contains 183 the strong He II 304 Å emission line, and Band 26 (121.6 nm) which is the Lyman- α line. 184 Consistent with the findings in Henney2012 and Henney2015, both the Mg II and EUV 185 time series have similar variability to the magnetic sums over all observed levels of so-186 lar activity. The simple multiple linear regression Mg II model reproduces the observed 187 Mg II well with a Pearson correlation coefficient of 0.982. The correlation of the observed 188 and modeled EUV Band 7 is 0.978, Band 9 is 0.978, and Band 26 is 0.977. The corre-189 lations of all the EUV bands is given in Table 1. Note that the $r(I_{model}^n)$ values in Ta-190 ble 1 slightly differ from Henney2012 and Henney2015. Since we chose to interpolate the 191 Mg II and EUV timeseries to when new data was assimilated into ADAPT maps and 192 the VSM magnetograms were recalibrated by NSO since Henney2012 and Henney2015, 193 some variation in our model correlation values are expected. In general, the EUV bands 194 perform similarly well, although there are some with notably lower correlation coefficients. 195 Band 25, which has the lowest correlation of the 37 bands, is just blue-ward of Lyman 196 α and the filter to ensure EGS does not saturate makes measuring this spectral range 197 difficult (Woods et al., 2005). Meanwhile, Band 1 with the second worst correlation con-198 tains the highly-variable soft X-ray (SXR) that is particularly sensitive to solar flares. 199 All the other EUV bands have a Pearson correlation better than 0.9. 200

The difference between the models and observed values in the various bands are 201 not random in time. Figure 3 shows both the daily (points) and long-term, 81-day trail-202 ing running average, trend (line) of the difference between the observed and modeled Mg 203 II (top) and EUV Bands 7, 9, and 26. These time series demonstrate the long-term deviation of the models from observations (which are small) are temporally correlated over 205 the nine-year period displayed in Figure 3. The daily differences are typically largest dur-206 ing maximum solar magnetic activity when the irradiance is most variable. This is ex-207 pected because both the magnetic sums and Mg II vary more during solar maximum than 208 solar minimum, so the same relative difference results in larger absolute differences. In-209 terestingly, the time-dependent long-term bias in all four of these models is largest at 210 the intermediate activity levels during the decline of Solar Cycle 23. 211

212

4.3 EUV Nowcast Correction

The simple linear regression models applied in SIFT have a number of known lim-213 itations. Most fundamentally, while the magnetic field is responsible for solar activity 214 (Petrie et al., 2021), the solar atmospheric response to photospheric magnetic fields is 215 dynamic and non-linear (e.g., Tiwari et al., 2017), and may not always be well represented 216 by a static model. Furthermore, solar EUV irradiance is often concentrated in active re-217 gions (depending on wavelength, see e.g., Kazachenko & Hudson, 2020), and the spatial 218 information in the magnetic field is not included in the current SIFT modeling. Finally, 219 the ADAPT maps that drive SIFT do not assimilate data near the limb (see Hickmann 220 et al., 2015; Barnes et al., 2023) to reduce the introduction of artifacts from the line-of-221 sight magnetic field measurements that would otherwise be assumed to be radial (see, 222

Figure 3. The daily (points) and 81-day running average difference between the modeled and observed Mg II (top) and EUV Bands 7, 9, and 26 plotted as a percent difference from the observed value. To the right of each time series is a histogram indicating the distribution of daily offsets over the entire data set. The mean (purple) and standard deviation (blue) for each band's offsets are included with each histogram. Notice that the Mg II and EUV offsets track each other well throughout the solar cycle.

e.g., Harvey et al., 2007). This leads to a ~two-day delay between when a flux concentration becomes visible on the Earth-facing solar hemisphere and when it is first assimilated into ADAPT.

To mitigate signal delay issues, Henney2015 implemented a 0-day offset correction for the SIFT forecast models. For each set of daily forecasts, the difference between the model nowcast and associated observation was applied as a constant correction factor to all forecasts made on that day. The 0-day offset technique compensates for local inadequacies in the model while still utilizing the full-Sun nature of ADAPT that enables forecasting. However, the technique applied by Henney2015 requires an observation in each band of the model to determine and apply the corresponding correction. Currently, with aging EUV irradiance observatories and limited EUV spectral coverage (P. Chamberlin et al., 2023), selected bands of EUV observations are not reliably available. It is therefore valuable to apply a similar correction without the need for daily measurements in each EUV band.

The difference between the modeled and observed Mg II (top) and EUV Bands 7, 9, and 26 in Figure 3 appear to correlate somewhat over a solar cycle timescale. This suggests that the errors in the EUV band models could be reduced by applying a timedependent correction to each band by using the difference between the daily observed and modeled Mg II. We create this correction model by linearly correlating the daily modelobservation difference in Mg II with each of the EUV bands such that

$$I_{model}^{n} - I_{observed}^{n} = m_{3}^{n} \left(I_{model}^{\text{Mg II}} - I_{observed}^{\text{Mg II}} \right) = m_{3}^{n} C$$

$$\tag{4}$$

and then applying this correction term to equation 3, we get the following

$$I_{corrected}^{n} = m_0^n + m_1^n S_P + m_2^n S_A - m_3^n C, (5)$$

which yields an Mg II-corrected multiple linear regression for each band. We chose to 244 model the Mg II correction term with only one coefficient, vice a multi-coefficient lin-245 ear regression, because additional constants were several orders of magnitude smaller than 246 the m_3 correction coefficient, as well as m_0 , m_1 , and m_2 . Therefore, additional coeffi-247 cients had no effect on model performance or improvement. The coefficients for these 248 models are shown in Table A1 in the appendix. The Mg II correction term on EUV Bands 249 7 $(m_3^7 C)$, 9 $(m_3^9 C)$, and 26 $(m_3^2 6 C)$ are plotted (green) in Figure 4 along with the orig-250 inal model-observation difference (black) from Figure 3. If these points (and lines) over-251 lapped perfectly then the Mg II correction term would allow perfect nowcasting of the 252 EUV band, and anywhere that the two have opposite sign indicates when the Mg II cor-253 rection harms the nowcast. This correction term does not provide improvements at all 254 times, however, on average the model-observation difference is reduced with this correc-255 256 tion.

Improved nowcasting is found to be consistent across all 37 bands as reported in 257 Table 1 and displayed in Figure 5. This shows the Pearson correlation coefficient between 258 both the original and corrected models and the observations of all bands over the entire 259 period studied. The Mg II correction yields improved correlations across all bands, with 260 particular improvement in Band 25 which has the worst correlation. The m_1/m_2 val-261 ues (see Table A1) also demonstrate why a Mg II correction term is suitable for these 262 models. The m_1/m_2 Mg II and all of EUV band m_1/m_2 values, except for Band 1, are 263 greater than 1, demonstrating that there is a larger dependence on plage regions for the 264 Mg II and the EUV bands. Henney2015 found that m_1/m_2 for $F_{10.7}$ is less than 1, in-265 dicating that it is more strongly dependent on active regions. This indicates that the Mg 266 II proxy, rather than the active-region dependent $F_{10.7}$, is more consistent with the be-267 havior of the solar EUV spectrum. 268

Additionally, Figure 6 exhibits the long-term variability of the EUV Band 7, 9, and 269 26 models before (grey) and after (green) applying the Mg II offset correction. This plot 270 shows that the error between the observations and model are typically smaller (i.e., the 271 distribution shifts closer to 0) and the range in variation decreases (i.e., the vertical range 272 of each box is smaller). Interestingly, the overall trend of the model-observation differ-273 ence over the solar cycle does not change, with the models tending to predict more ir-274 radiance than observed during the decline of the solar cycle (2003-2007) and less dur-275 ing the maximum (2002). Warren et al. (2021) identify a similar trend in their models 276 which they attribute to discrepancies in the weak magnetic fields $(B_r < 80 \text{ G})$ between 277 the full-Sun magnetic maps and the original observed magnetograms. We identify two 278 additional possible explanations for this effect. It could indicate that the conversion of 279

Figure 4. Plots of the difference between observed and modeled Bands 7, 9, and 26 EUV values, and the EUV difference models. The difference models were developed by comparing EUV to Mg II offset values.

Figure 5. Pearson correlation coefficients which compare the relationship between each observed EUV spectral band and the nowcast models with (green) and without (black) a Mg II correction. Since Band 25 did not perform as well compared to the other bands, its Pearson coefficients are included on a separate, sub-graph to enhance the results of the other bands. The horizontal dashed lines indicate the average Pearson correlation coefficient across all bands (except band 25).

magnetic energy into plasma heating in the solar atmosphere is slightly more efficient 280 during the rising phase and solar maximum (leading to more emission than predicted) 281 than the declining phase (with less emission than predicted). It could also be the result 282 of some other long-term variation in the ADAPT maps. For example, because of the de-283 lay between the rotation of magnetic flux onto the Earth-facing hemisphere and the in-284 corporation of this flux into ADAPT, the ADAPT maps in general under-represent the 285 magnetic flux on the Earth-facing hemisphere. This effect will be stronger during the 286 rising phase and maximum of the solar cycle when flux emergence is greatest and there-287 fore more flux appears on the farside and is not included in ADAPT until it rotates into 288 the data assimilation window. A more detailed study is needed to better understand the 289 source of this long-term residual trend (e.g., adding another solar cycle of data analy-290 sis and/or using different magnetograph inputs, e.g., SDO/HMI and NSO/GONG). 291

292

Figure 6. Box and whisker plots for EUV spectral Bands 7, 9, and 26, highlighting the distributions of the difference between the models and observations during the study period. The box indicates the extent of the 25% and 75% quartiles and the line through the box indicates the distribution median over one year of data. The whiskers (i.e., the vertical lines) indicate the minimum and maximum. The distributions including the Mg II correction do not strictly improve, however the improvements (e.g. 2004) are much more significant than the occasional times when the distributions worsen. Similar figures for all 37 bands are available at Kniezewski et al. (2023).

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\ $ Band (n)	Range (nm)	r(Mg II)	$\mathbf{r}(I^n_{model})$	$\mathbf{r}(I^n_{model} \text{ with offset})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0.05-0.4	0.845	0.865	0.866
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0.4 - 0.8	0.920	0.927	0.931
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0.8-1.8	0.965	0.969	0.973
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	1.8 - 3.2	0.975	0.976	0.981
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	3.2 - 7.0	0.976	0.977	0.982
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	7.0-15.5	0.976	0.977	0.982
822.4-29.00.9800.9790.985929.0-32.00.9820.9780.9851032.0-54.00.9750.9740.9801154.0-65.00.9480.9420.9511265.0-79.8 (low)0.9370.9330.94213650-79.8 (low)0.9770.9330.9421479.8-91.3 (low)0.9780.9740.9811579.8-91.3 (middle)0.9780.9740.9821679.8-91.3 (middle)0.9780.9740.9821791.3-97.5 (low)0.9800.9740.9821891.3-97.5 (middle)0.9810.9750.9831991.3-97.5 (high)0.9790.9710.9812097.5-98.70.9550.9570.9612198.7-102.70.9780.9750.98122102.7-105.00.9770.9720.97923105.0-110.00.9820.9870.98625115.0-120.00.7140.6710.73626121.6 (Lyman α)0.9810.9760.98729130.0-135.00.9850.9760.98731140.0-145.00.9740.9730.97832145.0-150.00.9630.9550.96533150.0-155.00.9610.9620.96634155.0-160.00.9620.96635160.0-165.00.9620.96636165.0-170.00.9410.930<	7	15.5 - 22.4	0.977	0.978	0.983
929.0-32.00.9820.9780.9851032.0-54.00.9750.9740.9801154.0-65.00.9480.9420.9511265.0-79.8 (low)0.9370.9330.9421365.0-79.8 (high)0.9450.9370.9381479.8-91.3 (low)0.9780.9740.9811579.8-91.3 (middle)0.9780.9740.9821679.8-91.3 (high)0.9780.9740.9821791.3-97.5 (low)0.9800.9740.9821891.3-97.5 (middle)0.9810.9750.9831991.3-97.5 (high)0.9790.9710.9812097.5-98.70.9550.9570.9612198.7-102.70.9780.9750.98122102.7-105.00.9770.9720.97923105.0-110.00.9820.9870.98625115.0-120.00.7140.6710.73626121.6 (Lyman α)0.9810.9760.98729130.0-135.00.9850.9760.98729130.0-135.00.9850.9790.98731140.0-145.00.9740.9730.97832145.0-150.00.9630.9550.96533150.0-155.00.9610.9620.96634155.0-160.00.9620.96634155.0-160.00.9620.96635160.0-165.00.9620.966<	8	22.4 - 29.0	0.980	0.979	0.985
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	29.0-32.0	0.982	0.978	0.985
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	32.0-54.0	0.975	0.974	0.980
1265.0-79.8 (low)0.9370.9330.9421365.0-79.8 (high)0.9450.9370.9481479.8-91.3 (low)0.9780.9740.9811579.8-91.3 (middle)0.9780.9740.9821679.8-91.3 (high)0.9780.9740.9821679.8-91.5 (low)0.9800.9740.9821791.3-97.5 (low)0.9800.9740.9821891.3-97.5 (middle)0.9810.9750.9831991.3-97.5 (high)0.9790.9710.9812097.5-98.70.9550.9570.9612198.7-102.70.9780.9720.97923105.0-110.00.9820.9820.98724110.0-115.00.9820.9810.98625115.0-120.00.7140.6710.73626121.6 (Lyman α)0.9810.9760.98728125.0-130.00.9850.9760.9872913.0-135.00.9850.9790.98730135.0-140.00.9830.9810.98731140.0-145.00.9740.9730.97832145.0-150.00.9620.9660.96634155.0-160.00.9620.9620.96635160.0-165.00.9620.9620.96636165.0-170.00.9410.9300.94237170.0-175.00.9180.9020.918	11	54.0-65.0	0.948	0.942	0.951
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	$65.0-79.8 \ (low)$	0.937	0.933	0.942
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	65.0-79.8 (high)	0.945	0.937	0.948
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	$79.8 - 91.3 \ (low)$	0.978	0.974	0.981
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	$79.8-91.3 \ (middle)$	0.978	0.974	0.982
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	79.8 - 91.3 (high)	0.978	0.974	0.981
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	91.3–97.5 (low)	0.980	0.974	0.982
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	91.3-97.5 (middle)	0.981	0.975	0.983
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	91.3 - 97.5 (high)	0.979	0.971	0.981
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	97.5 - 98.7	0.955	0.957	0.961
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	98.7 - 102.7	0.978	0.975	0.981
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	102.7 - 105.0	0.977	0.972	0.979
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	105.0 - 110.0	0.982	0.982	0.987
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	110.0 - 115.0	0.982	0.981	0.986
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	115.0 - 120.0	0.714	0.671	0.736
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	121.6 (Lyman α)	0.981	0.977	0.985
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	120.0 - 125.0	0.975	0.956	0.976
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	125.0 - 130.0	0.985	0.976	0.987
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	130.0 - 135.0	0.985	0.979	0.987
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	135.0 - 140.0	0.983	0.981	0.987
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	140.0 - 145.0	0.974	0.973	0.978
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	145.0 - 150.0	0.963	0.955	0.965
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33	150.0 - 155.0	0.961	0.962	0.966
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34	155.0 - 160.0	0.962	0.962	0.966
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	160.0 - 165.0	0.962	0.951	0.963
37 170.0-175.0 0.918 0.902 0.918	36	165.0 - 170.0	0.941	0.930	0.942
	37	170.0 - 175.0	0.918	0.902	0.918

Table 1. EUV irradiance bands and associated correlation coefficients. r(Mg II) is the correlation between the modeled band irradiance and the observed Mg II. $r(I^n_{model})$ is the correlation between the modeled band irradiance and the observed band irradiance, and $r(I^n_{model})$ with offset) includes the Mg II correction term (i.e. equation 5).

²⁹³ 5 Summary

This study builds on the work of the SIFT model, outlined in Henney2012 and Henney2015, that demonstrated the ability of ADAPT global photospheric magnetic maps to drive irradiance nowcasts and forecasts. The original SIFT EUV forecasts benefited greatly from daily calibration of the models to the observed irradiance which corrected short-term errors between the models and observations. However, for periods without real-time calibrated EUV spectral measurements, the original correction technique is not an option for real-time predictions.

In the study presented here, we develop an alternative implementation of daily cor-301 rections that does not rely on current EUV irradiance observations. Instead, the daily 302 model and observation is regularly measured for a proxy, in this case the Mg II index. 303 Then, that Mg II index nowcast offset is scaled and a corresponding correction is applied 304 to each EUV irradiance band independently. Applying this correction term to simple mul-305 tiple linear regression models yields improved nowcasts across the entire spectral range, 306 with the average Pearson correlation coefficient increasing from 0.962 to 0.969 as represented by the horizontal dashed lines in Figure 5. In this work we use the science-quality 308 Bremen Mg II dataset to demonstrate the viability of this technique, but this method 309 can be applied using existing operationally available data products such as the Geosta-310 tionary Operational Environmental Satellite (GOES) Extreme Ultraviolet and X-ray Sen-311 sors (EXIS) Extreme Ultraviolet Sensor (EUVS; Eparvier et al., 2009) Mg II dataset which 312 began in 2017. This technique can also easily be extended to forecasting EUV bands to 313 drive terrestrial atmospheric models. It can also be applied as a post-processing term 314 to more complex machine learning techniques where it would serve the same function 315 as a daily correction to the model output. This kind of solar proxy-modeling using deep 316 learning and neural networks has recently shown promising results (e.g., see Stevenson 317 et al., 2022; Daniell & Mehta, 2023). 318

We also identify a solar-cycle trend in the regression models that typically under-319 predict the irradiance during solar maximum and over-predict the irradiance during the 320 declining phase. This could indicate deficiencies in the ADAPT maps driving these ir-321 radiance nowcasts or an underlying nonlinear conversion of photospheric magnetic en-322 ergy and chromospheric and coronal heating (e.g., not captured with the simple linear 323 regression models applied here). Future work is needed to better understand the source 324 of the model and observation residuals over the solar cycle such as analyzing an addi-325 tional solar cycle and using different magnetograph inputs. 326

327 Acknowledgments

The ADAPT model development is supported by Air Force Research Laboratory (AFRL), 328 along with AFOSR (Air Force Office of Scientific Research) tasks 18RVCOR126 and 22RV-329 COR012. The EUV data used in this work was compiled by Rachel Hock (AFRL). This 330 work utilizes data produced collaboratively between AFRL and the National Solar Ob-331 servatory (NSO). The NSO data used for this work are produced cooperatively by Na-332 tional Science Foundation (NSF) and the NSO. The NSO is operated by the Associa-333 tion of Universities for Research in Astronomy (AURA), Inc., under cooperative agree-334 ment with the NSF. The views expressed are those of the authors and do not reflect the 335 official guidance or position of the United States Government, the Department of De-336 fense (DoD) or of the United States Air Force. 337

338 Open Research

339 Data Availability Statement

The Mg II composite index is provided by the University of Bremen at http:// www.iup.uni-bremen.de/gome/solar/MgII_composite.dat. The Mg II index data used in this study along with figures for all 37 EUV bands and the scripts used to create and visualize the SIFT models are available through Zenodo at Kniezewski et al. (2023). The solar magnetic sums based on ADAPT are available through Zenodo at Henney et al. (2023). The EUV irradiances in the 37 bands are provided through Zenodo at R. A. Hock et al. (2023). References

347

348	Arge, C. N., Henney, C. J., Hernandez, I. G., Toussaint, W. A., Koller, J., &
349	Godinez, H. C. (2013, June). Modeling the corona and solar wind using
350	ADAPT maps that include far-side observations. In G. P. Zank et al. (Eds.),
351	American institute of physics conference series (Vol. 1539, p. 11-14). doi:
352	10.1063/1.4810977
353	Arge, C. N., Henney, C. J., Koller, J., Compeau, C. R., Young, S., MacKenzie, D.,
354	Harvey, J. W. (2010, March). Air Force Data Assimilative Photospheric
355	Flux Transport (ADAPT) Model. In M. Maksimovic, K. Issautier, N. Meyer-
356	Vernet, M. Moncuquet, & F. Pantellini (Eds.), Twelfth international solar wind
357	conference (Vol. 1216, p. 343-346). doi: 10.1063/1.3395870
358	Barnes, G., DeRosa, M. L., Jones, S. I., Arge, C. N., Henney, C. J., & Cheung,
359	M. C. M. (2023, April). Implications of Different Solar Photospheric Flux-
360	transport Models for Global Coronal and Heliospheric Modeling. , $946(2)$, 105.
361	doi: 10.3847/1538-4357/acba8e
362	Chamberlin, P., Warren, H., Edward, T., Mason, J., Klimchuk, J. e., Jones, A., &
363	Kopp, G. (2023). The Next Decade of Solar Ultraviolet Spectral Irradiance —
364	Continuity, Modeling, and Physics. Bulletin of the AAS, 55, 051. Retrieved
365	from https://ui.adsabs.harvard.edu/abs/2023BAAS55c.051Chttps://
366	doi.org/10.3847/25c2cfeb.a05625a8 doi: 10.3847/25c2cfeb.a05625a8
367	Chamberlin, P. C., Eparvier, F. G., Knoer, V., Leise, H., Pankratz, A., Snow,
368	M., Woods, T. N. (2020). The Flare Irradiance Spectral Model-
369	Version 2 (FISM2). Space Weather, 18(12), e02588. Retrieved from
370	https://ui.adsabs.harvard.edu/abs/2020SpWea1802588C doi:
371	10.1029/2020SW002588
372	Covington, A. E. (1947). Micro-Wave Solar Noise Observations During the Partial
373	Eclipse of November 23, 1946. Nature, 159, 405–406. Retrieved from https://
374	ui.adsabs.harvard.edu/abs/1947Natur.159405C doi: 10.1038/159405a0
375	Daniell, J. D., & Mehta, P. M. (2023, September). Probabilistic Solar Proxy
376	Forecasting With Neural Network Ensembles. Space Weather, 21(9),
377	e2023SW003675. doi: 10.1029/2023SW003675
378	De Lafontaine, J., & Garg, S. C. (1982). A review of satellite lifetime and or-
379	bit decay prediction. Proceedings of the Indian Academy of Science, Earth and
380	Planetary Sciences, 5, 197-258. Retrieved from http://adsabs.harvard.edu/
381	abs/1982PIASE5197D
382	Doschek, G. A., & Feldman, U. (2010, December). TOPICAL REVIEW The solar
383	UV-x-ray spectrum from 1.5 to 2000 Å. Journal of Physics B Atomic Molecu-
384	lar Physics, 43(23), 232001. doi: 10.1088/0953-4075/43/23/232001
385	Dudok de Wit, T., Kretzschmar, M., Aboudarham, J., Amblard, P. O., Auchère,
386	F., & Lilensten, J. (2008, September). Which solar EUV indices are best for
387	reconstructing the solar EUV irradiance? Advances in Space Research, $42(5)$,
388	903-911. doi: 10.1016/j.asr.2007.04.019
389	Dudok de Wit, T., Kretzschmar, M., Lilensten, J., & Woods, T. (2009, May).
390	Finding the best proxies for the solar UV irradiance. , $36(10)$, L10107. doi:
391	10.1029/2009GL037825
392	Eparvier, F. G., Crotser, D., Jones, A. R., McClintock, W. E., Snow, M., &
393	Woods, T. N. (2009). The Extreme Ultraviolet Sensor (EUVS) for
394	GOES-R. In S. Fineschi & J. A. Fennelly (Eds.), Solar physics and
395	space weather instrumentation iii (Vol. 7438, p. 743804). Retrieved from
396	https://ui.adsabs.harvard.edu/abs/2009SPIE.7438E04Ehttps://
397	doi.org/10.1117/12.826445 doi: 10.1117/12.826445
398	Fuller-Rowell, T., Solomon, S., Roble, R., & Viereck, R. (2004. January). Impact
399	of Solar EUV, XUV, and X-Ray Variations on Earth's Atmosphere. In Solar
400	variability and its effects on climate. geophysical monograph 141 (Vol. 141.
401	p. 341). doi: 10.1029/141GM23
401	

402	Goncharenko, L. P., Tamburri, C. A., Tobiska, W. K., Schonfeld, S. J., Chamber-
403	lin, P. C., Woods, T. N., Zhang, S. (2021). A New Model for Iono-
404	spheric Total Electron Content: The Impact of Solar Flux Proxies and Indices.
405	Journal of Geophysical Research: Space Physics, 126(2), e28466. Retrieved
406	from https://ui.adsabs.harvard.edu/abs/2021JGRA12628466G doi:
407	10.1029/2020JA028466
408	Harvey, J. W., Branston, D., Henney, C. J., Keller, C. U., & SOLIS and GONG
409	Teams. (2007, April). Seething Horizontal Magnetic Fields in the Quiet Solar
410	Photosphere. 659(2). L177-L180. doi: 10.1086/518036
411	Heath D F & Schlesinger B M (1986 July) The Mg 280-nm doublet as a
411	monitor of changes in solar ultraviolet irradiance $01(D8)$ 8672-8682 doi:
412	101020/ID001;D08m08672
413	Happen C. I. Hadr. D. A. Schoolen A. K. Toursoint, W. A. White S. M. fr
414	Argo C. N. (2015, Morch) Foregoeting color extreme and for ultraviolet
415	impedience Create Westher 12(2) 141 152 doi: 10.1002/2014SW001118
416	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
417	Henney, C. J., Keller, C. U., Harvey, J. W., Georgoulis, M. K., Hadder, N. L., Nor-
418	ton, A. A., Toussaint, R. M. (2009, June). SOLIS Vector Spectromag-
419	netograph: Status and Science. In S. V. Berdyugina, K. N. Nagendra, &
420	R. Ramelli (Eds.), Solar polarization 5: In honor of jan stenfto (Vol. 405,
421	p. 47). doi: 10.48550/arXiv.0801.0013
422	Henney, C. J., Kniezewski, K. L., & Schonfeld, S. J. (2023). ADAPT/SIFT Solar
423	Magnetic Sums (June 1992 to May 2017) [Dataset]. Retrieved from https://
424	doi.org/10.5281/zenodo.10070554 doi: 10.5281/zenodo.10070554
425	Henney, C. J., Toussaint, W. A., White, S. M., & Arge, C. N. (2012, February).
426	Forecasting $F_{10.7}$ with solar magnetic flux transport modeling. Space Weather,
427	10, S02011. doi: 10.1029/2011SW000748
428	Hickmann, K. S., Godinez, H. C., Henney, C. J., & Arge, C. N. (2015, April). Data
429	Assimilation in the ADAPT Photospheric Flux Transport Model. , $290(4)$,
430	1105-1118. doi: 10.1007/s11207-015-0666-3
431	Hock, R. a., Chamberlin, P. C., Woods, T. N., Crotser, D., Eparvier, F. G.,
432	Woodraska, D. L., & Woods, E. C. (2012). Extreme Ultraviolet Vari-
433	ability Experiment (EVE) Multiple EUV Grating Spectrographs (MEGS):
434	Radiometric Calibrations and Results. Solar Physics, 275, 145–178. doi:
435	10.1007/s11207-010-9520-9
436	Hock, R. A., Kniezewski, K. L., Schonfeld, S. J., & Henney, C. J. (2023). Binned
437	TIMED/SEE VUV irradiance data (January 2002 to June 2013) [Dataset].
438	Retrieved from https://doi.org/10.5281/zenodo.10119832 doi:
430	10 5281/zenodo 10119832
440	Jones H P. Duvall I. Thomas L. Harvey, I.W. Mahaffey, C. T. Schwitters
440	I D & Simmons I E (1992 June) The NASA/NSO Spectromagnetograph
441	130(2) 211-232 doi: 10.1007/BE00150140
442	Kazachanko M D & Hudson H S (2020) Active Region Irradiance during Qui
443	accont Derioda: New Insights from Sup as a star Speatra The Astrophysical
444	Lower al 001(1) 64 Detrieved from https://wi.adasha howerd.edu/aba/
445	Journal, 901(1), 04. Retrieved from https://ul.adsabs.flatvard.edu/abs/
446	2020 ApJ 90104 Kittp://dx.do1.org/10.384//1538-435//abada6 doi: 10.2847/1528.4257/abada6 doi:
447	10.3047/1000-4007/abadad
448	Klobuchar, J. A. (1985). Ionospheric Time Delay Effects on Earth-Space Propoga-
449	tion. In A. S. Jursa (Ed.), Handbook of geophysics and the space environment
450	(pp. 10.84–10.88). Springfield: Air Force Geophysics Laboratory.
451	Kniezewski, K. L., Schonfeld, S. J., & Henney, C. J. (2023). Nowcasting Solar EUV
452	with Magnetic Fields and MgII [Dataset]. Retrieved from https://doi.org/10
453	.5281/zenodo.10035713 doi: 10.5281/zenodo.10035713
454	Lilensten, J., Dudok de Wit, T., Kretzschmar, M., Amblard, P., Moussaoui, S.,
455	Aboudarham, J., & Auchere, F. (2008). Review on the solar spectral vari-
456	ability in the EUV for space weather purposes. Annales Geophysicae, 26,

457	269-279.
458	McNamara, L. F. (1985). High Frequency Radio Propagation. In A. S. Jursa (Ed.),
459	Handbook of geophysics and the space environment (pp. 10.45–10.62). Spring-
460	field: Air Force Geophysics Laboratory.
461	Pesnell, W. D. (2016, July). Watching the Sun from space. Asian Journal of
462	Physics, 25(3), 233-265.
463	Petrie, G., Criscuoli, S., & Bertello, L. (2021). Solar Magnetism and Radia-
464	tion. In N. E. Raouafi, A. Vourlidas, Y. Zhang, & L. J. Paxton (Eds.),
465	Solar physics and solar wind (Vol. 1, pp. 83–132). American Geophysical
466	Union (AGU). Retrieved from https://ui.adsabs.harvard.edu/abs/
467	2021GMS25883Phttps://agupubs.onlinelibrary.wiley.com/doi/
468	abs/10.1002/9781119815600.ch3 doi: $10.1002/9781119815600.ch3$
469	Richards, P. G., Fennelly, J. A., & Torr, D. G. (1994, May). EUVAC: A so-
470	lar EUV flux model for aeronomic calculations. , $99(A5)$, 8981-8992. doi:
471	10.1029/94JA00518
472	Skupin, J., Weber, M., Noël, S., Bovensmann, H., & Burrows, J. P. (2005, January).
473	GOME and SCIAMACHY solar measurements: Solar spectral irradiance and
474	Mg II solar activity proxy indicator . , 76 , 1038.
475	Snow, M., Weber, M., Machol, J., Viereck, R., & Richard, E. (2014, January).
476	Comparison of Magnesium II core-to-wing ratio observations during solar
477	minimum 23/24. Journal of Space Weather and Space Climate, 4, A04. doi:
478	10.1051/swsc/2014001
479	Solomon, S. C., & Qian, L. (2005, October). Solar extreme-ultraviolet irradiance for
480	general circulation models. Journal of Geophysical Research (Space Physics),
481	110(A10), A10306. doi: 10.1029/2005JA011160
482	Stevenson, E., Rodriguez-Fernandez, V., Minisci, E., & Camacho, D. (2022, April).
483	A deep learning approach to solar radio flux forecasting. Acta Astronautica,
484	<i>193</i> , 595-606. doi: 10.1016/j.actaastro.2021.08.004
485	Tapping, K. F. (2013). The 10.7 cm solar radio flux (F10.7). Space Weather,
486	11(July), 394-406. Retrieved from https://ui.adsabs.harvard.edu/abs/
487	2013SpWea11394Thttps://agupubs.onlinelibrary.wiley.com/doi/
488	full/10.1002/swe.20064 doi: 10.1002/swe.20064
489	Tiwari, S. K., Thalmann, J. K., Panesar, N. K., Moore, R. L., & Winebarger,
490	A. R. (2017). New Evidence that Magnetoconvection Drives Solar-Stellar Concerned Heating The Astrophysical Journal $8/2(2)$ 1.20 Detriving from
491	bttps://wi.adapha.harvard.adu/aba/20174n
492	d_{x} doi $arg/10.2847/2041-8212/ap704a$ doi: 10.2847/2041.8212/ap704a
493	Torr M R Torr D C Ong R A $[r \text{ Hinteragger H F} (1070 \text{ October})]$ Ion
494	ization frequencies for major thermospheric constituents as a function of solar
495	cvcle 21 = 6(10) - 771-774 doi: 10.1029/GL006i010p00771
490	Viereck B. Puge L. McMullin D. Judge D. Weber M. & Tobicke W. K. (2001
491	April) The Mg II index: A prove for solar EIV $98(7)$ 1343-1346 doi: 10
490	1029/2000GL012551
500	Warren H P Floyd L E & Upton L A (2021) A Multicomponent Magnetic
501	Proxy for Solar Activity. Space Weather, 19(12), e02860. Retrieved from
502	https://ui.adsabs.harvard.edu/abs/2021SpWea1902860W doi: 10.1029/
503	2021SW002860
504	Woods, T. N., Bailey, S. M., Eparvier, F. G., Lawrence, G. M., Lean, J., McClin-
505	tock, W. E., White, O. R. (1998, November). TIMED solar EUV exper-
506	iment. In C. M. Korendyke (Ed.), Missions to the sun ii (Vol. 3442, p. 180-
507	191). doi: 10.1117/12.330255
508	Woods, T. N., Eparvier, F. G., Bailey, S. M., Chamberlin, P. C., Lean, J., Rottman,
509	G. J., Woodraska, D. L. (2005, January). Solar EUV Experiment (SEE):
510	Mission overview and first results. Journal of Geophysical Research (Space
511	<i>Physics</i>), $110(A1)$, A01312. doi: $10.1029/2004$ JA010765

Worden, J., & Harvey, J. (2000). An evolving synoptic magnetic flux map and implications for the distribution of photospheric magnetic flux., 195(2), 247–268.
 Retrieved from https://ui.adsabs.harvard.edu/abs/2000SoPh..195..247W
 doi: 10.1023/A:1005272502885

516 Appendix A

⁵¹⁷ Coefficients for the SIFT linear regression models defined in equation 5 are given ⁵¹⁸ in Table A1.

Band (n)	m_0	m_1	m_2	m_3	m_1/m_2
Mg II	1.494×10^{-1}	2.044×10^{-3}	$5.321 imes 10^{-4}$	N/A	3.841
1	-6.375×10^{-9}	1.492×10^{-8}	2.068×10^{-8}	3.620×10^{-6}	0.721
2	-1.811×10^{-7}	$6.190 imes 10^{-7}$	5.728×10^{-7}	2.065×10^{-4}	1.081
3	-1.393×10^{-6}	2.193×10^{-5}	1.352×10^{-5}	6.112×10^{-3}	1.622
4	1.449×10^{-5}	1.095×10^{-5}	5.350×10^{-6}	2.969×10^{-3}	2.047
5	$5.734 imes 10^{-5}$	1.891×10^{-5}	9.077×10^{-6}	5.115×10^{-3}	2.083
6	1.054×10^{-4}	4.429×10^{-5}	2.129×10^{-5}	1.212×10^{-2}	2.080
7	3.860×10^{-4}	1.370×10^{-4}	6.407×10^{-5}	3.374×10^{-2}	2.138
8	$9.538 imes10^{-5}$	$3.947 imes 10^{-5}$	3.314×10^{-6}	$9.787 imes 10^{-3}$	11.910
9	$3.916 imes10^{-4}$	$5.032 imes 10^{-5}$	8.284×10^{-6}	1.453×10^{-2}	6.074
10	2.461×10^{-4}	$6.129 imes 10^{-5}$	$1.234 imes 10^{-5}$	1.535×10^{-2}	4.968
11	1.462×10^{-4}	7.596×10^{-6}	4.128×10^{-6}	2.991×10^{-3}	1.840
12	5.954×10^{-5}	1.824×10^{-6}	1.226×10^{-6}	7.773×10^{-4}	1.488
13	3.210×10^{-5}	1.139×10^{-6}	7.029×10^{-7}	5.338×10^{-4}	1.620
14	4.117×10^{-5}	4.389×10^{-6}	7.483×10^{-7}	1.281×10^{-3}	5.866
15	1.148×10^{-4}	1.461×10^{-5}	2.240×10^{-6}	4.173×10^{-3}	6.525
16	5.311×10^{-5}	5.979×10^{-6}	1.019×10^{-6}	1.727×10^{-3}	5.868
17	1.776×10^{-5}	1.731×10^{-6}	3.693×10^{-7}	$5.382 imes 10^{-4}$	4.687
18	4.001×10^{-5}	3.727×10^{-6}	9.899×10^{-7}	1.182×10^{-3}	3.765
19	$1.720 imes 10^{-5}$	2.195×10^{-6}	3.766×10^{-7}	7.399×10^{-4}	5.831
20	5.417×10^{-5}	$1.105 imes 10^{-5}$	1.422×10^{-6}	2.401×10^{-3}	7.769
21	8.049×10^{-5}	1.196×10^{-5}	2.418×10^{-6}	3.241×10^{-3}	4.945
22	8.414×10^{-5}	1.081×10^{-5}	2.200×10^{-6}	3.208×10^{-3}	4.913
23	7.619×10^{-5}	6.424×10^{-6}	1.795×10^{-6}	1.560×10^{-3}	3.579
24	6.830×10^{-5}	5.224×10^{-6}	1.423×10^{-6}	1.358×10^{-3}	3.671
25	1.626×10^{-4}	2.925×10^{-6}	2.125×10^{-6}	4.095×10^{-3}	1.377
26	5.444×10^{-3}	6.080×10^{-4}	3.115×10^{-5}	1.760×10^{-1}	19.519
27	$8.198 imes 10^{-4}$	6.062×10^{-5}	8.048×10^{-6}	2.913×10^{-2}	7.533
28	1.978×10^{-5}	1.289×10^{-6}	2.281×10^{-7}	4.654×10^{-4}	5.652
29	3.588×10^{-4}	1.945×10^{-5}	5.450×10^{-6}	6.208×10^{-3}	3.569
30	1.812×10^{-4}	8.200×10^{-6}	2.413×10^{-6}	2.307×10^{-3}	3.398
31	2.249×10^{-4}	7.655×10^{-6}	2.082×10^{-6}	1.977×10^{-3}	3.677
32	3.242×10^{-4}	7.213×10^{-6}	2.338×10^{-6}	2.665×10^{-3}	3.085
33	5.609×10^{-4}	1.502×10^{-5}	5.474×10^{-6}	3.504×10^{-3}	2.744
34	7.857×10^{-3}	1.711×10^{-5}	4.471×10^{-6}	4.153×10^{-3}	3.828
35	1.114×10^{-3}	1.854×10^{-5}	5.369×10^{-6}	7.270×10^{-3}	3.454
36	2.053×10^{-3}	2.889×10^{-5}	7.706×10^{-6}	1.113×10^{-2}	3.749
37	3.391×10^{-3}	4.590×10^{-5}	7.587×10^{-6}	2.041×10^{-2}	6.050

 Table A1.
 EUV model coefficients, including the difference model coefficients using Mg II.