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a larger geographical area compared to traditional methods relying solely on in-situ river discharge measurements for GRMs.

A set of evaluation and comparison metrics has been developed, including a quantile-based comparison metric that allows for a

comprehensive analysis of multiple simulation outputs. The test application of this benchmark system to a global river model

(CaMa-Flood), utilizing diverse runoff inputs, illustrates that the incorporation of bias-corrected runoff data leads to improved

model performance across various observational variables and performance metrics. The current iteration of the benchmark
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intercomparisons among different models. The source codes are accessiable from https://doi.org/10.5281/zenodo.10903211.
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Key Points: 11 

 We developed a benchmark framework for global river models, ensuring quick and 12 

comprehensive performance analysis.  13 

 Remote sensing data for water surface elevation and inundation extent helps address the 14 

lack of extensive in-situ discharge observations. 15 

 The benchmark model is highly adaptable, allowing for evaluation of model development 16 

and intercomparison across multiple models.   17 
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Abstract 18 

Global River Models (GRMs), which simulate river flow and flood processes, have rapidly 19 

developed in recent decades. However, these advancements necessitate meaningful and 20 

standardized quality assessments and comparisons against a suitable set of observational 21 

variables using appropriate metrics, a requirement currently lacking within GRM communities. 22 

This study proposes the implementation of a benchmark system designed to facilitate the 23 

assessment of river models and enables comparisons against established benchmarks. The 24 

benchmark system incorporates satellite remote sensing data complementing in-situ data, 25 

including water surface elevation and inundation extent information, with necessary 26 

preprocessing. Consequently, this evaluation system encompasses a larger geographical area 27 

compared to traditional methods relying solely on in-situ river discharge measurements for 28 

GRMs. A set of evaluation and comparison metrics has been developed, including a quantile-29 

based comparison metric that allows for a comprehensive analysis of multiple simulation 30 

outputs. The test application of this benchmark system to a global river model (CaMa-Flood), 31 

utilizing diverse runoff inputs, illustrates that the incorporation of bias-corrected runoff data 32 

leads to improved model performance across various observational variables and performance 33 

metrics. The current iteration of the benchmark system is suitable for global-scale assessments 34 

and can effectively evaluate the impact of model development as well as facilitate 35 

intercomparisons among different models. The source codes are accessiable from 36 

https://doi.org/10.5281/zenodo.10903211.  37 

Plain Language Summary 38 

River models, which help us understand how rivers flow and flood, have gotten a lot better over 39 

the years. But, there isn't an agreed-upon way to check if these models are doing a good job by 40 

comparing them to real-world data. This study suggests creating a system to test and compare 41 

river models more effectively. This new system uses both satellite images and ground 42 

measurements to get a full picture of model abilities in simulating different flow characteristics. 43 

This study tried this system on a specific global river model, called CaMa-Flood, with different 44 

types of data to see how well it works. Results found that using corrected data makes the model 45 

predictions better match what we see in the real world across various tests and measurements. 46 

This testing system is ready to be used worldwide and can help see how changes to the models 47 

improve their predictions. It also makes it easier to compare different models to see which ones 48 

work best. 49 

 50 

1 Introduction 51 

The global river model (GRM) is one crucial approach for reproducing river water dynamics on 52 

a large scale (Lehner & Grill, 2013). No matter whether the river models stand along or are 53 

integrated with runoff generation models, the simulated flow process can be used for applications 54 

including water resources assessment, flood forecasting, environmental and socio-economic 55 

development (Hanasaki et al., 2008; Tharme, 2003; Winsemius et al., 2013). The evaluation of 56 

the river models is also a typical way to help calibrate and validate land surface processes, of 57 

which accurate observations are often infeasible (Hou et al., 2023; Zaitchik et al., 2010). 58 

Ensuring the performance of GRMs is therefore essential for the reliability of the revealed 59 
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physics relevant to climate forcing, rainfall-runoff models, and routing models (Chen et al., 60 

2021; Hou et al., 2023; Zhao et al., 2017).  61 

However, it is important to acknowledge that GRM simulations remain imperfect, exhibiting 62 

persisting biases linked to factors such as model parameterization and structural aspects 63 

(Bernhofen et al., 2018a; Hirpa et al., 2021; Zhou, Ma, et al., 2021). Biases in model forcing 64 

inputs also lead to consequent biases in river models (Hou et al., 2023). Despite the progress 65 

made to model improvement, the evaluation of GRM implementations against reliable 66 

observations remains an essential step (Hoch & Trigg, 2019). Although important, standardized 67 

guidelines or instructions for conducting this process, especially for GRMs is still needed. This 68 

lack of standardized procedures, including study area, evaluation periods, and evaluation metrics, 69 

makes comparing and contrasting findings across different studies challenging (Bernhofen et al., 70 

2018b; Trigg et al., 2016). 71 

Moreover, a notable gap exists in the evaluation of river models as the current implementation of 72 

river model evaluation relies heavily on river discharge observations. Other crucial 73 

measurements, such as water surface elevation (WSE) and inundation area (WSA), albeit 74 

received increasing attention on its own dynamics, no standardized method has been developed 75 

for evaluation GRMs using satellite WSE and WSA on a large scale (Eilander et al., 2018; Wu et 76 

al., 2019; Yamazaki et al., 2012). This lack of comparison is attributed to two primary factors: 77 

inadequate establishment and assessment of observations for these variables, and the limited 78 

modeling capability to accurately simulate WSE and WSA. These variables play pivotal roles in 79 

routing processes and flood dynamics, exerting substantial influence on hazard and risk analyses 80 

(Mason et al., 2007; Tellman et al., 2021). Furthermore, the distinct physical characteristics of 81 

WSE and WSA warrant separate evaluation approaches, offering additional insights into the 82 

capabilities of GRMs (Musa et al., 2015; Zhou, Prigent, et al., 2021). 83 

In the field of Earth System Models, model benchmark serves as a protocol for establishing 84 

standardized evaluations and comparisons using a reference, which could be a baseline or a 85 

previous version before model development. An example of such a benchmark system is the 86 

International Land Model Benchmarking (ILAMB) framework (Collier et al., 2018), which 87 

offers a thorough and multifaceted assessment of land model projections. This system provides 88 

readily accessible data, codes, and resources for standard model performance evaluation and 89 

model-data intercomparison. Similarly, the Earth System Model Evaluation Tool (ESMValTool) 90 

(Eyring et al., 2016; Lauer et al., 2020) offers web services, coding packages, and community 91 

engagement for Earth System Model evaluations. The Protocol for the Analysis of Land Surface 92 

Models (PALS) Land Surface Model Benchmarking Evaluation Project (PLUMBER) is another 93 

project-oriented approach with more flexibility, albeit with a less structured organization (Best et 94 

al., 2015).  95 

However, these existing benchmark systems are designed for land surface models and Earth 96 

System Models, predominantly relying on gridded reference data but overlook horizontal 97 

hydrological processes which have additional issues related to data scarcity and representativity 98 

as follows:  99 

Data scarcity. River discharge is the most convincing data for model calibration and validation, 100 

while its accessibility still hampers the utilizations in various scales (Burek & Smilovic, 2023). 101 
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Current frequently-used data from Global Runoff Database Center (GRDC), Global Streamflow 102 

Indices and Metadata Archive (GSIM (Do et al., 2018; Gudmundsson et al., 2018)) and some 103 

national databases, still lack easy access to their daily raw records. Data coverage is especially 104 

limited in regions of Asia and Africa, where water resource scarcity and flood hazards are more 105 

pronounced (Kettner et al., 2021). The lack of recent data records after 1990s seriously 106 

undermines the reliability of model evaluations for the new environment with climate change 107 

and dense human activities (Elmi et al., 2024). Satellite remote sensing data has become 108 

increasingly popular for deriving water dynamic variables in recent years (Musa et al., 2015). 109 

While it offers improved spatial coverage, its accuracy may not yet be satisfactory for direct use 110 

as reference data (Zhou, Prigent, et al., 2021). The incorporation of remote sensing variables like 111 

WSA and WSE in model calibration and validation are gradually seen at much smaller scales 112 

(Jiang et al., 2019; Wood et al., 2016). However, their application on a global scale necessitates 113 

careful consideration about variabilities in climate and geography conditions.  114 

Data representativity. Unlike land surface variables which are often confined to specific grid 115 

points without negligible horizontal movement or exchanges, hydrological processes exhibit a 116 

higher degree of complexity (Dingman, 2015). For instance, measurements of river discharge at 117 

a given location reflect not only the immediate physical processes but also the cumulative effects 118 

of water generation and flow from the entire upstream catchment area. Variables such as WSA 119 

and WSE are also influenced not solely by upstream flow but also by local topographical 120 

features, including channel slopes and floodplain terrain (Zhou, Prigent, et al., 2021). River-121 

status variables can change drastically along river longitudinal direction. Moreover, errors in 122 

location in the river network (i.e., mainstem or tributary) will cause more critical errors in 123 

evaluated variables compared to longitudinal location difference. The point location of Q and 124 

WSE thus requires careful allocation to represent the correct measurement (Krabbenhoft et al., 125 

2022; Revel et al., 2023). The placement errors, complexities of river channels (e.g., river 126 

confluence, bifurcation) and aligning the measurement point and calculation nodes arise 127 

challenging in the allocation process.  128 

Evaluation metrics. Addressing the data scarcity challenge outlined earlier, a recommendation 129 

is to incorporate new variables, such as WSA and WSE, to better reflect the underlying flow 130 

regimes and spatial coverage. However, a twofold complexity emerges (Modi et al., 2022). 131 

Firstly, the evaluation of different variables (i.e., discharge, WSE and WSA) should inherently 132 

differ in magnitudes. Secondly, distinct model performance metrics capture varying flow 133 

processes. For instance, mean bias reveals systematic deviations, correlation encapsulates 134 

process representation, and Nash-Sutcliffe Efficiency (NSE) emphasizes high values. With each 135 

metric having its own unique range and magnitude (for instance, correlation values often surpass 136 

NSE values), the integration of these disparate metrics into a coherent framework for 137 

comprehensive model performance assessment becomes an intricate challenge. 138 

This study proposes to construct the first benchmark system for GRMs. The primary step is the 139 

preparation and careful preprocessing of diverse observed data for evaluation, including river 140 

discharge, water level, and water area. Furthermore, this study has devised an array of metrics, 141 

specially tailored to assess model performance, along with a refined methodology for discerning 142 

performance discrepancies between two model experiments. As a test case for applying the 143 

developed benchmark system, the study quantifies the extent and nature of enhancements due to 144 

model development of runoff inputs. This comprehensive framework enables an exploration of 145 
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how these improvements impact model performance across various dimensions. Importantly, the 146 

benchmark system possesses the potential for future applications in the evaluation of other global 147 

flood models. The structure of this study is organized as follows: Section 2 introduces the 148 

general methods and data; Section 3 introduces the sample implementation used in this study; 149 

Section 4 presents the results for the sample case; Sections 5 and 6 are the discussions and 150 

conclusions.   151 

2 Methodology and Data 152 

Here is the overall structure of the benchmark system, including data preparation (including 153 

simulation data and observational data), analysis (including designing of evaluation metrics and 154 

comparison metric), and visualization based on evaluations (see Fig. 1). Note that the models and 155 

datasets (e.g., CaMa-Flood, GRDC, HydroWeb, GIEMS shown in Fig. 1) are used as examples, 156 

but the framework is extendable for other models and/or observation data. Users can replace or 157 

extend these sample data as needed, and users can still use the benchmark system even if part of 158 

the variables or functions are not used. Details will be separately introduced in the following 159 

subsections.  160 

 161 

Figure 1. Structures of the benchmark system.  162 

1.1 Data preparation  163 

2.1.1 Model simulations  164 

The benchmark system is designed to assess the general performance of global river models. 165 

Depending on the model capability of simulations, three key variables: river discharge (Q), water 166 

surface elevation (WSE), and water surface area (WSA), can be provided and evaluated. These 167 

variables are essential for a comprehensive evaluation, while the nature of the investigated 168 
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variables allows for independent evaluation. The standard input format mandates a three-169 

dimensional model output structure (time, latitude, longitude). The system also accommodates 170 

post-processed input data, with data format consisting of time series linked to unique identifiers 171 

(IDs) of river gauges or virtual stations, following the format of two-dimensions (time, gauges). 172 

2.1.2 Observations  173 

The default observations to be used in this system include Q, WSE and WSA. The discharge data 174 

are expected to be time series, although missing data are allowed within an acceptable ratio. As 175 

point data, the coordinates of the gauge are mandatory. Other attribute such as upstream area is 176 

recommended, while if it is missing, users can extract this information from other topography 177 

data such as MERIT Hydro or HydroSHEDS. WSE and WSA on the large scale are extracted 178 

from remote sensing missions. In addition to the coordinates of the WSE virtual station, the 179 

datum (the reference elevation system) of it is needed, which is provided with the satellite 180 

attributes. The grid information of the surface area is also needed for reasonable comparisons. 181 

Thresholds can be set up to fill out gauge/grids without data long enough. The following 182 

paragraphs showcase the data we prepared for the initial version of the benchmark system 183 

(V1.0). Users can also update or replace the prepared observations for their convenience. 184 

Moreover, users can update the system for other observed variables such as river widths for an 185 

extendable usage.  186 

a) River discharge (Q) 187 

The daily discharge records were collected from Global Runoff and Data Center 188 

(GRDC, http://www.bafg.de/GRDC/, last access: Dec 2, 2023), since GRDC is currently the 189 

most used dataset of river discharge. All records are accessible and downloadable from the 190 

website https://portal.grdc.bafg.de/. However, a statement of research purpose and consulting 191 

with the GRDC team are needed if a large amount of data is requested. All gauges were included 192 

in the benchmark system, while gauges can be automatically excluded with user-defined 193 

thresholds in a portion of missing data or upstream area according to implementation purpose. In 194 

this study, gauges with time series of fewer than two years of records in the sample investigation 195 

period (2001-2012) and with an upstream area of less than 10000 km
2
 were excluded from the 196 

analysis. In total, 1009 gauges remained for evaluation.  197 

b) Water altimetry (WSE)  198 

Satellite altimetry data were obtained from HydroWeb (http://hydroweb.theia-land.fr/, last 199 

access: Dec 2, 2023) because it integrates the largest number of satellite missions and provides 200 

processed data to users. The altimetry data are recorded at virtual stations (VSs) where satellite 201 

ground tracks cross the river network. The temporal interval and time coverage of the altimetry 202 

are different at each VS depending on the different altimetry data sources (e.g., ENVISAT from 203 

2002-2012, Jason-1 from 2001-2013 and Jason-2 from 2008). The data length threshold is also 204 

applied to the VSs to exclude those gauges with very few available records (less than 60 in this 205 

study). In total, 1392 VSs worldwide were used during the period of interest.  206 

c) Water surface area (WSA) 207 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

We prepared GIEMS-2 as observations for WSA, which is a multi-source product based on 208 

microwaves (Prigent et al., 2020). It is the accumulative water surface area at a 25km sampling 209 

density  with a monthly interval from 1992 to 2015 and we converted it to 0.25deg resolution for 210 

easier comparison. Although there are products of the finer spatio-temporal resolution, e.g., 211 

Landsat and MODIS, we decided not to use them in the developed version (V1.0) because a first 212 

glace on the model capability on modeling surface area is needed before investigating 213 

complicated information at local scales. However, we need to bear in mind that previous studies 214 

confirmed GIEMS often overestimates the water area in tropical areas or rainforests because of 215 

the backscattered effect on saturated soil moisture (Aires et al., 2017; Zhou, Prigent, et al., 2021). 216 

2.1.3 Gauge allocation 217 

a) Allocation of river discharge gauges 218 

River models are often discrete to cascaded routing units to reduce the calculation computation. 219 

Therefore, to accurately evaluate the model simulations with observed measurements, it is 220 

crucial to exercise caution of allocation, adapting observations meticulously to the specific 221 

characteristics of the calculation node. The measurement of Q and WSE is at a point location, 222 

which can match well with a particular simulation node in a high-resolution model (e.g., 223 

LISFLOOD-FP). While for coarse resolution with more than a few kilometers (which is normal 224 

of large-scale simulations), the measurement becomes more difficult to match with the 225 

simulations. This will cause a large misrepresentation of Q, especially around river confluence 226 

points and systematic bias in the WSE. Therefore, allocation of the river discharge gauge is 227 

generally to ensure tributaries are accurately represented by simulations and observations. 228 

Besides, the allocation of the WSE is to capture the offset of elevation in the VS and simulation 229 

node.  230 

With a basic strategy of the allocation, users can search the nearby calculation nodes within a 231 

certain distance (e.g., 3 by 3 grids) from the investigated gauge and find the one with the 232 

minimal error in upstream area compared to the recorded value of the observational gauge. We 233 

also allow advanced allocation method which is designed for specific settings (i.e., MERIT-234 

Hydro river network for CaMa-Flood). The advanced allocation considers in a better way the 235 

relationship between gauge and river maps in high- and low-resolution. Details of the optional 236 

advanced allocation can be found in section 3.3.1. 237 

b) Allocation of virtual stations (VSs) 238 

The allocation of the VSs is to find the simulation Grid ID (ix,iy)  corresponding to the VSs. 239 

While allocating VSs is more complicated compared to the allocation of river discharge gauges, 240 

the water surface elevation is much more varied within a short distance. Also, normally models 241 

report WSE for a representative location for river reach (model grid) whereas the WSE slope is 242 

continuous. It thus requires an additional offset of the elevation value to match the model 243 

simulation nodes. Moreover, discharge gauge is usually located in river channel where 244 

observation is relatively easy (e.g., narrow river segments) after careful in-situ investigation. 245 

While the satellite VSs are available anywhere along the ground track and they do not have the 246 

information of upstream area. Thus, allocation of gauges in some section (e.g. braided channels) 247 

needs attention. Simple allocation is still possible based on coordinates information, to find the 248 
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simulation Grid ID with the shortest distance. Offset is then calculated as the difference in 249 

elevation of the VS and the outlet corresponding to grid. While offset is not always necessary if 250 

hydrological model cannot simulate absolute water level dynamics. In case of that the benchmark 251 

system still works when offset is undefined (i.e., only relative water level dynamics is 252 

compared). Moreover, advanced option which considers the sub-grid river networks (e.g., bias-253 

correction over river channels, the bifurcation rivers) is implemented in this benchmark system 254 

for the MERIT-Hydro river network (see section 3.3.2 for details).  255 

c) Comparison of surface area  256 

Comparing WSA is relatively simple as long as we assume the sum of water surface in 257 

calculation is corresponding to the range of observation. In case the spatial resolution of the 258 

simulation and observation is different, we first unify them before comparison. If needed, 259 

advanced option is possible that the simulation is first downscaled to a super-high spatial 260 

resolution (which is not restricted to the shape of the simulation catchment) and then upscaled to 261 

the same unit of observations grid for a precise comparison (see section 3.3.3 for details).  262 

2.2 Analysis  263 

2.2.1 Model efficiency metrics 264 

Model performance is assessed with various efficiency metrics. All efficiency metrics are 265 

calculated in the framework for all variables, including Q, WSE and WSA. However, specific 266 

metrics are more important to particular variables because they reflect different features. For 267 

instance, evaluation on the high peaks is more important for flood management, while evaluation 268 

on the low peaks is more important for drought assessment. The purpose of V1.0 is to make up a 269 

generally applicable framework so we included as many metrics as possible. Further studies are 270 

needed on which metrics should be focused on for further improve the model.  271 

These metrics are categorized into two groups (Table 1): the first category is the state evaluation 272 

(e.g., the bias of the mean value, maximum value, minimum value, amplitude, standard 273 

deviation, RMSE), with the optimal value as 0; the second category evaluates the overall 274 

accuracy of variables (e.g., correlation, Kling-Gupta efficiency, Nash-Sutcliffe efficiency), with 275 

the optimal value as 1. In addition, we also assessed model performance by subtracting mean 276 

values independently from the simulated and observed series (i.e., r_RM, NS_RM and kge_RM) 277 

to exclude the error due to systematic bias, which is especially useful for WSE because WSE is 278 

defined for different datums.  279 

  280 
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Table 1. Efficiency metrics used in this study.  281 

 Abbreviation  Assessment  Equation 

Category 

1 

pbias (max) extreme 

𝑝𝑏𝑖𝑎𝑠 =  
∑(𝑦𝑖 − 𝑥𝑖)

∑ 𝑥𝑖
 

pbias (min) 

 
extreme 

pbias (mean) mean 

pbias(ampli) amplitude 

pbias(std) variation 

RMSE_nor 
Deviations 

(normalized) 𝑅𝑀𝑆𝐸_𝑛𝑜𝑟 =  √∑
(𝑦𝑖 − 𝑥𝑖)2

𝑛
�̅�⁄  

Category 

2 

r 

Pearson's 

correlation 

coefficient 

𝑟 =
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

√∑(𝑥𝑖 − �̅�)2(𝑦𝑖 − �̅�)2
 

NSE 

Nash-Sutcliffe 

efficiency, high 

values 

𝑁𝑆𝐸 = 1 −
∑(𝑦𝑖 − 𝑥𝑖)2

√∑(𝑦𝑖 − �̅�)2
 

kge 

Kling-Gupta 

efficiency, overall 

performance 

𝑘𝑔𝑒

= 1 − √(𝑟 − 1)2 + (
𝜎𝑦

𝜎𝑥
− 1)2+(

𝜇𝑦

𝜇𝑥
− 1)2 

r_RM  

NS_RM 

kge_RM 

Process 

evaluation 

without 

systematic bias 

Same with the equations while observation 

and simulation are processed by subtracting 

the mean value 

Where 𝑥𝑖, 𝑦𝑖 are observed and simulated values for different variable pairs.  

 282 

2.2.2 Model comparison evaluation metrics 283 

In addition to the performance metrics which is designed for each location, comparison metric is 284 

an aggregated score to decide which model version is better. It evaluates the model's 285 

improvement or deterioration compared to the reference simulation (named as baseline model in 286 

this study). The direct comparison works conventionally. For instance, a higher correlation or 287 

low bias represents better model simulations. However, because the abovementioned metrics 288 

vary in the optimal value (i.e., 0 or 1) and the ranges (e.g., −1 ≤ 𝑟 ≤ 1, 0 ≤ 𝑅𝑀𝑆𝐸 ≤ +∞, 289 

−∞ ≤ 𝑁𝑆𝐸 ≤ 1 ), these metrics are difficult to be directly compared or to be integrated. 290 

Therefore, we introduce two more comparison metrics besides the direct comparison metric (see 291 

Fig.2).  292 
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 293 

Figure 2. Illustration of different comparison metrics. The three colors represent the three 294 

different ways of evaluating the changes in model evaluation.  295 

a) C1: Delta index 296 

The difference in evaluation metric for the new model (NM) experiment compared to the 297 

baseline model (BM) for a specific sample location i is represented as the change in metrics 298 

(∆𝑚𝑖) for a new simulation from the baseline simulation (illustrated as red in Fig. 2).  299 

∆𝑚𝑖 = 𝑚′𝑖 − 𝑚𝑖   

For category 2, a positive ∆𝑚𝑖  represents a model improvement. While for category 1, we 300 

evaluated it with absolute values for the evaluation metric, and a negative value (approaching the 301 

optimal value 0) represents a model improvement.   302 

∆𝑚𝑖 = |𝑚′𝑖| − |𝑚𝑖|   

b) C2: Improvement index 303 

∆𝑚𝑖 has limitations in gauging the comparative enhancements over the baseline. To illustrate, a 304 

rise of 0.1 for NSE from 0 to 0.1 may be relatively less challenging than a progression from 0.8 305 

to 0.9. Consequently, we additionally assessed the improvement index in relation to the optimal 306 

value. This approach captures alterations relative to the optimal value (i.e., 0 or 1), as outlined by 307 

(Seibert et al., 2018) and illustrated in blue in Fig.2. 308 

𝐼𝑀𝐼𝑖 =
𝑚′𝑖 − 𝑚𝑖

𝑚𝑜𝑝𝑡 − 𝑚𝑖
  

𝑚𝑜𝑝𝑡 is the optimal value for the investigated metrics (0 for metrics in Category 1 and 1 for 309 

metrics in Category 2). The maximum IMI value is 1, indicating that the New Model (NW) is 310 

perfect; 0 means no changes. The higher value indicates a more noticeable improvement in 311 

model performance for NW than the baseline (BM). A negative value shows deteriorated model 312 

performance.   313 
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c) C3: Quantile index  314 

When assessing the overall model performance across various metrics and variables, it is 315 

common practice to aggregate metric values with certain weights. However, the lack of clear 316 

guidelines for assigning these weights has led to the use of uniform weights in previous studies 317 

(Modi et al., 2022). Meanwhile, the magnitudes of direct change index and improvement index 318 

values differ across metrics (e.g., correlation coefficient, NSE) and variables (e.g., discharge, 319 

water surface elevation, water surface area). To address this, we propose a novel evaluation 320 

approach utilizing quantile changes (illustrated in green in Fig. 2). 321 

We first assess the model performance at each specific location for the baseline model, whether 322 

it is a gauge or grid. We sorted all samples and calculated the quantile values (denoted as 𝑞𝑖). 323 

When evaluating the performance of a new model (NM) for the same specific location, we check 324 

the location of the new metrics among the baseline samples (𝑞′𝑖). The change in the ranking is 325 

therefore the evaluation of the specific location (∆𝑞𝑖).  326 

∆𝑞𝑖 = 𝑞′𝑖 − 𝑞𝑖 

A positive ∆𝑞𝑖 denotes an enhancement in model performance at a specific location (or overall 327 

model performance). Importantly, this quantile change approach renders the quantifiable changes 328 

in a consistent format, facilitating comparisons across diverse metrics and variables. To ensure 329 

the reliability and meaningfulness of comparisons, we recommend utilizing a comparison metric 330 

with a minimum of 100 gauges. This threshold ensures a robust statistical foundation for the 331 

ranking methodology and guarantees the statistical significance of the outcomes. 332 

2.3 Output & Visualization  333 

2.3.1 Reformatting output 334 

The system provides three levels of outputs for different purposes. The level 1 (L1) is for 335 

restructured data from model space to observation space and evaluation to be conducted in the 336 

Reformatting step illustrated in Fig. 1. The output is in a format of time series data for each 337 

location. The level 2 (L2) output is estimated evaluation metrics based on L1 data, with a format 338 

of multiple metrics for each location. For WSA, the L2 output is the 2D map with multiple 339 

evaluation metrics layers at each spatial grid. As mentioned in the Input, L1 data can also be 340 

prepared independently by other models. Level 3 (L3) is the evaluation of the improvement or 341 

deterioration of the model simulated based on L2 data and equations in 2.2.2, with data format as 342 

different evaluation metrics for each location. Only the identical gauges (with the same ID) or 343 

locations in grids are compared, so that the system allows comparisons if inputs are in different 344 

spatial extents. Evaluations over the three variables (Q, WSE, WSA) are independent. For 345 

instance, the land surface model or hydrological model, which only simulates river discharge, 346 

can be assessed and intercompared as well, ensuring the broad usage of this benchmark system. 347 

The intermediate data are very useful, especially for further analysis and plots by avoiding 348 

repeating massive I/O and calculation.  349 

2.3.2 Visualization  350 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

The system provides some built-in visualization styles, from point maps to overall evaluation 351 

matrix maps. A point map is designed for evaluating model performance over space, showing the 352 

hotspots where the model performs well or bad and where obvious improvement or deterioration 353 

occurs. The overall matrix map shows how the model changes over the baseline model and how 354 

overall performance varies across different evaluation metrics. Users can easily extend 355 

applications with other visualization styles with the three levels of data mentioned above.  356 

2.4 Structures of the benchmark system 357 

The benchmark toolkit has six main steps, that all can be executed with a very single execution 358 

command. For example, execute s01-initial.sh by running ‘./s01-initial.sh’ to initializae the 359 

benchmarking tool. And execute s03-reformat.sh by running ‘./s03-reformat.sh $var’ to reformat 360 

the model outputs and observations datasets for comparsions. $var can be any one or more of Q 361 

(‘dis’ or ‘discharge’), WSE (‘wse’ or ‘sfcelv’) and WSA (‘wsa’ or ‘fldare’), in case of different 362 

naming in various outputs. The detailed manual about how to prepare the system and the 363 

execution can be found in Supplemetary Text S2.  364 

a) Initialize (creates the output directory structure)  365 

b) visual_pre (visuals the model simulation outputs) 366 

c) reformat (reformats model outputs and observations for comparison) 367 

d) statis (calculated model evaluation statistics) 368 

e) visual (visualizes the comparison between model outputs and observations) 369 

f) summary (summarizes and plots the performance of each model in a heatmap using 370 

various evaluation metrics) 371 

3 Sample implementation within CaMa-Flood 372 

Although the benchmark system is designed for all global river models, we showcase the CaMa-373 

Flood outputs to illustrate the system, since CaMa-Flood is a large-scale hydrodynamic models, 374 

providing all three variables and we are easily set up different driving conditions to showcase the 375 

discrepancies among settings. For river models that cannot simulate WSE or WSA, they still can 376 

use the benchmark system to evaluate river discharge.  377 

3.1 Global Flood Model (CaMa-Flood) 378 

CaMa-Flood is designed for large-scale river hydrodynamics simulations. Using a local iteral 379 

form of shallow water momentum equation, it can simulate the river discharge, water level and 380 

water storage along the river network (i.e., MERIT Hydro). The river channel is simplified as a 381 

rectangular shape, and the floodplain topography is aggregated within a unit catchment (the basic 382 

calculation node in CaMa-Flood). The water extent is then post-processed using the simulated 383 

profile of the water level and water extent for each unit catchment. The simulation is at the 384 

acquis-resolution of MERIT Hydro (0.1-arcdegree or 0.25-arcdegree), while the water extent and 385 

water level can be downscaled to high-resolution (e.g., ~90m, ~1km) with a simple water 386 

balance method. CaMa-Flood has been in continuous development from its initial publication in 387 

2011 (Yamazaki et al., 2011), including in model structures of bifurcation (Yamazaki et al., 388 

2014), dynamic seawater level (Eilander et al., 2020; Ikeuchi et al., 2015, 2017), dam operation 389 

(Hanazaki et al., 2022), and in model parameters of river channels (Liang & Zhou, 2022). 390 
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Therefore, there has been a significant demand for CaMa-Flood for the benchmark system to 391 

evaluate implementations and model developments. On the other hand, as an independent global 392 

hydrodynamic model, CaMa-Flood is driven by runoff from other sources, and it is adaptable to 393 

runoff inputs at different spatial and temporal resolutions. There are many other implementations 394 

to investigate sensitivity to various runoff inputs using CaMa-Flood (Zhao et al., 2017; Zhou, 395 

Ma, et al., 2021), while only discharge is evaluated. In this study, we will evaluate CaMa-Flood 396 

for all three variables, i.e., Q, WSE and WSA, among simulations driven by various runoff 397 

inputs.  398 

3.2 Model settings (sample benchmarking)  399 

In principle, the benchmark system can be applied to compare any different scenarios (e.g., 400 

model inputs, model structures, model parameters). Here, we show the implementation with 401 

different driven runoff inputs to CaMa-Flood since runoff inputs are the primary source of 402 

uncertainties (Zhou, Ma, et al., 2021). Three different runoff inputs are prepared and compared. 403 

The E2O_ECMWF is from the eartH2Observe (e2o) wrr2 project (Schellekens et al., 2017). The 404 

runoff was driven by the WATCH Forcing Data methodology applied to ERA-Interim data 405 

(WFDEI; (Weedon et al., 2014)) with the Tiled ECMWF Scheme for Surface Exchanges over 406 

Land incorporating land surface hydrology (H-TESSEL). ERA5 uses the same hydrological 407 

model H-TESSEL with an updated version but driven by ERA5 climate reanalysis (Muñoz-408 

Sabater et al., 2021). The third, VIC-BC, is driven by MSWEP precipitation input with the 409 

Variable Infiltration Capacity (VIC) model (Yang et al., 2021). However, additional bias 410 

correction was applied with a quantile correction approach to the runoff generated by the 411 

machine learning method (Beck et al., 2015). Among the three model settings, simulation driven 412 

by e2o_ecmwf is set as the baseline model (m0), ERA5 as m1 and VIC_BC as m2 to generalize 413 

the descriptions and visualization.  414 

Despite the differences in the runoff inputs, all other model settings in CaMa-Flood (e.g., spatial 415 

resolution, river maps, channel parameters) remain the same. Note that the spatial resolution of 416 

CaMa-Flood is 0.1 degrees, which is finer than the three inputs; linear interpolation was applied 417 

to all inputs. The evaluation period is set as 2001-2012 to better use the overlapped period of 418 

different observations.  419 

3.3 Model-observation mapping in CaMa-Flood 420 

3.3.1 Advanced allocation strategy for Q 421 

A two-step advanced allocation is designed for CaMa-Flood which is built on MERIT-Hydro 422 

river network. The first step is to allocate it at a high-resolution map (i.e., 1min MERIT Hydro). 423 

This is to move large errors in reported gauge attributes, or discrepancy of the digitized river 424 

maps (e.g., treatment of bifurcation or depressions in MERIT Hydro). We applied the search 425 

strategy in this step using the information of upstream and the distance from the original 426 

location. In short, the grid with the minimal error of the upstream area and the least shift in 427 

distance will be selected as the allocated location. This step is “semi-automated” because the 428 

errors are probably in the reported data or in the river network map, and we recommend users to 429 

carefully check the automatic allocation results and examine the suspicious data. Users can 430 

decide to correct the reported information or not to use the erroneous river gauges.  431 
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Then, the second-step allocation of the “mismatch-resolved” gauges is conducted to the global 432 

river network at a coarse resolution (i.e., 0.1deg. This step is to ensure the observations are 433 

correctly compared with simulations at specific node. Depending on the correspondence between 434 

the coarse-resolution grid and the gauging station, the secondary allocation of these gauges is 435 

performed in the following three types (Fig. 3).  436 

 437 

Figure 3. Illustration of allocating river discharge gauges to the unit catchment. The yellow 438 

square is the river gauge location. The red dots are outlets of the unit catchment.  439 

 Type-0: Gauge is on the mainstem nearby the catchment outlet. Gauged flow can be 440 

reasonably compared to the modelled discharge at the catchment outlet. 441 

 Type-1: Gauge is on the mainstem or one tributary, but nearby the upstream edge. One 442 

tributary is merging downstream of the gauge. In this case, Gauged flow is better to be 443 

compared against the modelled discharge of the upstream grid. 444 

 Type-2: Gauge is on the tributary, and the tributary has two major upstream tributaries. In 445 

this case, gauged flow is better to be compared to the summation of the simulated discharge 446 

at two upstream grids. 447 

The second step of allocation outputs the type of gauge-grid correspondence and the grid-448 

coordination of the corresponding grids. The primary corresponding grid coordinate is saved as 449 

[ix1,iy1], and secondary corresponding grid coordinate is saved as [ix2,iy2] if any (otherwise 450 

marked as [-9999,-9999]). 451 

3.3.2 Advanced allocation strategy for WSE  452 

Advanced option can be applied as well to the allocation of VSs, by considering sub-grid river 453 

structure (e.g., correction for bifurcation section) which has been explained in detail as AltiMap 454 

(Revel et al., 2024). In short, the relationship of specific VS and the river network is checked for 455 

all VSs. And the principle idea of AltiMap is to allocate the VSs to the nearest largest river 456 

section. Among all VSs in the raw HydroWeb data, 71.7% VSs are located correctly in the river 457 

channel. While 26.88% VSs are modified slightly from nearby land to river channels and 1.34% 458 

VSs are moved across river channels in a multi-channel river system. This step matters the 459 

preciseness of VS elevation and the offset calculated in the next step.  460 

CaMa-Flood records the river water level at the outlet for the entire river segment, while VSs are 461 

located where satellite ground track crosses the river. This leads to an elevation difference of the 462 
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two location (i.e., VS and outlet) and in the water level records. Therefore, the elevation 463 

difference is recorded as the offset which should be applied to the time series in later 464 

comparison.  465 

Users please refer to Supplementary Text S1 for details about the allocation algorithms.  466 

3.3.3 WSA comparison  467 

WSA simulation in CaMa-Flood is still based on unit-catchment, which is slightly different from 468 

regular grids. However, the system aggregates results to 0.5 degree, which will largely eliminate 469 

the impact. Moreover, the WSA results are compared on a monthly scale, which is different from 470 

the other two variables.  471 

3.3.4 Utilization  472 

We integrated the allocation codes in the benchmark system, while we need note that the 473 

advanced allocation strategies are specific for CaMa-Flood (or MERIT-Hydro river network). 474 

The allocation results also change if using different spatial simulation resolution. Therefore, we 475 

provided the sample results at the spatial resolution of 0.1 degree. Users with other demands can 476 

follow the instructions and do the allocation by themselves. For river maps other than MERIT-477 

Hydro (e.g., HydroSHEDS), users need to allocate the VSs map accordingly with the provided 478 

VSs coordinates.   479 

4 Results 480 

The first sample implementation of the benchmark system, which investigates the impact of 481 

various runoffs, will be illustrated here, as well as how the benchmark model works and what 482 

information the benchmark system delivers.  483 

4.1 Intermediate data  484 

4.1.1 Reformatted data 485 

The intermediate data documents the full records of different variables at investigating 486 

points/grids. The records in time series can be visualized if specifying a particular location. For 487 

instance, the variability of Q (Fig. 4a), WSE (Fig. 4b) and WSA (Fig. 4c) around the Obidos in 488 

the Amazon River basin are displayed, respectively, as examples. These intermediate data are 489 

then used for further evaluation, saving time to read original large simulation outputs.   490 
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 491 

Figure 4. Time series of river discharge, WSE, WSA at Obidos, Amazon River basin, in 492 

different scenarios. The water surface area represents the total water area at the 0.5-degree grid 493 

near Obidos. 494 

4.1.2 Evaluation Metrics   495 

All evaluation metrics over the various variables are calculated with integrated standard 496 

algorithms and temporally saved into intermediate files. These files are prepared for further 497 

visualization and easier to be shared for intercomparisons in case of any restrictions on raw data.  498 

A very brief summary of the evaluation metrics is listed in Table 2, showing that there are large 499 

discrepancies in the magnitude of investigated variables or metrics. For Q, VIC_BC shows better 500 

performance than the other two for all three metrics. While for WSE or WSA, e2o_ecmwf 501 

occasionally has better performance. Nevertheless, it is very difficult to conclude the relative 502 

preference of a single model from various metrics, and more advanced assessment is needed.  503 

  504 
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Table 2. Evaluation metrics of the sample region - Obidos  505 

Variables Models p_bias(%) correlation rRMSE(%) 

 

e2o_ecmwf 3.7 0.938 14.8 

Q ERA5 -4.7 0.932 18.5 

 

VIC_BC 2.4 0.956 9.60 

 

e2o_ecmwf -11.1 0.931 26.4 

WSE ERA5 -27.1 0.906 38.5 

 

VIC_BC -20.2 0.957 25.4 

 

e2o_ecmwf -47.5 0.850 51.2 

WSA ERA5 -55.7 0.822 59.6 

 

VIC_BC -51 0.890 53.3 

 506 

4.2 River discharge  507 

4.2.1 Gauge evaluation 508 

The global map of the model performance at gauges clearly shows the spatial variation of the 509 

model performance (e.g., the kge value of Q in Fig. 5, the first row) and the comparisons against 510 

a baseline model (e.g., the second and third row in Fig. 5). The range of color bar is pre-defined 511 

for each metric. Although, users can modify them to increase readability of the figures. 512 

Moreover, to make the changes more remarkable, the values close to zero is always set as white, 513 

even though the mean value is not zero.   514 

In the test case, after selection of the investigated gauges by data coverage, the available GRDC 515 

gauges are mainly limited in North America and Europe (Fig. 5). Higher kge in green color can 516 

be found in a large number of gauges, especially in lower North America, Europe, upstream of 517 

Amazon and a few gauges in Asia and northern Australia. Simulations with all three runoff 518 

inputs show poor results in the arid mountainous area (e.g., Rocky Mountains, Southern Andes), 519 

indicating that either all runoffs are not well reproduced, or the routing process of CaMa-Flood 520 

needs improvement over such regions. However, according to the pbias of the runoff, which is 521 

less determined by the routing process (which mainly changes the timing rather than the 522 

amount), all the current three experiments overestimated the runoff, probably due to 523 

underestimation of evapotranspiration in those regions.  524 
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 525 

Figure 5. Sample of maps of the kge value for river discharge at available GRDC river 526 

gauges. The first row (a,b,c) is the evaluation of three simulations against river discharge. The 527 

second row is the comparison of the evaluation metrics between m1 (ERA5) over m0 528 

(e2o_ecmwf), and the third row is the comparison between m2 (VIC_BC) over m0 (e2o_ecmwf). 529 

Other maps for various evaluation variables (e.g., pbias, correlation) can be found in the 530 

supplementary as Fig. S1, Fig. S2. 531 

Fig. 5d-5i shows the changes in kge metric over the baseline model. ERA5 and VIC_BC 532 

significantly improved the model in Canada, the central and eastern US, and Europe (colors in 533 

blue). Abundant ground observations of land surface components, which have been used in the 534 

assimilation for ERA5 and bias correction in VIC_BC ensured the improvement of runoff 535 

simulation. In contrast, models driven by ERA5 or VIC_BC deteriorate in the southwestern US, 536 

where discharge itself is always at a low level. Deterioration is also found in southern Africa, 537 

where little data can be achieved for assimilating or bias correction in the ERA5 or VIC_BC. 538 

The patterns of metrics change for ERA5 (second row) are similar for the three comparison 539 

metrics (Fig. 5d,e,f). This is also the case for the VIC_BC (third row). Comparison between m2 540 

(VIC_BC) and m1 (ERA5) is not discussed but will be presented in the next subsection.  541 

4.2.2 Overall evaluation over Q 542 

Fig. 6 is designed to show changes of the metrics from baseline model. The first panel in Fig. 6 is 543 

the overall evaluation of the investigated variable over all gauges (shown as median value). The 544 

three panels in the right-side hand are shown as the changes of the metrics (shown as the median 545 

change for all gauges). From the left to the right are the changes in delta index (C1), 546 

improvement index (C2) and percentile index (C3). Darker blue represents the model 547 

outperforms the baseline while the deeper red represents the opposite. All metrics are mapped in 548 

one figure so that we can easily see how much and for which metric the new model changes.  549 
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 550 

Figure 6. The overall performance of different models (a) and their comparison (b,c,d) in 551 

terms of river discharge. a. the median value of different metrics among all river discharge 552 

gauges. b,c, and d shows the changes in the metrics of the new model (m1,m2) compared to the 553 

benchmark m0, representing the relative score, change in IMI and change in percentile, 554 

respectively. 555 

Fig. 6a shows the case for Q against observations. For e2o_ecmwf, the pbias has been well 556 

controlled within 10%, not only for the mean but also for the maxima, minima and relative 557 

amplitude. The rRMSE is 0.97 for e2o_ecmwf. The correlation is relatively good (median value 558 

0.66), while the NS and kge values are at a low level (i.e., 0.04 and 0.23, respectively). In terms 559 

of the changes over the baseline model shown in the right panels, we see tiny changes in ERA5 560 

over e2o_ecmwf using C1 (Fig. 6b) and C2 (Fig. 6c). While for C3 (Fig. 6d), positive changes in 561 

the percentile index (blue) mean the metrics for the new models improved to a better position 562 
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(lower values for metrics in Category 1 and higher values for metrics in Category 2). Based on 563 

Fig. 6b-d, the model driven by either ERA5 or VIC_BC has been generally improved, with a 564 

more significant improvement for the model driven by VIC_BC. Among all the metrics, the 565 

model didn't show improvement in the minimum value, indicating that either those runoff inputs 566 

are not improved in the low flow or because the CaMa-Flood streamflow is not responding 567 

correctly to changes in the runoff.  568 

4.3 Overall evaluation over WSE  569 

Very similar analysis can be conducted over variables of WSE, using the same visualization 570 

tools. Compared to discharge gauges, there are more virtual stations distributed in Asia and 571 

Africa due to the selection of time period. Model performance in Europe (and Amazon) and 572 

central Africa is relatively acceptable with a positive kge value, which overall evaluates the 573 

correlation, variability and mean values. Based on the results shown in the supplementary (Fig. 574 

S3-S5), the variability is the critical factor that deteriorates the model performance, especially in 575 

Asia. The variability is generally larger in simulations than in observations. Given that the river 576 

discharge and mean water elevation are simultaneously simulated, the river width could be 577 

larger, and the river depth could be shallower. This might be because we assume the river 578 

channel shape is rectangular while many small rivers are in other shapes depending on the 579 

geographic factors.  580 

 581 

Figure 7. Sample of maps of the kge value for WSE at available HydroWeb virtual stations. 582 

The illustrations of the figure are same as Figure 5. 583 

Fig. 8 evaluates the model performance with different metrics for WSE. The amplitude (maxima 584 

– minima) and variability are large with all three runoff inputs. Compared to e2o_ecmwf, ERA5 585 

runoff increased the bias, leading to an increment in the relative score and percentile. The NS 586 

value is low, which is caused by the systematic bias in the simulation and observations. NS 587 

increased to a positive value when systematic bias was removed (NS_RM). Among the three 588 

runoff inputs, the model driven by VIC_BC shows better performance of WSE than e2o_ecmwf 589 
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(Fig. 8d, with blue colors), although the change is less significant than that for Q. ERA5 is worse 590 

(with red-ish colors), which is in contrast with conclusions from Q. One major reason is that the 591 

global distribution of the virtual stations and river discharge gauges is different. There are main 592 

gauges in the US where ERA5 or VIC_BC show improved model performance, while there are 593 

very few gauges in the WSE observations. Local factors for instance the accuracy in river cross-594 

section profile, slope, DEM will also cause unpredictable impact on the WSE simulation. 595 

Nevertheless, VIC_BC shows obvious improvements in both Q and WSE, compared to the other 596 

two runoff inputs.  597 

 598 

Figure 8. The overall performance of different models (a) and their comparison (b,c,d) in 599 

terms of WSE.  600 

4.4 Overall evaluation of WSA  601 
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Comparing time series of WSA presents considerable challenges for several reasons. Firstly, the 602 

comprehensive validation of remotely sensed WSA accuracy is still lacking. The discrepancies 603 

between model simulations and sensing data, particularly in areas with smaller water surfaces, 604 

have not been adequately addressed. The GIEMS data, despite its coarse spatial resolution, tends 605 

to overestimate WSA, as it often misclassifies saturated soils as water surface. Therefore, while 606 

we have conducted model comparisons against WSA data, a more thorough analysis is needed to 607 

extract valuable insights. WSA is 2-D map data, therefore, we assessed it at each grid (using 608 

same codes for Q and WSE) and showed the results on the map in the same way. Those grids 609 

with very low mean WSA (either simulated or observed value is zero) are excluded since the 610 

results in those grids are very sensitive.  611 

Fig. 9 illustrates the global evaluation of WSA, with the kge values for three different models 612 

generally falling below 0. Although the model performance is suboptimal, it still allows for a 613 

broader evaluation across various regions worldwide. Utilizing the evaluated grids (where both 614 

observed and simulated WSA exceed zero), the overall comparison is presented in Fig. 10, 615 

revealing no significant variations in state metrics across different models. However, the 616 

VIC_BC model stands out by providing more detailed process information compared to the other 617 

two models. 618 

 619 

Figure 9. The global distribution of evaluation metrics (herein kge value) and comparisons 620 

among different models for the WSA. Note that the grids with either estimated or observed 621 

WSA as zero are excluded from the evaluation.  622 

 623 
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 624 

Figure 10. The overall performance of different models (a) and their comparison (b,c,d) in 625 

terms of WSA. The value is calculated as the median value for all grids which are included in 626 

the visualization map in Figure 9.  627 

5 Discussions   628 

5.1 Data coverage  629 

An overview of how three data overlap in space is shown as Fig. 11. Following the rules of 630 

gauge selection, only 929 grids (0.5 by 0.5 degree) are monitored with discharge gauges. Using 631 

WSE VSs has increased almost 100% of the grids where water dynamics can be analyzed. 632 

Though, only 74 (<10%) of the grids have both Q and WSE observations. WSA observation is 633 

the most sufficient way to overcome the data scarcity problem, while only ~5% of the grids with 634 
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larger than 10km
2
 have observations of Q or WSE or both (34 grids). Although we assume that 635 

the water dynamics are correlated for the three variables, investigation over the grids with more 636 

than one kind observations is needed. The three variables also have their own strengths and 637 

shortcomings which are relevant to the accuracy, spatial resolution, temporal intervals. One 638 

cannot replace the other in most occasions. Therefore, integrating three variables is sometime 639 

difficult but very important for large-scale analysis.  640 

 641 

Figure 11. Statistics of the grids (0.5*0.5 degree) with various observational data. The 642 

number value shows the total number of grids with one kind of observation, no matter how many 643 

gauges are located in the grid. The overlap areas show the number of grids with two or three 644 

kinds of observations.   645 

The constantly evolving technologies offer opportunities to incorporate new and advanced data 646 

sources into our system. For instance, laser-altimetry data from ICESat2 (Parrish et al., 2019) 647 

and higher spatiotemporal resolution water extent data from sources like MODIS (Ji et al., 2018),  648 

and Sentinel-3 (Jiang et al., 2023) can enrich our evaluations. However, despite the spatial 649 

coverage, the revisit time also matters in evaluating flow dynamics. For instance, ICESat2 has a 650 

larger surface coverage but its limited revisit frequency (i.e., 91days) determines that its 651 

improvement in short-term flow events will be limited. Satellite discharge algorithms (~2weeks, 652 

mostly based on Landsat, (Lin et al., 2023)) provides adequate frequency but not-so-high 653 

accuracy. Surface Water and Ocean Topography (SWOT, (Biancamaria et al., 2016)) mission 654 

ensures a weekly revisit time (7-10day) for most land area with wide swath altimetry, thus, has a 655 

great potential to be used in improving the benchmark system and future model developments.  656 

5.2 Comparison metrics 657 



manuscript submitted to Journal of Advances in Modeling Earth Systems 

 

In this study, we proposed three metrics (C1, C2, C3) to quantify changes in model performance. 658 

In Fig. 12, we illustrate the comparisons of kge value (Fig. 11a) and the differences among using 659 

three metrics (Fig. 12b-d). The color represents the upstream area of the investigated gauge, with 660 

the deeper color representing the larger upstream area. In general, the model performance driven 661 

by two runoff inputs is correlated (i.e., e2o_ecmwf and VIC_BC, Fig. 12a). When using the first 662 

relative score (C1), it can be found that when the baseline performance is good (m0, for example, 663 

>0.5), the compared model cannot show a distinguishable difference from the reference. The 664 

most obvious model improvements or deteriorations are mainly reflected when the baseline was 665 

worse (Fig. 12b, for example, <-1.0). Therefore, the change in the metric value mostly 666 

highlighted changes when baseline model is bad. In terms of the improvement index (C2), it 667 

evaluates the degree of change from the baseline value relative to the best value (i.e., kge=1). It 668 

is found that the largest improvement can be achieved when the baseline value is between 0 and 669 

0.5 (Fig. 12). However, it is difficult to distinguish the magnitude of changes since points are 670 

very concentrated. Moreover, for gauges with larger baseline values, even if the simulation 671 

metric (kge) degrades in a small value, a significant degradation metric can be generated. 672 

Although the advantage is that the effect of the same change amount is related to the original 673 

position, it is more sensitive in gauges with larger initial values. In addition, both the previous 674 

metrics have the limitation that they are too concentrated in certain areas but too sparse in most 675 

areas. This makes it difficult to grasp the overall performance because changes in certain gauges 676 

will significantly vanish the results.  677 

Regarding the third percentile index, the points are more evenly distributed over the entire space. 678 

This will eliminate the impact of certain extreme values when calculating the mean value over all 679 

the gauges. On the other hand, the percentile evaluation is insensitive to the magnitude or 680 

distribution of the evaluation metric itself or for different variables. Thus, it is better to be used 681 

for integrating different metrics together to show overall performance.  682 

 683 

Figure 12. Comparisons between changes in comparison metric with against original value. 684 

(a) compares the original value of kge for the last model (m2, i.e., VIC_BC) and the baseline 685 
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model (m0). (b)-(d) shows the comparison of the difference between the last model and the 686 

baseline model with regard to the three different metrics.  687 

 688 

Figure 13. Boxplots of three comparison metrics for all performance indices. Outliers are 689 

identified as out of range [Q1-1.5*(Q3-Q1), Q3+1.5*(Q3-Q1)]. The yellow color represents 690 

comparisons between m1 and m0. The blue color represents comparisons between m2 and m0.  691 

Fig. 13 illustrates the characteristics of comparison metrics, presenting median values, ranges, 692 

and outliers. The medians reflect previous colormaps for various variables, providing additional 693 

insights into the distribution of comparison metrics. In Fig. 13a, a notable proportion of 694 

comparison metrics are identified as outliers for the first and second comparison metrics. 695 

Regarding the first metric, both correlation and its normalized form exhibit a highly constrained 696 

range. Conversely, for the second comparison metric (Fig. 13b), the upper limit is 1, suggesting a 697 

model improvement to a perfect status, which is not realistically attainable. All metrics display 698 

large ranges of negative values, indicating a deteriorated model performance. However, a 699 

challenge arises in selecting an appropriate metric, as aggregating multiple metrics remains 700 

sensitive to a few extreme values, potentially leading to a misleading overall evaluation. 701 

Concerning the third comparison metric (Fig. 13c), the constrained range of metrics falls 702 

between -50 and 50, with consistent width in the quantile range. The median values align with 703 

the overall colormaps depicted in previous figures, showcasing similar patterns for different 704 

metrics. This underscores the insensitivity of selecting a smaller number of metrics or 705 
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aggregating metrics for various evaluated variables to achieve an overall evaluation across 706 

models.  707 

5.3 Observational data preprocessing  708 

The benchmark system relies heavily on having sufficient observational variables to effectively 709 

validate and calibrate river models. Unfortunately, data shortages have been a limiting factor in 710 

this process, which subsequently hampers the wider application of river models. To address this 711 

issue, our study seeks to overcome data limitations by synthesizing in-situ river discharge (Q) 712 

and remote sensing data on water surface elevation (WSE) and water surface area (WSA), 713 

enabling assessments over larger and data-scarce regions in Asia and Africa. 714 

To ensure more accurate evaluations, the gathered observations require preprocessing. In section 715 

2.1, we applied an allocation method for river discharge and altimetry observations. However, a 716 

challenge arises when other users wish to apply our system with different underlying river 717 

networks (e.g., MERIT Hydro). To address this, we recommend that users follow specific 718 

instructions to prepare the allocation based on the river network they used in their simulations. 719 

While the error in allocating river discharge is generally small due to limited discharge changes 720 

within a short distance, users should be cautious when dealing with gauges near river confluence 721 

channels. 722 

Allocating altimetry data presents a more complex issue, as significant changes in water surface 723 

elevation can occur along rivers within a short distance. This has a notable impact on mean 724 

values, subsequently affecting evaluation metrics that rely on mean status (e.g., NS). However, 725 

correlation-based metrics remain unaffected by this allocation challenge. The benchmark system 726 

still works if only the dynamic WSE is evaluated when the offset is not applicable.  727 

When comparing WSA, we acknowledge limitations related to the nature of the MERIT unit-728 

catchment data, which may not perfectly match grid boundaries. To mitigate this, we conducted 729 

simulations at a 0.1-arcdegree resolution but aggregated them to 0.5-degree resolution for 730 

comparison, resulting in acceptable evaluation results. Nevertheless, when assessing WSA at a 731 

local scale, we recommend users perform downscaling before conducting comparisons. 732 

5.4 Future applications  733 

As mentioned in the Introduction, this benchmark system serves as a valuable tool for evaluating 734 

the development of various models. In our study, we tested the system with different forcing 735 

inputs to CaMa-Flood, and in the supplementary material, we provided a case study by testing 736 

both kinematic wave and dynamic wave equations in hydrodynamic simulations. We also 737 

conducted comparisons to test different parameters, such as river bankfull height. It is essential 738 

to consider the varying sensitivity of evaluation metrics or variables based on different model 739 

developments. For instance, forcing inputs have a more significant impact on river discharge but 740 

a smaller impact on water level simulations. Meanwhile, water level simulations are more 741 

sensitive to river bankfull height variations. 742 

One critical aspect to keep in mind is that the evaluation relies on observational data that may not 743 

be evenly distributed across regions. Consequently, the weight of comparisons should differ 744 

based on data availability and regional variations. For example, forcing inputs could cause large 745 
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variations in Asia and Africa because very limited observations are there. To enhance the 746 

robustness of the benchmark system, efforts should be made to collect more data and ensure its 747 

even distribution. Both governmental organizations and the scientific community can play a vital 748 

role in data collection for scientific research. 749 

Apart from assessing model development, this benchmark system allows for the intercomparison 750 

of various global river models. However, there is a lack of standard datasets, and some models 751 

may have limitations in simulating water level and water area variables, which hinders more 752 

comprehensive comparisons. However because the evaluation over three variables is 753 

independent, the system can evaluate hydrological models that only provide discharge 754 

simulations. For instance, we compared our physically-based simulations with river discharge 755 

forecasts from the Google Flood Initiative (which are based on machine learning, (Nearing et al., 756 

2024), Fig. S6). We are also able to compare river discharge simulations from the Global Flood 757 

Awareness System (GloFAS, Fig. S7) or The Inter-Sectoral Impact Model Intercomparison 758 

Project (ISIMIP). It is also feasible to compare routing simulations from other open-source 759 

runoff achieves, e.g., the Coupled Model Intercomparison Project (CMIP), for past and future 760 

periods.  761 

Regarding data-sharing policies, we regret that we cannot share all observations with users. 762 

However, we offer two solutions to address this limitation. First, users can prepare the necessary 763 

observations following the provided instructions. Second, users can share their raw simulations 764 

or intermediate files (e.g., extracted raw simulations at specific gauges) to reduce data size and 765 

protect their information from leaking. We are committed to conducting evaluations of their 766 

results and comparing them to any available baseline to support their model assessments. We 767 

also have shared the evaluation results, which can be used by others for their own comparison.  768 

5.5 Factors affecting the evaluation 769 

In this subsection, we delve into the factors that can potentially influence the evaluations. When 770 

assessing water levels, our approach assumes that the allocation bias primarily stems from the 771 

elevation difference between the virtual station and the outlet of the unit catchment. However, 772 

this approach overlooks the intricate water dynamics within the channel itself, given that factors 773 

such as river width and slope undergo significant changes. Consequently, the flow dynamics at 774 

the visual station and outlet often diverge, rendering the removal of elevation differences does 775 

not necessarily eliminate the allocation errors. Addressing this issue demands a more extensive 776 

dataset that encompasses elevation data with finer resolution, coupled with a thorough 777 

understanding of river channel bathymetry variabilities, in order to enhance the precision of bias 778 

calculations. In the current context, downscaling the simulated water level could enhance the 779 

reliability of comparisons, although this comes at the cost of computational demands, 780 

particularly in the context of daily global-scale assessments. To achieve accurate comparisons, it 781 

remains imperative to enhance simulation capabilities in small-scale hydrodynamics. Moreover, 782 

the utilization of various elevation data and river networks will also affect the assessment, while 783 

the correct gauge allocation will to some degree alleviate the impact.  784 

Furthermore, the assessment of water surface area at a broader scale still lacks a comprehensive 785 

and rigorous analysis. The precision of this assessment is curtailed by limitations inherent in 786 

various satellite sensors. For instance, optical sensors are impeded by dense cloud cover and 787 
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vegetation, whereas microwave sensors tend to overestimate water extent in areas with saturated 788 

soils. Moreover, the spatial resolution of these sensors dictates their efficacy in capturing various 789 

forms of water extent. Notably, the MODIS data, with a resolution of 250 meters, struggles to 790 

identify water bodies narrower than this threshold. The revisit intervals of satellites further 791 

compound the challenge, leading to the potential rapid events of short duration (e.g., flash 792 

floods). Simultaneously, different models introduce their own assumptions and exhibit varying 793 

capabilities in modeling distinct types of water surface area. Consequently, it is essential to 794 

meticulously consider the congruence between comparison types. In this study, we outline a 795 

framework for evaluating water surface area. This framework accommodates future updates in 796 

observational data, with the intent of facilitating more robust and refined comparisons of water 797 

surface area in subsequent analyses. 798 

5.6 Expendability  799 

The simple structure of the benchmark system allows the users to modify and extend the system 800 

easily. For instance, new evaluation metrics can be designed to evaluate various flow dynamics 801 

of interest (e.g., flow peaks, peak timing, baseflow). The regional maps can be easily customed 802 

by modifying parameters in the codes. Accompanying the information for categorization (e.g., 803 

continents, river size, climate zones), a more detailed analysis of how different factors affecting 804 

the evaluation can be assessed.  805 

6 Conclusions  806 

This study introduces a novel benchmark system designed to assess and compare the 807 

performance of global flood models. We proposed and established methodologies which can 808 

systematically integrate river-related observation data for global river model benchmark system. 809 

By integrating in-situ river discharge observations and remote sensing data, such as water surface 810 

elevation and water surface area, the system enables the evaluation of model performance in 811 

areas with limited ground observations. Notably, this approach allows for the evaluation of river 812 

models that simulate flow dynamics on a large scale, providing valuable insights for enhancing 813 

global river modeling. 814 

The benchmark system employs a range of metrics to evaluate and compare various aspects of 815 

model performance, each representing different facets of model capability. A novel percentile 816 

comparison metric has been developed to offer a comprehensive assessment of model changes 817 

(e.g., improvements or deteriorations). This metric, combined with traditional methods, 818 

facilitates a comprehensive understanding of how the model evolves over time.  819 

The versatility of the benchmark system is underscored by its capacity to assess model 820 

development and conduct intercomparisons across multiple models using diverse outputs related 821 

to flow dynamics. It is important to note that the success of this system relies on collaborative 822 

efforts within the scientific community, particularly in terms of gathering observational data and 823 

simulation outputs. Adding new metrics for evaluation is also a possibility according to users’ 824 

needs. In pursuit of greater robustness and adaptability, the benchmark system acknowledges the 825 

need for innovation in data collection and analysis. By addressing the challenges and embracing 826 

emerging data sources, the system aspires to enhance its effectiveness in contributing to global 827 
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river modeling and management practices. The study also extends an invitation to users for their 828 

valuable feedback, contributions of comparative data, and advancements in code development.  829 

Open Research 830 

The codes for the benchmark system are shared under CC-BY-4.0 license. User can find the 831 

source code from https://doi.org/10.5281/zenodo.10903211 (Zhou et al., 2024). The instruction 832 

manual of system settings and execution is included. The raw data for the sample case can be 833 

shared by request due to its large size. The statistical results for this case study are shared in the 834 

source codes, thus, uses can reproduce most figures included in this study and for their own 835 

comparisons. The allocation algorithm is shared independently in the repository 836 

https://doi.org/10.5281/zenodo.10893741 (Yamazaki, 2024). 837 
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