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Abstract

Maintaining accurate real-time hindcast and forecast specification of the radiation environment is essential for operators to

monitor and mitigate the effects of hazardous radiation on satellite components. The Radiation Belt Forecasting Model and

Framework (RBFMF) provides real-time forecasts and hindcasts of the electron radiation belt environment, which are used as

inputs for the Satellite Charging Assessment Tool (SatCAT). We evaluated the long-term statistical error and bias of the RBFMF

by comparing the 10-hour hindcast of electron phase space densities (PSD) to a multi-mission dataset of PSD observations.

We found that, between the years 2016-2018, the RBFMF reproduced the radiation belt environment to within a factor of

1.5. While the error and bias of assimilated observations were found to influence the error and bias of the hindcast, data

assimilation resulted in more accurate specification of the radiation belt state than real-time Van Allen Probe observations

alone. Furthermore, when real time Van Allen Probe observations were no longer available, the hindcast errors increased by an

order of magnitude. This highlights two needs; (i) the development of physics-based modelling incorporated into this framework,

and (ii) the need for real-time observations which span the entire outer radiation belt.
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Key Points 10 

• Real-time data-assimilative hindcasts of the outer electron radiation belt were accurate 11 

to within a factor of 1.5.Data assimilation substantially improved the error and bias of 12 

radiation belt specification but strongly influenced hindcast error and bias.  13 

• Improved physics-based modeling and continuous real-time observations through the 14 

outer radiation belt are needed for accurate hindcasts.  15 
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Abstract 16 

Maintaining accurate real-time hindcast and forecast specification of the radiation environment 17 

is essential for operators to monitor and mitigate the effects of hazardous radiation on satellite 18 

components. The Radiation Belt Forecasting Model and Framework (RBFMF) provides real-time 19 

forecasts and hindcasts of the electron radiation belt environment, which are used as inputs for 20 

the Satellite Charging Assessment Tool (SatCAT). We evaluated the long-term statistical error 21 

and bias of the RBFMF by comparing the 10-hour hindcast of electron phase space densities 22 

(PSD) to a multi-mission dataset of PSD observations. We found that, between the years 2016-23 

2018, the RBFMF reproduced the radiation belt environment to within a factor of 1.5. While the 24 

error and bias of assimilated observations were found to influence the error and bias of the 25 

hindcast, data assimilation resulted in more accurate specification of the radiation belt state 26 

than real-time Van Allen Probe observations alone. Furthermore, when real time Van Allen Probe 27 

observations were no longer available, the hindcast errors increased by an order of magnitude. 28 

This highlights two needs; (i) the development of physics-based modelling incorporated into this 29 

framework, and (ii) the need for real-time observations which span the entire outer radiation 30 

belt.  31 

Plain Language Summary 32 

It is important to accurately predict and monitor the radiation levels in space to safeguard 33 

satellites from potential damage. This paper introduces a model called the Radiation Belt 34 

Forecasting Model and Framework (RBFMF), which provides real-time forecasts and historical 35 

data (hindcasts) of radiation levels. To test the model's accuracy, we compared its predictions to 36 

actual observations from satellites between 2016 and 2018. We found that generally, the 37 

model's predictions of the outer radiation belt were within 1.5 times of the actual 38 

measurements. Additionally, we discovered that incorporating both real-time satellite 39 

observations and physics-based simulation improved prediction accuracy compared to relying 40 

solely on either method. However, we noticed a significant increase in prediction errors when 41 

real-time observations through the heart of the Van Allen radiation belt were unavailable. This 42 

underscores the importance of enhancing the model with physics-based modeling and ensuring 43 

continuous real-time observations of radiation levels in space.  44 
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1 Introduction 45 

The variability of the near-Earth radiation environment poses a serious hazard to 46 

telecommunications, navigational, and defense satellites which orbit through these regions. A 47 

key effect of spacecraft exposure to radiation is internal charging, where high energy electrons 48 

penetrate the surface shielding of a satellite and deposit charge into dielectric materials such as 49 

circuit boards or cable insulators, and on ungrounded material such as spot shields or connector 50 

contacts (e.g., Fennell et al., 2001; Lohmeyer et al., 2015). The accumulated charging eventually 51 

results in electrostatic discharges, which is one of the known causes of “satellite anomalies”. 52 

Anomalies range in effect from more frequent temporary errors in non-critical systems to rare 53 

but catastrophic hardware damage and complete mission failure (Galvan et al., 2014) and can be 54 

instigated by a number of issues, such as command errors, manufacture flaws, and 55 

environmental exposures. Of all space environment effects on satellites, electrostatic discharges 56 

from internal charging have been reported to cause the most anomalies (Green et al., 2017; 57 

Koons et al., 1999).  58 

Improved on-orbit anomaly detection tools have been cited by satellite operators as an 59 

industrial need for operators to easily and quickly attribute anomalies to space weather effects 60 

(Green et al., 2017). To attribute satellite anomalies to internal charging of equipment requires 61 

forensic reconstruction of the radiation environment and modelling of charge accumulation on 62 

component hardware, such as satellite shielding materials, for defined orbits (LEO, MEO, GEO). 63 

The Satellite Charging Assessment Tool (SatCAT) is one such tool which allows users to monitor 64 

the real time and long-term effects of internal charging due to fluence of radiation belt 65 

electrons. This paper will evaluate the Radiation Belt Forecasting Model and Framework (RBFMF) 66 

which SatCAT uses to specify the radiation environment both retrospectively and in real-time.  67 

Several models have been developed to model the near-Earth radiation environment based 68 

upon the Van Allen radiation belt response to solar wind parameters and/or geomagnetic 69 

indices. These models usually fall within three categories; empirically based analytical 70 

descriptions (e.g., X. Li, 2004; Nagai, 1988; Roeder et al., 2005; Turner & Li, 2011), physics-based 71 

models (e.g., Horne et al., 2013; Subbotin & Shprits, 2009), and machine learning models (e.g., 72 
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Boyd et al., 2023; Chen et al., 2019; Wei et al., 2018). Statistical approaches to modelling the 73 

radiation belt have shown success at identifying the key variables which influence radiation belt 74 

flux on different timescales. However, statistical approaches do not capture some extreme 75 

events, and could be flawed if they cannot reflect the non-linear relationship between input 76 

variables are output electron fluxes. While physics-based modelling allows the study of relative 77 

contributions of complex acceleration and loss mechanisms in the outer radiation belt, the 78 

computational power required to accurately model the interconnected magnetospheric system 79 

on an hourly basis provides a significant challenge. Machine learning models have predicted 80 

ultra-relativistic electron fluxes with high efficacy but show less accuracy at predicting lower 81 

energy fluxes (Camporeale, 2019; Shin et al., 2016) but, similarly to statistical modelling, could 82 

have limited capabilities for extreme event which are out of sample to training data.  83 

By combining physics-based modelling with data assimilative techniques, RBFMF provides a 84 

lightweight and robust tool for real time radiation belt forecasting. This framework uses 1D 85 

Kalman filtering technique which has previously been shown through event-based studies to be 86 

a successful tool for reproducing the radiation belts (e.g., Coleman et al., 2018; Daae et al., 2011; 87 

Kellerman et al., 2014). This work will investigate the performance of this forecasting 88 

methodology by completing a detailed statistical evaluation of RBFMF over archived multi-year 89 

dataset of hindcasts. We aim to assess how data assimilation affects the error and bias of 90 

radiation belt forecasts, and the influence of variable geomagnetic conditions. In this way, we 91 

will identify how the RBFMF may be adapted in the future for improved hindcast reliability.  92 

2 Radiation Belt Forecasting Model and Framework  93 

The radiation belt forecast framework (RBFMF) is designed to combine physics-based modelling 94 

with data assimilative techniques to provide forecasts, nowcasts, and hindcasts of the radiation 95 

environment in real-time. This framework is based upon an existing data assimilative models 96 

developed by Kellerman et al. (2014) and Shprits et al. (2013), and has been further developed to 97 

provide a more robust forecasting infrastructure which provides data products which are 98 

integrated into the SatCAT tool. The implementation of this framework is summarized in Figure 99 

1. 100 
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 101 

Figure 1 Flow chart summarizing the steps completed each hour in the RBFMF. 102 

Diffusive Modelling 103 

Radiation belt diffusion is modelled through implementation of the 3-D Fokker-Plank diffusion 104 

equation for radiation, Equation 1, (Roederer, 1970; Schulz & Lanzerotti, 1974; Walt, 1994).  105 

 106 

 
𝜕𝑓

𝜕𝑡
 =  ∑

𝜕

𝜕𝐽𝑖
(𝐷𝐽𝑖𝐽𝑗

𝜕𝑓

𝜕𝐽𝑗
)

𝑖,𝑗

− 𝐿𝑜𝑠𝑠𝑒𝑠  Equation 1 

Where 𝑓 is the phase averaged electron phase space density (PSD), 𝐽𝑖 , 𝐽𝑗 , represent the first, 107 

second, and third adiabatic invariants of adiabatic motion (μ, J, Φ respectively), and diffusion 108 
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coefficients 𝐷𝐽𝑖𝐽𝑗
=  〈∆𝐽𝑖∆𝐽𝑗〉 (2∆𝑡)⁄  which denote the scattering rates (𝐷𝜇𝜇 , 𝐷𝐽𝐽, 𝐷ΦΦ). In this paper 109 

we will use K (∝ 𝐽 assuming μ is conserved) as the second adiabatic invariant and L* (∝ 1/Φ) as 110 

the third adiabatic invariant (noting that L* = L in a dipolar magnetic field). The Versatile Electron 111 

Radiation Belt (VERB) code (Subbotin & Shprits, 2009) is used to implement a solution to this 112 

equation using precomputed diffusion coefficients. 113 

Diffusion Coefficients 114 

By precomputing diffusion matrices, the diffusion equation can be solved quickly at each time 115 

step by selecting diffusion coefficients for the prevailing Kp level. Mixed local diffusion terms are 116 

excluded, which enables larger grid steps. Three types of waves were used to derive the 117 

diffusion coefficient matrices; ULF waves (Brautigam & Albert, 2000), lower-band chorus (W. Li et 118 

al., 2007; Shprits et al., 2007) and plasmaspheric hiss (Spasojevic et al., 2015). The plasma density 119 

was obtained from (Sheeley et al., 2001) for diffusion coefficient computation. The diffusion 120 

coefficients were computed using the Full Diffusion Code at UCLA.  121 

Initial and Boundary Conditions 122 

Diffusion is solved for a dipolar magnetic field with a grid covering L-shells 1 to 7, energies 10 123 

keV to 10 MeV, and pitch angles 0.3 o - 89.7o. The upper boundary condition in energy is a 124 

Dirichlet boundary with constant 𝑓 = 0, the lower-boundary condition is also Dirichlet for each 125 

time step, although updated by assimilation. The lower boundary condition in pitch angle is a 126 

Neumann boundary 𝜕𝑓 𝜕𝛼⁄ = 0, to allow for both weak and strong diffusion effects to be 127 

simulated. The upper boundary condition in L utilizes both Dirichlet and Neumann boundaries, 128 

depending on the last closed drift shell (LCDS) derived from Tsyganenko (1989) with a centered 129 

dipole (see Kellerman, 2018). The lower boundary in L is a Dirichlet boundary, with 𝑓 = 0 at 𝐿𝑚𝑖𝑛, 130 

representing loss to the atmosphere. 131 

The model was initialized through the average PSD observed by spacecraft from the previous 132 

month. For each additional forecast going forward through several years, the initial condition of 133 

each time step is set to the nowcast simulated for the previous hour.  134 
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Data Assimilation 135 

Data assimilation uses filtering algorithms to estimate the state of a system using joint 136 

probability distributions from a simulated system and sparsely observed data. The Kalman Filter 137 

(Kalman, 1960) is a widely used data assimilation algorithm which estimates the system state by 138 

minimizing the mean square errors of the simulated state variables and observed state variables. 139 

Readers are referred to past works for detailed descriptions the Kalman filter to radiation belt 140 

analysis (e.g., Kondrashov et al., 2007; Naehr & Toffoletto, 2005; Ni et al., 2009; Shprits et al., 141 

2007). Because the computational requirements of a 3D Kalman filter are very large, making it 142 

impractical for real time applications, the RBFMF instead employs a one-dimensional split-143 

operator Kalman filter. This methodology has been validated in a synthetic-forecast analysis over 144 

multiple years (Kellerman, 2018). Due to several unknown errors in the model and real-time 145 

observational datasets, the errors were set equal for data and model.  146 

2.1 Observations 147 

Figure 2 shows how the modelled radiation belt PSD compares to the multi-mission PSD 148 

observations (described further in Section 3). The nowcast time is indicated in Figure 2 by the 149 

white line, with the preceding eight days showing hindcast PSD, and the following two days 150 

show the PSD forecast. By comparing the modelled PSD in Figure 2a to the measured PSD in 151 

Figure 2b, we can see that the RBFMF is highly successful at reproducing the structure and 152 

dynamical evolution of the radiation belt in this example. The magnitude of the radiation belt 153 

flux is well captured overall, although when the observed PSD became enhanced up to ~ 15 x 154 

10-5 (c/cm/MeV)3 at 5 < L* < 6 between 6-9th August, the hindcast PSD appeared to be slightly 155 

underestimated. Figure 2c shows that the percentage error was < 100% for most of the interval 156 

(i.e., PSD was estimated within a factor of 1 during the interval), but became largest (> 200%) 157 

near the outer boundary (L* > 6) as electrons were lost on 3rd August, and along the inner edge 158 

of the radiation belt (4 < L* < 5) during the enhancement between 4th to 7th August.  159 

While the interval in Figure 2 appears to show that the RBFMF is a good representation of the 160 

outer radiation belt, we must quantitively evaluate the performance of the model to determine if 161 

it is accurate over long time periods, and identify when the simulation is inaccurate so that it can 162 
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be improved. We will test the RBFMF against the observed state of the electron radiation belt for 163 

two time periods between 2016 - 2018 and between 2019 - 2020. The key difference between 164 

these years is than between 2016-2018 both GOES and Van Allen Probe data were assimilated 165 

into the hindcast in real time, whereas from 2019 onwards, only GOES data was assimilated in 166 

real time. 167 

 168 

Figure 2 The simulated state of the radiation belt, 𝒇𝒔𝒊𝒎, at 00 UT on 10th August 2017 is 169 

displayed in panel (a) as a function of L* over time, for μ = 700 MeV/G and K = 0.1 G0.5RE. 170 

Panel (b) shows corresponding PSD observations, 𝒇𝒐𝒃𝒔, taken by multiple missions. Panel 171 

(c) shows the absolute percentage error of the simulated PSD:|𝒇𝒐𝒃𝒔 − 𝒇𝒔𝒊𝒎 𝒇𝒔𝒊𝒎⁄ | × 𝟏𝟎𝟎. 172 

3 Validation Method 173 

In this analysis, the RBFMF will be validated against a multi-mission dataset of radiation belt 174 

observations (described in Section 3.1), which serves as the ‘true’ state of the radiation belt. The 175 

error and bias of the radiation belt hindcast of electron phase space density (PSD) is analyzed in 176 
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adiabatic coordinates. To do this, the observed PSD (described in Sections 3.1) is converted onto 177 

the same resolution coordinate grid as the simulated PSD by interpolating across the first and 178 

second adiabatic invariants, μ and K, then averaging PSD into L* bins on an hourly basis. The 179 

quotient (𝑄𝑖 =  𝑓𝑠𝑖𝑚 𝑓𝑜𝑏𝑠⁄ ) of each simulation data point can then be determined if there is a 180 

corresponding PSD observation.  181 

The statistical error and bias of the 10-hour hindcast is calculated between January 2016 – 182 

October 2019 and between March 2019 – December 2020. Special focus is given to the 10-hour 183 

hindcast (dashed line, Figure 2a) because this is the most frequently used by satellite operators 184 

for anomaly attribution.  Error and bias are quantified using symmetric metrics described by 185 

Morley et al. (2018), which account for variable electron PSD magnitudes. The median symmetric 186 

accuracy (MSA) is described in Equation 2 and the symmetric signed percentage bias (SSPB) is 187 

described in Equation 3, where M() symbolizes the median calculation. In this scheme, the MSA 188 

is small if simulation errors are low, SSPB < 0 if the hindcast is biased towards underprediction 189 

of PSD, and SSPB > 0 if the hindcast is biased towards overprediction of PSD.  190 

 𝑀𝑆𝐴 =  100 (exp ( M(| log𝑒(𝑄𝑖) |) − 1 ) Equation 2 

 191 

 𝑆𝑆𝑃𝐵 = 100 sgn(𝑀(log𝑒(𝑄𝑖)))(exp ( M(| log𝑒(𝑄𝑖) |) − 1 )  Equation 3 

   

3.1 Multi-Mission PSD Observations 192 

PSD observations are taken from 32 individual satellites which are part of 5 different scientific 193 

missions and hosted payloads (see Staples et al., 2022; Staples et al., 2023 for usage of this 194 

dataset): 195 

• Van Allen Probe Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron-196 

Proton Telescope (REPT) instruments (Baker et al., 2014; Blake et al., 2014). 197 
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• GOES 13 and15 (Geostationary Operational Environmental Satellite) Magnetospheric 198 

Electron Detector (MAGED) Energetic Proton, Electron, and Alpha Detector (EPEAD) 199 

(Rodriguez, 2014a, 2014b; Sillanpää et al., 2017). 200 

• GPS (Global Positioning System) Navstar Combined X-ray dosimeter (CXD) (Morley et al., 201 

2017; Tuszewski et al., 2004). 202 

• THEMIS (Time History of Events and Macroscale Interactions during Substorms) 203 

Electrostatic Analyzer (ESA) and Solid-State Telescope (SST) (Angelopoulos, 2008; 204 

Angelopoulos et al., 2008; McFadden et al., 2008). 205 

• MMS (Magnetospheric Multiscale) Fly's Eye Electron Proton Spectrometer (FEEPS) (Blake 206 

et al., 2016; Burch et al., 2016). 207 

All spacecraft data is calibrated to Van Allen Probe B and bias-corrected GOES 15 data, which 208 

are chosen as the “gold standards” for the calibration. The GPS pitch angle distributions are 209 

assumed using the Zhao et al. (2018) model. For each spacecraft instrument, the adiabatic 210 

invariants μ, K, and L* are computed using a model magnetospheric field, represented by the 211 

International Geomagnetic Reference Field model (IGRF; Thébault et al., 2015) and Tsyganenko 212 

(1989) external magnetic field model (T89). The final PSD dataset is interpolated across 213 

dimensions of μ and K, but not across L* or time.  214 

4 Validation Results 215 

4.1 Original Forecast Framework (2016-2018) 216 

Figure 3 shows the MSA, SSPB, and number of samples, N, calculated for the 10-hour hindcast of 217 

radiation belt PSD as a function of the first and second adiabatic invariants, μ and K at three 218 

sampled L*. The L* values shown in Figure 3 are selected to represent trends in error and bias 219 
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observed in the slot region (~ L* = 2.44), the core of the outer radiation belt, and the outer 220 

radiation belt near medium earth orbit (~ L* = 4.12) and at geostationary orbit (~ L* = 6.04).  221 

 222 

Figure 3 Left column shows the statistical error (MSA) of the 10-hour hindcast between 223 

2016-2018, shown by color as a function of μ and K for a sample of simulated L* = 2.44, 224 

4.12, and 6.04. The middle column shows statistical bias (SSPB) in the same format, and 225 

right column shows the number of samples N used in the computation of MSA and SSPB.  226 

We observe a large variance in the MSA and SSBP across the different L* regions. At L* = 2.44 the 227 

maximum percentage error was 350%, and the maximum bias was 250%. At L* = 2.44, electrons 228 

are generally located inside the overlapping plasmasphere and slot region, so the large positive 229 

bias indicates that the model systematically overestimated the PSD in the slot region. It is because 230 

electron PSD is generally very low at L* < 4, that comparatively small absolute differences in PSD 231 

create large errors and bias relative to the measured PSD.   232 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Error Bias Sample Size
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In the outer radiation belt region (L* > 4) the error and bias were much smaller than the slot 233 

region, reaching a maximum of 150% percentage error and -150% bias. This indicates that 234 

statistically the hindcast accurately predicted the outer radiation belt PSD to within a factor of 1.5. 235 

Moreover, the hindcast error and bias was highly dependent upon μ and K.  236 

At L* = 4.12 the greatest errors were found to reach 150% corresponding to the highest 237 

measured μ values depending on K (i.e., highest energies, ~ multi-MeV) and was 238 

correspondingly biased toward underestimation of PSD by ~120%. At lower μ values (which 239 

correspond to the bulk of the radiation belt plasma population) the hindcast showed a statistical 240 

overestimation of PSD by 70% or less, showing that the hindcast predicted the core outer belt 241 

PSD to within a factor of 0.7. The hindcast error and bias showed similar trends at L* = 6.04: The 242 

highest errors were observed at the highest measured μ (highest energies) with a negative bias 243 

> -100%, and at lower μ the hindcast overestimated PSD by up to 70%. In addition to these 244 

error and bias relationships, at L* = 6.04 there was a strong error of 150% and bias of -150% 245 

observed at μ < 100 MeV/G. This population corresponds to lower energy < 300 keV electron 246 

populations. To ensure that error and bias is not dependent upon hindcast hour, the same 247 

analysis was completed for different hindcast hour, and no appreciable differences were 248 

observed.  249 

The following analysis discusses the source of the statistical hindcast error and bias and 250 

evaluates the accuracy of the hindcast under different geomagnetic conditions.  251 

4.1.1 Assimilated Data Bias 252 

One potential source of error in the model hindcast is assimilated data bias. Between 2016-2018 253 

the assimilated datasets were real time GOES data, and the Van Allen Probe Beacon data. 254 

Because the assimilated GOES data is similar to the final science data product, it is not 255 

informative to evaluate the bias of this data. The Van Allen Probe beacon data was provided in 256 

real time over the Van Allen Probe mission without the same corrections and post-processing as 257 

the long-term science data archive, and so is possibly more prone to errors. To assess if the 258 

error and bias of assimilated PSD observations influenced the hindcast PSD, we will evaluate the 259 

error and bias of the Van Allen Probe Beacon data (Figure 4) and compare the hindcast error 260 
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and bias (Figure 3). The error and bias of Van Allen Probe beacon data is quantified by 261 

calculating the MSA and SSBP respectively using Equation 2 and Equation 3, where the quotient 262 

is calculated as 𝑄 =  𝑃𝑆𝐷𝐵𝑒𝑎𝑐𝑜𝑛 𝑃𝑆𝐷𝐹𝑖𝑛𝑎𝑙⁄ , and 𝑃𝑆𝐷𝐹𝑖𝑛𝑎𝑙 is the science data product from the 263 

same Van Allen Probe. This analysis effectively shows the differences between the real time data 264 

product and the more highly processed science data as a function of μ, K, and L*.  265 

 266 

Figure 4 Left column shows the statistical error (MSA) and middle column shows the 267 

statistical bias (SSPB) of the Van Allen Probe B beacon data between 2016-2018, 268 

compared to the final Van Allen Probe science data. Right column shows the number of 269 

data samples N used in the computation of MSA and SSPB. Error, bias, and sample size are 270 

all shown by color as a function of μ and K at sampled bins of L* = 2.44; 4.12; 6.04 which 271 

were chosen to match the hindcast model grid. 272 

Figure 4 shows that universally (i.e., all L*, μ, and K), the error and bias for Van Allen Probe 273 

beacon data was greater than the hindcast error and bias (Figure 3). For example, at L* = 2.44, 274 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Error Bias Sample Size
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both the error and bias of beacon data reached > 800%, whereas the maximum hindcast error 275 

and bias were ~ 350% and ~250% respectively. The magnitude difference in error and bias was 276 

less significant at L* = 4.12, which reached a maximum of 200% error and -200 % respectively.  277 

Despite differences in magnitude, we highlight that the error and bias observed for Van Allen 278 

Probe beacon data (Figure 4) was nearly identically distributed across μ, K, and L* compared to 279 

the 10-hour hindcast error and bias. For example, at L* = 4.12, the maximum errors were at the 280 

highest μ values across all K, and were negatively biased, transitioning to a positive bias at low μ 281 

values. This observation shows that the assimilated data significantly influenced the error and 282 

bias of the hindcast. Though, because the magnitude of the hindcast error and bias was less 283 

than the assimilated data, the simulated hindcast gave a significantly improved estimation of 284 

radiation belt PSD than if Van Allen Probe beacon data was used alone. 285 

4.1.2 Storm-time Error Analysis 286 

Knowing how well the model captures the radiation belt evolution during different geomagnetic 287 

conditions is of particular interest because most impacts to satellites are observed during 288 

geomagnetically active periods. To analyze how the statistical error and bias varies with 289 

geomagnetic conditions, we extract geomagnetic storm intervals between 2016-2018 based 290 

upon Sym-H index evolution. A storm is identified by time periods where Sym-H decreased 291 

below -40 nT. The main storm phase is classified from intervals when Sym-H decreased from a 292 

value above 15 nT, to a Sym-H minimum below -40 nT. The recovery storm phase is classified 293 

from when the Sym-H increased after the main storm phase, until it reached a value above -15 294 

nT. We further select times during geomagnetic storms when the AE index was in the upper 80% 295 

percentile of data. High AE index periods are known to be associated with substorm injections of 296 

lower energy source electrons from the magnetotail into the inner magnetosphere, and AE index 297 

values exceeding 150 nT have previously been used as a proxy for substorm injections (e.g., 298 

Meredith et al., 2000). As before, we calculate the statistical error and bias of each storm phase 299 

using Equation 2 and Equation 3. Figure 5 and Figure 6 show how the computed error and bias 300 

varied under different geomagnetic conditions at L* = 4.12 and L* = 6.04, respectively. To easily 301 

compare between geomagnetic conditions, the color bars have been saturated to ± 200%. We 302 



Manuscript submitted to Space Weather 

 
15 

do not show the equivalent figure for L* = 2.44 as no substantial differences between storm 303 

phases were observed.  304 

Firstly, we observe from Figure 5 that the statistical error and bias under geomagnetically quiet 305 

conditions were effectively the same as for all data between 2016-2019 shown in Figure 3.  This 306 

indicates that the overall statistical error and bias for the hindcast at L* = 4.12 was not 307 

influenced by increased error or bias during geomagnetic variations. Figure 5 g-h show that high 308 

μ values (highest energies ≥ MeV) appear least accurate and most biased during the recovery 309 

storm phase (and during substorm injections) as MSA increased to 200% at the highest μ values 310 

(panel g), and SSPB decreases to -200% (panel h). This indicates that, during the recovery phase, 311 

the hindcast underestimated the PSD of MeV electrons, which is understood to become 312 

enhanced during this phase (e.g., Jaynes et al., 2015; K. R. Murphy et al., 2018; Sorathia et al., 313 

2018). Conversely, PSD of low μ electrons (≲ 700 keV for) is less accurate during the main storm 314 

phase (panel d), and during substorm related injections (panel j-k). In both cases the error is 315 

observed to reach 200% and the hindcast was biased towards underestimation of PSD down to -316 

200%.  Figure 5 shows that the hindcast consistently underestimated PSD across all storm 317 

conditions at L* = 4.12, for all μ and K. 318 

Similarly, Figure 6 shows that at L* = 6.04, quiet times exhibited the same statistical error and 319 

bias as the overall time period (Figure 3), and PSD of high μ (energies ≥ MeV) were the least 320 

accurate and most biased during the recovery phase of the storm (Figure 6 g-h). However, 321 

Figure 6d shows that, irrespective of μ, the largest overall errors were observed at low K (i.e., 322 

equatorial electrons) during the main storm phase. Given Figure 6e shows a bias towards 323 

overestimation of PSD at these K, and that L* = 6.04 is near geostationary orbit, it is possible 324 

that loss to the outer boundary was not well captured by the hindcast. Figure 6j also shows large 325 

hindcast errors for μ <500 MeV/G, and bias towards underestimation of PSD by up to -200%. 326 

Since this feature was most prominent during storms with the highest AE index, we expect these 327 

errors were caused by substorm injections of lower-energy (<500 keV) electrons.  328 
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 329 

Figure 5 Left column shows the statistical error (MSA) and middle column shows the 330 

statistical bias (SSPB) of the 10-hour hindcast between 2016-2018, compared to the final 331 

multi-mission PSD observations. Right column shows the number of data samples N used 332 

in the computation of MSA and SSPB. Error, bias, and sample size are all shown by color 333 

as a function of μ and K at sampled bins of L* = 4.12. Each row shows error and bias under 334 

different geomagnetic conditions a-c are quiet times, d-f are the main storm phase, g-I 335 

are the recovery storm phase, and j-I show storm intervals which contain substorm 336 

injections.  337 
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 338 

Figure 6 Statistical error and bias under different geomagnetic conditions, sampled at L* = 339 

6.04 is shown in the same format as Figure 5.  340 

4.2 Updated Forecast Framework (2019-2020) 341 

Since the end of the Van Allen Probe mission in early 2019, the RBFMF has been operating by 342 

assimilating only GOES observations in real time. To assess how this affected the accuracy of the 343 

10 hour hindcast, we repeat the analysis presented in the previous section, comparing the 10 344 

hour hindcast at L* = 4.2 to PSD observations obtained from the GPS constellation between 345 

March 2019 – December 2020 (Figure 7). Since the real-time GOES data assimilated into the 346 
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hindcast model is similar to the final science data product, it is not meaningful to complete an 347 

error analysis at geostationary orbit using this data.  348 

Figure 7 shows that the hindcast error and bias at L* = 4.12 were significantly increased 349 

compared to the Van Allen Probe era (Figure 3), reaching maxima of > 2000%, which is a factor 350 

of 10 greater than was observed between 2016-2018. The hindcast was strongly biased towards 351 

overestimation of PSD at all μ and K values by similar magnitudes to the error, which suggests 352 

that the model could be improved by the inclusion of a corrective factor. It is important to note 353 

that GPS satellites do not resolve electron flux by pitch angle, so an assumed pitch angle 354 

distribution is used to calculate PSD as a function of μ, K, and L*. It is possible that error and bias 355 

determined at L* = 4.12 were affected by the assumed pitch angle distribution used in GPS data 356 

processing, rather than actual errors in the hindcast. Another dataset of PSD observations which 357 

are pitch angle resolved is needed to test if this is the case (e.g., ARASE).  358 

We emphasize that the diffusive simulation driving the hindcast provided a good first 359 

approximation of radiation belt dynamics, but is somewhat rudimentary as simplified diffusive 360 

modelling was employed. However, we chose not to modify the forecast model until a 361 

comprehensive analysis of hindcast performance was conducted. Since less observational data is 362 

now available to constrain the hindcast via data assimilation, the diffusion simulation should be 363 

improved by updating the precomputed diffusion coefficients using more modern 364 

methodologies of representing Chorus (e.g., Wong et al., 2024), Hiss (e.g., Agapitov et al., 2020; 365 

Watt et al., 2019 ), and ULF waves (e.g., Kyle R. Murphy et al., 2023). The diffusive effects of EMIC 366 

waves could also be incorporated (e.g., Ross et al., 2020) to improve the representation of 367 

electron loss in the inner magnetosphere. 368 
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 369 

Figure 7 Statistical error (MSA, panel a) and bias (SSPB, panel b) are of the 10-hour 370 

hindcast in 2019-2020 are shown as a function of μ and K at L* = 4.12. The number of data 371 

samples, N, is shown in the panel c.  372 

5 Summary 373 

We have conducted a comprehensive assessment of the accuracy and bias of the Radiation Belt 374 

Forecasting Model and Framework, which is used to specify the real-time radiation environment 375 

in the Satellite Charging Assessment Tool. Historical hindcasts were compared to observations 376 

of the radiation belt by computing the statistical errors and bias between the years January 2016 377 

– October 2018 while the Van Allen Probes remained in operation, and between March 2019 – 378 

December 2020 following the end of the Van Allen Probe mission.  379 

The hindcast was found to be accurate to within a factor of 1.5 in the outer radiation belt (4 < L* 380 

< 7) during the years when the Van Allen Probe data was assimilated into the model (Figure 381 

3d,g). We identified that the statistical hindcast bias was predominantly introduced by the 382 

assimilated Van Allen Probe data, which displayed the same dependence of bias upon μ and K 383 

(Figure 4). Analysis of geomagnetic storms between 2016-2018 also revealed increased hindcast 384 

error and bias compared to quiet times at L* > 4. The most energetic electrons (> MeV) were 385 

more likely to be underestimated by the hindcast during storm recovery phase (Figure 5), error 386 

increased for equatorial electrons at L* ~ 6 during the main storm phase (Figure 6d), and the 387 

hindcast underestimated lower energy electrons (< 500 keV) related to substorm injections 388 

(Figure 6j).  389 
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We have shown that the hindcast was much more accurate at predicting PSD than if the Van 390 

Allen Probe beacon data was used alone (Figure 4). Moreover, we found that the Van Allen 391 

Probe beacon data played a crucial role in constraining hindcast simulation between 2016-2019 392 

as the hindcast error and bias increased tenfold when the Van Allen Probe data was no longer 393 

available (2018-2020). This highlights that combining coarsely processed data with physics-394 

based modelling through data assimilation can improve the accuracy of radiation environment 395 

specification than either method used alone. 396 

6 Future Work 397 

Our analysis has emphasized the importance of real-time observations at multiple locations 398 

through the outer radiation belt. Even though the beacon Van Allen Probe data contained 399 

significant error and bias compared to the final processed data, assimilation of these 400 

observations into the RBFMF considerably improved the simulation compared to times where it 401 

was not assimilated. Furthermore, we showed that data assimilative techniques displayed 402 

reduced error and bias compared to the real time observations which were coarsely processed 403 

compared to final processed science data. Since the end of the Van Allen Probe mission, there 404 

are no similar observations available as the currently operational observatories (e.g., GPS, 405 

ARASE) do not provide publicly available data in real time. We emphasize that any provision of 406 

real time observations from existing or new missions enhance the operational impact of data, 407 

even if it is sub-optimally processed compared to science quality data. Furthermore, analysis of 408 

real-time data errors, analogous to our analysis of beacon Van Allen Probe data, can be used to 409 

inform the observational uncertainties used during data assimilation simulations.  410 

In lieu of real-time observations to constrain this stimulation through the heart of the radiation 411 

belt, our analysis has highlighted key areas in which the physics simulation could be improved. 412 

Overestimation of PSD in the plasmasphere could be addressed by evaluating more recent 413 

diffusion coefficients computed for Plasmaspheric Hiss (e.g., Agapitov et al., 2020; Watt et al., 414 

2019). Improved representation of electron loss at geostationary orbit during the storm main 415 

phase could be incorporated by using a dynamic outer boundary of the simulation (Bloch et al., 416 

2021; Staples et al., 2020) and evaluating new radial diffusion coefficients (Kyle R. Murphy et al., 417 
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2023). Updating the radial diffusion coefficients could also improve hindcast with sparse real-418 

time data by accurately propagating the effects of assimilated data across L*. Underestimation 419 

of ultra-relativistic electrons during the storm recovery phase could be improved by updating 420 

energy diffusion through new parameterizations of Chorus waves (e.g., Wong et al., 2024). 421 

Furthermore, substorm injections of lower energy electrons are necessary, and could be 422 

incorporated through updates to the simulation boundaries. Continued development of the 423 

physics-based simulation is ongoing so that new versions of the RBFMF can be provided with 424 

improved hindcast accuracy.  425 
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