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Key Points: 13 

 Introduces Spatio-Temporal Homogeneity metric to effectively track comprehensive 14 
changes in storm characteristics across both space and time. 15 

 Rising temperature results in “smaller and peakier” storms in the tropics, intense 16 
precipitation burst in smaller area over shorter duration. 17 

 Rising temperatures leads to front-loaded storms, notably in tropics and southern 18 
temperate regions, potentially increasing flash flood risk  19 
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Abstract. 20 

 21 

Climate change induces significant changes in storm characteristics, particularly for short-22 

duration extreme storms, impacting their intensity and spatio-temporal distribution. Although 23 

alterations in precipitation intensity are well documented, past studies examining changes in 24 

spatio-temporal distribution of storms were region-specific and focused on isolated aspects of 25 

change in space or time, eluding a comprehensive understanding of the precise nature and extent 26 

of these changes. Bridging this gap, this study introduces a novel grid-based measure of storm 27 

homogeneity, the spatio-temporal homogeneity and investigates the global patterns of change in 28 

combined spatio-temporal characteristics of short duration extreme storms. Analyzing the 30min 29 

X 0.1° X 0.1° resolution Global Precipitation Measurements, the study finds that extreme storms 30 

are shrinking in both space and time due to rising surface air temperatures, predominantly in 31 

tropics. In contrast, temperate regions experience expanded extreme storms with increasing 32 

temperatures. The study also identifies a global prevalence of front-loaded storms with rising 33 

temperatures, driven by a substantial increase in tropics and southern temperate regions. 34 

Conversely, storms in northern temperate regions become uniform or slightly rear-loaded as 35 

temperature increases. Furthermore, the study finds that characteristics of short–duration storms 36 

(6–12 hours) are more sensitive to temperature changes. Overall, this study contributes valuable 37 

insights into the global spatio-temporal changes of short duration extreme storms, highlighting 38 

regions most susceptible to alterations in storm patterns due to climate change. These findings 39 

are essential for developing effective adaptation strategies and flood management practices to 40 

cope with the changing nature of extreme storms in a warming climate. 41 

  42 
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1 Introduction. 43 

Changes in intensity and frequency of rainfall have significant implications for ecosystem 44 

services, water resources availability and agricultural production. Accumulating evidence points 45 

towards an increase in intensity and frequency of extreme precipitation events within a warming 46 

climate along with a change in its distribution in time and space (Fischer & Knutti, 2016; 47 

Guerreiro et al., 2018; Masson-Delmotte et al., 2021; Wang et al., 2017; Wasko et al., 2023; 48 

Westra et al., 2014). This trend raises legitimate concerns as floods may become potentially 49 

more frequent and severe (Sharma et al., 2018; Wasko & Nathan, 2019). In a warming climate, 50 

the intensity of extreme precipitation will increase in line with the rise in atmospheric moisture, 51 

as governed by the Clausius-Clapeyron relation (CC rate). However, some regions, particularly 52 

tropics and subtropics have experienced even greater increases in precipitation intensity than 53 

what can be accounted for by the CC rate (Berg et al., 2009; Emori & Brown, 2005; Fowler et 54 

al., 2021; J. B. Visser et al., 2021). This phenomenon, known as super CC scaling (>CC rate), is 55 

particularly prominent for sub-hourly or sub-daily short duration precipitation extremes (Berg et 56 

al., 2013; Fowler et al., 2021; Lenderink & van Meijgaard, 2008; Mishra et al., 2012). The super 57 

CC scaling is hypothesized to be a result of change in storm dynamics as dictated by the changes 58 

in spatial and temporal signatures of storms (Collins et al., 2013; Fowler et al., 2021; Lenderink 59 

& van Meijgaard, 2008). 60 

To understand the changes in precipitation under rising temperatures, numerous recent 61 

studies have investigated the intensification of spatial and temporal patterns of precipitation. 62 

Wasko and Sharma (2015) investigated the correlation between temperature and the temporal 63 

patterns of precipitation with varying durations across Australia. Their findings revealed that 64 

higher temperatures are associated with less uniform temporal patterns of precipitation, 65 

characterized by more intense peak precipitation and weaker precipitation during less intense 66 

periods (Figure 1a). This phenomenon of a "peakier" temporal pattern was particularly 67 

pronounced in tropical regions and was amplified with increased durations of storm. This peakier 68 

temporal pattern was also linked to a decrease in the storm volume, possibly because the storms 69 

analyzed became shorter in duration as temperature increased. Another study (Long et al., 2021) 70 

analyzed complete precipitation events across humid region of China using a temporal 71 

concentration index (TCI), and found similar patterns of temporal concentration of precipitation 72 

as temperatures increased within a range of 5-24°C before plateauing at higher temperatures.  73 
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Some other studies focused on analyzing changes to the spatial patterns of precipitation 74 

(Figure 1b). The effect of temperature on the spatial extent of extreme storms can vary 75 

depending on the study region, type of storm and duration of precipitation extreme. While some 76 

studies show an increase in spatial extent with rising temperature (Bevacqua et al., 2021; Chen et 77 

al., 2021; Lochbihler et al., 2017; Matte et al., 2022), numerous others found a decrease in spatial 78 

extent (Chang et al., 2016; Li et al., 2018; Peleg et al., 2018; Wasko et al., 2016). A recent study 79 

by Ghanghas et al. (2023) found an overall global trend of decrease in spatial extent with 80 

increasing temperature for sub-hourly extreme storms. They also found that spatial extent of 81 

storms in Arid regions and parts of central Europe increased with increasing temperature. Similar 82 

trends of decreasing spatial extent with temperature were observed for humid regions in China 83 

using spatial concentration index (SCI)(Long et al., 2021) 84 

It is worth noting that the studies investigating changes in spatial and temporal patterns of 85 

precipitation have typically focused purely on either spatial changes or temporal changes, 86 

without providing a comprehensive analysis of changes in both space and time. Even Long et al. 87 

(2021), in their attempt to analyze the spatio-temporal structure of precipitation events, employed 88 

two separate metrics to assess changes in spatial structure and temporal structure independently. 89 

This fragmented approach limits our understanding of the holistic changes occurring in 90 

precipitation patterns in response to rising temperatures. Furthermore, while these studies 91 

suggest a spatial and temporal intensification of the events, they fail to preserve the natural 92 

spatio-temporal structure of the event itself and provide no information on lateral shift (or “event 93 

loading”) in precipitation. The timing of occurrence of bulk precipitation or “event loading”, is 94 

one of the defining characteristics of spatio-temporal distribution of the precipitation storm and 95 

can play a key role in design flood estimation (Fadhel et al., 2018; Hettiarachchi et al., 2018; J. 96 

Visser et al., 2023). Visser et al. (2023) used a novel D50 approach to analyze the changes in 97 

event loading of temporal patterns for extreme storms in Australia. They found that rising 98 

temperatures leads to a distinct shift towards increased front-loaded temporal patterns of 99 

precipitation, particularly in tropical regions. However, this study was limited to storms in 100 

Australia and focused on event loading with respect to only temporal patterns of precipitation. 101 

The effect of climate change on “event loading” in terms of changes in both space and time has 102 

not been explored in past studies.  103 
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While mounting evidence supports the increase in intensity and frequency of extreme 104 

storms in a warming climate, there is a lack of holistic understanding of changes in spatio-105 

temporal patterns of these storms. Such insights about the spatio-temporal pattern of storms are 106 

pivotal for accurate flood behavior simulation (Gao & Fang, 2019; Ogden & Julien, 1993; Shah 107 

et al., 1996; V. P. Singh, 1997). Consequently, this deficiency in understanding the nuanced 108 

spatio-temporal shifts within storms has resulted in very little knowledge on how hydrological 109 

applications should accommodate the changes induced from a warming climate. In an effort to 110 

bridge this gap and gain a more comprehensive understanding of the changes occurring in 111 

precipitation patterns, this study investigates the combined changes in spatio-temporal patterns of 112 

extreme precipitation events across the globe. Specifically, the study attempts to answer the 113 

following questions. (i) How can one effectively summarise change in spatio-temporal extent for 114 

an extreme storm, while ensuring this summary is scale independent and comparable across time 115 

and space? ii) How does the spatio-temporal extent of extreme storms change with rising 116 

temperatures? Do storms get more localized and peakier, or do they exhibit more uniformity and 117 

spread in space and time (Figure 1c). iii) Which climatic regions observe peakier and localized 118 

storms as the temperatures rise? iv) How does rising temperature effect the spatio-temporal 119 

distribution (“event loading”) of extreme storms and whether storms get more front-loaded or 120 

rear-loaded in terms of their spatio-temporal distribution (Figure 1d)? v) Is the effect of 121 

temperature on spatio-temporal patterns independent of storm duration? Which durations storms 122 

exhibit highest levels of asymmetry and localization? These objectives are achieved by 123 

introducing a novel metric termed Spatio-Temporal Homogeneity (STH) on the 30-min 124 

Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) dataset. The 125 

metric is based on the Spatial Homogeneity (SH) metric used by Ghanghas et al. (2023) and 126 

follows an enhanced rationale to extend into the temporal dimension. STH quantifies the grid 127 

homogeneity around the extreme storm in both space and time, and can be used to compare 128 

changes in spatio-temporal distribution of extreme storms with different intensities and at 129 

different locations.  130 

  131 
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 132 

 133 
Figure 1 Precipitation distribution of an extreme storm in space and time (3D surfaces) and 134 
individual distribution in space or time (lines) on the 2D projected planes, for conceptual 135 
precipitation events of equal duration. Blue surface and lines represent base storm occurring at 136 
a cooler temperature, Red surface and lines represent intensified storm occurring at a warmer 137 
temperature. a) Traditional temporal intensification with spatial distribution of precipitation 138 
increasing proportionately to increase in peak precipitation. b) Spatial Concentration of 139 
precipitation towards the spatial center of the storm, no temporal intensification/concentration. 140 
c) Temporal intensification along with spatial concentration of the storm, storm concentrating in 141 
both space and time. d) Temporal and spatial concentration of the storm along with a lateral 142 
shift in spatio-temporal distribution of precipitation. 143 
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2 Data and Methods 144 

2.1 Meteorological data 145 

To ensure a comprehensive global analysis of changes in spatio-temporal distribution of 146 

extreme precipitation events, the study utilizes satellite precipitation data from the IMERG 147 

dataset (or Global Precipitation Measurements, GPM), instead of sparsely gauged ground 148 

observations. The use of GPM is motivated by its high spatio-temporal resolution, global 149 

coverage and continuous records from 2000 to present, thus enabling the global assessment of 150 

changes in spatio-temporal patterns. Although it should be noted that GPM tends to 151 

underestimate and under detect low precipitation events, particularly in mountainous and arid 152 

regions; it exhibits improved performance for higher intensity and spatially widespread events in 153 

these regions (Bulovic et al., 2020; Libertino et al., 2016). Additionally, IMERG has been found 154 

to provide a reliable representation of spatial coverage and precipitation intensities (Beck et al., 155 

2019; Lau & Behrangi, 2022; Sungmin et al., 2017; Tan et al., 2018; Wati et al., 2022), 156 

surpassing other satellite and reanalysis products, especially for estimates of hourly and sub-157 

hourly precipitation (Tang et al., 2020).  158 

This study uses IMERG’s high spatial and temporal resolution 3IMERGHH (version 6) 159 

product available at 0.1° X 0.1° spatial resolution and 30-minute time interval (Huffman et al., 160 

2020), from 2005 to 2021. Additionally, hourly 2m surface air temperature available at 0.1° X 161 

0.1° spatial resolution from Earth ReAnalysis Land (ERA5-Land, (Muñoz-Sabater et al., 2021) is 162 

used. ERA5-Land is the land component of the global reanalysis ERA5 data produced by the 163 

European Center for Medium-Range Weather Forecasts (ECMWF). ERA5 combines historical 164 

observations with the Integrated Forecasting System (IFS) Cy41r2 model to produce hourly 165 

outputs of numerous atmospheric, land and oceanic climate variables (Hersbach et al., 2020). 166 

2.2 Extreme storm selection 167 

In order to examine the spatio-temporal structure of extreme precipitation events, events 168 

independent in both space and time must be identified. The process of achieving independence in 169 

both space and time is conducted in three steps. First, temporally independent events are 170 

identified for each grid cell in the GPM dataset. Temporal independence of these events at each 171 

grid cell is ensured by selecting events that are separated by a minimum period of zero rainfall or 172 

minimum inter-event time (IE time). The choice of IE time is crucial, as smaller values limit 173 

intra-event intermittency while larger values ensure event independence. In this study, IE time of 174 
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1hr and 5hr are employed to assess the impact of choosing different IE times on changes in 175 

spatio-temporal structure under warming environments. The IE time also helps determine the 176 

start and end of the event, which is used to estimate the event duration (or storm duration).  177 

Next, from the set of temporally independent events obtained in the previous step, the ten 178 

highest 30-min Annual Maxima Precipitation (30-min AMP) events are selected for each cell in 179 

the GPM dataset. For each of these events, a storm field is defined in the form of a 9-cell grid by 180 

including the cell with the extreme precipitation event and its eight neighboring cells. The 181 

independence of the storm field and consequently the independence of events in space is 182 

enforced by selecting events in which the center pixel of the storm field receives greater 183 

precipitation than the surrounding cells (Ghanghas et al., 2023). The events selected after 184 

completing the first and second steps exhibit discrete independence in space and time. 185 

  Finally, to ensure joint independence in space and time, a condition is imposed. 186 

Specifically, the time of peak of the storm centered in any storm field must not coincide over the 187 

storm duration (the period between start and end of storm event) of a storm centered at any 188 

neighboring cell. For any cell in the GPM data, only one extreme storm with the highest 30-min 189 

precipitation intensity among all events satisfying all these conditions per year is finally chosen 190 

for analysis.  191 

2.3 Spatio-Temporal Homogeneity 192 

Building on the two-dimensional spatial homogeneity (SH) metric (Ghanghas et al., 193 

2023), this study develops a three-dimensional Spatio-Temporal Homogeneity (STH) metric. 194 

STH allows investigation and comparison of changes in spatio-temporal signatures of extreme 195 

storms with varying intensity and at different locations. To evaluate the spatio-temporal 196 

characteristics of  the extreme storm at any grid cell, precipitation is sampled in the storm field (9 197 

cell grid) at seven different time intervals. Assuming, ‘t0’ represents the time of arrival of the 198 

storm peak at center grid cell, precipitation is sampled at three-time intervals before ‘t0’ (9 199 

hours(t-9), 6hours(t-6) and 3 hours(t-3)), at the time of the peak itself, and at three-time intervals 200 

after ‘t0’ (3hours(t+3), 6hours(t+6) and 9 hours(t+9)). Since at each time interval, precipitation is 201 

sampled across the entire storm field (9 cell grid), this results in 63 (9 cells x 7 time intervals) 202 

precipitation samples for each storm. This forms a three-dimensional kernel (3x3x7) with two 203 

space dimensions representing the spatial variation and one time dimension representing the 204 

evolution of storm in time. 205 
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In order to capture the spatial distribution of the storm, each cell in the spatial field is 206 

assigned a suitable weight (Ws) based on its spatial proximity to the storm center. Weights are 207 

assigned based on inverse distance between the center of the cell to the storm center. This results 208 

in higher weightage to precipitation close to the storm center. Similarly, to represent the temporal 209 

signature, each timestep is assigned a suitable weight (Wt) to reflect their temporal proximity to 210 

the storm peak. For precipitation sampled at ‘t-9’ (or ‘t+9’), a weight of 1/1.9 (0.526) is assigned; 211 

for precipitation sampled at ‘t-6’ (or ‘t+6’) the weight equals 1/1.6, and so on. Precipitation 212 

sampled at ‘t0’, time of peak of storm, gets a weight of 1. While other weights can also be used to 213 

preserve the spatial and temporal signature, it is found that using different weights does not result 214 

in statistically different responses in terms of sensitivity of spatio-temporal characteristics to 215 

temperature. 216 

Precipitation in all cells of the three-dimensional spatio-temporal kernel (3x3x7) are 217 

ranked in ascending order and each cell is then multiplied with its corresponding aggregated 218 

weight Wagg (Wagg = Ws x Wt). Similar to the spatially accumulated precipitation average in the 219 

SH metric (Ghanghas et al., 2023), the spatio-temporally accumulated precipitation average 220 

(AcP) is determined by progressively expanding the kernel around the center of the storm peak. 221 

AcP is calculated using Equation 1.  222 

 
 (1) 

where Pi,t represents precipitation rank in ith pixel in the storm field at tth time interval, t ϵ {t-9, t-6, 223 

t-3, t0, t+3, t+6, t+9}. i indicates the ith highest precipitation rank in a storm field at a given time 224 

interval. n is the number of storm field cells used for spatio-temporal accumulation and m is the 225 

number of time intervals used for spatio-temporal accumulation.  226 

AcP9,7 represents the weighted average precipitation for the entire space-time kernel. The 227 

values of AcP are then plotted against the number of cells and number of time intervals 228 

considered in formulating AcP (Figure 2a). STH is formulated comparing the actual extreme 229 

storm to two possible extreme cases. The first reference case assumes precipitation occurs only 230 

at the center of the storm field and only at time t0 (only P0,t0 occurs and the rest are all zero). The 231 

first case presents the smallest possible spatio-temporal extent for the given peak intensity of the 232 

storm, i.e. an isolated storm with precipitation occurring only on a small region (one cell of 233 

GPM) and only at one recorded instant (30mins) (red surface in Figure 2a). The second reference 234 
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case assumes that all grid cells in the 3D kernel receive the same amount of precipitation as the 235 

center cell (P0,t0 occurs at all time intervals and across all cells). The second reference case 236 

represents the largest possible spatio-temporal extent for the chosen kernel and the given peak 237 

intensity of the storm, i.e. a large uniform storm (Grey surface in Figure 2a). STH is then 238 

formulated by noting how strongly the actual extreme event deviated from first reference case 239 

(marked by ‘a’ in Figure 2a and Eq 2) with reference to the total possible deviation between the 240 

first and second refence case (‘a+b’ in Figure 2a and Equation 2). The Spatio-Temporal 241 

Homogeneity metric (STH) calculated using Equation 2 quantifies the degree of spatio-temporal 242 

homogeneity/inhomogeneity of the extreme storm. STH metric collapses to zero for more 243 

isolated and spatio-temporally intense storms while it tends to a value of one for more uniform 244 

extremes. 245 

  (2) 

2.4 Event Loading 246 

Dominance of front or rear loading changes the spatio-temporal distribution of 247 

precipitation around the time of peak of the storm. When examining the temporal distribution of 248 

precipitation from reference of the peak of the storm, front loaded storms exhibit a sudden rise in 249 

precipitation leading up to the peak (steep rising limb similar to a hydrograph) which dissipates 250 

slowly after the peak (flatter falling limb signature) (Figure 2b). While on the other hand, rear 251 

loaded storms feature a flatter rising limb leading up to the peak, indicating slow rise in 252 

precipitation intensity, and then the precipitation dissipates suddenly after the peak (steep falling 253 

limb) (Figure 2c). The study exploits these differences in falling and rising limb to understand 254 

the event loading of the extreme storm.  255 

According to the characteristics outlined by Visser et al. (2023) for a front-loaded storm, 256 

the rising limb of such a storm is spatio-temporally less uniform compared to the falling limb. 257 

So, if a hypothetical storm is constructed by mirroring rising limb of a front loaded storm about 258 

the peak, the spatio-temporal homogeneity (hence STH metric) of this mirrored storm would be 259 

less than the spatio-temporal homogeneity of the original storm (Figure 2b). The degree of event 260 

loading (EL) for the original storm can therefore be estimated as percentage deviation in STH for 261 

rising limb mirrored storm from original storm STH with reference to original storm STH (Eq 3).  262 



manuscript submitted to AGU’s Earth’s Future 

 
 

 (3) 

Similarly, STH for a hypothetical storm constructed by mirroring the rising limb of a rear-loaded 263 

storm would be larger than STH for the original storm. The EL metric proposed here effectively 264 

captures the timing of bulk precipitation. A positive EL indicates a rear-loaded event whereas a 265 

negative EL indicates a front-loaded event.  266 

2.5 Relating Spatio-Temporal Characteristics to Temperature.  267 

The variability of spatio-temporal characteristics, including event loading and STH, of 268 

extreme storms are analyzed by pairing the extreme storm events with the representative storm 269 

temperature. The representative storm temperature is computed by taking the mean surface air 270 

temperature averaged over the 12-hour period leading up to the start of the extreme storm. 271 

Henceforth, this representative mean surface air temperature is referred to as “temperature”.  272 

This approach aligns with the recommendations proposed by (J. B. Visser et al., 2020) which 273 

suggests that taking mean of temperatures leading up to the storm minimizes the cooling effects 274 

of the precipitation event itself, and is also representative of the variability in precipitation 275 

intensities. 276 

The sensitivity of storm characteristics (STH and event loading) with temperature is 277 

performed using quantile regression (Koenker & Bassett, 1978). Quantile regression is preferred 278 

over traditional binning techniques and least square methods due to its ability to provide 279 

unbiased and robust estimates (Wasko & Sharma, 2014). This study focuses on the 50th 280 

percentile (median) instead of rarer percentiles since only one extreme event per year is 281 

considered. The sensitivity of storm characteristics with temperature (T) is calculated using Eq 4. 282 

   (4) 

where y is the storm characteristic (STH /event loading), β0 and β1 are fitted parameters and q is 283 

the target quantile (0.5 for this study). The sensitivity of the characteristic with temperature is 284 

then quantified as 100x β1q, expressed in percentage. To ascertain the statistical significance of 285 

the observed trends, sensitivity of STH and EL to temperature is computed by ordering the 286 

metrics in ascending order of temperature and then evaluating the statistical significance using 287 

Mann-Kendall Test at 5% significance. This sensitivity is computed exclusively for cells 288 

presenting statistically significant trend in the metric (STH or EL), and the results are then 289 

presented after applying a 4° × 4° moving median on the sensitivity to smooth out the variability. 290 
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 291 
 292 
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Figure 2 a) Methodology of STH. As more cells in space and time are included, the red, blue and 293 

grey surface show the changes in accumulated weighted precipitation average (AcP) for storm 294 

precipitating only at one grid cell and just one time step, original storm to be analyzed, and 295 

storm precipitating with same intensity across all grid cells and all-time steps in the space time 296 

kernel respectively. b) and c) Methodology of event loading. Purple surface presents the 297 

precipitation distribution of original storm to be analyzed and green surface presents the 298 

precipitation distribution of rising limb mirrored storm.  299 

 300 

3 Results. 301 

3.1 STH and temperature Relations. 302 

The STH metric, while not providing a quantitative estimate of the precise spatio-303 

temporal extent of storms, serves as a quick and resourceful method for monitoring alterations in 304 

this extent and gauging the sensitivity of these changes to shifts in climatic factors. An 305 

examination of the median STH metric for AMP 30-minute storms reveals occurrence of 306 

temporally shorter storms in mountainous and arid regions globally (Figure S1 in supplementary 307 

information). However, since the study primarily focuses on understanding how changes in 308 

climate influence the spatio-temporal distribution of storms, the analysis centers on 309 

comprehending the variation in spatio-temporal distribution in response to changing 310 

temperatures. Consequently, the study explores the sensitivity of STH to temperature while also 311 

endeavoring to discern regional patterns through the regionalization of results across the 33 312 

IPCC AR5 regions (Figure 3). 313 

The global median sensitivity of STH to temperature is estimated as - 0.16 % / °C, 314 

revealing an overall trend of slight decrease in STH with temperature. However, the overall 315 

trends provide very limited insight into the geographic variation in these sensitivities. To gain a 316 

better understanding of the geographic variation in the sensitivity of STH to temperature, Figure 317 

4 presents global maps of STH sensitivity with temperature (Figure 4a). Additionally, Figure 4b 318 

presents boxplots of STH sensitivity with temperature for 32 out of the 33 IPCC AR5 regions 319 

(Figure 3). Due to small geographical extent of islands in NTP*, no sensitivity of STH could be 320 

estimated for the region. 321 
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 322 
Figure 3. Thirty three regions used by Intergovernmental Panel on Climate Change (IPCC)’s 323 
Fifth Assessment Report (AR5;(Seneviratne et al., 2012)). The 33 regions comprise of 26 Special 324 
Report on Climate Extremes (SREX) regions and 7 non-SREX regions (marked by *). Here, ALA: 325 
Alaska/N.W. Canada, AMZ: Amazon, CAM: Central America/Mexico, CAR*: Caribbean, CAS :  326 
Central Asia, CEU: Central Europe, CGI: Canada/Greenland/Iceland, CNA: Central North 327 
America, EAF: East Africa, EAS: East Asia, ENA: East North America, MED: South 328 
Europe/Mediterranean, NAS: North Asia, NAU: North Australia, NEB: North-East Brazil, NEU: 329 
North Europe, SAF: Southern Africa, SAH: Sahara, SAS: South Asia, SAU: South Australia/New 330 
Zealand, SEA: South East Asia, SSA: Southeastern South America, TIB: Tibetan Plateau, WAF: 331 
Western Africa, WAS: West Asia, WNA: West North America, WSA: West Coast South America, 332 
ANT*: Antarctica, ARC*: Arctic, NTP* Pacific Islands region, STP*: Southern Tropical Pacific, 333 
ETP*: Pacific Islands region, WIO*: West Indian Ocean. 334 
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 335 
Figure 4 Results of sensitivity of STH with temperature for 5hr IE time. A) 4x4° median STH 336 
sensitivity with temperature b) Variation in STH sensitivity with temperature for different IPCC 337 
AR5 regions. 338 

The trend of global median sensitivity is largely driven by notable negative STH sensitivity 339 

observed around the equator (between 30°N and 30°S) (Figure 4a). These tropical regions, where 340 

extreme precipitation is largely dominated by convective storms, observe a reduction in spatio-341 

temporal extent of the storm as temperature increases. Significant negative sensitivity is 342 

observed in Amazon, western Africa around the Gulf of Guinea, Madagascar Island, Central 343 

America and the caribbean, India and Southeast Asian Archipelago. Notable negative STH 344 

sensitivity is also observed in parts of Sahara. The magnitude of negative STH decreases and 345 

turns to positive as the analysis moves further away from the tropics. It is essential to emphasize 346 
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that this negative STH sensitivity tends to occur primarily in regions with higher mean annual 347 

temperature, where the storms occur in warmer conditions compared to temperate regions. 348 

Additionally, these regions are associated either with high humidity (tropics) or with low 349 

humidity (arid Sahara). Away from the tropics, STH moderately decreases with temperature in 350 

the eastern United States, as the extreme precipitation in these regions are largely caused by 351 

tropical cyclones landing in the region in the summer season. Moderate negative STH sensitivity 352 

is also observed in parts of midwestern United States, close to the great lakes, as well as in 353 

western Europe (including England, France, Portugal, and Spain) and the northern Australia. 354 

Excluding the above-mentioned regions, the storms in the Northern and Southern temperate 355 

regions (beyond 30°N and 30°S) generally tend to expand in space and time (positive STH 356 

sensitivity) with increasing temperature. This positive sensitivity in the temperate regions is less 357 

prominent compared to the negative sensitivity in the tropics. 358 

Segmenting the trend magnitudes by the 33 IPCC AR5 regions (Seneviratne et al., 2012), 359 

the results are presented as boxplots in Figure 4b. A total of 18 regions from CAR* to MED have 360 

negative median STH sensitivity and are presented on the left, while a total of 14 regions from 361 

SSA to STP* have positive median STH sensitivity and are presented on the right. Among them, 362 

except for the seven non-SREX regions marked by asterisks in the boxplot, the three regions 363 

showing the largest negative STH sensitivity are SEA (South East Asia), CAM (Central 364 

America), and NEB (North-East Brazil), while the three regions showing greatest positive 365 

sensitivity are TIB (Tibet), EAS (East Asia) and CEU (Central Europe). These AR5 regions help 366 

understand the overall regional variation, however they encompass large areas and can 367 

sometimes result in negligible overall median sensitivity. For instance, large parts of CNA 368 

(Central North America) and ENA (East North America) exhibit some negative STH sensitivity, 369 

but some other parts show positive sensitivity thus resulting in an overall negligible median 370 

sensitivity for the region. Particularly for CNA and ENA, negative sensitivity is observed in 371 

cyclone dominated areas, while positive sensitivity is observed in temperate parts of the region 372 

where extreme storms are more dependent on low pressure systems and atmospheric river. 373 

Similar behavior is also observed in WSA (West South America), MED (Mediterranean) and 374 

SSA (Southern South America). 375 

The aforementioned results are based on an IE time of 5 hours. However, it is possible 376 

that the sensitivity of STH may change with different IE times, as choosing appropriate IE time 377 
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is key in balancing intra event intermittency and event independence. Thus, to assess the impact 378 

of choosing a small versus a large IE time, the study compared the STH sensitivity with 379 

temperature for two IE times, 1hr and 5hr (Figure 5). The selection of these IE times aligns with 380 

those used in previous studies (Visser et at., 2021; Wasko et al., 2015). The results clearly 381 

indicate that selecting different interevent time does not alter the behavior of changes in spatio-382 

temporal characteristics of storms under warming environments. Areas showing 383 

negative/positive STH sensitivity consistently show negative/positive sensitivity regardless of 384 

the IE time used to separate extremes storms. However, it is crucial to note that lower IE time 385 

consistently leads to enhanced STH sensitivity (higher magnitude) with temperature.  386 

1hr and 5hr IE times generally represent same extreme storm with shared spatial and 387 

temporal center of the storm. The differences in 5hr IE time extreme storm and 1hr IE time 388 

extreme storm are primarily observed near the temporal edge of the storm. Specifically, the 5hr 389 

IE time extreme storms have a greater or at least same temporal extent as 1hr IE time extreme 390 

storms, making the 5hr IE time storms temporally more spread out. Given that the Spatio-391 

Temporal Homogeneity (STH) metric places higher emphasis on precipitation occurring near the 392 

spatial and temporal center of the storm, larger STH sensitivity with temperature is observed for 393 

temporally smaller storms segregated using 1hr IE time. 394 

 395 

3.2 Event Loading and temperature Relations. 396 

In contrast to the sensitivity exhibited by STH, the sensitivity of Event Loading with 397 

temperature demonstrates relatively higher consistency across regions around the world. The 398 

global median sensitivity of event loading suggests an overall trend of decrease in event loading 399 

with rising temperature (median EL sensitivity = -0.76/°C). This negative trend suggests that 400 

rising temperature contributes to greater prevalence of front-loaded storm events, a concern as 401 

this has implications for flash flooding worldwide. Figure 6a, which presents the geographic 402 

variation of EL with temperature, reveals that similar to the STH sensitivity, higher magnitude of 403 

EL sensitivity is observed in tropics. While the tropics and southern temperate regions observes 404 

increasingly front-loaded storms (negative EL sensitivity), the extreme storms in northern 405 

temperate regions tend to get more uniformly loaded, with a slight tendency towards rear-loaded, 406 

storms as the temperature increases. It is also interesting to note that regions demonstrating a 407 
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negative EL sensitivity generally display higher magnitude of sensitivity; whereas regions with 408 

positive EL sensitivity exhibit relatively lower magnitude sensitivity with temperature. 409 

 410 
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 411 
Figure 5 Results of sensitivity of STH with temperature for two different IE times. a) 4x4° 412 
median sensitivity of STH with temperature for 1hr IE time. b) 4x4° median sensitivity of STH 413 
with temperature for 5hr IE time. 414 
 415 
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Aggregating the results of Figures 6a by the AR5 regions, the distribution of EL 416 

sensitivity for different regions are presented as the boxplot in Figure 6b. Among the 33 AR5 417 

regions, 23 regions from ETP* to EAS show consistent negative sensitivity of EL, with SEA 418 

(South East Asia), WAF (West Africa) and CAM (Central America) being the three SREX 419 

regions with largest negative EL sensitivity. The remaining 9 regions from WAS to MED exhibit 420 

positive EL sensitivity with temperature. The three regions showing highest positive EL 421 

sensitivity are MED (Mediterranean), CAS (Central Asia) and CNA (Central North America). 422 

The intra AR5 region variability in EL sensitivity is lower compared to that of STH sensitivity. 423 

Any AR5 region exhibiting negative (positive) median EL sensitivity has negative (positive) EL 424 

sensitivity in most AR5 regions. This is also reflected in the fact that only one AR5 region, EAS 425 

(East Asia) has overall negligible median EL sensitivity. 426 

Examining both EL sensitivity and STH sensitivity in tandem, it becomes evident that the 427 

tropics exhibit negative sensitivities to both EL and STH with increasing temperature. This 428 

implies that increasing temperature in tropics results in storms that are more front-loaded, 429 

localized, and peakier (localized in terms of both space and time). This trend is noticeably 430 

observed in various tropical AR5 regions, including AMZ, CAM, CAR*, SAS, NAU, NEB, 431 

SEA, WAF as well as EAF. Beyond the tropics, a similar pattern of more front-loaded and 432 

localized storms with increased temperatures is found in the Arctic region (ARC*), the subarctic 433 

ALA, NEU (with the EL trend in NEU influenced by Scandinavian countries), arid Sahara 434 

(SAH), as well as the temperate SAF and temperate parts of NAU. 435 

Conversely, temperate regions, especially in the northern temperate regions like CEU, 436 

CAS, EAS, WAS, and WNA, exhibit positive EL and STH sensitivity to temperature. In these 437 

areas, a temperature increase results in storms of increased duration and extent, and more 438 

uniformly loaded characteristics, with slight tendencies towards being rear-loaded storms. The 439 

temperate regions of North America (CGI, CNA, ENA) and the Mediterranean (MED) 440 

experience more localized and peakier, yet uniformly loaded storms (with slight rear-loaded 441 

tendencies) as temperature rises. Meanwhile, the temperate regions of Southern America (SSA, 442 

WSA) and Australia (SAU) witness storms that grow in temporal extent with rising temperatures 443 

but also become more front-loaded. 444 
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445 
Figure 6 Results of sensitivity of Event Loading with temperature for 5hr IE time. a) 4°x4° 446 
median EL sensitivity with temperature b) Variation in EL sensitivity with temperature for 447 
different IPCC AR5 regions. 448 

 449 

3.3 Spatio-Temporal patterns and storm duration. 450 

The findings delineated in previous sections of this study encapsulate trends pertaining to 451 

storms of all durations at their location. However, it is imperative to acknowledge that 452 

precipitation events inherently exhibit distinct intensity characteristics for different durations. 453 

Events of shorter duration (convective) tend to yield higher peak intensity while longer duration 454 

events (stratiform) typically display lower peak intensities (Visser et al. 2021). Consequently, 455 

intervals marked by higher intensity precipitation within events are poised to manifest steeper 456 
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spatio-temporal pattern slopes. This dynamic has the potential to instigate more pronounced 457 

differentials in both spatio-temporal homogeneity and event loading values for higher intensity 458 

and smaller duration events compared to events characterized by lower intensity and longer 459 

duration. Therefore, to delve deeper into these trends and discern potential dependencies on 460 

storm duration, this section elucidates the variations in spatio-temporal homogeneity and event 461 

loading of extreme storms in response to temperature across different storm durations. 462 

For a comprehensive analysis, storms at each grid cell are categorized based on their total 463 

duration, specifically into bins of 0-3 hours, 3-6 hours, 6-12 hours, 12-24 hours, 24-48 hours, 48-464 

72 hours, and storms exceeding 72 hours. However, this binning approach, while valuable, poses 465 

a challenge due to the diminished number of storm events within individual bins at specific cells, 466 

rendering them inadequate for robust conclusions. To address this limitation, a solution is 467 

implemented by aggregating storms within the 1°x1° neighborhood surrounding each cell. This 468 

strategy, akin to the 'trading space for time approach,' capitalizes on the climatic and contextual 469 

similarities within the neighborhood of each grid cell. Notably, this 'trading space for time 470 

approach' is a recognized method in hydrology and frequently employed in regional flood 471 

frequency analysis(Ochoa-Tocachi et al., 2016; R. Singh et al., 2011, 2014). 472 

Figure 7 illustrates the median sensitivity of Spatial-Temporal Homogeneity (STH) with 473 

temperature across distinct AR5 regions. Three distinct patterns manifest in how STH sensitivity 474 

to temperature varies across different storm durations in specific climatic zones the tropics 475 

(AMZ, SAS, SEA, NEB, WAF), northern temperate regions (WNA, CNA, ENA, NEU, CEU, 476 

MED, NAS, CAS, TIB, EAS, WAS), and southern temperate regions (WSA, SSA, EAF SAF 477 

SAU). It is imperative to acknowledge that AR5 regions encompass diverse climate subtypes, 478 

and the broad categorization into tropical, temperate, and northern/southern temperate here is a 479 

simplification for clarity in comprehending these distinctive patterns. 480 

For storms lasting 0-6 hours in the tropics, a negative STH sensitivity is observed, 481 

transitioning to a positive sensitivity for 6-12 hour storms (Figure 7a). Subsequently, the 482 

sensitivity reverts to negativity for storms spanning 12-48 hours, ultimately diminishing to zero 483 

for more extended storm durations. Although not overtly apparent in Figure 7a due to the 484 

presentation of median values over larger areas, tropical regions exhibit higher sensitivity 485 

magnitudes for shorter-duration storms (3-6hr storms) (Figure S2 in supplementary information 486 

presents sensitivity maps across all regions). 487 
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In contrast, STH sensitivity for storms in northern temperate regions is consistently positive, 488 

reaching its zenith for 12-24 hour storms before converging to zero for multiday storms (Figure 489 

7b & 7c). Southern temperate regions exhibit maximum positive STH sensitivity for storms of 3-490 

6 hours duration, followed by a shift to negative sensitivity for storms lasting multiple days (>12 491 

hours), ultimately converging to zero (Figure 7d). This observed pattern in southern temperate 492 

regions is also mirrored in NAU and CAM, which represent a blend of arid and tropical climates, 493 

as well as in the arid Sahara (SAH) (Figure 7e). 494 

495 
Figure 7 STH sensitivity with temperature for different duration storms. The plot presents 496 

pattern of STH sensitivity change for specific climatic zones a) Tropical AR5 regions AMZ, NEB, 497 

SAS, SEA, WAF; b) Northern Temperate AR5 regions CEU, CNA, ENA, NEU, WNA; c) more 498 

Northern Temperate AR5 regions CAS, EAS, MED, NAS, TIB; d) Southern Temperate regions 499 

EAF, SAF, SAU, SSA, WSA; e) Regions mix of Arid and Tropical Climate NAU, WAS, arid 500 

region of SAH and northern Temperate region CAM. The solid lines are spline interpolation to 501 

demonstrate the variation and represent median STH sensitivity with temperature for that 502 
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duration while the shaded regions highlight the variation of STH sensitivity between 25th and 503 

75th quantile. 504 

Figure 8 depicts the median sensitivity of Event Loading (EL) with temperature across 505 

diverse AR5 regions. Notably, the sensitivity patterns of EL with temperature are distinctive: 506 

regions situated south of 30° N latitude demonstrate a more pronounced negative sensitivity of 507 

EL for short-duration storms (Figure 8a, 8d, 8e) with this sensitivity diminishing as the storm 508 

duration increases, ultimately converging to zero. In contrast, regions located north of 30° N 509 

exhibit the highest positive EL sensitivity for storms lasting 6-12 hours, and longer duration 510 

storms show little to no change in EL as temperature varies (Figure 8b, 8c).  511 

Irrespective of geographical location, storms worldwide manifest heightened EL 512 

sensitivity for shorter duration events, reaching its zenith for storms spanning 6-12 hours, and 513 

converging to zero with an increase in storm duration. A noteworthy observation is that storms 514 

lasting 0-3 hours and 3-6 hours do not exhibit any discernible change in EL concerning 515 

temperature. This phenomenon might be attributed to a potential reduction in the sampling of 516 

storms within the 0-3 hour duration range, possibly influenced by the larger interevent time, or 517 

linked to the broader temporal domain of the STH metric, which scrutinizes storm behavior from 518 

9 hours before the peak to 9 hours after the peak. 519 

 520 

4. Discussion. 521 

The comprehensive analysis of spatial and temporal characteristics of extreme storms, 522 

considering metrics such as Spatial-Temporal Homogeneity (STH) and Event Loading (EL) 523 

sensitivity with temperature across various AR5 regions, has revealed nuanced patterns and 524 

noteworthy regional variations. These variations are intricately related to the dominant storm 525 

type and mechanism in the region as well as moisture availability for the storm duration. 526 

Rising temperature in tropical climates results in more non uniform storms, with these 527 

storms becoming increasingly spatially and temporally concentrated as well as more front 528 

loaded. This tendency could be primarily related to dominance of short duration convective 529 

events in the tropical regions. These findings align with location specific analyses, as evidenced 530 

by (Long et al., 2021), who observed individual reduction in spatial and temporal scale of 531 

extreme storms in humid tropical parts of Eastern China. Similar conclusions were drawn by 532 

Wasko and Sharma (2015) while analyzing the temporal patterns of storms in Australia. They 533 
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found that storms particularly those in tropical parts of Northern Australia, concentrate in time 534 

and become “peakier” in response to increasing temperatures. While studies on storm event 535 

loading are limited, our results align with recent research by Visser et al. (2023), which identified 536 

a systematic shift toward increased front-loaded temporal patterns, especially in tropical storms, 537 

as a response to escalating temperatures. 538 

 539 

 540 
Figure 8 Similar to Figure 7 but this figure presents EL sensitivity with temperature for different 541 

duration storms. The plot presents pattern of EL sensitivity change for specific climatic zones a) 542 

Tropical AR5 regions AMZ, NEB, SAS, SEA, WAF; b) Northern Temperate AR5 regions CEU, 543 

CNA, ENA, NEU, WNA; c) more Northern Temperate AR5 regions CAS, EAS, MED, NAS, TIB; 544 

d) Southern Temperate regions EAF, SAF, SAU, SSA, WSA; e) Regions mix of Arid and Tropical 545 

Climate NAU, WAS, arid region of SAH and northern Temperate region CAM. The solid lines 546 

are spline interpolation to demonstrate the variation and represent median EL sensitivity with 547 
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temperature for that duration while the shaded regions highlight the variation of EL sensitivity 548 

between 25th and 75th quantile. 549 

 550 

Conversely, storms in northern temperate regions exhibit increasing spatio-temporal 551 

extent (increasing STH) and more rear-loadedness as temperatures rise. Storms in these higher 552 

latitudes tend to be more dependent on low pressure systems and atmospheric rivers than 553 

convection; emphasizing the thermodynamic contribution to precipitation over the dynamic 554 

contribution (Chan et al., 2016; Lavers & Villarini, 2013; Newell et al., 1992; Z. Yang & 555 

Villarini, 2019). These results are in line with the findings of Yang et al. (2023), who utilized 556 

EURO-CORDEX initiative and found that extreme events in Germany will become more 557 

temporally spread and homogenous in space as temperatures rise in future. The event loading 558 

trends are consistent with the findings of (Fadhel et al., 2018), who observed dominance of rear 559 

loaded storms in West Yorkshire in North England. A notable exception to these northern 560 

temperate regions includes storms in Central and Eastern North America, Mediterranean region, 561 

and parts of western Europe. While storms in these regions become increasingly rear loaded with 562 

rising temperature but they exhibit a decreasing spatio-temporal extent, becoming more localized 563 

and peakier. (Hettiarachchi et al., 2019) had earlier identified a similar temporal intensification 564 

pattern for storms in Minneapolis, United States. 565 

The variability observed in STH sensitivity across different storm durations can be 566 

attributed to the moisture availability for storms of that duration. The marginally negative STH 567 

sensitivity noted for short-duration (0-6 hour) storms in the tropics may be associated with 568 

sudden, brief convective storms characterized by rapid local atmospheric moisture release. This 569 

results in precipitation rates surpassing the increase in atmospheric moisture sustained at that 570 

temperature, a phenomenon often evidenced by a super CC scaling of peak intensity and the 571 

observed contraction of storm spatial size in short-duration tropical storms (Wasko and Sharma 572 

2015; Ghanghas et al. 2023). However, for 6-12 hour duration storms the thermodynamic factor 573 

dominate the storm dynamics, leading to increased available atmospheric moisture with rising 574 

temperature. This results in intensity scaling at a consistent rate (CC rate) and an increased 575 

spatio-temporal extent of the storm. However, as the storm duration further extends beyond 12-576 

24 hour, the locally available moisture becomes limited, possibly depleted, causing a reduction in 577 

spatio-temporal extent of the storm again begins to reduce with increasing temperature. This 578 
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limitation in available moisture is also reflected in the negative STH sensitivity observed for 579 

storms in the arid Sahara.  In contrast, continuous moisture influx from low-pressure systems and 580 

atmospheric rivers serves as a perpetual moisture source for storms in the northern tropics, 581 

resulting in a positive STH sensitivity with temperature across all storm durations (Eiras-Barca et 582 

al., 2017; Trenberth & Stepaniak, 2003; Yilmaz & Perera, 2015). 583 

 584 

Implications for future. 585 

Based on the findings of this study, Ghanghas et al. (2023) and ubiquitous peak intensity 586 

scaling of 7%/°C, Figure 9 presents the holistic changes in spatio-temporal structure of storm in 587 

Indonesia (Figure 9a) and West Coast of America (Figure 9b) due to an estimated 3°C increase 588 

in temperature. These locations serve as representatives for anticipated changes in the tropics and 589 

northern temperate regions, respectively. It is important to identify the regions with most 590 

changes to spatio-temporal structure of storms and understand the nature of these changes 591 

because temporal and spatial pattern of precipitation affects the catchment response, impacting 592 

streamflow, sediment transport volumes and peaks (Peleg et al., 2020). Furthermore, less 593 

uniform distributions of extreme precipitation have been linked to result in higher flood peaks 594 

(Hettiarachchi et al., 2018; Nathan et al., 2016). Although flood responses are catchment-specific 595 

and contingent on the storm's relative size to the catchment, our results suggest a potential 596 

increase in flood peaks, especially in the tropics, as storms become more spatio-temporally 597 

concentrated and front-loaded.  598 

Spatio-temporal characteristics play a pivotal role in various rainfall-based flood 599 

estimation methods employed for design of engineering infrastructure. While these methods 600 

often try to incorporate changes in peak intensity for accurate design estimates, they often 601 

assume no alteration in the spatial and temporal structure of the storm, potentially leading to 602 

inadequacies in future water infrastructure. Design flood models, relying on the spatial and 603 

temporal distribution of storms, need to account for more spatio-temporally concentrated and 604 

front-loaded storms. While, stochastic design flood estimation approaches would require non-605 

stationary parameters to precisely capture the changes in the spatio-temporal structure of extreme 606 

storms. In contrast continuous simulation methods, employing historical rainfall sequences, may 607 

fall short of representing future conditions accurately.  608 
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 609 
Figure 9 Idealized representative precipitation density plot of future spatio-temporal structure of 610 

storms in a) tropics and in b) northern temperate regions. Red plot and lines represent future 611 

storms with an estimated 3° C estimated temperature increase, while blue represents base storm 612 

with uniform precipitation distribution. 613 

 614 

Conclusions. 615 

This study introduces a novel metric termed Spatio-Temporal Homogeneity (STH) that can be 616 

used to track combined changes in spatio-temporal structure of extreme storms, and their 617 

sensitivity to different climate parameters. Investigating the effect of rising temperature on 618 

spatio-temporal distribution of precipitation in extreme storms across the globe, the study finds 619 

that dominant precipitation mechanism and geographic location play a key role in how storm 620 

structure changes. The following conclusions can be drawn from the results presented. 621 

 622 

1. A rise in temperature concentrates precipitation in both space and time resulting in 623 

“Smaller and Peakier” storms in Tropics. Furthermore, these storms in tropics also tend 624 

to get more and more front-loaded with rising temperature. This trend is also observed in 625 

temperate regions where convective storms contributes to majority of extreme 626 

precipitation. Conversely, a rise in temperature results in spatio-temporally spread 627 

temperate regions.  628 
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2. A greater overall prevalence of front loaded storms as temperature rises across the globe. 629 

These trends are driven by a significant increase towards front loaded storms in Tropics 630 

and Northern temperate regions. On the other hand, extreme storms in southern temperate 631 

regions become more uniform or slightly rear loaded in response to increasing 632 

temperature. 633 

3. Spatio-temporal structure short durations storms (6–12 hour storms) are generally found 634 

to be more sensitive to changes in temperature, with negligible sensitivity for multiday 635 

storms.  636 

These findings, combined with the established knowledge that extreme storms intensify in 637 

warmer climates, hold substantial implications. In a warming climate, short-duration extreme 638 

storms in the tropics will become more intense and concentrated, elevating the risk of severe 639 

floods. Furthermore, tropics may experience an increase in flash floods as these intense and 640 

concentrated storms would be more front loaded with large proportion of total precipitation 641 

occurring before the storm peak. 642 
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Figure Captions 884 

 885 

Figure 1 Precipitation distribution of an extreme storm in space and time (3D surfaces) and 886 

individual distribution in space or time (lines) on the 2D projected planes, for conceptual 887 

precipitation events of equal duration. Blue surface and lines represent base storm occurring at a 888 

cooler temperature, Red surface and lines represent intensified storm occurring at a warmer 889 

temperature. a) Traditional temporal intensification with spatial distribution of precipitation 890 

increasing proportionately to increase in peak precipitation. b) Spatial Concentration of 891 

precipitation towards the spatial center of the storm, no temporal intensification/concentration. c) 892 

Temporal intensification along with spatial concentration of the storm, storm concentrating in 893 

both space and time. d) Temporal and spatial concentration of the storm along with a lateral shift 894 

in spatio-temporal distribution of precipitation. 895 

 896 

Figure 2. a) Methodology of STH. As more cells in space and time are included, the red, blue 897 

and grey surface show the changes in accumulated weighted precipitation average (AcP) for 898 

storm precipitating only at one grid cell and just one time step, original storm to be analyzed, and 899 

storm precipitating with same intensity across all grid cells and all-time steps in the space time 900 

kernel respectively. b) and c) Methodology of event loading. Purple surface presents the 901 

precipitation distribution of original storm to be analyzed and green surface presents the 902 

precipitation distribution of rising limb mirrored storm. 903 

 904 

Figure 3. Thirty three regions used by Intergovernmental Panel on Climate Change (IPCC)’s 905 

Fifth Assessment Report (AR5;(Seneviratne et al., 2012)). The 33 regions comprise of 26 Special 906 

Report on Climate Extremes (SREX) regions and 7 non-SREX regions (marked by *). Here, 907 

ALA: Alaska/N.W. Canada, AMZ: Amazon, CAM: Central America/Mexico, CAR*: Caribbean, 908 

CAS :  Central Asia, CEU: Central Europe, CGI: Canada/Greenland/Iceland, CNA: Central 909 

North America, EAF: East Africa, EAS: East Asia, ENA: East North America, MED: South 910 

Europe/Mediterranean, NAS: North Asia, NAU: North Australia, NEB: North-East Brazil, NEU: 911 

North Europe, SAF: Southern Africa, SAH: Sahara, SAS: South Asia, SAU: South 912 

Australia/New Zealand, SEA: South East Asia, SSA: Southeastern South America, TIB: Tibetan 913 
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Plateau, WAF: Western Africa, WAS: West Asia, WNA: West North America, WSA: West 914 

Coast South America, ANT*: Antarctica, ARC*: Arctic, NTP* Pacific Islands region, STP*: 915 

Southern Tropical Pacific, ETP*: Pacific Islands region, WIO*: West Indian Ocean. 916 

 917 

Figure 4 Results of sensitivity of STH with temperature for 5hr IE time. A) 4x4° median STH 918 

sensitivity with temperature b) Variation in STH sensitivity with temperature for different IPCC 919 

AR5 regions. 920 

 921 

Figure 5 Results of sensitivity of STH with temperature for two different IE times. a) 4x4° 922 

median sensitivity of STH with temperature for 1hr IE time. b) 4x4° median sensitivity of STH 923 

with temperature for 5hr IE time. 924 

 925 

Figure 6 Results of sensitivity of Event Loading with temperature for 5hr IE time. a) 4°x4° 926 

median EL sensitivity with temperature b) Variation in EL sensitivity with temperature for 927 

different IPCC AR5 regions. 928 

 929 

Figure 7 STH sensitivity with temperature for different duration storms. The plot presents 930 

pattern of STH sensitivity change for specific climatic zones a) Tropical AR5 regions AMZ, 931 

NEB, SAS, SEA, WAF; b) Northern Temperate AR5 regions CEU, CNA, ENA, NEU, WNA; c) 932 

more Northern Temperate AR5 regions CAS, EAS, MED, NAS, TIB; d) Southern Temperate 933 

regions EAF, SAF, SAU, SSA, WSA; e) Regions mix of Arid and Tropical Climate NAU, WAS, 934 

arid region of SAH and northern Temperate region CAM. The solid lines are spline interpolation 935 

to demonstrate the variation and represent median STH sensitivity with temperature for that 936 

duration while the shaded regions highlight the variation of STH sensitivity between 25th and 937 

75th quantile. 938 

 939 

Figure 8 Similar to Figure 7 but this figure presents EL sensitivity with temperature for different 940 

duration storms. The plot presents pattern of EL sensitivity change for specific climatic zones a) 941 

Tropical AR5 regions AMZ, NEB, SAS, SEA, WAF; b) Northern Temperate AR5 regions CEU, 942 

CNA, ENA, NEU, WNA; c) more Northern Temperate AR5 regions CAS, EAS, MED, NAS, 943 
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TIB; d) Southern Temperate regions EAF, SAF, SAU, SSA, WSA; e) Regions mix of Arid and 944 

Tropical Climate NAU, WAS, arid region of SAH and northern Temperate region CAM. The 945 

solid lines are spline interpolation to demonstrate the variation and represent median EL 946 

sensitivity with temperature for that duration while the shaded regions highlight the variation of 947 

EL sensitivity between 25th and 75th quantile. 948 

 949 

Figure 9 Idealized representative precipitation density plot of future spatio-temporal structure of 950 

storms in a) tropics and in b) northern temperate regions. Red plot and lines represent future 951 

storms with an estimated 3° C estimated temperature increase, while blue represents base storm 952 

with uniform precipitation distribution. 953 






































