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Abstract

This paper continues the exploration of \gls{ml} parameterization for radiative transfer for the \gls{icon}. Three \gls{ml}
models, developed in Part I of this study, are coupled to \gls{icon}. More specifically, a UNet model and a bidirectional

\gls{rnn} with \gls{lstm} are compared against a random forest. The \gls{ml} parameterizations are coupled to the \gls{icon}
code that includes OpenACC compiler directives to enable \glspl{gpu} support. The coupling is done through Infero, developed

by ECMWF, and PyTorch-Fortran. The most accurate model is the bidirectional \gls{rnn} with physics-informed normalization

strategy and heating rate penalty, but the fluxes above 15\,km height are computed with a simplified formula for numerical

stability reasons. The presented setup enables stable aquaplanet simulations with \gls{icon} for several weeks at a resolution

of about 80\,km and compare well with the physics-based radiative transfer solver ecRad. However, the achieved speed up

when using the emulators and the minimum required memory usage relative to the \gls{gpu}-enabled ecRad depend strongly

on the \gls{nn} architecture. Future studies may explore physics-constraint emulators that predict heating rates inside the

atmospheric model and fluxes at the top.
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Key Points:10

• The Fortran-based and OpenACC-enhanced ICON weather and climate model is11

coupled to a neural network radiation solver developed in Python and both run12

in tandem on graphic processing units (GPUs). The resulting speed-up critically13

depends on the architecture of the neural network.14

• ICON with the radiation emulator runs stable for several weeks with a negligible15

difference to ecRad, but tuning at the top of the model at very low pressure val-16

ues is required.17

• Future research could explore physics-informed radiation emulators that predict18

heating rates inside the atmosphere and fluxes at the surface and model top as19

auxiliary fields.20
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Abstract21

This paper continues the exploration of machine Learning (ML) parameterization for ra-22

diative transfer for the ICOsahedral Nonhydrostatic weather and climate model (ICON).23

Three ML models, developed in Part I of this study, are coupled to ICON. More specif-24

ically, a UNet model and a bidirectional recurrent neural network (RNN) with long short-25

term memory (LSTM) are compared against a random forest. The ML parameteriza-26

tions are coupled to the ICON code that includes OpenACC compiler directives to en-27

able GPUs support. The coupling is done through Infero, developed by ECMWF, and28

PyTorch-Fortran. The most accurate model is the bidirectional RNN with physics-informed29

normalization strategy and heating rate penalty, but the fluxes above 15 km height are30

computed with a simplified formula for numerical stability reasons. The presented setup31

enables stable aquaplanet simulations with ICON for several weeks at a resolution of about32

80 km and compare well with the physics-based radiative transfer solver ecRad. How-33

ever, the achieved speed up when using the emulators and the minimum required mem-34

ory usage relative to the GPU-enabled ecRad depend strongly on the Neural Network35

(NN) architecture. Future studies may explore physics-constraint emulators that pre-36

dict heating rates inside the atmospheric model and fluxes at the top.37

Plain Language Summary38

Machine learning (ML) methods could drastically accelerate existing parts of weather39

and climate models. This research explores machine learning methods to replace the ra-40

diation solver responsible for computing the solar and terrestrial radiative fluxes in the41

ICON model. Three ML models are trained for this task: a random forest, which com-42

bine decision trees to make accurate prediction, and two neural networks, an increasingly43

popular deep learning model which learn from data to perform tasks using interconnected44

mathematical function. Because the ML models and ICON are implemented with dif-45

ferent programming languages, a auxiliary software is used to couple them. Simulations46

with the ML models show accurate results for two-weeks simulations but the accelera-47

tion depends strongly on the ML method.48

1 Introduction49

This paper explores machine Learning (ML) parameterizations of simulated radia-50

tive transfer in the atmosphere. This second part of our two-part study presents a de-51

tailed description of how the offline trained ML models, which are developed using Py-52

Torch (Paszke et al., 2017) and Tensorflow (Abadi et al., 2015), are incorporated into53

the Fortran code (Kedward et al., 2022) of the ICOsahedral Nonhydrostatic weather and54

climate model (ICON) (MPI-M et al., 2024; Giorgetta et al., 2022), enabled for graph-55

ics processing units by means of OpenACC (OpenACC, version 3.2 , 2022), and the steps56

required to make the radiation emulator and ICON performant on graphic processing57

units (GPUs) on Piz Daint, a Cray XC50 machine at the Swiss National Supercomput-58

ing Centre (CSCS).59

As discussed in detail in the first part, radiative transfer emulation has a long his-60

tory in atmospheric modelling. Previous research includes studies that emulate the en-61

tire radiative transfer code (Chevallier et al., 1998; Krasnopolsky et al., 2005; Ukkonen,62

2022; Roh & Song, 2020; Pal et al., 2019; Lagerquist et al., 2021), while others focus on63

replacing individual components of existing radiative schemes (Ukkonen et al., 2020; Veer-64

man et al., 2021). Some studies use radiative flux as a training target (Chevallier et al.,65

1998; Ukkonen, 2022), while others directly predict the resulting heating rates (Krasnopolsky66

et al., 2005; Roh & Song, 2020; Pal et al., 2019; Lagerquist et al., 2021). The advantages67

and disadvantages of emulating shortwave and longwave radiative fluxes or directly pre-68

dicting the resulting heating rates are known: Direct prediction of heating rates allows69

the calculation of radiative flux convergence to be omitted, thus avoiding numerical sta-70
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bility problems, especially when the predicted flux profile is not smooth. However, the71

prediction of fluxes seems to be a necessity for an earth system model (ESM), since the72

radiative flux serves as an input to other components, such as the land model. It is also73

a relevant output variable as it serves as an input to impact models (e.g., solar energy74

production) and can be compared with measurements, which is important for validation.75

For a more detailed literature review, the reader is referred to Part I of this study.76

In Part I of this study (Bertoli et al., 2024), the decision was made to employ a sin-77

gle Neural Network (NN) to predict both short- and longwave up- and downward fluxes,78

using the resulting heating rates as an additional penalty to the loss function during the79

training. Additionally, a physics-informed normalization strategy proved beneficial for80

enhanced training and inference accuracy. Longwave training data was normalized us-81

ing the Stefan-Boltzmann law and shortwave data was normalized using the cosine of82

the solar zenith angle multiplied by the solar constant. This additional physics-informed83

regularization also benefited the random forest (RF) baseline model. In general, the ac-84

curacy of the RF scaled with its memory usage, but at fixed memory usage the RF was85

typically outperformed by most NN architectures. The only exception was at the top of86

the atmosphere (TOA), where only the most advanced NN, a recurrent neural network87

(RNN), showed higher accuracy than the RF in predicting fluxes. However, a particu-88

lar advantage of the RF, besides its simplicity during (re)training, was that the predicted89

flux profile is relatively smooth, and hence the derived heating rates did not yield spu-90

rious peaks as observed with some NNs. This feature make the RF an ideal candidate91

for low-cost, fast and simple radiation flux emulation.92

The structure of Part II is as follows: Section 2 describes the implementation de-93

tails for the ML radiative transfer parametrizations. Section 3 presents offline and on-94

line results. We conclude the paper with a summary in Section 4.95

2 Methods96

We start with the dataset construction for training the ML models, followed by the97

architecture choices for the RF and NN emulators, including normalization of inputs and98

outputs, the loss function for training the NNs, and a modification to the computation99

of fluxes above 15 km height to ensure ICON’s stability at height-levels with very low100

pressure. Finally, we explain the coupling of the ML emulators with ICON using Infero101

(Antonino Bonanni, 2022) developed at ECMWF and PyTorch-Fortran (Alexeev, 2022).102

2.1 Dataset103

A two-years-long ICON aquaplanet simulation is performed with a physics time-104

step of 3min and a horizontal resolution of approximately 80 km (ICON grid R02B05).105

The radiation parameterization ecRad is called every time-step and at full spatial res-106

olution. The simulation uses 70 vertical levels and thus 71 vertical half levels, ranging107

from index 70 at the surface to index 0 at the TOA (65 km height). The solar zenith an-108

gle is held constant at equinox.109

The first year of the simulation is considered as a spinup phase during which no110

data are stored. Starting at the beginning of the second year, the required inputs and111

outputs are stored every 3 h and 3min (183min output interval). This is slightly differ-112

ent from what is done in Part I (Bertoli et al., 2024), where data are stored every 3 h.113

The new strategy allows for a more complete coverage of different Sun positions over time114

in the dataset, which proved beneficial for the training. After 61 simulated days (480 time-115

steps stored every 183min), the dataset contains all possible angles based on the 3min116

time-step interval. All NNs trained with this dataset outperform the old models.117
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The dataset is split into two parts: the initial 270 days for model training and the118

last 88 days for testing. A 7-day gap is included between these datasets to allow the test119

set distribution to vary from the training set. Within the initial segment, two sub-sections120

are established. The first and last 20 days of the training dataset serve as a validation121

dataset for the ML models during training, aiding in determining when to halt the train-122

ing process using an early stopping criterion. The remaining 230 days are designated as123

the actual model training dataset.124

In ICON, the dynamical core, the horizontal diffusion, the tracer advection, the fast125

physics and then the slow physics processes are solved sequentially. The radiative trans-126

fer parameterization is part of the slow physics processes, which are solved in parallel.127

It is therefore essential to store the states of the inputs after they have been updated by128

the fast physics but before the slow physics update. For this reason, we modified the ICON129

code to extract the states of the input variables to ecRad in the middle of the sequen-130

tial time splitting.131

2.2 Radiation emulation: ML architecture132

In Part I (Bertoli et al., 2024), we explored different ML architectures as possible133

emulators of ecRad. First, an RF emulator composed of 10 trees served as a baseline model134

and was used to assess the performance of the NNs. While RFs could get very accurate,135

their memory footprints quickly surpassed 100GB and they thus became prohibitively136

memory-intensive. For this reason, RF size was constrained by imposing a minimum leaf137

size equal to 0.01% of the training dataset size.138

Second, three NN architectures were explored. A baseline feed-forward multilayer139

perceptron (MLP) served to evaluate the performance of more complex architectures.140

This MLP architecture, since it was outperformed by more complex architectures in Part I,141

is not considered further in this paper for the online tests. A convolutional NN was con-142

structed, more precisely a UNet, which allowed us to reduce the number of parameters143

significantly. Lastly, a RNN was constructed, more precisely a bidirectional RNN with144

long short-term memory (LSTM), which was the most accurate model. The RNN closely145

imitates the ecRad parameterization, which solves the effect of each atmospheric layer146

sequentially. The accuracy gain of the RNN compared to the UNet might result from147

the fact that the RNN has access to its own prediction in the layers above (for down-148

ward fluxes) and below (for upward fluxes). However, as discussed in Section 3.2, the149

RNN emulator is significantly slower than the UNet emulator and requires more mem-150

ory. In Tab. 1, the exact number of layers and number of neurons for each of the two NNs151

are listed. To improve the accuracy of the emulators, normalization strategies and cus-152

tom loss functions are employed as detailed in Bertoli et al. (2024) and briefly reiterated153

here.154

The ML model outputs normalizes short- and longwave up- and downward fluxes.155

The normalization is chosen such that for each atmospheric column, the model returns156

values that are approximately in the range [0–1] as in Ukkonen (2022). An exception are157

columns without incoming solar radiation, where the model returns zero shortwave fluxes158

at each height by definition. Each atmospheric column’s shortwave fluxes are divided by159

the cosine of the solar zenith angle multiplied by the solar constant (approx. 1400 kWm−2).160

Atmospheric columns whose cosine of solar zenith angle is smaller than 10−4 are not nor-161

malized in the shortwave because these are truncated in ICON for numerical stability162

reasons at the day-night interface. Following the Stefan-Boltzmann law (Petty, 2006)[Chap-163

ter 6.1.3] for the emission of a black body, the longwave fluxes are divided by the fourth164

power of the surface temperature multiplied by the Stefan-Boltzmann constant. This nor-165

malization strategy improves the results of all NNs and of the RF. Each input field is166

also normalized by subtracting its mean and dividing by its standard deviation computed167

from the training dataset. Note that the input features are normalized across all heights,168
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Table 1: NN architectures.

Model Architecture Overview

UNet The 2D features are broadcasted and concatenated with the 3D features
(along height axis with size 70). A UNet with convolutional units [128, 256,
512, 1024] and pooling layers [1, 2, 5, 7] are then applied. Finally, a 1D con-
volutional layer with 4 layers along the height axis and a final dense layer
maps to the outputs to size 71x4.

RNN The 2D features are broadcasted and concatenated with the 3D input (along
height axis with size 70). The features are then concatenated with a constant
vector (all ones) such that the height is equal to the output height (i.e., 71).
The feature vectors at each height level are then passed through an MLP
with units [128, 256]. A Bidirectional LSTM layers with units [128, 256, 512]
is applied. Finally, a dense layer is applied which maps the 71x512 hidden
units to the 71x4 output features.

which means that for each field (temperature, cloud cover, etc.), only a single mean and169

standard deviation are computed. This approach is adopted because, at higher atmo-170

spheric levels, certain fields that should be zero end up numerically near, but not equal171

to zero. Normalizing across all heights prevents the unnatural scaling that would occur172

if they were normalized independently at each height.173

For the custom loss function, the radiative heating rates for each atmospheric layer174

are computed by an ICON routine, using a finite-difference approximation of the ver-175

tical flux derivative. Obtaining accurate heating rates from the predicted fluxes is es-176

sential for updating the thermodynamic equation in ICON. Therefore, the mean squared177

error of the heating rates calculated from the emulated flux is added to the loss func-178

tion of the NNs. The loss function thus consists of two parts: the mean squared error179

of the flux prediction and the mean squared error of the heating rates.180

A challenge of the ML emulation of ecRad found during online inference is obtain-181

ing accurate heating rates at atmospheric levels above 35 km height. At those heights,182

the air mass between two model levels is extremely small and small errors in the height183

profile of the fluxes can result in large heating rate errors which can then break ICON184

simulations. The proposed loss function already ensures improved heating rate estima-185

tions, but it turns out not to be enough to ensure the stability of the ICON model at186

its top. For this reason, the computation of the fluxes above 15 km height is modified1.187

At those heights, a simplified formula is used to compute the heating rates. The fluxes188

above the chosen level H = 30 (15 km height) are constructed by multiplying the fluxes189

at level H by a set of constants βH−1, . . . , β0, which are optimized based on the train-190

ing set:191

fl,k = βkfl,H , (1)192
193

where fl,k is the chosen flux for the atmospheric column l at height level k and βk are194

different for short- and longwave up- and downward fluxes. See Appendix A for more195

details.196
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Figure 1: Schematic illustrating the integration of the ML emulator into ICON with In-
fero. Infero requires both the input and output data to be copied back and forth between
GPU and CPU memory (steps 1, 3, 5 and 7), which substantially slows down the ICON
simulation. First, the input data from ICON are copied from GPU to CPU memory (step
1). Infero obtains a CPU pointer to these ICON inputs (step 2). The “Tensorflow for C”
backend then copies the inputs to the GPU memory (step 3), calls the NNs (or RF) for
the fluxes predictions on GPUs (step 4) and finally copies back the outputs to the CPU
memory (step 5). Finally, a CPU pointer to the Infero outputs is created (step 6) and the
output data are copied back to GPU memory (step 7).

2.3 Implementation of the ML emulators into ICON197

The implementation of the ML models with Python into the Fortran code of ICON198

using Infero (Antonino Bonanni, 2022) is discussed here. Infero works with models built199

with the Tensorflow Python library (Abadi et al., 2015) or with models in the ONNX for-200

mat (Bai et al., 2019). The RF is trained with the Scikit-learn (Pedregosa et al., 2011)201

Python library and then ported to the ONNX format. The NNs are implemented with Ten-202

sorflow. In Figure 1, we show a schematic of how Infero integrates into ICON running203

on GPUs. Infero requires the inputs to be in CPU (referred to as host) memory and af-204

ter an ML prediction on the GPUs (referred to as device), it returns the outputs there.205

This is a limitation for a weather or climate model running on GPUs as it leads to back-206

and-forth copies of data between the separate memory spaces. Note however that for most207

models, which are running solely on the central processing unit (CPU), this is not an is-208

sue and Infero then becomes a suitable coupler. Furthermore, Infero is developed by ECMWF,209

which are increasing their efforts in using ML methods to improve current weather mod-210

els (ECMWF, 2023). Infero may thus see improvements in the future, allowing for an211

optimized coupling on the GPUs. Hence, we still report next how Infero calls the NNs212

when coupled to ICON, although an alternative coupler allowing direct access of the data213

on the GPUs could be preferred for GPU-enabled weather and climate models.214

1 Note that the method we explain here does not appear in Bertoli et al. (2024) since the problem be-

came apparent only after the emulator was integrated into ICON.
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Figure 2: Schematic illustrating the integration of the ML emulator into ICON with
PyTorch-Fortran. In contrast to Infero, no copies between CPU and GPU memory are re-
quired. First, a pointer to ICON inputs is created (step 1). Then, the NNs is called (step
2). Finally, a pointer to PyTorch-Fortran outputs is created so that ICON can handle the
predicted fluxes (step 3).

In this paper, we experiment with the ICON version running fully on GPUs. The215

data are first copied from the GPU to the CPU (step 1 in Figure 1). Infero can then ac-216

cess the input data (step 2) and compute the outputs with the NNs or RF (steps 3–5).217

Internally, Infero uses a “Tensorflow for C” backend, which will copy the input data to218

GPU memory (step 3), run the ML model on the GPUs (step 4) and then copy the out-219

put data back to CPU memory (step 5). Finally, the output data are accessed by ICON220

(step 6) and copied back to GPU memory (step 7). The input and output data are thus221

copied twice each. This drastically slows down the computation of the radiative fluxes222

and diminishes the possible speed-up from using an ML model instead of ecRad.223

An alternative to Infero is PyTorch-Fortran (Alexeev, 2022). Figure 2 shows how224

the ML models are integrated into ICON with PyTorch-Fortran. PyTorch-Fortran re-225

quires the models to be built with the Pytorch library instead of Tensorflow. The main226

advantage of Pytorch-Fortran is that both ML emulator and ICON can run purely on227

GPUs. PyTorch-Fortran first obtains pointers to the input data, then runs the ML model228

and return pointers to the output data to ICON. Therefore, it completely avoids copy-229

ing data between CPU and GPU memory. This is a major advantage compared to In-230

fero. A limitation is, however, that PyTorch-Fortran does not work with models built231

in the ONNX format. This renders it incompatible with the Scikit-learn library which con-232

tains a variety of ML models.233

3 Results234

3.1 Offline performance235

Figure 3 shows the mean absolute error (MAE) of the different ML models. The236

RF is the most accurate above 15 km height for the heating rates and the downward fluxes.237

It is however the least accurate model below 15 km height, where accuracy is the most238

important. The RNN outperforms the UNet at all heights for both the fluxes and heat-239

ing rates. The effect of the simplified formula (1) used to compute the fluxes above level240

30 is shown in the heating rates profile. This simplified equation improves the shortwave241

heating rates accuracy above 35 km height and the longwave heating rates accuracy above242

25 km for both NNs. On pressure coordinates, we observe that the increase in the heat-243

ing rates error from levels 30–25 to level 0 at the TOA, is concentrated in a small pres-244

sure interval from around level 100 hPa up to the model top. This compares well with245

results of the literature shown in pressure coordinates (Chevallier et al., 1998; Ukkonen,246

2022; Liu et al., 2020) or height coordinates with logarithmic scale (Lagerquist et al., 2021).247
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Figure 3: MAE over the test set for the RF, the UNet and the RNN models. Above level
30, the simplified Equation (1) is used to compute the fluxes for the UNet and the RNN.
The MAEs of the RNN and UNet without the simplified Equation (1) is shown in black.
In the last column, the heating rates MAE is shown in pressure coordinates.

3.2 Online performance248

ICON simulations are performed over 3 weeks with the different ML emulators. Each249

simulation is restarted from the end of the 23rd month of the two-year simulation that250

produced the training and testing datasets. Recall that the ML models are trained with251

months 13 to 21. The experiments related to Figures 4 and 5 are performed on the Piz252

Daint HPC with NVIDIA Tesla P100 16GB GPUs (NVIDIA, 2016), while the runtime253

presented in Table 2 are performed on the Balfrin CSCS machine with NVIDIA A100254

Tensor Core GPU (NVIDIA, 2022).255

In Figure 4, the global mean temperatures at the TOA, at 1 km height and at the256

surface from ICON simulations with different radiation emulators are compared to the257

reference simulation with ecRad. At the TOA, the RNN model provides by far the high-258

est accuracy. For the UNet model, the global temperature is dropping fast to below 135K259

at the end of the three-weeks-long simulation. We extended the simulation with the UNet260

to two months and although the global temperature continues to drop at the TOA, this261
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Figure 4: Global mean temperature in Kelvin at the TOA, at 1 km height and at the
surface for three-weeks-long ICON simulations with four different radiation parameteri-
zations: RF, RNN, UNet and ecRad. The horizontal dotted line corresponds to the ecRad
global mean temperature at time 0. Each vertical axis is centered on the ecRad global mean
temperature at time 0 and has a 2K range of values. At the TOA, the RNNs is the only
ML model that provides an accurate global mean temperature with respect to ecRad.

does not seem to affect ICON’s stability. Furthermore, no perturbations of the lower lev-262

els due to the decrease of temperature at the top is observed. The temperature of the263

RF simulation is significantly more accurate than the UNet simulation although the tem-264

perature is increasing over time at the TOA. It is however the least accurate model at265

1 km height and at the surface during the first ten days where accuracy matters the most.266

Extensive online simulation horizons with RNN are still competitive with the ecRad ref-267

erence. Throughout a time horizon of two months, the temperature difference between268

RNN and ecRad simulations never exceed 2K at TOA and 0.3K at surface and 1 km height269

levels. The superior stability of the RNN makes it a good candidate for multi-years ICON270

climate simulations.271

Figure 5 presents meridional vertical cross sections of heating rates along the prime272

meridian 2 d, 4 d, and 6 d into the simulation using ecRad and the RNN model. Both sim-273

ulations are started from the same restart file after a 23 months of simulation with ecRad.274

This is possible because our implementation allows us to switch between ecRad and the275

RNN model during runtime. After two days, both parameterizations exhibit nearly iden-276
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Figure 5: Meridional vertical cross-sections along the prime meridian of net heating
rates in pressure coordinates as computed by ICON with (left) ecRad and (b) the RNN
radiation emulator. The rows show (top to bottom) instantaneous fields (a, b) 2 d, (c, d)
4 d and (e, f) 6 d into the simulation, as well as (g, h) the mean over the first 10 d. The
bottom row shows a 10-day average. Both simulations have been started from the same
restart file saved after 23 months of simulation with ecRad.

tical heating rate profiles. By day 4, differences emerge near the equator. By day 6, they277

have become more pronounced above 600 hPa, which is expected as small differences be-278

tween the simulations start to grow over time, similar as in ensemble runs. While the279

mean heating rates align in both simulations, a small discrepancy arises at 5◦S where280

positive heating rates between 400 hPa and 100 hPa are underestimated on average in281

the RNN-based simulation. This is evident in the instantaneous heating rate displayed282

for 4 days and 6 days into the simulations in Figure 5. At this stage it is unclear whether283

this indicates a systematic emulation bias, deviating model trajectories due to growing284

perturbations (akin to different ensemble members) or a combination of both.285

In Tab. 2, the run times of the radiation and the whole physics are shown for 400286

ICON time-steps, corresponding to 20 hours of simulated time. The RNN model is twice287

as slow as ecRad and requires more than 8 GPUs (Nvidia A100 tensor core GPU with288

80GB of memory) to run. In comparison, the slim UNet model is as fast as ecRad with289

12 GPUs, twice as fast with 8 GPUs and three times as fast with 4 GPUs. It can even290

fit on 2 GPUs in contrast to ecRad. As an alternative to the RNN model, a smaller model291

is trained, with similar MAE than the RNN model described in Table 1, with fewer LSTM292

layers and a single set of weights for the first MLPs of size [128, 256]. This tuning re-293

duces the number of trainable parameters from 15 million to 5 million and the size of294
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Table 2: Comparison of run time in seconds for 400 ICON time-steps using ecRad and the
RNN and the UNet emulators as a function of the number of GPU nodes (Nvidia A100
tensor core GPU with 80GB of memory). Out-of-memory (OOM) issues are indicated.
Shown in brackets are runtimes of the all physics parameterization combined.

No. GPUs 2 4 8 12

UNet 92 [116] 50 [65] 35 [49] 46 [57]
RNN OOM OOM OOM 108 [117]
RNN optimized OOM 143 [156] 77 [78] 48 [59]
ecRad OOM 144 [184] 73 [99] 51 [73]

the RNN from 64 MB to 22 MB. The smaller model fits on 4 GPUs and the total run295

time of all physics parameterizations is now below that including ecRad, and the radi-296

ation emulation itself is now comparably fast between the two, with variations between297

the number of GPUs used. Note that, for the ICON simulation corresponding to the run-298

time given in Table 2, the radiation parameterization is called every time-step and is solved299

at full resolution. The total runtime of all physics is thus dominated by the radiation300

runtime. The runtime ratio between ecRad and the machine learning models for the ra-301

diative process aligns with a similar ratio for the sum of all physical phenomena as seen302

in Table 2. The ratio for ecRad and the full physics may differ slightly due to due dif-303

ferent workload on the Balfrin system used for these experiments. This experiment shows304

that ML-based radiation emulators running on GPUs are not per se faster than a highly305

optimized physics-based GPU-enabled solver like ecRad, which is written in Fortran with306

OpenACC compiler directives.307

ML models size could be reduced further with, for example, automatic mixed pre-308

cision (Carilli, 2024), where some operations are done with half precision instead of full309

precision, and dynamic quantization (Dynamic Quantization, 2024), which reduces the310

resolution of the model’s weight. ICON and PyTorch are written in two different lan-311

guages (Fortran with OpenACC and C++ with CUDA) which access the same GPU mem-312

ory space when coupled together. It is yet unclear how both languages interact regard-313

ing data access and further profiling would be required to optimize how PyTorch should314

share the data access with the rest of the ICON code. This is however beyond the scope315

of this study. By comparison, ICON and ecRad are both written in Fortran with Ope-316

nACC directives. Note also that in (Ukkonen & Hogan, 2024), the authors restructured317

the ecRad code and improved its runtime performance by a factor of up to 12. The code’s318

restructuring is designed for a CPU usage but the improved parallelism could benefit a319

GPU implementation of ecRad. Depending on its performance on GPUs, this optimized320

version of ecRad could outperform the ML models presented here.321

4 Summary322

In this two-part study, an ML emulation of the ecRad radiative transfer param-323

eterization is built for the GPU-enabled ICON weather and climate model. In Part I,324

through a series of offline tests the most accurate ML model has been identified as a bidi-325

rectional recurrent NNs with long-short memory layers and additional physics-informed326

normalization of input and output features, as well as an additional heating rate related327

loss term in the objective function (Bertoli et al., 2024). In this work, Part II, a signif-328

icant technical advancement is made by integrating the ML radiative transfer param-329

eterization into ICON.330
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Since the air in the upper atmospheric layers is substantially less dense than lower331

layers, a small error in the flux profile results in a large heating rate error in the upper332

levels, which during long integration can cause spurious temperature trends near the model333

top. Model tops are known to often require additional tuning not seen during offline train-334

ing. For example, Brenowitz and Bretherton (2019) removed the model top from train-335

ing to stabilise the online performance of their ML-based convection scheme. To mit-336

igate the aforementioned problem with high heating rates, which is easily overlooked in337

the offline testing, a simplified formula is used to calculate the fluxes in the damping layer338

of ICON near the model top, which reduces the heating rate error significantly and keeps339

the model free from any temperature drifts and very close to the original ecRad simu-340

lation for several simulated weeks. However, future research is needed to further improve341

the emulation at the top of the model, in particular for shortwave radiation, and to in-342

crease the reliability of the results at scales beyond weather forecasting. A potential way343

forward is to train an emulator that infers the TOA and surface level shortwave and long-344

wave fluxes plus the heating rates on all levels within the atmosphere.345

To seamlessly connect the Fortran code with the NNs implemented with Python,346

the Infero coupler from ECMWF was explored initially (Section 2.3). Infero requires that347

the ML model inputs and outputs are provided in the CPU memory. However, the ver-348

sion of ICON examined in this paper operates entirely on GPUs. Consequently, using349

Infero leads to needless data transfers between CPU and GPU memory, causing notable350

delays in the ML parameterization compared to ecRad. Note however that the next gen-351

eration of hardware, like the Grace Hopper chips (NVIDIA, 2023) chosen for the next352

CSCS supercomputer Alps (CSCS et al., 2021), reduces the overhead of CPU-GPU copies353

and can even expose a shared CPU-GPU memory space to the user. This could make354

Infero more competitive, even in its current form. There appear to be no obstacles pre-355

venting the adaptation of Infero for complete GPU utilization, thereby eliminating the356

need for data transfers between hardware components. As such, the limitation of Infero357

exposed in this paper could potentially be nonexistent in future versions of this software.358

In this paper, to avoid CPU-GPU copies, the PyTorch-Fortran library (Alexeev, 2022)359

is adopted as an alternative solution. This approach enables direct processing of ML in-360

puts and outputs on the GPU. The integrated system of GPU-enabled ICON, by means361

of OpenACC, and ML emulator implemented with PyTorch is deployed on the Piz Daint362

and Balfrin systems at CSCS, leveraging GPU capabilities for enhanced performance.363

To the best of our knowledge, this is the first time that a full-fledged weather and364

climate model in combination with an ML-based parameterization developed in PyTorch365

has been run completely on GPUs. The performance gain compared with simulations366

using the original ecRad radiation solver depends critically on the complexity of the NNs367

architecture, and not all tested NNs are per se faster than the traditional physics-based368

code. Performance gains reported in past studies may stem from the fact that the em-369

ulated parameterisation was originally run on CPUs while the ML emulator was run on370

GPUs. Also in terms of memory consumption, we find that the memory footprint of ecRad371

is smaller compared to the RNN, albeit larger compared to the UNet architecture. We372

cannot rule out the possibility that a more sophisticated tuning of the NNs architectures373

would result in a higher speed-up, but this holds also true for the original radiation solver374

(Ukkonen & Hogan, 2024).375

Open Research Section376

The data were generated using the ICON climate model described in Prill et al.377

(2023). The software is available at https://www.icon-model.org/. The codes to re-378

produce the results of this paper will be made available in https://gitlab.renkulab379

.io/deepcloud/rfe. Data to reproduce results of this work will be hosted at ETH Re-380

search Collection https://www.research-collection.ethz.ch/ (with a DOI) together381
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with the ICON runscript used to generate the full dataset. ETH Zurich’s Research-Collection382

adheres to the FAIR principles and data is stored for at least 10 years.383
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Appendix A Modification of the fluxes computation at the upper lev-499

els500

Four different sets of constants βk corresponding to the shortwave down, shortwave
up, longwave down and longwave up fluxes are constructed. The constants βk, k = 0, . . . ,H−
1, are given by

βk =
1

N

N∑
l=1

fk,l/fH,l, (A1)

where the mean is taken over all atmospheric columns in the training set. The top at-501

mospheric layers in ICON are Rayleigh damping layers, whose purpose is to attenuate502

oscillations reaching the top boundary. ICON is hence not designed to be accurate at503

such heights. In particular the ML emulator does not need to emulate perfectly ecRad504

in the damping layers. The goal of this strategy is to thus sacrifice flux accuracy at the505

top height levels for an increase in the stability of ICON. This strategy is not used on506

the random forest, which already provides accurate heating rates at the top levels. This507

is to be expected because the random forest prediction is average of flux profiles encoun-508

tered in the training set.509

For the upper levels, where the fluxes are approximated with Formula 1, the heat-
ing rates ∂tT

rad
k at level k for k in 0, . . . , 29, are given by the following formula:

∂tT
rad
k = Ck(fk−1 − fk)

= Ckf30(βk−1 − βk)

= Ckf30

(
1

N

N∑
l=1

fk−1,l

f30,l
− 1

N

N∑
l=1

fk,l
f30,l

)

=
1

N

N∑
l=1

f30
f30,l

Ck(fk−1,l − fk,l)

=
1

N

N∑
l=1

f30
f30,l

Ck

Cl,k
∂tT

rad
k,l , (A2)

where Ck represent the effect of the air mass and humidity and is given by

Ck =
1

mk(cd + (cv − cd)qk)
,

and where mk an qk are the air mass and specific humidity at height level k and cv, cd510

are the specific heat of water vapor and dry air at constant volume, assumed constant511

in ICON. Equation A2 shows that the heating rates obtained from the predicted fluxes512

are then the approximate weighted mean of heating rates observed during training. It513

is only an approximate weighted mean because 1
N

∑N
l=1

f30
f30,l

mk,l(cd+(cv−cd)qk,l)
mk(cd+(cv−cd)qk)

is not equal514

to 1 in general. Furthermore, no vertical derivative of the predicted fluxes appear in Equa-515

tion A2. Additionally, the inverse of the air mass 1/mk is multiplied by the air mass mk,l516

of observed atmospheric columns during training. This reduces the sensitivity of the heat-517

ing rates to the fluxes prediction.518
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Mean temperature.





heating rates prediction.
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