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Abstract

River meanders are one of the most recurrent and varied patterns in fluvial systems. Multiple attempts have been made to

detect and categorise patterns in meandering rivers to understand their shape and evolution. A novel data-driven approach was

used to classify single-bend meanders. A dataset containing approximately 10 million single-lobe meander bends was generated

using the Kinoshita curve. A neural network autoencoder was trained over the curvature energy spectra of Kinoshita-generated

meanders. Then, the trained network was then tested on real meander bends extracted from satellite images, and the energy

spectrum in the meander curvature was reconstructed accurately thanks to the autoencoder architecture. The meander spectrum

reconstruction was clustered, and three main bend shapes were found associated with the meander datasets, namely symmetric,

upstream-skewed, and downstream-skewed. The autoencoder-based classification framework allowed bend shape detection along

rivers, finding the dominant pattern with implications on migration trends. By studying the shift in the prevailing bend shape

over time, cutoff events were approximately forecast along the Ucayali River, whose migration was remotely sensed for 32 years.

Overall, the method proposed opens the venue to data-driven classifications to understand and manage meandering rivers. Bend

shape classification can thus inform restoration and flood control practices and contribute to predicting meander evolution from

satellite images or sedimentary records.

1



manuscript submitted to Water Resources Research

A Curvature-Based Framework for Automated1

Classification of Meander Bends2

Sergio Lopez Dubon1, Alessandro Sgarabotto2,3, and Stefano Lanzoni43

1School of Engineering, University of Edinburgh, Edinburgh, United Kingdom4
2School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, United5

Kingdom6
3School of Engineering, University of Birmingham, Birmingham, United Kingdom7

4Department of Civil, Environmental and Architectural Engineering, University of Padova, Padova, Italy8

Key Points:9

• A curvature-based classification framework of meander bends was successfully trained10

over Kinoshita-generated meanders.11

• By testing the trained framework over real meander bends, 3 classes were found,12

namely symmetrical, downstream-skewed, and upstream-skewed.13

• The proposed framework detects the dominant shape class in river reaches and how14

this changes over time when cutoff events occur.15
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Abstract16

River meanders are one of the most recurrent and varied patterns in fluvial systems.17

Multiple attempts have been made to detect and categorise patterns in meandering rivers18

to understand their shape and evolution. A novel data-driven approach was used to classify19

single-bend meanders. A dataset containing approximately 10 million single-lobe meander20

bends was generated using the Kinoshita curve. A neural network autoencoder was trained21

over the curvature energy spectra of Kinoshita-generated meanders. Then, the trained net-22

work was then tested on real meander bends extracted from satellite images, and the energy23

spectrum in the meander curvature was reconstructed accurately thanks to the autoencoder24

architecture. The meander spectrum reconstruction was clustered, and three main bend25

shapes were found associated with the meander datasets, namely symmetric, upstream-26

skewed, and downstream-skewed. The autoencoder-based classification framework allowed27

bend shape detection along rivers, finding the dominant pattern with implications on migra-28

tion trends. By studying the shift in the prevailing bend shape over time, cutoff events were29

approximately forecast along the Ucayali River, whose migration was remotely sensed for 3230

years. Overall, the method proposed opens the venue to data-driven classifications to under-31

stand and manage meandering rivers. Bend shape classification can thus inform restoration32

and flood control practices and contribute to predicting meander evolution from satellite33

images or sedimentary records. Keywords: Meandering rivers; Automatic Classification;34

Wavelets; Model Transferability; Autoencoder; Pattern recognition35

Plain Language Summary36

Single-thread rivers commonly cut through alluvial floodplains with continuous sinuous37

curves. Classifying meanders provides a key to understanding their shape and, thus, learn-38

ing how they have changed over time. A novel classification framework was proposed using a39

machine-learning model for pattern recognition in images. This model was trained over the40

curvature energy distribution within the meander bends generated from analytical relations.41

The classification framework was then tested over a set of real meander bends extracted from42

satellite images. The trained model grasped the most important features contained in cur-43

vature energy distribution, grouping the meander data set into three bend-shaped clusters,44

namely symmetric, upstream-skewed, and downstream-skewed. The proposed framework45

was then used to find the predominant bend class and its shifts during river migration,46

offering a different perspective on meander evolution. Bend shape classification can be used47

to guide restoration and flood control plans and predict meandering trends from satellite48

images or sedimentary records.49

1 Introduction50

Meander bends are patterns widespread in both fluvial and tidal systems (e.g., Leopold51

et al., 1964; Leuven et al., 2018; Finotello et al., 2020). While migrating on the alluvial52

plain, meander bends evolve by growing in amplitude, fattening, and skewing. Eventually,53

the sinuous loops, if too narrow, cut off starting a new course (e.g., Kleinhans et al., 2023).54

Restoration practices often include re-introducing meanders to enhance biodiversity55

and mitigate flood peaks by promoting floodplain inundation and slowing down the flow56

(e.g., Wohl et al., 2015). River sinuosity associated with the presence of meanders favours57

the accommodation of organic matter, improving the stability of the riparian soil and re-58

ducing the impact of dam constructions (Ran et al., 2022). Moreover, meandering rivers,59

especially those migrating actively on floodplains, are more efficient in carbon sequestra-60

tion than straight rivers, thus contributing to climate change mitigation (Repasch et al.,61

2021). Studies on static planform shapes and their classification can also improve our un-62

derstanding of meander dynamics and give insights on paleochannels (e.g., Yan et al., 2021;63

Bellizia et al., 2022; Sgarabotto et al., 2024). Overall, the study of meander morphology64
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can help to understand how meandering rivers evolve and provide insights for effective river65

management.66

Bend geometries can be very complex. They include single-lobe bends and multi-lobe67

bends when adjacent bends merge, making it hard to detect the single-bends inflexion68

points and apexes unambiguously. Different classification frameworks have been proposed69

to address the complexity and variety of meandering patterns and help the understanding70

of their morphodynamics (Leopold et al., 1964; Howard & Hemberger, 1991; Lagasse et71

al., 2004; Güneralp et al., 2012; Lanzoni, 2022). Classifications serve various purposes, and72

their relevance depends on the ease of use, the possibility to analyse many different patterns,73

the ability to grasp the physical processes, and, more recently, the potential for automation74

(Buffington & Montgomery, 2013). In general, meander classifications can be grouped75

into qualitative approaches, based on shape matching, and quantitative approaches, which76

rely on bend parametrisation, bend evolution frameworks, spectral methods, or data-driven77

methods (Hooke, 2013).78

The visual similarity between bends led to a classification in which the observed me-79

anders are subjectively matched to shape prototypes (Brice, 1974; Ielpi & Ghinassi, 2014).80

To encompass even complex morphologies, the number of classes is progressively increased.81

For example, the four classes initially proposed by Brice (1973), were extended to 16 by82

Brice (1974) and further expanded to 70 by Hooke (1977). A simplification of this approach83

was put forward by Hooke and Harvey (1983), who, in addition to the shape matching,84

considered various simple mechanisms to account for evolution processes, such as free and85

confined mender migration, bend growth, lobbying, double heading, formation of new bends,86

cutoff, and retraction. The subjective nature of visual classification was later supported by87

objective shape assessments based on ensemble statistics of the planforms included between88

successive inflexion points of the channel axis. The bend shape was investigated by analysing89

geometrical features such as the radius of curvature, the cartesian and intrinsic lengths, the90

sinuosity, and the asymmetry index. Bend shapes were initially classified using single met-91

rics, such as the sinuosity (Schumm, 1985) and the radius of curvature (Nanson & Hickin,92

1983; Hickin & Nanson, 1984). Subsequently, shape characterisation was improved by con-93

sidering multiple metrics. Slope, sinuosity, and width-to-depth ratio were used by Rosgen94

(1994) to characterise river systems. More recently, Russell et al. (2018) proposed to use a95

polygon built around a meander bend such that its sides were tangent to the meander cen-96

treline. The length of the meander centreline was normalised with the bend width, and the97

ratio between the area and perimeter of the polygon concurred to define the various mean-98

der classes. Nevertheless, all the aforementioned methodologies present two main problems.99

First, they are too complicated to encompass as many shapes as possible. Indeed, the geo-100

metrical metrics considered insufficient to characterise unambiguous single meander bends.101

In contrast, a suite of them can be used for the statistical characterisation of an entire river102

reach (Camporeale et al., 2005; Frascati & Lanzoni, 2009). Secondly, the great variety of103

meander shapes (e.g., Figure 1a-d) makes the above classification frameworks cumbersome104

to automate and test on a large meander dataset.105

To overcome the issues of shape matching and bend parametrisation approaches, the106

bend evolution was described through simplified mechanistic models aimed to reproduce107

the variety of meander bends (Hooke & Harvey, 1983; Lagasse et al., 2004). In particular,108

the explanation of meander initiation through the bend instability mechanism (Ikeda et al.,109

1981; Blondeaux & Seminara, 1985) led to the formulation of numerous deterministic mod-110

els of meander morphodynamics. Early models described the evolution of meander bends111

considering a linearised treatment of the morphodynamic problem, and using a simplified112

bank erosion law based on the difference in flow speed experienced at the outer and inner113

banks (Crosato, 1990; Seminara & Tubino, 1992; Seminara et al., 2001). Further mech-114

anisms were subsequently added in this type of models, such as the occurrence of cutoffs115

(Howard & Knutson, 1984; Camporeale et al., 2008; Schwenk & Foufoula-Georgiou, 2016;116

Weisscher et al., 2019), the effects of height and sediment composition of the banks and117
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Figure 1. Satellite images of meandering patterns along the (a) Juruá (Brazil), (b) Beaver

(Canada), (c) Bermejo (Argentina), and (d) Kwango (Angola/Congo) rivers. All the images were

taken in May 2023: (a) and (c) were extracted from Bing Areal Maps; (b) and (d) were extracted

from Google Satellite. (e) A schematic illustrating the main geometrical features of a meander

bend.
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the formation of slump blocks (Mosselman, 1998; Parker et al., 2011; Langendoen et al.,118

2016), the presence of channel width variations (Wu et al., 2011; Zolezzi et al., 2012; Fras-119

cati & Lanzoni, 2013; Lopez Dubon & Lanzoni, 2019), and the consequences of floodplain120

heterogeneity due to former river wanderings or geological constraints (Motta et al., 2012;121

Bogoni et al., 2017). If included in the modelling framework, riparian vegetation was found122

to reduce the shear stress distribution and affect bank erodibility, narrowing the stream and123

slowing down the migration process in the long-term (Sun et al., 2010; Camporeale et al.,124

2013; Weisscher et al., 2019; Ielpi et al., 2022). Linearised morphodynamic models were125

also used to characterise meander morphology in terms of the potential extension of the126

meander belt (Camporeale et al., 2005). Specifically, the ratio between the meander belt127

width and the channel width was used to define an entrenchment ratio that quantifies the128

overall propensity of a meandering river to migrate laterally. This metric was also used in129

Rosgen classification (Rosgen, 1994).130

An attempt was put forward to integrate the shape characterisation with hydro-morphodynamic131

information by Bolla Pittaluga and Seminara (2011) and Schwenk et al. (2015). In particu-132

lar, Bolla Pittaluga and Seminara (2011) proposed a mechanistic classification of meander133

bends relying on four dimensionless groups quantifying the relative importance of friction134

as compared to local inertia (Σ), longitudinal convection (L), centrifugal inertia (δ), and135

lateral convection b. These four parameters are defined as:136

Σ =
Du

LT0

√
Cfu

, L =
Du

L
√
Cfu

, δ =
Du

R0

√
Cfu

; b =
Du

B
√
Cfu

(1)

where Du is the uniform flow depth, Cfu is the corresponding friction coefficient, B is the137

half-width of the channel, LT0 is a characteristic convective scale defined as the distance138

covered by a fluid particle moving with a velocity Uu in the time scale T0, L is a characteristic139

spatial scale (e.g. the meander wavelength), and R0 is an appropriate radius of curvature.140

The typical values of these groups were extracted from a real meanders database (Lagasse et141

al., 2004). Based on the values attained by the above parameters, mildly curved bends were142

found to be quite common. Specifically, half of the meanders analysed by Bolla Pittaluga143

and Seminara (2011) exhibited a relatively small value (below 0.18) of the parameter δ.144

Even though classifications of meander shapes relying on hydraulic parameters are not145

widely adopted, various studies have highlighted the strong link between meander shape146

morphology and its formative dynamics (e.g., Schwenk et al., 2015; Guo et al., 2019).147

Meandering morphology has also been characterised through spectral analysis, consid-148

ering flow direction or channel axis curvature (Howard & Hemberger, 1991). Indeed, bend149

curvature provides valuable insight into meander shape, given its strong influence on the150

flow field, sediment dynamics, and ultimately, on the rate of bend migration (Güneralp &151

Rhoads, 2008; Finotello et al., 2018; Donovan et al., 2021). Meandering patterns were also152

mimicked through a random walk process, where changes in direction were assumed as inde-153

pendent random variables, representing the effects of disturbances to the system (Langbein154

& Leopold, 1966). In addition, Langbein and Leopold (1966) argued that changes in me-155

andering direction can be well approximated by a sine-generated curve that minimises the156

variance from the stable state defined by the mean downstream direction. By describing the157

meandering process as completely random, the meandering path degenerates into a straight158

line when disturbances to the system are removed. To overcome this issue, river meanders159

were treated as deterministic oscillations with a random component attributed to a variable160

floodplain composition, affecting the planform angle (Langbein & Leopold, 1966; Howard161

& Hemberger, 1991) or vertical bank elevation (Lazarus & Constantine, 2013). More re-162

cently, meander morphology was investigated by analysing the energy spectrum of curvature163

distribution in a bend by wavelets (Gutierrez & Abad, 2014; Zolezzi & Güneralp, 2015).164

Despite the numerous attempts outlined above, an automatic, objective classification165

of meander bends has yet to be developed. Machine learning offers techniques to find166

patterns in large datasets, proving its versatility in many geomorphology applications, such167

as the detection of fluvial geomorphic features from satellite images (Bozzolan et al., 2023).168
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The present study proposes a physics-based, data-driven method to automatically classify169

meander bends, based on the energy spectrum of the curvature distribution. This approach170

is deemed to overcome the shortcomings of existing classification methods.171

The rest of the paper is structured as follows. Section 2 presents the methodologies172

used to generate synthetic meander planforms and extract real meander shapes from satel-173

lite images. This section also outlines the development of the data-driven unsupervised174

classification framework, relying on the energy spectrum of the bend curvature distribution.175

Section 3 presents the classification results obtained for real meander bends. In section 4, the176

classification results are discussed in terms of meander morphodynamics, also considering177

the specific case of a reach of the Ucayali River. Finally, section 5 reports the conclusions.178

2 Methods179

The automated classification framework developed in this study exploits the information180

contained in the spatial distribution of channel axis curvature. We propose to summarise181

this information through its wavelet spectrum, which is then used to automatically identify182

the typology of a given meander bend. A neural network autoencoder was trained on the183

wavelet energy spectra extracted from a large series of synthetic meanders. The classification184

procedure based on this autoencoder was subsequently tested on an independent set of185

synthetically generated bends and real meander shapes extracted from satellite images.186

The development of the overall framework included six steps (Figure 2). First, single-187

bend meanders were generated from the Kinoshita curve for both training and testing pur-188

poses. Next, the continuous wavelet transform was applied to the spatial distribution of189

channel axis curvature for each bend, computing the corresponding total energy wavelet190

spectrum. Third, the images of the energy spectra were used to train an autoencoder which191

compresses the information contained in each image, locates it in a latent two-dimensional192

space and eventually reconstructs it. This autoencoder was then tested over an indepen-193

dent set of synthetically generated bends, as well as on real single-bend meanders. Fifth,194

the K-means algorithm was used to find out the optimal number of clusters through which195

the real meanders can be grouped in the latent space. Finally, the cluster centroid was196

used to represent the characteristic shape of the cluster, regardless of bend amplitude and197

wavenumber. Below, we summarise the key features of the various steps.198

2.1 Synthetically-generated meanders199

The synthetic sets of meander planforms used first to train and subsequently to test the200

automatic classification procedure were generated according to the so-called Kinoshita curve201

(Kinoshita, 1961). This curve represents a slightly modified version of the sine-generated202

curve of (Langbein & Leopold, 1966), and can describe a rich spectrum of meander shapes203

(Seminara et al., 2001; Vermeulen et al., 2016; Seminara et al., 2023), from single-lobe204

meanders, which have only two inflexion points of the curvature distribution, to compound205

meanders, with multiple inflexion points. Denoting by s the intrinsic coordinate of the206

channel axis and Lw the meander wavelength (Figures 1e and 2a), the Kinoshita curve207

expresses the angle that the tangent to the channel axis forms with that of the valley as208

θ = θ1 sin(λ s) + θ3r cos(3λ s) + θ3i sin(3λ s), (2)

where λ = 2π/Lw is the meander wavenumber. The spatial distribution of the channel axis209

curvature c(s) is readily computed as210

c(s) = −dθ
ds

= c0
[
cos(λ s)− cF sin(3λ s) + cS cos(3λ s)

]
, (3)

with c0 = λθ1, cF = 3 θ3r/θ1 and cS = 3 θ3i/θ1 dimensionless parameters controlling the211

bend shape. In particular, cF is associated with the bend fattening, whereas cS determines212

whether the bend is skewed upstream or downstream.213
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Figure 2. Flowchart illustrating the six steps involved in developing the automated classification

procedure of meander bends based on the energy spectrum of the spatial distribution of channel

axis curvature.

The intrinsic coordinate s and the cartesian coordinates (x, y) are related together by214

the transformations215

dx

ds
= cos θ(s),

dy

ds
= sin θ(s), (4)

allowing to reconstruct the bend shape in the (x, y)-plane.216

To produce a meaningful set of planform geometries, the values of the parameters θ1,217

θ3r and θ3i were chosen taking advantage of the real meander dataset of Lagasse et al.218

(2004). A statistical analysis indicated that the wavenumber of meanders can be described219

by a Probability Distribution Function (PDF) based on the gamma function Γ, namely220

fΓ(ξ) =
ξ(γa−1)

γγab Γ(γa)
exp

[
−
(
ξ

γb

)]
, (5)

where the best-fit values of the coefficients γa and γb, are equal to 12.728 and 0.0265,221

respectively. These values lead to a coefficient of determination R2 equal to = 96.13%, and222

a Bayesian Information Criterion (BIC) of -2.551 ·102.223

The wavenumbers of the Kinoshita-generated meanders were selected by randomly sam-224

pling from the PDF (5). On the other hand, as no information was available about the225

statistical distribution of the parameters θ1, θ3r and θ3i, their values were randomly sam-226

pled from a uniform PDF using a pseudo-random number generator function (Harris et al.,227

2020). Moreover, to avoid intertwined loops, the coefficients θ3r and θ3i were selected in the228

range [−1, 1] assuming a zero mean value. Finally, the amplitude coefficient θ1 was chosen229

in the range [4/π − 1, 4/π + 1], with a mean value equal to 4/π.230

Each bend composing a single-lobe meander, or a compound bend meander, was iden-231

tified by considering two consecutive inflexion points. Each bend was then resampled to232
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contain the same number of points (i.e., 201), rotated to align its extremes with the x-233

axis, and saved on a specific dataset. This dataset, containing approximately 10 million of234

synthetically-generated bends, was subsequently divided into two independent sub-datasets,235

used afterwards for the training (8.5 million bends) and the testing (1.5 million bends) of236

the automatic classification procedure. The frequency distributions of the wavenumber λ237

and the parameters θ1, θ3r and θ3i used in the Kinoshita curve are shown in Figure S1 of238

the Supporting Information.239

2.2 Wavelet energy spectrum240

The wavelet transform allows the analysis of temporal or spatial signals with a flex-241

ible time-frequency (or space-frequency) window (mother wavelet) that adjusts automati-242

cally, narrowing for high-frequency oscillations and widening for low-frequency oscillations243

(Antoine et al., 2004; Addison, 2018; Tary et al., 2018). In the present study, we have244

applied this analysis to the spatial distribution of the bend curvature c(s).245

The mother wavelet can, in general, be written as (Foufoula-Georgiou & Kumar, 1994):246

ψb,a(s) =
1√
a
ψ
(s− b

a

)
, (6)

where a is a positive scale parameter, and b is a real space parameter. The scale parameter247

controls the frequency by which the wavelet samples the curvature distribution, leading to248

either a dilatation (a > 1) or a contraction (a < 1) of the mother wavelet. The space249

parameter determines the sampling position along s of the mother wavelet.250

The continuous wavelet transform of the curvature distribution is defined as251

Ψc(b, a) =
1√
a

∫ ∞

−∞
c(s)ψb,a(s) ds, (7)

where an overbar denotes complex conjugate.252

In general, a wavelet ψ(s) and, in particular, the mother function must satisfy various253

conditions. It must have compact support or sufficiently fast decay to obtain localisation in254

space and have a zero mean,255 ∫ ∞

−∞
ψ(s) ds = 0. (8)

Moreover, it must satisfy the admissibility condition.256

Cψ = 2

∫ ∞

0

∣∣ψ̂(k)∣∣2
k

dk <∞, (9)

where k is the wavenumber (i.e., the spatial frequency), and ψ̂(k) is the Fourier transform257

of ψ, defined as258

ψ̂(k) =

∫ ∞

−∞
ψ (s) e−i k s ds. (10)

Mother wavelets can be defined in either the real or complex domain. In the case259

of complex wavelets, an additional requirement is that ψ̂(k) must be real and vanish for260

negative wavenumbers (k ≤ 0). This type of wavelet, referred to as progressive, enhances261

the ability to identify singularities in the signal.262

The inverse wavelet transform, allowing the reconstruction of the original curvature263

distribution, is defined as264

c(s) =
2

Cψ

∫ ∞

0

[ ∫ ∞

−∞
Ψc(b, a)ψb,a(s) db

] da
a2
. (11)

–8–
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It is easily demonstrated that the continuous wavelet transform is an energy-preserving265

transformation ensuring that (Foufoula-Georgiou & Kumar, 1994)266

Ec =

∫ ∞

−∞

∣∣c(s)∣∣2 =
2

Cψ

∫ ∞

0

∫ ∞

−∞

∣∣Ψc(b, a)∣∣2 db da
a2
. (12)

The quantity
∣∣∣Ψc(b, a)∣∣∣2/(Cψ a2) on the right-hand side of (12) can be interpreted as267

an energy density function on the (a, b)-plane, representing the energy on the scale interval268

∆a and spatial interval ∆b, centred around the scale a and the position b. The quantity Ec269

thus quantifies the total energy in the wavelet spectrum of c(s).270

In this study, the PyWavelets Python package (Lee et al., 2019) was used to compute271

the continuous wavelet transform and the Mexican Hat.272

ψ(s) =
2√

3π1/4
(1− s)e−s

2/2 (13)

was employed as mother wavelet.273

2.3 Autoencoder274

The total energy Ec of the wavelet spectrum for the channel axis curvature of each275

bed was represented through a greyscale image, with values ranging from 0 (black) to 256276

(white) and a resolution of 64x64 pixels (Figure 2b). This simplified representation allowed277

the use of a smaller autoencoder with faster training.278

In particular, we used a convolutional neural network autoencoder, consisting of a279

connected encoder and decoder. The encoder compresses each image into a low-dimensional280

latent representation while retaining as much essential information as possible from the281

high-dimensional initial space (Kingma & Welling, 2022). The decoder handles each latent282

space representation and reconstructs an output image that closely resembles the original283

input one (Goodfellow et al., 2016). The adopted autoencoder requires no supervision while284

training (Tschannen et al., 2018), and allows an efficient clustering in the latent space285

(Chadebec & Allassonniere, 2022).286

The overall autoencoding process can be represented as287

Ec = F
[
G(Ec)

]
, (14)

where G is the encoding function, and F is the decoding function. The neuronal networks288

associated with these two functions are trained such that289

argmin
F,G

1

N

N∑
i=0

∆
{
Eci,F

[
G(Eci)

]}
, (15)

where, N is the number of images used for the training, ∆ is a loss function, defined as290

the binary cross-entropy measuring the binary logarithmic loss between predicted and true291

values (Creswell et al., 2017), and argmin
F,G

denotes the set of values of F and G for which292

the summation attains its minimum value.293

The overall architecture of the autoencoder is summarised using the Visual Keras pack-294

age (Gavrikov, 2020), as shown in Figure 3. The encoder consisted of a series of convolutional295

two-dimensional neural layers. Batch normalisation and flattening layers were used to en-296

code the available information in a latent two-dimensional space. The decoder employed a297

series of transposed two-dimensional convolutional neural layers, followed by a batch nor-298

malisation layer. A convolutional two-dimensional neural layer was finally used to obtain299

the reconstructed image of the energy spectrum.300
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Figure 3. Autoencoder architecture. (a) Encoder and (b) Decoder.

The autoencoder was trained using the open-source TensorFlow software (Abadi et al.,301

2015). The bend curvature distributions computed from the Kinoshita-generated dataset302

were split into two independent subsets: 85% of bend curvature distributions were used for303

training, and the remaining 15% for validation. The error function selected for evaluating304

the correctness of the reconstructed images was a binary cross entropy function (Ruby et305

al., 2020), the binary loss being equal to 0 for a perfect model.306

2.4 Clustering307

The K-means algorithm (Brunton & Kutz, 2019) was used to find the optimal number308

of clusters characterising the image representation of Ec in the latent space. This optimal309

number was obtained by partitioning the data set into Nk groups Si, such that the sum of310

squared deviations of the partitions is minimised. Denoting by S the generic partition, the311

function to be minimised is the within-cluster sum of squaresWCSS, which can be formally312

expressed as (Kriegel et al., 2017)313

WCSS =
∑
Si∈S

Nd∑
j=1

2
∣∣Si∣∣∑

x∈Sj

(xij − µij). (16)

Here, µij is the mean coordinate of the cluster i in dimension j,
∣∣Si∣∣ is the cluster size, and314

the last summation defines the cluster variances. The minimisation of the function (16) was315

carried out through the Python package Scikit-Learn (Pedregosa et al., 2011).316

2.5 Real meanders317

The data-driven classification framework was first tested on an independent set of318

synthetically-generated bends, and then used to classify a set of 7521 real meander bends319

extracted from the datasets of Sylvester et al. (2019) and Lopez Dubon and Lanzoni (2019).320

The full list of the 32 meandering river reaches considered in the analysis is reported in321

Table S1 of the Supporting Information. Both datasets provide river planforms obtained by322

loading Google Earth maps in QGIS, zooming in on the river stretch of interest, drawing323

polylines along the river banks, and determining the centreline as the curve equidistant from324

each bank. This latter curve was smoothed out through a Savitzky-Golay filter (Savitzky325

& Golay, 1964) and a denoising wavelet filter (van der Walt et al., 2014) to reduce as much326

as possible spurious fluctuations when computing numerically the channel axis curvature.327

The curvature was calculated by discretising the derivative dθ/ds in equation (3)328

through a second-order accurate central difference scheme for interior points, and either329

first or second-order accurate one-sided (forward or backward) differences at the bound-330

aries, using the gradient function from the Python package numPy (Harris et al., 2020).331
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The along-river curvature distribution was then used to identify the inflexion points,332

where the curvature changed sign, and the bend apexes, where the curvature reached its333

maximum or minimum value. The position of inflexion points was finally used to recognise334

the sequence of single-lobe bends composing the river reach.335

The noise in the numerically computed curvature can induce some small oscillations336

around zero and, consequently, the detection of spurious inflexion points. To avoid this337

problem only bends with a cartesian length Lx (Figure 1e) exceeding 5-8 the mean channel338

width, Bmean, were retained. Each single-lobe bend was eventually rotated to align the339

two inflexion points along the reference x-axis, and the platform was represented in the340

dimensionless cartesian plane (x/Bmean, y/Bmean).

Figure 4. (a) Localisation of the meandering rivers extracted from satellite images. The data

refer to Lopez Dubon and Lanzoni (2019) except those with the superscript ∗ which refer to Sylvester

et al. (2019). (b)-(j) Examples of parts of the meandering rivers extracted.

341

3 Results342

Figure 5 shows an example of the automated classification procedure applied to a real343

river bend. In particular, Figure 5 (a) reports the planform of the bend plotted in the344
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dimensionless cartesian plane, while the corresponding dimensionless curvature is plotted345

in Figure 5 (b) as a function of the curvilinear coordinate of the bend axis, scaled by its346

maximum length, s/smax. The greyscale image of the total energy wavelet spectrum of347

the curvature distribution is reported in Figure 5 (c). Finally, Figure 5 (d) shows the348

correspondent image reconstructed through the trained autoencoder. The reconstructed349

image appears to capture the striking features of the original image. Overall the autoencoder350

performance in reconstructing the real meander data set resulted in a binary cross-entropy351

loss of just 0.1578. This close-matching reconstruction ensures a meaningful representation352

of the spectrum in the latent space, where compression of the information embedded in the353

spectrum facilitates cluster analysis.

Figure 5. Example of application of the autoencoder to a real meander bend. (a) Bend shape

plotted in the dimensionless plane (x/Bmean,y/Bmean); (b) along-bend distribution of the channel

axis curvature; (c) greyscale image of the total energy of the correspondent wavelet spectrum, with

resolution 64×64 pixels and values ranging from 0 (black) to 256 (white); and (d) autoencoder

reconstruction of the image.

354

As a preliminary step to the cluster analysis in the latent space, an additional criterion355

was applied to eliminate almost flat bends, typically associated with the very early evolution356

of a meander or multiple-lobe bends, which are not considered in the present analysis.357

Indeed, the energy spectrum of a nearly flat bend can be quite complicated, adding noise to358

the clustering procedure and making it less effective. Following Leopold and Wolman (1957),359

we assumed that bends belonging to a meandering reach have a sinuosity σ, defined as the360

ratio of intrinsic to cartesian length, larger than 1.5. The total number of meandering bends361

to be classified thus reduced from 7521 to 1911. The application of the K-means algorithm362

to this set of bends in the latent space yielded a number of clusters equal to 3. Increasing363

this number did not produce any significant improvement in minimising the within-cluster364

sum of squares defined by (16), as shown by Figure S2 in the Supporting Information.365

Figure 6 summarises the results of the cluster analysis in the two-dimensional latent366

space, where three distinct clusters are discernible (Figure 6a). The bend shapes in the367

dimensionless plane x/Bmean, y/Bmean corresponding to the three centroids are plotted368

in Figure 6b,c,d. They represent the characteristic bend shape typical of each cluster.369

Cluster C1 is characterised by symmetrical bends (Figure 6b), whereas clusters C2 and C3370

are composed of downstream-skewed (Figure 6c) and upstream-skewed (Figure 6d) bends,371

respectively. The majority of data falls into cluster C1 (44% bends), followed by cluster C2372

(36% bends) and cluster C3 (20% bends). On the other hand, the data dispersion within373

each cluster, defined as the ratio of standard deviation of the distance from the cluster374

centroid to the mean, is greater for cluster C3 (3.271), followed by cluster C2 (2.356), and375

cluster C1 (2.292).376

The percentages of each bend type contained in the 32 river reaches considered in the377

present study are shown in Figure 7. Symmetrical bends (C1) prevail in 22 of the 32 river378
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Figure 6. (a) Results of the cluster analysis in the two-dimensional latent space. Bend shapes

corresponding to the centroid of (b) cluster C1, (c) cluster C2, and (d) cluster C3. The solid lines

within each cluster connects each point to its centroid giving a visual representation of the cluster

dispersion. The dashed-line connects the points located farther away from the centroid showing the

cluster boundary.
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reaches, whereas 10 out of 32 rivers exhibit a predominance of downstream-skewed bends.379

None of the investigated rivers had a predominance of upstream-skewed bends.

Figure 7. Percentages of the three bend types (C1, symmetrical; C2, downstream skewed; and

C3, upstream skewed) emerging from the clustering analysis are reported for each of the meandering

rivers reaches, as localised in Figure 4.

380

4 Discussion381

The use of the Kinoshita curve (equation 2) was fundamental to produce a sufficient382

amount of data for training the autoencoder. This is particularly relevant, considering the383

vast effort required to extract river planforms from satellite images, as well as the river width384

needed for normalisation and comparison (Finotello et al., 2018). Moreover, the values of385

the loss function used to evaluate the autoencoder (0.1313 and 0.1312 for the training and386

evaluation set, respectively) indicate that, when applied to real rivers, the information lost387

in the latent space is reasonably small. This result confirms the reliable reconstruction of388

most of the energy spectrum images and, hence, a successful transfer of knowledge from the389

synthetic data used for training to real data.390

Even though real bends with a sinuosity smaller than 1.5 were excluded from the391

classification analysis, some peculiar bend shapes remained included in the dataset. A392

few examples are shown in Figure 8a. Essentially, they are bends with small amplitude A as393

compared to their cartesian wavelength Lx, and relatively high sinuosity. To identify these394

particular bends, we introduces an Index of Maturity (IM ) defined as395

IM =
A

Lx
. (17)

The values of the sinuosity and the Maturity Index for each meander bend are shown in396

Figure 8 (b), including all the bends extracted from the various river reaches, independently397

of the sinuosity. The point cloud seemingly has a lower-limit boundary that depends on the398

Maturity Index. This boundary has a shape that can be reasonably approximated though399

the parabola400

σ = 2 IM

√
1 +

1

4I2M
. (18)
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Figure 8. (a) Examples of the dependence of bend shapes from the values of σ and IM . (b)

The bend sinuosity σ is plotted as a function of the maturity index IM for all the bends extracted

from the investigated river reaches.

401

Figure 8 suggests that both the sinuosity and the Maturity Index can be used to identify402

bends with relatively uncommon shapes. Bends with σ < 1.5 are assumed to belong to nearly403

straight reaches, according to the classification proposed by Leopold and Wolman (1957).404

The line σ = 1.5 intercepts the lower-limit boundary for IM ≃ 0.56. This latter value can be405

used to discriminate bends with small amplitude as compared to the wavelength (IM ≲ 0.5),406

leading to the peculiar shapes shown in Figure 8(a). This type of bends represents 25.4% of407

the total bends analysed. Excluding these bends from the cluster analysis does not change408

significantly the classification outputs. The number of clusters remains still equal to 3, with409

shapes representative of the corresponding centroids remarkably similar to those shown in410

Figure 6(b)-(d) (see Figure S3 in the Supporting Information). The criterion based on a411

lower threshold for IM essentially identifies uncommon, nearly flat shapes, which have a412

limited overall impact on the automated classification procedure.413

The sinuosity has a major role in identifying the degree of evolution of a given bend.414

Low-sinuosity bends usually represent the early stages of evolution, whereas high values415

of sinuosity are likely associated with bends in a more advanced stage of evolution. The416

statistical analysis carried out by Bolla Pittaluga and Seminara (2011) revealed that the417

meander bends in the database of Lagasse et al. (2004) have a median sinuosity of 1.7418

and a standard deviation of 0.4. Bends with high sinuosity (σ ≳ 3 − 3.5) are likely to419

be relatively infrequent. This fact is confirmed by Figure 9, showing the box plot charac-420

terisation of the sinuosity distribution within each of the three clusters identified by the421

automated classification procedure. The values of the median sinuosity σm agree with those422

estimated for the database of Lagasse et al. (2004), with some slight variations from one423

cluster to another. In particular, the higher median value is observed for downstream-skewed424

bends (cluster C2, σm = 2.014), the smallest median value characterises upstream-skewed425

bends (cluster C3, σm = 1.720), while symmetrical bends (cluster C1) have σm = 1.906.426

The data dispersion, measured through the distance between the upper and lower quartiles427

(Interquartile Range, IQR), is highest for the downstream-skewed bends (IQR = 0.758),428
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whereas upstream-skewed bends have the lowest degree of variation (IQR = 0.305). The429

trend of the sinuosity distribution for symmetrical bends is intermediate between the other430

two classes. Each cluster shows several upper outliers, i.e, larger than 1.5 times the in-431

terquartile range. In contrast, lower outliers are invariably absent. This absence is due to432

the choice of excluding bends with sinuosity lower than 1.5. The smallest number of outliers433

(6/435, ∼ 1.5%) is observed for upstream-skewed bends (C2, whereas the largest number434

(41/858, ∼ 5%) characterises the symmetrical bends (C1), which can be considered as a435

transition pattern between upstream-skewed (C3) and downstream-skewed (C2) bends (or436

vice versa).437

The above results may be partly explained in light of existing theoretical studies of river438

meandering. According to the nonlinear bend instability analysis performed by Seminara et439

al. (2001), and confirmed by the results of numerical simulations up to incipient cutoff con-440

ditions (Lanzoni & Seminara, 2006), symmetrical bends mainly form during the initial evo-441

lution stages of a train of meanders developing along an initially straight, slightly-perturbed442

channel. In this phase, it is the first harmonic of the curvature, i.e. associated with the term443

cos (λ s) of equation (3), which grows almost linearly in time. The occurrence of skewed444

bends arises at a later stage of evolution due to slower nonlinear growth of the third har-445

monic cos (3λ s). During the first linear phase, the meander length increases slowly, while446

meander elongation is faster during the second phase, leading to the formation of fattened447

and skewed meander shapes. Bend amplification is initially quite slow, increases reaching448

a maximum, and then decreases slowly up to incipient cutoff conditions, as also observed449

in the field by Nanson and Hickin (1983). Conversely, the rate of lateral bend migration,450

which is quite fast at the beginning of the evolution, tends to progressively slow down up451

to almost vanishing before a neck cutoff. The direction of bend skewing is dictated by the452

morphodynamic regime characterising the river reach. This regime depends on the value of453

the width-to-depth ratio β with respect to its resonant value βR. This latter value, in turn,454

is controlled by the Shields stress, τ∗, and the sediment grain size scaled with the uniform455

flow depth, ds (Seminara & Tubino, 1992). For values of β < βR (sub-resonant regime),456

bends are upstream skewed and migrate downstream. Conversely, in the super-resonant457

regime (β > βR), bends are downstream skewed and migrate upstream. As a meandering458

reach evolves, changes in the average reach slope, either due to the elongation of meander459

bends as they progressively grow or the shortening of the river path resulting from cutoffs,460

lead to variations of the reach-averaged values of β, and well as τ∗ and ds and, consequently,461

βR. This can induce a change of the morphodynamic regime for values of β close to βR,462

promoting the development of symmetrical bends (Zolezzi et al., 2009).463

Within this general theoretical framework, higher variations in the sinuosity likely in-464

dicate the presence of a larger number of bends at different stages of evolution and, con-465

sequently, a potentially more dynamic river reach. Symmetrical bends can be associated466

to either relatively young evolution stages (e.g., those characterising a recently straighten,467

weakly sinuous reach) or to more advanced, higher sinuosity stages, as those linked to the468

change in morphodynamic regime when the evolving river reach approaches resonant condi-469

tions. Symmetrical bends may also be part of meanders with multiple loops (i.e., including470

multiple inflexion points), not accounted for in the present automated classification frame-471

work, which assumes a meander always delimited by two consecutive inflexion points of the472

channel axis curvature. The various origins of symmetrical bends may explain the greater473

number of outliers exhibited by the C1 cluster. Skewed bends, on the other hand, should,474

in general, represent more advanced stages of meander evolution, associated with higher475

values of sinuosity. This is indeed verified in Figure 9 for downstream-skewed bends but476

not for upstream-skewed bends, which have a median sinuosity also smaller than that of477

symmetrical bends. On the other hand, the number of upstream-skewed bends (distinc-478

tive of sub-resonant conditions) is noticeably lower than that of both downstream-skewed479

bends (typical of super-resonant conditions) and symmetrical bends. This lower number480

potentially explains the lower variability of the sinuosity and the smaller number of outliers481

characterising upstream-skewed bends. Notably, the prevalence of super-resonant bends482
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over sub-resonant ones agrees with the mechanistic analysis carried out by Zolezzi et al.483

(2009) on a dataset comprising more than 100 gravel-bed rivers.

Figure 9. Box plot representation of (a) the sinuosity and (b) the Maturity Index values within

each of the three clusters recognised by the automated classification procedure. The red lines

indicate the median values, while the lower and upper sides of the boxes correspond to the first

and third quartiles, respectively. The lower and higher horizontal segments denote the whiskers,

defined as 1.5 times the interquartile range (IQR). The numbers in the upper part of the plot,

indicate the the number of outliers, which are marked by empty circles, and the size of the sample.

484

Additional sources of complexity in interpreting the results of the automated clas-485

sification are due to cutoff events, the heterogeneous composition of the floodplain, and486

the mutual morphodynamic influence between adjacent bends at different stages of evolu-487

tion. Repeated cutoffs generally contribute to limiting the mean bend sinuosity within a488

given river reach, determining a continuous sequence of sinuosity fluctuations around the489

mean value, as shown by long-term numerical simulations (Frascati & Lanzoni, 2010). The490

heterogeneous composition of the floodplain may influence the intensity of these sinuosity491

variations (see, e.g., Figure 5c,f in Bogoni et al., 2017). The growth of a given meander bend492

is influenced by the evolution of the adjacent bends. In general, morphodynamic informa-493

tion associated with the evolution of planform waves and river bed topography propagates494

mainly downstream in the sub-resonant regime, while is primarily felt upstream in the495

super-resonant regime (Zolezzi & Seminara, 2001; Lanzoni & Seminara, 2006). The type of496

morphodynamic regime, in turn, depends on the hydraulic and sedimentological parameters497

characterising the river, as well as the mechanism dominating sediment transport (e.g. bed-498

load in gravel-bed rivers and suspended load in sandy rivers). Finally, temporal variations in499

the hydrological forcing and spatial heterogeneity in the sediment composition add a further500

degree of difficulty in the interpretation of the statistical distribution of σ and IM for the501

three classified shapes.502

The potential of the automated classification procedure was tested on a highly active503

reach of the Ucayali River, which registered several cutoffs in the period 1984-2015 (Schwenk504
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et al., 2017; Lopez Dubon & Lanzoni, 2019). The investigated reach is located in the505

Peruvian Amazon basin and has a cartesian length of about 54 km, extending approximately506

from Atalaya (10.7318◦ S, 73.7586◦° W) to Pucallpa (8.3929◦ S, 74.5826◦° W), with an507

average slope in the range 1-10×10−5 (Santini et al., 2015). The mean annual discharge and508

the average maximum discharge at Pucallpa are 9720 m3/s and 16370 m3/s, respectively509

(Alvarado-Ancieta & Ettmer, 2008; Santini et al., 2015). The bed sediment has a mean size510

ranging from 0.17 to 0.39 mm (ECSA, 2005), with a d50 ≃ 0.3 mm at Pucallpa (Ettmer511

& Alvarado-Ancieta, 2010). The reach averaged channel width, estimated from satellite512

images, varied in the range 668-954 m (mean value 742 m) depending on the planform513

configuration of the river over the years. Similarly, the reach sinuosity varied between 2514

and 2.6, with a mean value of 2.3. The water depth ranges between 7 m and 15 m. These515

variations are associated with the progressive elongation of the intrinsic river length due to516

meander growth and the abrupt shortening consequent to cutoffs (Figure 10a-e), and lead517

to continuous fluctuations in the reach average slope.518

Figure 10f shows the results of the automated classification procedure throughout the519

considered 32 years. The investigated river reach presents predominantly symmetric bends520

(cluster C1) for a total of 25 years, downstream-skewed bends (cluster C2) for a total of521

6 years, and a single year (1990) with prevailing upstream-skewed bend (cluster C3). The522

temporal distribution of the percentage of skewed bends could be interpreted as the result of523

the occurrence of various transitions from one morphodynamic regime to another triggered524

by significant cutoff events. To test this hypothesis, we computed the yearly value of the525

resonant value of the half-width to depth ratio βR using the fully coupled, linearised morpho-526

dynamic model of Zolezzi and Seminara (2001). The initial (1984) planform configuration527

was characterised by a sinuosity of 2.12 and an average channel width of 786 m. Assuming528

uniform flow conditions and a plane bed (confirmed a posteriori by the bed classification529

procedure of Simons and Richardson (1966)), the average maximum discharge (16370 m3/s)530

is conveyed through an equivalent rectangular cross-section with a depth of 10 m for a slope531

5×10−5. These conditions correspond to a half-width to depth ratio β of 39.3, a Shields532

stress τ∗ of 1, and a dimensionless grain size ds of 3 × 10−5, consistent with values typically533

observed in sandy rivers (Francalanci et al., 2020). The resonant value of the half-width534

to depth ratio corresponding to this set of dimensionless parameters is βR = 29.54. As the535

reach sinuosity evolves over time, the parameter values also vary accordingly. It can be536

easily demonstrated that (Zolezzi et al., 2009):537

β

β0
=

[
σ
Cf
Cf0
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B
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.

(19)

where Cf is the friction coefficient (Cf = [6 − 2.5 ln(2.5 ds)]
−2 for plane bed conditions),538

and a sub-script 0 denotes the initial year.539

The time series of β and βR resulting from the analysis are shown in Figure 10h. It540

appears that the transition from a super-resonant dominated behaviour (epitomised by a541

prevalence of upstream-skewed C3 bends) to a sub-resonant dominated behaviour (embodied542

by a dominance of downstream-skewed C2 bends), and vice versa, is indeed plausible and is543

favoured by the abrupt decrease of sinuosity after big cutoffs. This is, for instance, the case544

of the 1992-1993 and 2004-2005 cutoffs, which likely led to a transition from a sub-resonant545

to a super-resonant regime. Remarkably, each passage through resonant conditions seems546

to enhance the formation of symmetrical C1 bends. Overall, the temporal distributions547

of morphodynamic regimes resulting from comparing the magnitude of β with respect to548

βR and that inferred from the percentage of C2 and C3 bends is reasonable, though not549

perfect. This can be due to many aspects, such as the uncertainties on the hydraulic pa-550

rameters adopted for the computations of β and βR, as well as the simplifications embedded551

in the morphodynamic model, which consider an equivalent rectangular cross-section and552

does not account explicitly for suspended load effects. Moreover, deducing the dominant553

morphodynamic regime only from the percentages of bend classes present in the entire river554
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Figure 10. (a)-(e) Planforms before and after major cutoff events occurring from 1984 to 2015

along the reach of the Ucayali River comprised between Atalaya and Pucallpa. (f) The percentage of

meander classes detected along the reach over various years. Temporal evolution of (f) the sinuosity

distribution and (h) the values of the half-width to depth ratio, β, and the corresponding resonant

value, βR. The latter has been computed for plane bed conditions, using the total load transport

formula of Engelund and Hansen (1967), and setting equal to 0.55 the coefficient accounting for

gravitational effect on the transverse direction of bedload (Frascati & Lanzoni, 2013). Red dashed

lines represent the cutoff events.
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reach does not account for the possible inclusion of a bend in composite or multi-lobed555

patterns. The application of the classification procedure described above should then be556

regarded as a significant example of how it, in conjunction with theoretical arguments, can557

help to unravel the morphodynamic behaviour of a given river reach.558

4.1 Limitations of the study and future work559

This study proposes a data-driven classification method for single-lobe meanders, in-560

formed by the images of total energy in the wavelet spectrum of the bend curvature. This561

automated approach provides valuable insight for the detection and classification of sin-562

gle bends along a meandering river. Rather than directly analysing bend planforms, it563

objectively analyses the energy spectrum inherent in bend shapes without requiring the in-564

troduction of any geometric metrics, unlike previous classification approaches based on bend565

shape matching. The complexity of meander shapes is accounted for through the large num-566

ber of parameters comprising the autoencoder architecture. The physics-based nature of the567

classification stems from the control exerted by bed axis curvature on migration rates, sedi-568

ment transport and sorting (e.g., Güneralp & Rhoads, 2008; Finotello et al., 2018; Donovan569

et al., 2021). Nevertheless, some limitations of the study are worth mentioning.570

The autoencoder-based classification model was trained on single-lobe bends, delimited571

by two consecutive inflexion points of the channel axis curvature. These bends were ex-572

tracted from planforms generated synthetically using the Kinoshita curve. However, these573

planforms also include multiple-lobe meanders composed of various single-lobe bends. The574

automated procedure does not recognise these multiple-lobe shapes, and an additional, non-575

trivial effort is needed to include them in the classification.576

The training dataset was extensive, containing ∼ 107 Kinoshita-generated meanders.577

Despite the complex and varied shapes exhibited by real meanders, the size of this dataset578

could be reduced without losing the classification effectiveness. Other machine-learning579

classifiers need to be tested to capture the essential features of articulated meander shape580

features by using a smaller training dataset. This could also be particularly useful for581

classifying multi-lobed meanders.582

The classification was based on greyscale images representing the total energy wavelet583

spectrum of the spatial distribution of bend curvature. For each image, the total energy584

was scaled according to the maximum value characterising the considered bend. This bend-585

specific scaling is independent of the total energy of the other bends in the dataset. The586

use of greyscale images simplifies the representation by limiting possible numerical values587

for the autoencoder, and the single scale per image preserves more features compared to588

normalization based on the complete dataset.589

The boundaries of each cluster in Figure 6 were determined by smoothly connecting590

the points farthest from the centroid. Consequently, they may be sensitive to the inclusion591

of new data points, making it difficult to classify any point in their proximity with a high592

degree of confidence. This is particularly significant for clusters quite close in the latent593

space, as C1 and C3.594

Finally, the present study is focused on single-lobe meanders, with multi-lobe meanders595

split into simple bends. Thus, The wavelet analysis gives information on each bend, without596

considering how the bends are linked. Single bends composing a multi-lobe meander are not597

necessarily all skewed in the same direction of the compound shape. Hence, inferring the598

morphodynamic regime from the prevailing percentage of single skewed (either upstream or599

downstream) bends must be taken with some caution. In other words, splitting composed600

meanders into their single bend components, as commonly done in practice, implies a loss601

of information in determining the morphodynamic regime based on the prevailing bend602

skewness.603
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5 Conclusions604

This study developed a data-driven classification framework for meander bends based605

on the total energy of the wavelet spectrum of bend curvature distribution. Kinoshita-606

generated bends were generated, creating a large dataset. An autoencoder based on a607

convolutional neural network was trained and validated using this dataset. The trained608

neural network was then tested on remotely sensed meanders. The main findings resulting609

from the application of the trained neural network model are summarised below.610

Investigating the energy spectrum of bend curvature through a continuous wavelet611

transform ensures a solid physical foundation. Curvature controls the flow field and the bed612

topography, ultimately correlating with meander migration, sediment transport, and grain613

sorting.614

The autoencoder successfully transferred knowledge from Kinoshita-generated bends to615

real data, resulting in low binary cross-entropy loss (0.1578) for real meander. This value616

is quite close to the loss (0.1333) achieved for the independent Kinoshita-generated dataset617

used for validation.618

The unsupervised classification model identified three main categories of meandering619

river bends: symmetric, downstream-skewed, and upstream-skewed. Applying this method620

to the real meander data set extracted from satellite images revealed that the symmetric621

single-bend meander shape is the most predominant.622

An application of the classification method to a reach of the Ucayali River highlighted623

how the planform dynamics over a span of 32 years, from 1984 to 2015, may produce a shift624

in the dominant bend class. The shortening of the reach due to the cutoffs may, in fact,625

lead to a transition from super-critical to sub-critical conditions (or vice versa), resulting in626

a shift from dominant downstream-skewed bends to upstream-skewed bends (or vice versa).627

In summary, this study introduced a novel framework for classifying single-lobe me-628

ander bends based on the total energy in the wavelet energy spectrum of bend curvature.629

This classification tool aids in identifying patterns in meander evolution, thereby poten-630

tially enhancing the effectiveness of river management interventions. A logical next step631

for improvement lies in extending the methodology to handle compound and multiple-lobe632

meanders.633
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acuático, Ministerio de Transportes y Comunicaciones, Lima, (PE).714

Engelund, F., & Hansen, E. (1967). A monograph on sediment transport in alluvial streams.715

Ettmer, B., & Alvarado-Ancieta, C. A. (2010). Morphological development of the Ucay-716

ali River, Peru without human impacts. Waldökologie, Landschaftsforschung und717

Naturschutz , 10 , 77–84.718

Finotello, A., D’Alpaos, M., A. Bogoni, Ghinassi, M., & Lanzoni, S. (2020). Remotely-719

sensed planform morphologies reveal fluvial and tidal nature of meandering channels.720

Scientific reports, 10 (54), 1–13. doi: 10.1038/s41598-019-56992-w721

Finotello, A., Lanzoni, S., Ghinassi, M., Marani, M., Rinaldo, A., & D’Alpaos, A. (2018).722

Field migration rates of tidal meanders recapitulate fluvial morphodynamics. Pro-723

ceedings of the National Academy of Sciences, 115 (7), 1463–1468. doi: 10.1073/724

pnas.171133011725

Foufoula-Georgiou, E., & Kumar, P. (Eds.). (1994). Wavelets in geophysics (Vol. 4). Aca-726

demicPress.727

Francalanci, S., Lanzoni, S., Solari, L., & Papanicolaou, A. N. (2020). Equilibrium cross728

section of river channels with cohesive erodible banks. Journal of Geophysical Research:729

Earth Surface, 125 , 1-20. doi: 10.1029/2019JF005286730

Frascati, A., & Lanzoni, S. (2009). Morphodynamic regime and long-term evolution of731

meandering rivers. Journal of Geophysical Research, 114 (F2), 1–12. doi: 10.1029/732

2008JF001101733

Frascati, A., & Lanzoni, S. (2010). Long-term river meandering as a part of chaotic dy-734

namics? A contribution from mathematical modelling. Earth Surface Processes and735

Landforms, 35 (7), 791–802. doi: 10.1002/esp.1974736

Frascati, A., & Lanzoni, S. (2013). A mathematical model for meandering rivers with737

varying width. Journal of Geophysical Research: Earth Surface, 118 (3), 1641–1657.738

doi: 10.1002/jgrf.20084739

Gavrikov, P. (2020). visualkeras. https://github.com/paulgavrikov/visualkeras.740

GitHub.741

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. Retrieved742

from http://www.deeplearningbook.org743
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Abstract16

River meanders are one of the most recurrent and varied patterns in fluvial systems.17

Multiple attempts have been made to detect and categorise patterns in meandering rivers18

to understand their shape and evolution. A novel data-driven approach was used to classify19

single-bend meanders. A dataset containing approximately 10 million single-lobe meander20

bends was generated using the Kinoshita curve. A neural network autoencoder was trained21

over the curvature energy spectra of Kinoshita-generated meanders. Then, the trained net-22

work was then tested on real meander bends extracted from satellite images, and the energy23

spectrum in the meander curvature was reconstructed accurately thanks to the autoencoder24

architecture. The meander spectrum reconstruction was clustered, and three main bend25

shapes were found associated with the meander datasets, namely symmetric, upstream-26

skewed, and downstream-skewed. The autoencoder-based classification framework allowed27

bend shape detection along rivers, finding the dominant pattern with implications on migra-28

tion trends. By studying the shift in the prevailing bend shape over time, cutoff events were29

approximately forecast along the Ucayali River, whose migration was remotely sensed for 3230

years. Overall, the method proposed opens the venue to data-driven classifications to under-31

stand and manage meandering rivers. Bend shape classification can thus inform restoration32

and flood control practices and contribute to predicting meander evolution from satellite33

images or sedimentary records. Keywords: Meandering rivers; Automatic Classification;34

Wavelets; Model Transferability; Autoencoder; Pattern recognition35

Plain Language Summary36

Single-thread rivers commonly cut through alluvial floodplains with continuous sinuous37

curves. Classifying meanders provides a key to understanding their shape and, thus, learn-38

ing how they have changed over time. A novel classification framework was proposed using a39

machine-learning model for pattern recognition in images. This model was trained over the40

curvature energy distribution within the meander bends generated from analytical relations.41

The classification framework was then tested over a set of real meander bends extracted from42

satellite images. The trained model grasped the most important features contained in cur-43

vature energy distribution, grouping the meander data set into three bend-shaped clusters,44

namely symmetric, upstream-skewed, and downstream-skewed. The proposed framework45

was then used to find the predominant bend class and its shifts during river migration,46

offering a different perspective on meander evolution. Bend shape classification can be used47

to guide restoration and flood control plans and predict meandering trends from satellite48

images or sedimentary records.49

1 Introduction50

Meander bends are patterns widespread in both fluvial and tidal systems (e.g., Leopold51

et al., 1964; Leuven et al., 2018; Finotello et al., 2020). While migrating on the alluvial52

plain, meander bends evolve by growing in amplitude, fattening, and skewing. Eventually,53

the sinuous loops, if too narrow, cut off starting a new course (e.g., Kleinhans et al., 2023).54

Restoration practices often include re-introducing meanders to enhance biodiversity55

and mitigate flood peaks by promoting floodplain inundation and slowing down the flow56

(e.g., Wohl et al., 2015). River sinuosity associated with the presence of meanders favours57

the accommodation of organic matter, improving the stability of the riparian soil and re-58

ducing the impact of dam constructions (Ran et al., 2022). Moreover, meandering rivers,59

especially those migrating actively on floodplains, are more efficient in carbon sequestra-60

tion than straight rivers, thus contributing to climate change mitigation (Repasch et al.,61

2021). Studies on static planform shapes and their classification can also improve our un-62

derstanding of meander dynamics and give insights on paleochannels (e.g., Yan et al., 2021;63

Bellizia et al., 2022; Sgarabotto et al., 2024). Overall, the study of meander morphology64
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can help to understand how meandering rivers evolve and provide insights for effective river65

management.66

Bend geometries can be very complex. They include single-lobe bends and multi-lobe67

bends when adjacent bends merge, making it hard to detect the single-bends inflexion68

points and apexes unambiguously. Different classification frameworks have been proposed69

to address the complexity and variety of meandering patterns and help the understanding70

of their morphodynamics (Leopold et al., 1964; Howard & Hemberger, 1991; Lagasse et71

al., 2004; Güneralp et al., 2012; Lanzoni, 2022). Classifications serve various purposes, and72

their relevance depends on the ease of use, the possibility to analyse many different patterns,73

the ability to grasp the physical processes, and, more recently, the potential for automation74

(Buffington & Montgomery, 2013). In general, meander classifications can be grouped75

into qualitative approaches, based on shape matching, and quantitative approaches, which76

rely on bend parametrisation, bend evolution frameworks, spectral methods, or data-driven77

methods (Hooke, 2013).78

The visual similarity between bends led to a classification in which the observed me-79

anders are subjectively matched to shape prototypes (Brice, 1974; Ielpi & Ghinassi, 2014).80

To encompass even complex morphologies, the number of classes is progressively increased.81

For example, the four classes initially proposed by Brice (1973), were extended to 16 by82

Brice (1974) and further expanded to 70 by Hooke (1977). A simplification of this approach83

was put forward by Hooke and Harvey (1983), who, in addition to the shape matching,84

considered various simple mechanisms to account for evolution processes, such as free and85

confined mender migration, bend growth, lobbying, double heading, formation of new bends,86

cutoff, and retraction. The subjective nature of visual classification was later supported by87

objective shape assessments based on ensemble statistics of the planforms included between88

successive inflexion points of the channel axis. The bend shape was investigated by analysing89

geometrical features such as the radius of curvature, the cartesian and intrinsic lengths, the90

sinuosity, and the asymmetry index. Bend shapes were initially classified using single met-91

rics, such as the sinuosity (Schumm, 1985) and the radius of curvature (Nanson & Hickin,92

1983; Hickin & Nanson, 1984). Subsequently, shape characterisation was improved by con-93

sidering multiple metrics. Slope, sinuosity, and width-to-depth ratio were used by Rosgen94

(1994) to characterise river systems. More recently, Russell et al. (2018) proposed to use a95

polygon built around a meander bend such that its sides were tangent to the meander cen-96

treline. The length of the meander centreline was normalised with the bend width, and the97

ratio between the area and perimeter of the polygon concurred to define the various mean-98

der classes. Nevertheless, all the aforementioned methodologies present two main problems.99

First, they are too complicated to encompass as many shapes as possible. Indeed, the geo-100

metrical metrics considered insufficient to characterise unambiguous single meander bends.101

In contrast, a suite of them can be used for the statistical characterisation of an entire river102

reach (Camporeale et al., 2005; Frascati & Lanzoni, 2009). Secondly, the great variety of103

meander shapes (e.g., Figure 1a-d) makes the above classification frameworks cumbersome104

to automate and test on a large meander dataset.105

To overcome the issues of shape matching and bend parametrisation approaches, the106

bend evolution was described through simplified mechanistic models aimed to reproduce107

the variety of meander bends (Hooke & Harvey, 1983; Lagasse et al., 2004). In particular,108

the explanation of meander initiation through the bend instability mechanism (Ikeda et al.,109

1981; Blondeaux & Seminara, 1985) led to the formulation of numerous deterministic mod-110

els of meander morphodynamics. Early models described the evolution of meander bends111

considering a linearised treatment of the morphodynamic problem, and using a simplified112

bank erosion law based on the difference in flow speed experienced at the outer and inner113

banks (Crosato, 1990; Seminara & Tubino, 1992; Seminara et al., 2001). Further mech-114

anisms were subsequently added in this type of models, such as the occurrence of cutoffs115

(Howard & Knutson, 1984; Camporeale et al., 2008; Schwenk & Foufoula-Georgiou, 2016;116

Weisscher et al., 2019), the effects of height and sediment composition of the banks and117
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Figure 1. Satellite images of meandering patterns along the (a) Juruá (Brazil), (b) Beaver

(Canada), (c) Bermejo (Argentina), and (d) Kwango (Angola/Congo) rivers. All the images were

taken in May 2023: (a) and (c) were extracted from Bing Areal Maps; (b) and (d) were extracted

from Google Satellite. (e) A schematic illustrating the main geometrical features of a meander

bend.
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the formation of slump blocks (Mosselman, 1998; Parker et al., 2011; Langendoen et al.,118

2016), the presence of channel width variations (Wu et al., 2011; Zolezzi et al., 2012; Fras-119

cati & Lanzoni, 2013; Lopez Dubon & Lanzoni, 2019), and the consequences of floodplain120

heterogeneity due to former river wanderings or geological constraints (Motta et al., 2012;121

Bogoni et al., 2017). If included in the modelling framework, riparian vegetation was found122

to reduce the shear stress distribution and affect bank erodibility, narrowing the stream and123

slowing down the migration process in the long-term (Sun et al., 2010; Camporeale et al.,124

2013; Weisscher et al., 2019; Ielpi et al., 2022). Linearised morphodynamic models were125

also used to characterise meander morphology in terms of the potential extension of the126

meander belt (Camporeale et al., 2005). Specifically, the ratio between the meander belt127

width and the channel width was used to define an entrenchment ratio that quantifies the128

overall propensity of a meandering river to migrate laterally. This metric was also used in129

Rosgen classification (Rosgen, 1994).130

An attempt was put forward to integrate the shape characterisation with hydro-morphodynamic131

information by Bolla Pittaluga and Seminara (2011) and Schwenk et al. (2015). In particu-132

lar, Bolla Pittaluga and Seminara (2011) proposed a mechanistic classification of meander133

bends relying on four dimensionless groups quantifying the relative importance of friction134

as compared to local inertia (Σ), longitudinal convection (L), centrifugal inertia (δ), and135

lateral convection b. These four parameters are defined as:136

Σ =
Du

LT0

√
Cfu

, L =
Du

L
√
Cfu

, δ =
Du

R0

√
Cfu

; b =
Du

B
√
Cfu

(1)

where Du is the uniform flow depth, Cfu is the corresponding friction coefficient, B is the137

half-width of the channel, LT0 is a characteristic convective scale defined as the distance138

covered by a fluid particle moving with a velocity Uu in the time scale T0, L is a characteristic139

spatial scale (e.g. the meander wavelength), and R0 is an appropriate radius of curvature.140

The typical values of these groups were extracted from a real meanders database (Lagasse et141

al., 2004). Based on the values attained by the above parameters, mildly curved bends were142

found to be quite common. Specifically, half of the meanders analysed by Bolla Pittaluga143

and Seminara (2011) exhibited a relatively small value (below 0.18) of the parameter δ.144

Even though classifications of meander shapes relying on hydraulic parameters are not145

widely adopted, various studies have highlighted the strong link between meander shape146

morphology and its formative dynamics (e.g., Schwenk et al., 2015; Guo et al., 2019).147

Meandering morphology has also been characterised through spectral analysis, consid-148

ering flow direction or channel axis curvature (Howard & Hemberger, 1991). Indeed, bend149

curvature provides valuable insight into meander shape, given its strong influence on the150

flow field, sediment dynamics, and ultimately, on the rate of bend migration (Güneralp &151

Rhoads, 2008; Finotello et al., 2018; Donovan et al., 2021). Meandering patterns were also152

mimicked through a random walk process, where changes in direction were assumed as inde-153

pendent random variables, representing the effects of disturbances to the system (Langbein154

& Leopold, 1966). In addition, Langbein and Leopold (1966) argued that changes in me-155

andering direction can be well approximated by a sine-generated curve that minimises the156

variance from the stable state defined by the mean downstream direction. By describing the157

meandering process as completely random, the meandering path degenerates into a straight158

line when disturbances to the system are removed. To overcome this issue, river meanders159

were treated as deterministic oscillations with a random component attributed to a variable160

floodplain composition, affecting the planform angle (Langbein & Leopold, 1966; Howard161

& Hemberger, 1991) or vertical bank elevation (Lazarus & Constantine, 2013). More re-162

cently, meander morphology was investigated by analysing the energy spectrum of curvature163

distribution in a bend by wavelets (Gutierrez & Abad, 2014; Zolezzi & Güneralp, 2015).164

Despite the numerous attempts outlined above, an automatic, objective classification165

of meander bends has yet to be developed. Machine learning offers techniques to find166

patterns in large datasets, proving its versatility in many geomorphology applications, such167

as the detection of fluvial geomorphic features from satellite images (Bozzolan et al., 2023).168
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The present study proposes a physics-based, data-driven method to automatically classify169

meander bends, based on the energy spectrum of the curvature distribution. This approach170

is deemed to overcome the shortcomings of existing classification methods.171

The rest of the paper is structured as follows. Section 2 presents the methodologies172

used to generate synthetic meander planforms and extract real meander shapes from satel-173

lite images. This section also outlines the development of the data-driven unsupervised174

classification framework, relying on the energy spectrum of the bend curvature distribution.175

Section 3 presents the classification results obtained for real meander bends. In section 4, the176

classification results are discussed in terms of meander morphodynamics, also considering177

the specific case of a reach of the Ucayali River. Finally, section 5 reports the conclusions.178

2 Methods179

The automated classification framework developed in this study exploits the information180

contained in the spatial distribution of channel axis curvature. We propose to summarise181

this information through its wavelet spectrum, which is then used to automatically identify182

the typology of a given meander bend. A neural network autoencoder was trained on the183

wavelet energy spectra extracted from a large series of synthetic meanders. The classification184

procedure based on this autoencoder was subsequently tested on an independent set of185

synthetically generated bends and real meander shapes extracted from satellite images.186

The development of the overall framework included six steps (Figure 2). First, single-187

bend meanders were generated from the Kinoshita curve for both training and testing pur-188

poses. Next, the continuous wavelet transform was applied to the spatial distribution of189

channel axis curvature for each bend, computing the corresponding total energy wavelet190

spectrum. Third, the images of the energy spectra were used to train an autoencoder which191

compresses the information contained in each image, locates it in a latent two-dimensional192

space and eventually reconstructs it. This autoencoder was then tested over an indepen-193

dent set of synthetically generated bends, as well as on real single-bend meanders. Fifth,194

the K-means algorithm was used to find out the optimal number of clusters through which195

the real meanders can be grouped in the latent space. Finally, the cluster centroid was196

used to represent the characteristic shape of the cluster, regardless of bend amplitude and197

wavenumber. Below, we summarise the key features of the various steps.198

2.1 Synthetically-generated meanders199

The synthetic sets of meander planforms used first to train and subsequently to test the200

automatic classification procedure were generated according to the so-called Kinoshita curve201

(Kinoshita, 1961). This curve represents a slightly modified version of the sine-generated202

curve of (Langbein & Leopold, 1966), and can describe a rich spectrum of meander shapes203

(Seminara et al., 2001; Vermeulen et al., 2016; Seminara et al., 2023), from single-lobe204

meanders, which have only two inflexion points of the curvature distribution, to compound205

meanders, with multiple inflexion points. Denoting by s the intrinsic coordinate of the206

channel axis and Lw the meander wavelength (Figures 1e and 2a), the Kinoshita curve207

expresses the angle that the tangent to the channel axis forms with that of the valley as208

θ = θ1 sin(λ s) + θ3r cos(3λ s) + θ3i sin(3λ s), (2)

where λ = 2π/Lw is the meander wavenumber. The spatial distribution of the channel axis209

curvature c(s) is readily computed as210

c(s) = −dθ
ds

= c0
[
cos(λ s)− cF sin(3λ s) + cS cos(3λ s)

]
, (3)

with c0 = λθ1, cF = 3 θ3r/θ1 and cS = 3 θ3i/θ1 dimensionless parameters controlling the211

bend shape. In particular, cF is associated with the bend fattening, whereas cS determines212

whether the bend is skewed upstream or downstream.213
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Figure 2. Flowchart illustrating the six steps involved in developing the automated classification

procedure of meander bends based on the energy spectrum of the spatial distribution of channel

axis curvature.

The intrinsic coordinate s and the cartesian coordinates (x, y) are related together by214

the transformations215

dx

ds
= cos θ(s),

dy

ds
= sin θ(s), (4)

allowing to reconstruct the bend shape in the (x, y)-plane.216

To produce a meaningful set of planform geometries, the values of the parameters θ1,217

θ3r and θ3i were chosen taking advantage of the real meander dataset of Lagasse et al.218

(2004). A statistical analysis indicated that the wavenumber of meanders can be described219

by a Probability Distribution Function (PDF) based on the gamma function Γ, namely220

fΓ(ξ) =
ξ(γa−1)

γγab Γ(γa)
exp

[
−
(
ξ

γb

)]
, (5)

where the best-fit values of the coefficients γa and γb, are equal to 12.728 and 0.0265,221

respectively. These values lead to a coefficient of determination R2 equal to = 96.13%, and222

a Bayesian Information Criterion (BIC) of -2.551 ·102.223

The wavenumbers of the Kinoshita-generated meanders were selected by randomly sam-224

pling from the PDF (5). On the other hand, as no information was available about the225

statistical distribution of the parameters θ1, θ3r and θ3i, their values were randomly sam-226

pled from a uniform PDF using a pseudo-random number generator function (Harris et al.,227

2020). Moreover, to avoid intertwined loops, the coefficients θ3r and θ3i were selected in the228

range [−1, 1] assuming a zero mean value. Finally, the amplitude coefficient θ1 was chosen229

in the range [4/π − 1, 4/π + 1], with a mean value equal to 4/π.230

Each bend composing a single-lobe meander, or a compound bend meander, was iden-231

tified by considering two consecutive inflexion points. Each bend was then resampled to232
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contain the same number of points (i.e., 201), rotated to align its extremes with the x-233

axis, and saved on a specific dataset. This dataset, containing approximately 10 million of234

synthetically-generated bends, was subsequently divided into two independent sub-datasets,235

used afterwards for the training (8.5 million bends) and the testing (1.5 million bends) of236

the automatic classification procedure. The frequency distributions of the wavenumber λ237

and the parameters θ1, θ3r and θ3i used in the Kinoshita curve are shown in Figure S1 of238

the Supporting Information.239

2.2 Wavelet energy spectrum240

The wavelet transform allows the analysis of temporal or spatial signals with a flex-241

ible time-frequency (or space-frequency) window (mother wavelet) that adjusts automati-242

cally, narrowing for high-frequency oscillations and widening for low-frequency oscillations243

(Antoine et al., 2004; Addison, 2018; Tary et al., 2018). In the present study, we have244

applied this analysis to the spatial distribution of the bend curvature c(s).245

The mother wavelet can, in general, be written as (Foufoula-Georgiou & Kumar, 1994):246

ψb,a(s) =
1√
a
ψ
(s− b

a

)
, (6)

where a is a positive scale parameter, and b is a real space parameter. The scale parameter247

controls the frequency by which the wavelet samples the curvature distribution, leading to248

either a dilatation (a > 1) or a contraction (a < 1) of the mother wavelet. The space249

parameter determines the sampling position along s of the mother wavelet.250

The continuous wavelet transform of the curvature distribution is defined as251

Ψc(b, a) =
1√
a

∫ ∞

−∞
c(s)ψb,a(s) ds, (7)

where an overbar denotes complex conjugate.252

In general, a wavelet ψ(s) and, in particular, the mother function must satisfy various253

conditions. It must have compact support or sufficiently fast decay to obtain localisation in254

space and have a zero mean,255 ∫ ∞

−∞
ψ(s) ds = 0. (8)

Moreover, it must satisfy the admissibility condition.256

Cψ = 2

∫ ∞

0

∣∣ψ̂(k)∣∣2
k

dk <∞, (9)

where k is the wavenumber (i.e., the spatial frequency), and ψ̂(k) is the Fourier transform257

of ψ, defined as258

ψ̂(k) =

∫ ∞

−∞
ψ (s) e−i k s ds. (10)

Mother wavelets can be defined in either the real or complex domain. In the case259

of complex wavelets, an additional requirement is that ψ̂(k) must be real and vanish for260

negative wavenumbers (k ≤ 0). This type of wavelet, referred to as progressive, enhances261

the ability to identify singularities in the signal.262

The inverse wavelet transform, allowing the reconstruction of the original curvature263

distribution, is defined as264

c(s) =
2

Cψ

∫ ∞

0

[ ∫ ∞

−∞
Ψc(b, a)ψb,a(s) db

] da
a2
. (11)
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It is easily demonstrated that the continuous wavelet transform is an energy-preserving265

transformation ensuring that (Foufoula-Georgiou & Kumar, 1994)266

Ec =

∫ ∞

−∞

∣∣c(s)∣∣2 =
2

Cψ

∫ ∞

0

∫ ∞

−∞

∣∣Ψc(b, a)∣∣2 db da
a2
. (12)

The quantity
∣∣∣Ψc(b, a)∣∣∣2/(Cψ a2) on the right-hand side of (12) can be interpreted as267

an energy density function on the (a, b)-plane, representing the energy on the scale interval268

∆a and spatial interval ∆b, centred around the scale a and the position b. The quantity Ec269

thus quantifies the total energy in the wavelet spectrum of c(s).270

In this study, the PyWavelets Python package (Lee et al., 2019) was used to compute271

the continuous wavelet transform and the Mexican Hat.272

ψ(s) =
2√

3π1/4
(1− s)e−s

2/2 (13)

was employed as mother wavelet.273

2.3 Autoencoder274

The total energy Ec of the wavelet spectrum for the channel axis curvature of each275

bed was represented through a greyscale image, with values ranging from 0 (black) to 256276

(white) and a resolution of 64x64 pixels (Figure 2b). This simplified representation allowed277

the use of a smaller autoencoder with faster training.278

In particular, we used a convolutional neural network autoencoder, consisting of a279

connected encoder and decoder. The encoder compresses each image into a low-dimensional280

latent representation while retaining as much essential information as possible from the281

high-dimensional initial space (Kingma & Welling, 2022). The decoder handles each latent282

space representation and reconstructs an output image that closely resembles the original283

input one (Goodfellow et al., 2016). The adopted autoencoder requires no supervision while284

training (Tschannen et al., 2018), and allows an efficient clustering in the latent space285

(Chadebec & Allassonniere, 2022).286

The overall autoencoding process can be represented as287

Ec = F
[
G(Ec)

]
, (14)

where G is the encoding function, and F is the decoding function. The neuronal networks288

associated with these two functions are trained such that289

argmin
F,G

1

N

N∑
i=0

∆
{
Eci,F

[
G(Eci)

]}
, (15)

where, N is the number of images used for the training, ∆ is a loss function, defined as290

the binary cross-entropy measuring the binary logarithmic loss between predicted and true291

values (Creswell et al., 2017), and argmin
F,G

denotes the set of values of F and G for which292

the summation attains its minimum value.293

The overall architecture of the autoencoder is summarised using the Visual Keras pack-294

age (Gavrikov, 2020), as shown in Figure 3. The encoder consisted of a series of convolutional295

two-dimensional neural layers. Batch normalisation and flattening layers were used to en-296

code the available information in a latent two-dimensional space. The decoder employed a297

series of transposed two-dimensional convolutional neural layers, followed by a batch nor-298

malisation layer. A convolutional two-dimensional neural layer was finally used to obtain299

the reconstructed image of the energy spectrum.300
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Figure 3. Autoencoder architecture. (a) Encoder and (b) Decoder.

The autoencoder was trained using the open-source TensorFlow software (Abadi et al.,301

2015). The bend curvature distributions computed from the Kinoshita-generated dataset302

were split into two independent subsets: 85% of bend curvature distributions were used for303

training, and the remaining 15% for validation. The error function selected for evaluating304

the correctness of the reconstructed images was a binary cross entropy function (Ruby et305

al., 2020), the binary loss being equal to 0 for a perfect model.306

2.4 Clustering307

The K-means algorithm (Brunton & Kutz, 2019) was used to find the optimal number308

of clusters characterising the image representation of Ec in the latent space. This optimal309

number was obtained by partitioning the data set into Nk groups Si, such that the sum of310

squared deviations of the partitions is minimised. Denoting by S the generic partition, the311

function to be minimised is the within-cluster sum of squaresWCSS, which can be formally312

expressed as (Kriegel et al., 2017)313

WCSS =
∑
Si∈S

Nd∑
j=1

2
∣∣Si∣∣∑

x∈Sj

(xij − µij). (16)

Here, µij is the mean coordinate of the cluster i in dimension j,
∣∣Si∣∣ is the cluster size, and314

the last summation defines the cluster variances. The minimisation of the function (16) was315

carried out through the Python package Scikit-Learn (Pedregosa et al., 2011).316

2.5 Real meanders317

The data-driven classification framework was first tested on an independent set of318

synthetically-generated bends, and then used to classify a set of 7521 real meander bends319

extracted from the datasets of Sylvester et al. (2019) and Lopez Dubon and Lanzoni (2019).320

The full list of the 32 meandering river reaches considered in the analysis is reported in321

Table S1 of the Supporting Information. Both datasets provide river planforms obtained by322

loading Google Earth maps in QGIS, zooming in on the river stretch of interest, drawing323

polylines along the river banks, and determining the centreline as the curve equidistant from324

each bank. This latter curve was smoothed out through a Savitzky-Golay filter (Savitzky325

& Golay, 1964) and a denoising wavelet filter (van der Walt et al., 2014) to reduce as much326

as possible spurious fluctuations when computing numerically the channel axis curvature.327

The curvature was calculated by discretising the derivative dθ/ds in equation (3)328

through a second-order accurate central difference scheme for interior points, and either329

first or second-order accurate one-sided (forward or backward) differences at the bound-330

aries, using the gradient function from the Python package numPy (Harris et al., 2020).331
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The along-river curvature distribution was then used to identify the inflexion points,332

where the curvature changed sign, and the bend apexes, where the curvature reached its333

maximum or minimum value. The position of inflexion points was finally used to recognise334

the sequence of single-lobe bends composing the river reach.335

The noise in the numerically computed curvature can induce some small oscillations336

around zero and, consequently, the detection of spurious inflexion points. To avoid this337

problem only bends with a cartesian length Lx (Figure 1e) exceeding 5-8 the mean channel338

width, Bmean, were retained. Each single-lobe bend was eventually rotated to align the339

two inflexion points along the reference x-axis, and the platform was represented in the340

dimensionless cartesian plane (x/Bmean, y/Bmean).

Figure 4. (a) Localisation of the meandering rivers extracted from satellite images. The data

refer to Lopez Dubon and Lanzoni (2019) except those with the superscript ∗ which refer to Sylvester

et al. (2019). (b)-(j) Examples of parts of the meandering rivers extracted.

341

3 Results342

Figure 5 shows an example of the automated classification procedure applied to a real343

river bend. In particular, Figure 5 (a) reports the planform of the bend plotted in the344
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dimensionless cartesian plane, while the corresponding dimensionless curvature is plotted345

in Figure 5 (b) as a function of the curvilinear coordinate of the bend axis, scaled by its346

maximum length, s/smax. The greyscale image of the total energy wavelet spectrum of347

the curvature distribution is reported in Figure 5 (c). Finally, Figure 5 (d) shows the348

correspondent image reconstructed through the trained autoencoder. The reconstructed349

image appears to capture the striking features of the original image. Overall the autoencoder350

performance in reconstructing the real meander data set resulted in a binary cross-entropy351

loss of just 0.1578. This close-matching reconstruction ensures a meaningful representation352

of the spectrum in the latent space, where compression of the information embedded in the353

spectrum facilitates cluster analysis.

Figure 5. Example of application of the autoencoder to a real meander bend. (a) Bend shape

plotted in the dimensionless plane (x/Bmean,y/Bmean); (b) along-bend distribution of the channel

axis curvature; (c) greyscale image of the total energy of the correspondent wavelet spectrum, with

resolution 64×64 pixels and values ranging from 0 (black) to 256 (white); and (d) autoencoder

reconstruction of the image.

354

As a preliminary step to the cluster analysis in the latent space, an additional criterion355

was applied to eliminate almost flat bends, typically associated with the very early evolution356

of a meander or multiple-lobe bends, which are not considered in the present analysis.357

Indeed, the energy spectrum of a nearly flat bend can be quite complicated, adding noise to358

the clustering procedure and making it less effective. Following Leopold and Wolman (1957),359

we assumed that bends belonging to a meandering reach have a sinuosity σ, defined as the360

ratio of intrinsic to cartesian length, larger than 1.5. The total number of meandering bends361

to be classified thus reduced from 7521 to 1911. The application of the K-means algorithm362

to this set of bends in the latent space yielded a number of clusters equal to 3. Increasing363

this number did not produce any significant improvement in minimising the within-cluster364

sum of squares defined by (16), as shown by Figure S2 in the Supporting Information.365

Figure 6 summarises the results of the cluster analysis in the two-dimensional latent366

space, where three distinct clusters are discernible (Figure 6a). The bend shapes in the367

dimensionless plane x/Bmean, y/Bmean corresponding to the three centroids are plotted368

in Figure 6b,c,d. They represent the characteristic bend shape typical of each cluster.369

Cluster C1 is characterised by symmetrical bends (Figure 6b), whereas clusters C2 and C3370

are composed of downstream-skewed (Figure 6c) and upstream-skewed (Figure 6d) bends,371

respectively. The majority of data falls into cluster C1 (44% bends), followed by cluster C2372

(36% bends) and cluster C3 (20% bends). On the other hand, the data dispersion within373

each cluster, defined as the ratio of standard deviation of the distance from the cluster374

centroid to the mean, is greater for cluster C3 (3.271), followed by cluster C2 (2.356), and375

cluster C1 (2.292).376

The percentages of each bend type contained in the 32 river reaches considered in the377

present study are shown in Figure 7. Symmetrical bends (C1) prevail in 22 of the 32 river378
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Figure 6. (a) Results of the cluster analysis in the two-dimensional latent space. Bend shapes

corresponding to the centroid of (b) cluster C1, (c) cluster C2, and (d) cluster C3. The solid lines

within each cluster connects each point to its centroid giving a visual representation of the cluster

dispersion. The dashed-line connects the points located farther away from the centroid showing the

cluster boundary.
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reaches, whereas 10 out of 32 rivers exhibit a predominance of downstream-skewed bends.379

None of the investigated rivers had a predominance of upstream-skewed bends.

Figure 7. Percentages of the three bend types (C1, symmetrical; C2, downstream skewed; and

C3, upstream skewed) emerging from the clustering analysis are reported for each of the meandering

rivers reaches, as localised in Figure 4.

380

4 Discussion381

The use of the Kinoshita curve (equation 2) was fundamental to produce a sufficient382

amount of data for training the autoencoder. This is particularly relevant, considering the383

vast effort required to extract river planforms from satellite images, as well as the river width384

needed for normalisation and comparison (Finotello et al., 2018). Moreover, the values of385

the loss function used to evaluate the autoencoder (0.1313 and 0.1312 for the training and386

evaluation set, respectively) indicate that, when applied to real rivers, the information lost387

in the latent space is reasonably small. This result confirms the reliable reconstruction of388

most of the energy spectrum images and, hence, a successful transfer of knowledge from the389

synthetic data used for training to real data.390

Even though real bends with a sinuosity smaller than 1.5 were excluded from the391

classification analysis, some peculiar bend shapes remained included in the dataset. A392

few examples are shown in Figure 8a. Essentially, they are bends with small amplitude A as393

compared to their cartesian wavelength Lx, and relatively high sinuosity. To identify these394

particular bends, we introduces an Index of Maturity (IM ) defined as395

IM =
A

Lx
. (17)

The values of the sinuosity and the Maturity Index for each meander bend are shown in396

Figure 8 (b), including all the bends extracted from the various river reaches, independently397

of the sinuosity. The point cloud seemingly has a lower-limit boundary that depends on the398

Maturity Index. This boundary has a shape that can be reasonably approximated though399

the parabola400

σ = 2 IM

√
1 +

1

4I2M
. (18)
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Figure 8. (a) Examples of the dependence of bend shapes from the values of σ and IM . (b)

The bend sinuosity σ is plotted as a function of the maturity index IM for all the bends extracted

from the investigated river reaches.

401

Figure 8 suggests that both the sinuosity and the Maturity Index can be used to identify402

bends with relatively uncommon shapes. Bends with σ < 1.5 are assumed to belong to nearly403

straight reaches, according to the classification proposed by Leopold and Wolman (1957).404

The line σ = 1.5 intercepts the lower-limit boundary for IM ≃ 0.56. This latter value can be405

used to discriminate bends with small amplitude as compared to the wavelength (IM ≲ 0.5),406

leading to the peculiar shapes shown in Figure 8(a). This type of bends represents 25.4% of407

the total bends analysed. Excluding these bends from the cluster analysis does not change408

significantly the classification outputs. The number of clusters remains still equal to 3, with409

shapes representative of the corresponding centroids remarkably similar to those shown in410

Figure 6(b)-(d) (see Figure S3 in the Supporting Information). The criterion based on a411

lower threshold for IM essentially identifies uncommon, nearly flat shapes, which have a412

limited overall impact on the automated classification procedure.413

The sinuosity has a major role in identifying the degree of evolution of a given bend.414

Low-sinuosity bends usually represent the early stages of evolution, whereas high values415

of sinuosity are likely associated with bends in a more advanced stage of evolution. The416

statistical analysis carried out by Bolla Pittaluga and Seminara (2011) revealed that the417

meander bends in the database of Lagasse et al. (2004) have a median sinuosity of 1.7418

and a standard deviation of 0.4. Bends with high sinuosity (σ ≳ 3 − 3.5) are likely to419

be relatively infrequent. This fact is confirmed by Figure 9, showing the box plot charac-420

terisation of the sinuosity distribution within each of the three clusters identified by the421

automated classification procedure. The values of the median sinuosity σm agree with those422

estimated for the database of Lagasse et al. (2004), with some slight variations from one423

cluster to another. In particular, the higher median value is observed for downstream-skewed424

bends (cluster C2, σm = 2.014), the smallest median value characterises upstream-skewed425

bends (cluster C3, σm = 1.720), while symmetrical bends (cluster C1) have σm = 1.906.426

The data dispersion, measured through the distance between the upper and lower quartiles427

(Interquartile Range, IQR), is highest for the downstream-skewed bends (IQR = 0.758),428
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whereas upstream-skewed bends have the lowest degree of variation (IQR = 0.305). The429

trend of the sinuosity distribution for symmetrical bends is intermediate between the other430

two classes. Each cluster shows several upper outliers, i.e, larger than 1.5 times the in-431

terquartile range. In contrast, lower outliers are invariably absent. This absence is due to432

the choice of excluding bends with sinuosity lower than 1.5. The smallest number of outliers433

(6/435, ∼ 1.5%) is observed for upstream-skewed bends (C2, whereas the largest number434

(41/858, ∼ 5%) characterises the symmetrical bends (C1), which can be considered as a435

transition pattern between upstream-skewed (C3) and downstream-skewed (C2) bends (or436

vice versa).437

The above results may be partly explained in light of existing theoretical studies of river438

meandering. According to the nonlinear bend instability analysis performed by Seminara et439

al. (2001), and confirmed by the results of numerical simulations up to incipient cutoff con-440

ditions (Lanzoni & Seminara, 2006), symmetrical bends mainly form during the initial evo-441

lution stages of a train of meanders developing along an initially straight, slightly-perturbed442

channel. In this phase, it is the first harmonic of the curvature, i.e. associated with the term443

cos (λ s) of equation (3), which grows almost linearly in time. The occurrence of skewed444

bends arises at a later stage of evolution due to slower nonlinear growth of the third har-445

monic cos (3λ s). During the first linear phase, the meander length increases slowly, while446

meander elongation is faster during the second phase, leading to the formation of fattened447

and skewed meander shapes. Bend amplification is initially quite slow, increases reaching448

a maximum, and then decreases slowly up to incipient cutoff conditions, as also observed449

in the field by Nanson and Hickin (1983). Conversely, the rate of lateral bend migration,450

which is quite fast at the beginning of the evolution, tends to progressively slow down up451

to almost vanishing before a neck cutoff. The direction of bend skewing is dictated by the452

morphodynamic regime characterising the river reach. This regime depends on the value of453

the width-to-depth ratio β with respect to its resonant value βR. This latter value, in turn,454

is controlled by the Shields stress, τ∗, and the sediment grain size scaled with the uniform455

flow depth, ds (Seminara & Tubino, 1992). For values of β < βR (sub-resonant regime),456

bends are upstream skewed and migrate downstream. Conversely, in the super-resonant457

regime (β > βR), bends are downstream skewed and migrate upstream. As a meandering458

reach evolves, changes in the average reach slope, either due to the elongation of meander459

bends as they progressively grow or the shortening of the river path resulting from cutoffs,460

lead to variations of the reach-averaged values of β, and well as τ∗ and ds and, consequently,461

βR. This can induce a change of the morphodynamic regime for values of β close to βR,462

promoting the development of symmetrical bends (Zolezzi et al., 2009).463

Within this general theoretical framework, higher variations in the sinuosity likely in-464

dicate the presence of a larger number of bends at different stages of evolution and, con-465

sequently, a potentially more dynamic river reach. Symmetrical bends can be associated466

to either relatively young evolution stages (e.g., those characterising a recently straighten,467

weakly sinuous reach) or to more advanced, higher sinuosity stages, as those linked to the468

change in morphodynamic regime when the evolving river reach approaches resonant condi-469

tions. Symmetrical bends may also be part of meanders with multiple loops (i.e., including470

multiple inflexion points), not accounted for in the present automated classification frame-471

work, which assumes a meander always delimited by two consecutive inflexion points of the472

channel axis curvature. The various origins of symmetrical bends may explain the greater473

number of outliers exhibited by the C1 cluster. Skewed bends, on the other hand, should,474

in general, represent more advanced stages of meander evolution, associated with higher475

values of sinuosity. This is indeed verified in Figure 9 for downstream-skewed bends but476

not for upstream-skewed bends, which have a median sinuosity also smaller than that of477

symmetrical bends. On the other hand, the number of upstream-skewed bends (distinc-478

tive of sub-resonant conditions) is noticeably lower than that of both downstream-skewed479

bends (typical of super-resonant conditions) and symmetrical bends. This lower number480

potentially explains the lower variability of the sinuosity and the smaller number of outliers481

characterising upstream-skewed bends. Notably, the prevalence of super-resonant bends482
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over sub-resonant ones agrees with the mechanistic analysis carried out by Zolezzi et al.483

(2009) on a dataset comprising more than 100 gravel-bed rivers.

Figure 9. Box plot representation of (a) the sinuosity and (b) the Maturity Index values within

each of the three clusters recognised by the automated classification procedure. The red lines

indicate the median values, while the lower and upper sides of the boxes correspond to the first

and third quartiles, respectively. The lower and higher horizontal segments denote the whiskers,

defined as 1.5 times the interquartile range (IQR). The numbers in the upper part of the plot,

indicate the the number of outliers, which are marked by empty circles, and the size of the sample.

484

Additional sources of complexity in interpreting the results of the automated clas-485

sification are due to cutoff events, the heterogeneous composition of the floodplain, and486

the mutual morphodynamic influence between adjacent bends at different stages of evolu-487

tion. Repeated cutoffs generally contribute to limiting the mean bend sinuosity within a488

given river reach, determining a continuous sequence of sinuosity fluctuations around the489

mean value, as shown by long-term numerical simulations (Frascati & Lanzoni, 2010). The490

heterogeneous composition of the floodplain may influence the intensity of these sinuosity491

variations (see, e.g., Figure 5c,f in Bogoni et al., 2017). The growth of a given meander bend492

is influenced by the evolution of the adjacent bends. In general, morphodynamic informa-493

tion associated with the evolution of planform waves and river bed topography propagates494

mainly downstream in the sub-resonant regime, while is primarily felt upstream in the495

super-resonant regime (Zolezzi & Seminara, 2001; Lanzoni & Seminara, 2006). The type of496

morphodynamic regime, in turn, depends on the hydraulic and sedimentological parameters497

characterising the river, as well as the mechanism dominating sediment transport (e.g. bed-498

load in gravel-bed rivers and suspended load in sandy rivers). Finally, temporal variations in499

the hydrological forcing and spatial heterogeneity in the sediment composition add a further500

degree of difficulty in the interpretation of the statistical distribution of σ and IM for the501

three classified shapes.502

The potential of the automated classification procedure was tested on a highly active503

reach of the Ucayali River, which registered several cutoffs in the period 1984-2015 (Schwenk504
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et al., 2017; Lopez Dubon & Lanzoni, 2019). The investigated reach is located in the505

Peruvian Amazon basin and has a cartesian length of about 54 km, extending approximately506

from Atalaya (10.7318◦ S, 73.7586◦° W) to Pucallpa (8.3929◦ S, 74.5826◦° W), with an507

average slope in the range 1-10×10−5 (Santini et al., 2015). The mean annual discharge and508

the average maximum discharge at Pucallpa are 9720 m3/s and 16370 m3/s, respectively509

(Alvarado-Ancieta & Ettmer, 2008; Santini et al., 2015). The bed sediment has a mean size510

ranging from 0.17 to 0.39 mm (ECSA, 2005), with a d50 ≃ 0.3 mm at Pucallpa (Ettmer511

& Alvarado-Ancieta, 2010). The reach averaged channel width, estimated from satellite512

images, varied in the range 668-954 m (mean value 742 m) depending on the planform513

configuration of the river over the years. Similarly, the reach sinuosity varied between 2514

and 2.6, with a mean value of 2.3. The water depth ranges between 7 m and 15 m. These515

variations are associated with the progressive elongation of the intrinsic river length due to516

meander growth and the abrupt shortening consequent to cutoffs (Figure 10a-e), and lead517

to continuous fluctuations in the reach average slope.518

Figure 10f shows the results of the automated classification procedure throughout the519

considered 32 years. The investigated river reach presents predominantly symmetric bends520

(cluster C1) for a total of 25 years, downstream-skewed bends (cluster C2) for a total of521

6 years, and a single year (1990) with prevailing upstream-skewed bend (cluster C3). The522

temporal distribution of the percentage of skewed bends could be interpreted as the result of523

the occurrence of various transitions from one morphodynamic regime to another triggered524

by significant cutoff events. To test this hypothesis, we computed the yearly value of the525

resonant value of the half-width to depth ratio βR using the fully coupled, linearised morpho-526

dynamic model of Zolezzi and Seminara (2001). The initial (1984) planform configuration527

was characterised by a sinuosity of 2.12 and an average channel width of 786 m. Assuming528

uniform flow conditions and a plane bed (confirmed a posteriori by the bed classification529

procedure of Simons and Richardson (1966)), the average maximum discharge (16370 m3/s)530

is conveyed through an equivalent rectangular cross-section with a depth of 10 m for a slope531

5×10−5. These conditions correspond to a half-width to depth ratio β of 39.3, a Shields532

stress τ∗ of 1, and a dimensionless grain size ds of 3 × 10−5, consistent with values typically533

observed in sandy rivers (Francalanci et al., 2020). The resonant value of the half-width534

to depth ratio corresponding to this set of dimensionless parameters is βR = 29.54. As the535

reach sinuosity evolves over time, the parameter values also vary accordingly. It can be536

easily demonstrated that (Zolezzi et al., 2009):537

β

β0
=

[
σ
Cf
Cf0

(B0

B

)3]1/3
,

ds
ds0
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B

)2)1/3

.

(19)

where Cf is the friction coefficient (Cf = [6 − 2.5 ln(2.5 ds)]
−2 for plane bed conditions),538

and a sub-script 0 denotes the initial year.539

The time series of β and βR resulting from the analysis are shown in Figure 10h. It540

appears that the transition from a super-resonant dominated behaviour (epitomised by a541

prevalence of upstream-skewed C3 bends) to a sub-resonant dominated behaviour (embodied542

by a dominance of downstream-skewed C2 bends), and vice versa, is indeed plausible and is543

favoured by the abrupt decrease of sinuosity after big cutoffs. This is, for instance, the case544

of the 1992-1993 and 2004-2005 cutoffs, which likely led to a transition from a sub-resonant545

to a super-resonant regime. Remarkably, each passage through resonant conditions seems546

to enhance the formation of symmetrical C1 bends. Overall, the temporal distributions547

of morphodynamic regimes resulting from comparing the magnitude of β with respect to548

βR and that inferred from the percentage of C2 and C3 bends is reasonable, though not549

perfect. This can be due to many aspects, such as the uncertainties on the hydraulic pa-550

rameters adopted for the computations of β and βR, as well as the simplifications embedded551

in the morphodynamic model, which consider an equivalent rectangular cross-section and552

does not account explicitly for suspended load effects. Moreover, deducing the dominant553

morphodynamic regime only from the percentages of bend classes present in the entire river554
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Figure 10. (a)-(e) Planforms before and after major cutoff events occurring from 1984 to 2015

along the reach of the Ucayali River comprised between Atalaya and Pucallpa. (f) The percentage of

meander classes detected along the reach over various years. Temporal evolution of (f) the sinuosity

distribution and (h) the values of the half-width to depth ratio, β, and the corresponding resonant

value, βR. The latter has been computed for plane bed conditions, using the total load transport

formula of Engelund and Hansen (1967), and setting equal to 0.55 the coefficient accounting for

gravitational effect on the transverse direction of bedload (Frascati & Lanzoni, 2013). Red dashed

lines represent the cutoff events.
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reach does not account for the possible inclusion of a bend in composite or multi-lobed555

patterns. The application of the classification procedure described above should then be556

regarded as a significant example of how it, in conjunction with theoretical arguments, can557

help to unravel the morphodynamic behaviour of a given river reach.558

4.1 Limitations of the study and future work559

This study proposes a data-driven classification method for single-lobe meanders, in-560

formed by the images of total energy in the wavelet spectrum of the bend curvature. This561

automated approach provides valuable insight for the detection and classification of sin-562

gle bends along a meandering river. Rather than directly analysing bend planforms, it563

objectively analyses the energy spectrum inherent in bend shapes without requiring the in-564

troduction of any geometric metrics, unlike previous classification approaches based on bend565

shape matching. The complexity of meander shapes is accounted for through the large num-566

ber of parameters comprising the autoencoder architecture. The physics-based nature of the567

classification stems from the control exerted by bed axis curvature on migration rates, sedi-568

ment transport and sorting (e.g., Güneralp & Rhoads, 2008; Finotello et al., 2018; Donovan569

et al., 2021). Nevertheless, some limitations of the study are worth mentioning.570

The autoencoder-based classification model was trained on single-lobe bends, delimited571

by two consecutive inflexion points of the channel axis curvature. These bends were ex-572

tracted from planforms generated synthetically using the Kinoshita curve. However, these573

planforms also include multiple-lobe meanders composed of various single-lobe bends. The574

automated procedure does not recognise these multiple-lobe shapes, and an additional, non-575

trivial effort is needed to include them in the classification.576

The training dataset was extensive, containing ∼ 107 Kinoshita-generated meanders.577

Despite the complex and varied shapes exhibited by real meanders, the size of this dataset578

could be reduced without losing the classification effectiveness. Other machine-learning579

classifiers need to be tested to capture the essential features of articulated meander shape580

features by using a smaller training dataset. This could also be particularly useful for581

classifying multi-lobed meanders.582

The classification was based on greyscale images representing the total energy wavelet583

spectrum of the spatial distribution of bend curvature. For each image, the total energy584

was scaled according to the maximum value characterising the considered bend. This bend-585

specific scaling is independent of the total energy of the other bends in the dataset. The586

use of greyscale images simplifies the representation by limiting possible numerical values587

for the autoencoder, and the single scale per image preserves more features compared to588

normalization based on the complete dataset.589

The boundaries of each cluster in Figure 6 were determined by smoothly connecting590

the points farthest from the centroid. Consequently, they may be sensitive to the inclusion591

of new data points, making it difficult to classify any point in their proximity with a high592

degree of confidence. This is particularly significant for clusters quite close in the latent593

space, as C1 and C3.594

Finally, the present study is focused on single-lobe meanders, with multi-lobe meanders595

split into simple bends. Thus, The wavelet analysis gives information on each bend, without596

considering how the bends are linked. Single bends composing a multi-lobe meander are not597

necessarily all skewed in the same direction of the compound shape. Hence, inferring the598

morphodynamic regime from the prevailing percentage of single skewed (either upstream or599

downstream) bends must be taken with some caution. In other words, splitting composed600

meanders into their single bend components, as commonly done in practice, implies a loss601

of information in determining the morphodynamic regime based on the prevailing bend602

skewness.603
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5 Conclusions604

This study developed a data-driven classification framework for meander bends based605

on the total energy of the wavelet spectrum of bend curvature distribution. Kinoshita-606

generated bends were generated, creating a large dataset. An autoencoder based on a607

convolutional neural network was trained and validated using this dataset. The trained608

neural network was then tested on remotely sensed meanders. The main findings resulting609

from the application of the trained neural network model are summarised below.610

Investigating the energy spectrum of bend curvature through a continuous wavelet611

transform ensures a solid physical foundation. Curvature controls the flow field and the bed612

topography, ultimately correlating with meander migration, sediment transport, and grain613

sorting.614

The autoencoder successfully transferred knowledge from Kinoshita-generated bends to615

real data, resulting in low binary cross-entropy loss (0.1578) for real meander. This value616

is quite close to the loss (0.1333) achieved for the independent Kinoshita-generated dataset617

used for validation.618

The unsupervised classification model identified three main categories of meandering619

river bends: symmetric, downstream-skewed, and upstream-skewed. Applying this method620

to the real meander data set extracted from satellite images revealed that the symmetric621

single-bend meander shape is the most predominant.622

An application of the classification method to a reach of the Ucayali River highlighted623

how the planform dynamics over a span of 32 years, from 1984 to 2015, may produce a shift624

in the dominant bend class. The shortening of the reach due to the cutoffs may, in fact,625

lead to a transition from super-critical to sub-critical conditions (or vice versa), resulting in626

a shift from dominant downstream-skewed bends to upstream-skewed bends (or vice versa).627

In summary, this study introduced a novel framework for classifying single-lobe me-628

ander bends based on the total energy in the wavelet energy spectrum of bend curvature.629

This classification tool aids in identifying patterns in meander evolution, thereby poten-630

tially enhancing the effectiveness of river management interventions. A logical next step631

for improvement lies in extending the methodology to handle compound and multiple-lobe632

meanders.633
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