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Abstract

Quantifying the relative influence of factors and processes controlling riverine ecosystem function is essential to predicting

future conditions under global change. Dissolved organic matter (DOM) is a fundamental component of riverine ecosystems

that fuels microbial food webs, influences nutrient and light availability, and represents a significant carbon flux globally.

The heterogeneous nature of DOM molecular composition and its propensity for interaction (i.e., functional diversity) can

characterize riverine ecosystem function across spatiotemporal scales. To investigate fundamental drivers of DOM diversity,

we collected seasonal water samples from 42 nested locations within five watersheds spanning multiple watershed sizes (˜5 to

30,000 km2) across the United States. Patterns in DOM molecular diversity and putative biochemical transformations derived

from high-resolution mass spectrometry were assessed across gradients of explanatory variables associated with watershed

characteristics (e.g., watershed area, water residence time, land cover). We found that putative biochemical transformations were

more strongly related to explanatory variables across watersheds than common bulk DOM parameters and that watershed area,

surface water residence time and derived Damköhler numbers representing DOM reactivity timescales were strong predictors

of DOM diversity. The data also indicate that catchment-specific land cover factors can significantly influence DOM diversity

in diverging directions. Overall, the results highlight the importance of considering water residence time and land cover when

interpreting longitudinal patterns in DOM chemistry and the continued challenge of identifying generalizable drivers that are

transferable across watershed and regional scales for application in Earth system models. This work also introduces a Findable

Accessible Interoperable Reusable (FAIR) dataset (>300 samples) to the community for future syntheses.
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Abstract. Quantifying the relative influence of factors and processes controlling riverine ecosystem 22 

function is essential to predicting future conditions under global change. Dissolved organic matter (DOM) 23 

is a fundamental component of riverine ecosystems that fuels microbial food webs, influences nutrient 24 

and light availability, and represents a significant carbon flux globally. The heterogeneous nature of DOM 25 

molecular composition and its propensity for interaction (i.e., functional diversity) can characterize 26 

riverine ecosystem function across spatiotemporal scales. To investigate fundamental drivers of DOM 27 

diversity, we collected seasonal water samples from 42 nested locations within five watersheds spanning 28 

multiple watershed sizes (~5 to 30,000 km2) across the United States. Patterns in DOM molecular 29 

diversity and putative biochemical transformations derived from high-resolution mass spectrometry were 30 

assessed across gradients of explanatory variables associated with watershed characteristics (e.g., 31 

watershed area, water residence time, land cover). We found that putative biochemical transformations 32 

were more strongly related to explanatory variables across watersheds than common bulk DOM 33 
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parameters and that watershed area, surface water residence time and derived Damköhler numbers 34 

representing DOM reactivity timescales were strong predictors of DOM diversity. The data also indicate 35 

that catchment-specific land cover factors can significantly influence DOM diversity in diverging 36 

directions. Overall, the results highlight the importance of considering water residence time and land 37 

cover when interpreting longitudinal patterns in DOM chemistry and the continued challenge of 38 

identifying generalizable drivers that are transferable across watershed and regional scales for application 39 

in Earth system models. This work also introduces a Findable Accessible Interoperable Reusable (FAIR) 40 

dataset (>300 samples) to the community for future syntheses. 41 

1 Introduction 42 

Quantifying the relative influence of factors and processes controlling riverine ecosystem function 43 

is essential to predicting future conditions under global change. Dissolved organic matter (DOM) is a 44 

fundamental component of riverine ecosystems because it fuels microbial food webs, influences nutrient 45 

and light availability, and represents a significant carbon flux globally (Dittmar & Stubbins 2014; Tank 46 

et al. 2010). DOM is a complex mixture of dissolved heteroatomic organic molecules with heterogeneous 47 

molecular composition (i.e., chemical diversity) and varied propensity for interaction (i.e., functional 48 

diversity), which can be used to characterize riverine ecosystem function across spatiotemporal scales. 49 

The transport of DOM in rivers globally also forms an important component of the global carbon cycle 50 

(Tranvik et al. 2018). Thus, Earth system modelling of riverine carbon fluxes is essential for quantifying 51 

the terrestrial carbon sink (Lauerwald et al. 2020).  52 

Along the aquatic continuum, DOM is subject to biotic and abiotic processes that alter the 53 

structure and composition of DOM, often with important biogeochemical ramifications. For example, the 54 

complete oxidation of DOM to CO2 occurring in soil, groundwater, and surface waters contributes to 55 

significant emission of CO2 from inland waters (up to 18% of gross primary production; Liu et al. 2022a; 56 

Raymond et al. 2013). However, a substantial quantity of DOM evades remineralization within time 57 

scales associated with terrestrial-to-marine transport (Liu et al. 2022b). This more persistent DOM is far 58 

from inert, but rather is subject to physical sorption, photo-oxidation, and microbial processing, each of 59 

which transforms DOM molecular characteristics. The chemical character of organic molecules (e.g., 60 
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elemental composition and structure) and the surrounding aquatic matrix (e.g., solute concentration, 61 

temperature, pH, ionic strength, light, and redox conditions) influence DOM reactivity (Kaplan & Cory 62 

2016). Accordingly, the complex nature of DOM composition and reactivity along the terrestrial-to-63 

aquatic continuum has precluded simple representation in conceptual schematics, process-based reactive 64 

transport models, and Earth system models (Arora et al. 2022; Ward et al. 2020). Despite these challenges, 65 

understanding the processes controlling the sources, transport, and ultimate fate of DOM in river systems 66 

is essential to predicting riverine ecosystem function and carbon cycling under global change. 67 

 Vannote et al. (1980) proposed one of the earliest conceptual syntheses of riverine ecosystem 68 

function, the River Continuum Concept (RCC). The RCC posited that diversity of natural organic 69 

molecules (i.e., DOM chemical diversity) decreases from headwaters to larger rivers due to increasing 70 

biological consumption and decreasing terrestrial inputs. Since its publication, the RCC hypothesis has 71 

motivated decades of empirical study of biology and chemistry across riverine longitudinal gradients. 72 

Conceptual descendants of the RCC are based on the idea that DOM composition is determined by the 73 

balance of contributing organic carbon sources, physical removal processes, and biogeochemical 74 

transformations occurring along a downstream flow path (Bernhardt et al. 2017; McClain et al. 2003; 75 

Wollheim et al. 2018). However, all studies and syntheses are limited by the operational definitions of 76 

DOM diversity imposed by the analytical techniques available for measuring aspects of the complex 77 

DOM mixture (D'Andrilli et al. 2020). The ever-widening analytical windows of DOM chemistry has 78 

steadily increased the resolution at which DOM chemical diversity can be evaluated. Each analytical 79 

advancement has driven new insights into the nature and reactivity of DOM in natural and engineered 80 

systems (Cooper et al. 2022). Early approaches relied on elemental ratios of bulk C, N, and P and 81 

spectroscopic metrics quantifying the interaction of DOM with ultraviolet and visible light. Surpassing 82 

the limitations of bulk DOM characterization, solid-phase extraction combined with ultrahigh-resolution 83 

Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) now commonly provides 84 

molecular-level information on DOM chemical diversity (Kujawinski et al. 2002). FTICR-MS has 85 

revealed striking diversity even in low concentrations allowing biogeochemical models, including the 86 

RCC, to be tested at unprecedented resolution (Hockaday et al. 2009; Kim et al. 2003). 87 
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Using FTICR-MS, Mosher et al. (2015) reported that 1st order, forested streams had unique 88 

molecular formula compared to higher order streams, but that overall chemical diversity persisted across 89 

the longitudinal gradient up to the 5th stream order. Thus, DOM chemical diversity cannot be assumed to 90 

decrease as merely a function of river network position. In addition, hydroclimatic and land-use factors 91 

have been shown to influence both the quantity and composition of DOM throughout the river network 92 

(Cole et al. 2007; Creed et al. 2003). Notably, Raymond et al. (2016) proposed the Pulse Shunt Concept 93 

(PSC) providing a framework for predicting the translocation of biogeochemically reactive DOM from 94 

headwaters into downstream rivers and coastal zones after hydrologic events. Conceptual frameworks 95 

that incorporate the temporal controls of watershed conditions (e.g., discharge, season) on DOM 96 

chemistry have provided important advances in understanding. However, consideration of the spatial 97 

component of river networks is equally important to assess DOM processing at the watershed scale. 98 

Surface-water residence time (WRT) has been shown to be a key hydrologic variable associated with 99 

dynamics of riverine biogeochemical constituents (Casas‐Ruiz et al. 2020; Hosen et al. 2021). Derived in 100 

part from WRT and metrics of DOM loss rates over space, the Domköhler number framework can be 101 

used to quantify an advection-to-reaction timescale ratio that can indicate whether a river system is 102 

dominated by reaction versus export processes (Liu et al. 2022b). Domköhler numbers (i.e., dimensionless 103 

proxy for reaction significance) greater than 1 indicate a reaction-dominated system where reactions 104 

proceed faster than the time scale of transport through the reach, whereas values less than 1 indicate a 105 

transport-dominated system (Harvey et al. 2019; Zarnetske et al. 2012). 106 

Numerous studies have provided evidence supporting various conceptual frameworks and their 107 

associated hydro-biogeochemical processes within watersheds (Casas‐Ruiz et al. 2020; Hosen et al. 2020; 108 

Wagner et al. 2019; Wollheim et al. 2018; Yoon et al. 2021). However, descriptive studies of DOM 109 

molecular composition in small watersheds have only limited capacity to identify fundamental scaling 110 

relationships for DOM composition across catchments that vary in size, land use and geomorphology 111 

(Casas‐Ruiz et al. 2020; Roebuck et al. 2020; Vaughn et al. 2021). While questions of the timing and 112 

location of DOM concentrations and loads can often be answered where empirical data are available, 113 

process-based models that omit consideration of the molecular composition of DOM are unlikely to 114 

accurately describe DOM reactivity, fate, and utility as an energy source in river networks (Arora et al. 115 
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2022). Thus, studies leveraging FTICR-MS data describing high-resolution DOM molecular properties 116 

across broad spatial scales have greater likelihood of generating novel insights concerning fundamental 117 

processes governing watershed biogeochemistry. 118 

Functional diversity metrics applied to ecological communities quantify the variety of functional 119 

traits in an ecosystem and can indicate overall ecosystem stability (Petchey & Gaston 2006). Metrics of 120 

DOM functional diversity derived from the high dimensional data from high-resolution mass 121 

spectrometry have only recently been applied to describe DOM reactivity and stability in an ecological 122 

sense (Mentges et al. 2017; Tanentzap et al. 2019). The term “functional” here does not refer to the 123 

structural features (e.g., functional groups) of organic molecules. Instead, the term “functional” refers to 124 

the biogeochemical reactivity, and thus ecological importance, of DOM molecular formulas and 125 

compound classes. Observations of DOM composition and chemometric processing (e.g., FTICR-MS 126 

peak mass difference analysis) have shown the strong influence of external environmental conditions, 127 

microbial community composition, and metabolic capacity in predicting DOM reactivity and fate in river 128 

networks (Danczak et al. 2023; Stadler et al. 2023; Stegen et al. 2022; Stegen et al. 2018). A reduction or 129 

increase in DOC concentration does not imply a concomitant reduction or increase in DOM chemical or 130 

functional diversity (Creed et al. 2015; Hosen et al. 2020), and seemingly small changes in molecular 131 

structure and composition can alter the reactivity of DOM (Ball & Aluwihare 2014). Therefore, 132 

quantifying DOM functional diversity along longitudinal gradients in similar sized watersheds of 133 

differing geomorphology and land use is necessary to identify generalizable patterns relevant to modeling 134 

riverine ecosystem function.  135 

Danczak et al. (2023) observed strong covariance of metrics of DOM chemical and functional 136 

diversity derived from FTICR-MS data with watershed area and land cover in the Yakima River. 137 

However, the causative factors and mechanisms driving these correlations (e.g., watershed area, land 138 

cover, hydrology) remain poorly understood. Furthermore, it is not known to what extent the patterns of 139 

organic matter diversity observed in the Yakima River are transferable to other watersheds. To further 140 

scientific understanding of the fundamental drivers of DOM diversity in river networks, we explore DOM 141 

metrics associated with seasonal water samples from 42 nested locations within five watersheds spanning 142 

multiple watershed sizes (~5 to 30,000 km2) and stream orders (1 to 7) across the United States. We 143 
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explore relations among dependent variables that represent DOM richness (e.g., number of assigned 144 

molecular formulas), composition (e.g., aromaticity index), and functional diversity (e.g., putative 145 

biochemical transformations) derived from FTICR-MS and explanatory variables associated with 146 

watershed characteristics (e.g., watershed area, surface-water residence time, land cover). Our principal 147 

aim was to explore relations among selected dependent and explanatory variables to test specific 148 

hypotheses related to DOM composition and function within large watersheds (>103 km2).  149 

Assuming that the diversity of potential DOM source areas increases with increasing watershed 150 

area, we hypothesized that metrics of DOM chemical and functional diversity increase with increasing 151 

watershed area (H1). Similarly, increased surface-water residence time (WRT) increases the potential for 152 

new autochthonous contributions and further biogeochemical transformation of DOM. Thus, we 153 

hypothesized that metrics of DOM diversity increase with increasing WRT (H2). By combining the WRT 154 

with estimates of DOM uptake in a Damköhler number (Da) calculated for each sample, we further 155 

hypothesized that DOM functional diversity increases with larger Da numbers (H3). Finally, the 156 

composition of allochthonous DOM (i.e., terrestrially sourced) is influenced by the type of terrestrial 157 

organic matter represented by land-cover that is hydrologically connected to river systems and we 158 

postulate that the integration of different allochthonous DOM sources increases DOM diversity. Thus, we 159 

hypothesized that metrics of DOM diversity increase with metrics of increasing land cover diversity (H4a) 160 

and with the percent of dominant land-cover class for each watershed (H4b). Quantifying the relative 161 

variable importance among the explanatory variables was outside the scope of the current study. Future 162 

studies may combine the current data with other similar datasets and multivariate or machine learning 163 

techniques to assess explanatory variable importance. 164 

2 Methods 165 

To explore transferability of spatiotemporal basin-scale DOM patterns we studied DOM 166 

composition and transformations across five diverse watersheds. The study areas were selected to span a 167 

range of biomes, land-use conditions and watershed areas (Table 1 and Table S1). More information 168 

regarding site metadata can be accessed in the ESS-DIVE data packages (Otenburg et al. 2022; Torgeson 169 

et al. 2022).  170 
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2.1 Watersheds and Sample Locations 171 

Yakima River Basin (YRB) is located in Washington state, United States. This watershed drains 172 

15,941 km2 and spans different ecosystems and climates from mountainous to agricultural and urban. The 173 

watershed is snowpack-driven and drains into an agricultural valley (Vano et al. 2010). This study focuses 174 

on seven sites that capture the diversity of the watershed. Each site in YRB was sampled weekly between 175 

April 2021 and October 2021 and bi-weekly (weather permitting) until April 2022 (Otenburg et al. 2022). 176 

The sites were paired with existing U.S. Geological Survey (USGS) or U.S. Bureau of Reclamation 177 

streamflow gaging stations. Sampling frequency in YRB was greater than for the other sampled 178 

watersheds because data collection in the Yakima basin was part of the routine sampling efforts for the 179 

ongoing River Corridor Science Focus Area project at Pacific Northwest National Laboratory. 180 

The Deschutes River (DES) flows from the eastern slope of the Cascade Mountains in central 181 

Oregon, United States. The watershed drains 27,195 km2 of land that ranges from ponderosa pine 182 

dominated headwaters to semi-arid high desert and rangeland. Like the YRB, discharge in DES is 183 

snowpack-driven. Ten sites ranging from headwaters to its confluence with the Columbia River were 184 

selected for sampling. The Willamette River (WIL) watershed lies on the opposite side of the Cascade 185 

Mountains as DES, draining the western slope and Willamette Valley in western Oregon. The watershed 186 

drains 29,008 km2 of land ranging from forests dominated by douglas fir, western hemlock, and western 187 

red cedar at higher elevations, to agricultural and urban land in the Willamette Valley.  Discharge is driven 188 

by both mountain snowpack and rainfall. The Gunnison River (GUN) watershed drains 20,533 km2 of 189 

land in central Colorado. The basin is largely snowpack driven, with headwaters at more than 3000 m in 190 

elevation and most annual precipitation falling as snow throughout the basin. The landcover ranges from 191 

montane and coniferous forests dominated by lodgepole and ponderosa pine, aspen, and juniper. Lower 192 

elevations are comprised of mixed coniferous forest, grasslands, and rangeland. The Connecticut River 193 

(CT) watershed is the largest basin in the New England region of the United States, draining 29,070 km2. 194 

Land cover ranges from northern hardwood-conifer mixed forest in the northern headwaters, to 195 

agricultural and urban use in the southern downstream sites. Discharge is influenced by both snowpack 196 

and rainfall. Each site in DES, WIL, GUN, and CT was sampled at least quarterly to capture conditions 197 

during all seasons (Torgeson et al. 2022). All sampling locations were at either USGS, Bureau of 198 
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Reclamation, or Oregon Water Resources Department streamflow gaging stations, or within experimental 199 

watersheds (e.g., H.J. Andrews Experimental Forest, East River Watershed Science Focus Area and 200 

Sleepers River Research Watershed). 201 

 202 

  203 

 204 

 205 

 206 

Fig 1 Map showing watershed boundaries (black) and sampling locations (red). Hydrography is shown 207 

in blue. Waterbodies less than 10 km2 are not shown. Overlaying text refers to watershed names. 208 

 209 

Table 1: Summary information of sample sites in the United States and ranges of stream orders, watershed 210 

areas, and elevations (datum = NAVD88) per watershed. Watershed area and elevation data are sourced 211 
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from Blodgett and Johnson (2022) and Hill et al. (2016). CT =Connecticut River, Connecticut; DES = 212 

Deschutes River, Oregon; GUN = Gunnison River watershed, Colorado; WIL = Willamette River, 213 

Oregon; YRB = Yakima River Basin. Washington state. 214 

Watershed 
Number of 

sites 
Stream order range 

Watershed 

area range 

(km2) 

Elevation 

range (m) 

YRB 7 3-7 206-14145  880-1464 

DES 10 2-6 52-25189 1002-1709 

WIL 11 1-7 0.6-28922 555-1078 

GUN 11 1-6 4.6-20481 2668-3507 

CT 13 1-6 0.41-25009 246-570 

 215 

 216 

2.2 Water Sampling 217 

Surface-water samples were collected at each location for measurements of non-purgeable 218 

dissolved organic carbon (DOC) and for ultrahigh-resolution mass spectrometry measurements. DOC 219 

samples from YRB were collected in triplicate using 60 mL sterile plastic syringes, and singly from DES, 220 

WIL, GUN and CT using a peristaltic pump with acid-cleaned tubing. DOC samples were immediately 221 

filtered through a 0.22 μm sterivex filter (EMD Millipore), transported on ice in non-acidified 40 mL 222 

glass vials (YRB; I-Chem amber VOA glass vials; ThermoFisher) or 60 mL polycarbonate bottles (DES, 223 

WIL, GUN, CT) and stored refrigerated until analysis at Pacific Northwest National Laboratory (PNNL, 224 

YRB) or Yale University (DES, WIL, GUN, CT). Samples for ultrahigh-resolution mass spectrometry 225 

were collected in triplicate at all sites with 60 mL syringes, filtered through sterivex filters into 40 mL 226 

glass vials with 10 µL of 85% phosphoric acid, shipped to PNNL and placed in a -20 °C freezer.  227 
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2.3 Chemical analyses 228 

Dissolved organic carbon as non-purgeable organic carbon was analyzed within 2 months of 229 

sample collection using non-acidified filtered samples. Samples were stored in the dark at 6°C until 230 

analysis. DOC in YRB samples was measured at PNNL by sparging 150 µL of sample into a Shimadzu 231 

TOC-L Total Organic Carbon Analyzer connected to an ASI-L autosampler and then selecting the average 232 

of the best 3 out of 5 injections to get a final concentration. The DOC calibration curve spanned 0.25 to 233 

100 mg C L-1. Concentrations below the limit of detection of the instrument, or below the standard curve 234 

were flagged.  DOC in DES, WIL, GUN, and CT samples was measured at the Yale University Raymond 235 

Lab following Hosen et al. (2021a), in which samples were acidified to 2% of 2 M HCl, sparged for 5 236 

min., and measured on a Shimadzu Total Organic Carbon Analyzer (TOC-vCPH with TNM-1, Shimadzu 237 

Corporation, Kyoto, Japan). The DOC results from this section were used to prepare samples for FTICR-238 

MS, described in the section below. 239 

 240 

2.4 FTICR-MS analysis   241 

Surface-water samples were analyzed using ultrahigh-resolution mass spectrometry techniques 242 

following Garayburu-Caruso et al. (2020). Briefly, samples collected in pre-acidified glass vials were 243 

thawed in the dark at 4 °C for 72 h. Samples were diluted to 1.5 mg C L−1, based on the water sample 244 

DOC concentrations. Samples were acidified to pH 2 with 85% phosphoric acid before proceeding into 245 

solid phase extraction protocol, where 15 mL were loaded onto preconditioned PPL cartridges (Bond 246 

Elut), dried under positive pressure and eluted with 1.5 mL of methanol  (Dittmar et al. 2008). 247 

We used a 12 Tesla (12 T) Bruker SolariX Fourier transform ion cyclotron mass spectrometer 248 

(FTICR-MS; Bruker, SolariX, Billerica, MA, USA) located at the Environmental Molecular Sciences 249 

Laboratory in Richland, WA to analyze samples post solid phase extraction. Ultrahigh-resolution spectra 250 

were acquired in negative mode using an electrospray ionization source. Samples were run in separate 251 

batches where the resolution was 256 K for YRB samples and 385 K at 481.185 m/z for all other samples. 252 

The voltage was set to +4.5 kV. The instrument was calibrated weekly, and settings were optimized using 253 

a Suwannee River Fulvic Acid standard. Data were collected with ion accumulations of 0.08 to 0.1 from 254 
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100 to 900 m/z at 4 M. One hundred forty-four scans were co-added for each sample and internally 255 

calibrated using an OM homologous series separated by 14 Daltons (–CH2 groups). The mass 256 

measurement accuracy was typically within 1 ppm for singly charged ions across a broad m/z range (100 257 

m/z–900 m/z).  258 

Raw spectra were converted to a list of m/z using BrukerDaltonik Data Analysis (version 5.0). 259 

Further an FTMS peak picker module with a signal-to-noise ratio of 7 and absolute intensity threshold to 260 

the default value of 100 was applied and peaks were aligned using a 0.5 ppm threshold. We used 261 

Formularity along with the Compound Identification Algorithm (Tolic et al., 2017) to assign chemical 262 

formulas by only taking into consideration the presence of C, H, O, N, S, and P and using S/N > 7 and 263 

mass measurement error <0.5 ppm. We removed peaks outside of a high confidence m/z range (200 m/z–264 

900 m/z) and/or with a 13C isotopic signature, calculated molecular formula properties and assigned 265 

metabolites to chemical classes based on their oxygen-to-carbon and hydrogen-to-carbon ratios using R 266 

package “ftmsRanalysis” (Bramer et al. 2020; R Core Team 2023). The modified aromaticity index was 267 

calculated according to Koch and Dittmar (2006). The relative abundance of molecular formulas 268 

containing specific elemental composition (e.g., CHON, % RA) was calculated by normalizing by the 269 

total number of molecular formula assigned within a given sample. 270 

 271 

2.5 Putative biochemical transformation analysis   272 

We inferred biochemical transformations from ultrahigh-resolution mass spectrometry data 273 

following Garayburu-Caruso et al. (2020) and Danczak et al. (2023). Spectra from sample replicates were 274 

combined such that peaks were considered only if they were present in at least one of the three replicates 275 

producing a single composite spectrum for each sample. Peak intensities were changed to binary 276 

presence/absence where masses with a value of “0” indicate the peak was removed because it did not 277 

meet the replicate presence requirements and a value of “1” indicates the peak was kept. Putative 278 

biochemical transformations were estimated by calculating the pairwise mass difference between every 279 

peak present in a sample. These differences were compared to a library of common transformation masses 280 

(n = 1,255). If the pairwise mass differences matched the masses in the reference list within 1 ppm of 281 

error, then we inferred the gain or loss of that compound via a biochemical transformation. For example, 282 



12 

 

if the mass peak between two peaks corresponded to 57.02146, that would match the reference library to 283 

the gain or loss of glycine. For comparison across samples with different DOM number of peaks, the 284 

number of transformations was normalized to the number of peaks present in that sample (Norm. Trans.). 285 

 286 

2.6 Geospatial data 287 

Geospatial data was extracted for each site using a custom R script (Willi & Ross 2023). Each 288 

site’s watershed was delineated with the R package ‘nhdplusTools’ (Blodgett & Johnson 2022) and key 289 

National Hydrography Dataset Plus (NHDPlus V2) variables were extracted (e.g., catchment area). Sites 290 

located on water bodies too small to be captured by the NHDPlus do not have watershed metrics but key 291 

variables for the analysis performed in this manuscript were extracted from previous studies (Johnson et 292 

al. 2021; Shanley et al. 2015). Additional environmental variables from each site’s watershed were 293 

extracted from the Environmental Protection Agency’s StreamCat Dataset (Hill et al. 2016). 294 

An index of biological diversity was adapted to assess the similarity of the proportion of land use 295 

and land cover (LULC) types contributing to each sample site using the proportion of each land use or 296 

land cover class (pi) and the total number of classes (S) (Pielou 1966).  297 

𝐿𝑈𝐿𝐶 𝐸𝑣𝑒𝑛𝑛𝑒𝑠𝑠 =
− ∑ 𝑝𝑖 × ln 𝑝𝑖

ln 𝑆
    (Equation 1) 298 

The LULC classes included in the LULC evenness index were: % open water, % mixed forest, % 299 

deciduous forest, % coniferous forest, % crop land use, % woody wetland cover, % herbaceous wetland 300 

cover, % high intensity urban development, and mean % impervious land cover. Greater values of the 301 

LULC evenness index indicate increased diversity of contributing land use and more even abundances 302 

of different contributing land use classes.  303 

 304 

2.7 Surface water residence time 305 

Estimates for surface water residence time (WRT) followed the general procedure described in 306 

Liu et al. (2022b). Briefly, WRT estimates were based on the GRADES (Global Reach-Level A Priori 307 

Discharge Estimates for SWOT) river networks (Lin et al. 2019). We delineated the watershed 308 
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corresponding to each sampling site, by identifying all associated upstream flowlines and unit catchment 309 

areas using topological relationships describing connectivity of all GRADES flow lines. We used the 310 

mean daily discharge at each sampling station and on each sampling day to estimate sample-specific 311 

WRTs. Mean daily discharge values were acquired from the U.S. Geological Survey National Water 312 

Information System (U.S. Geological Survey 2016) or the Oregon Water Resources Department Near 313 

Real Time Hydrographics Data (https://apps.wrd.state.or.us/apps/sw/hydro_near_real_time/). Discharge 314 

data from gages operated in cooperation with the U.S. Bureau of Reclamation were also sourced from the 315 

USGS. WRT at a single river reach was calculated as length (m) divided by flow velocity (m s-1). Flow 316 

velocity was computed using a hydraulic geometry formulation of Manning’s equation using a rectangular 317 

river channel (Dingman 2007) (Eq. 2): 318 

V = (
𝑆0.3

𝑛0.6𝑊𝑏
0.4)𝑄0.4 (Equation 2) 319 

where V is flow velocity (m s-1), S is channel slope (unitless), Wb (m) is bankfull reach width, and Q (m3 320 

s-1) is mean daily discharge. Bankfull widths were acquired from Lin et al. (2020). A uniform Manning’s 321 

n of 0.03 was assumed. 322 

 323 

Accumulated WRT at the sample site was estimated by routing reach-level WRTs through the 324 

delineated upstream watershed for the sampling site. We employed a discharge-weighted algorithm for 325 

routing where cumulative WRTs from all joining upstream reaches were weighted by their respective 326 

reach discharge, plus the independently estimated (i.e. reach length divided by flow velocity) advection 327 

time at the downstream reach, to obtain an average, cumulative WRT at the downstream reach (Hosen et 328 

al. 2021) (Eq. 3): 329 

𝑡𝑟𝑖 =
∑ 𝑄𝑗𝑡𝑟𝑗

∑ 𝑄𝑗
+ 𝑡𝑖 (Equation 3) 330 

 331 

 where tri and trj (hr) were cumulative WRTs at the downstream reach i and the jth joining reach, 332 

respectively; Qj was water discharge at the jth joining reach (m3 s-1); and ti was the advection time at the 333 

single downstream reach i. 334 

https://apps.wrd.state.or.us/apps/sw/hydro_near_real_time/
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  Dams or reservoirs from the HydroLakes database (Messager et al. 2016) were joined into the 335 

GRADES river networks. The HydroLakes database provided annual WRT estimates for each included 336 

single reservoir, which was calculated from statistically modeled reservoir volumes and outflow 337 

discharge.  To estimate reservoir contribution to river network WRTs at the annual timescale, we replaced 338 

WRT at natural GRADES river reaches where HydroLakes reservoirs are situated with HydroLakes 339 

reservoir residence times for the river network scale routing. Reservoir WRT was calculated as the 340 

difference between the routed WRT with reservoir contribution and without. Reservoir contribution to 341 

river network WRT was only estimated at the annual timescale, considering only annual reservoir WRTs 342 

were available from HydroLakes (Messager et al., 2016). 343 

Given the GRADES river networks minimum watershed area of 25 km2, several headwater 344 

sampling sites in this study are not included in the GRADES database. To estimate WRT for these 345 

headwater sites, we fit scaling models for each watershed. Using all downstream sites >25 km2 that were 346 

in the GRADES database, we regressed the log10 product of mean daily discharge and watershed area 347 

against the log10 of WRT. We then constructed linear best-fit equations and subsequently estimated 348 

headwater site WRTs from these watershed-specific equations, using upstream area acquired from the 349 

higher-resolution NHDPlusHR. 350 

2.8 Damköhler number calculation 351 

Dimensionless Damköhler numbers (Da) for each sample were calculated as the ratio between the 352 

surface water residence time (WRT, h) and a temperature-dependent aquatic DOC uptake velocity 353 

representing a characteristic reaction time following Liu et al. (2022b), 354 

𝐷𝑎 =
𝑊𝑅𝑇/24

𝑑/𝑣𝑓
 (Equation 4) 355 

where d is the discharge weighted mean reach water column depth (m) of river segments within the 356 

upstream watershed and vf is the DOC uptake velocity (m d-1) (Eq. 4). Uptake velocity was scaled with 357 

in-situ water temperature according to the Arrhenius law (Liu et al. 2022b). The vf at the reference 358 

temperature (0.038 m d-1 at 15°C) was selected from the Ipswich River, USA reported in Wollheim et al. 359 

(2015). Da can be used to quantify the relative influence of transport versus reaction processes controlling 360 
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DOM concentrations in a river network where a Da greater 1 indicates a reaction-dominated system and 361 

a Da less than 1 indicates an export-dominated system (Gootman et al. 2020; Harvey et al. 2019). 362 

2.9 Data Analysis 363 

Statistical summaries were completed using the ‘rstatix’ R package (Kassambara 2020). The 364 

explanatory variables that ranged greater than 2 orders of magnitude (watershed area, WRT, Da) were log 365 

transformed to satisfy assumptions of normal distribution. To ascertain the general strength and direction 366 

of relations among dependent and explanatory variables, Pearson's correlation coefficients (r) and 367 

coefficients of determination (r2) were calculated for each variable pair and for each watershed. A p-value 368 

of 0.1 was used to indicate significance. Correlation coefficients (r) are reported in the text and figures 369 

only when p < 0.1. Models were fit using mean variables of each sample site. 370 

3 Results and Discussion 371 

 372 

Table 2 Number of samples (n), mean (x̅) and standard deviation (s.d.) for dependent variables dissolved 373 

organic carbon (DOC), the number of Fourier transform ion cyclotron resonance mass spectrometry 374 

(FTICR-MS) peaks with assigned formula (Richness), the modified aromaticity index (AI_mod), relative 375 

abundance of carbon, hydrogen, oxygen, nitrogen (CHON) formulas (CHON, % RA), and the normalized 376 

putative biochemical transformations (Norm. Trans.). 377 

 378 

Watershed n DOC Richness AI_mod CHON 

Norm. 

Trans. 

  mg-C L-1     % RA   

   x̅ s.d. x̅ s.d. x̅ s.d. x̅ s.d. x̅ s.d. 

Yakima 193 1.38 0.49 5167 444 0.24 0.02 12.2% 2.5% 10.5 0.6 

Deschutes 43 1.01 0.92 2716 893 0.18 0.04 8.8% 3.1% 9.9 1.7 

Willamette 52 1.25 0.44 3504 736 0.21 0.02 8.7% 2.2% 11.1 1.1 

Gunnison 29 1.51 1.11 3515 1080 0.22 0.03 10.8% 2.6% 10.5 1.7 

Connecticut 45 2.89 1.26 3970 836 0.23 0.03 10.3% 2.0% 11.0 1.5 

 379 
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3.1 Covariance between DOM chemistry and explanatory variables 380 

Sampling in the Yakima was completed weekly or bi-weekly for each site, while one sample per 381 

season was targeted for other watersheds. As a result, samples from sites within the Yakima basin (n = 382 

193) comprised ~50% of samples in the dataset. Any assessment of results for all watersheds combined 383 

are skewed toward characteristics of the Yakima samples and therefore our analysis maintains separation 384 

of samples by watershed. Mean DOC concentration for individual watersheds (range: 1.0 to 2.9 mg-C L-
385 

1) was lower than the average concentration for rivers surveyed across the United States (between 2 to 10 386 

mg-C L-1; Spencer et al. 2012). Logistical constraints on the timing of sampling may have limited 387 

sampling peak concentrations of DOC in rivers which are generally known to exceed 10 mg-C L-1 during 388 

individual hydrologic events. 389 

Molecular aromaticity, as indicated by the modified aromaticity index, was similar across all 390 

watersheds (0.22 ± 0.03), however, these values were lower than peak abundance-weighted AImod values 391 

observed in samples throughout a 36,000 km2 watershed in Georgia, USA (AImod > 0.3; Roebuck et al. 392 

2020), throughout a 1,124 km2 watershed in New England, USA (mean AImod = 0.3; Wagner et al. 2019) 393 

and in the upper Mississippi watershed (AImod > 0.3; Vaughn et al. 2021). DOM richness, as indicated by 394 

the number of assigned formulas to FTICR-MS peak data, was notably higher in the Yakima samples 395 

(mean = 5,167; s.d. = 444) than all other samples combined (3,426 ± 886; Table 2; Fig. S1). The number 396 

of assigned molecular formulas containing C, H, O, and N, (CHON) an indicator of potentially reactive 397 

dissolved organic nitrogen (DON), ranged from 42 to 948 formulas (mean = 405) across all watersheds. 398 

To aid in comparisons across watersheds, the number of CHON formulas are normalized to the total 399 

number of assigned formulas in a sample (CHON, % RA). Percent relative abundance of CHON ranged 400 

from 3.4 to 18 % of assigned formulas which is lower than the % formula relative abundance reported 401 

from varied land use in the Upper Mississippi River, USA (~18%; Vaughn et al. 2021) and for rivers 402 

globally (>30%; Wagner et al. 2015). 403 

Although all samples from all watersheds were processed using standardized procedures in the same 404 

laboratory and instrument for FTICR-MS data, and were processed together in Formularity, they were 405 

analyzed in separate instrument batches. The analysis batch containing the Yakima samples had a higher 406 

mass spectrum resolution which likely contributed to a greater number of detected peaks and putative 407 
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biochemical transformations detected in those samples compared to other watersheds. The number of 408 

assigned molecular formulas used in FTICR-MS analyses never exceeds the number of detected mass 409 

peaks and depends on the processing steps taken by each investigation. Thus, molecular richness as 410 

indicated by the number of assigned formulas is not directly comparable among studies, although the 411 

reporting of thousands (> 3,000) of detected molecular peaks and % relative abundance is common 412 

(Hawkes et al. 2020). However, despite the potential for interference due to instrument variability, the 413 

values of putative biochemical transformations normalized to the number of observed mass peaks in each 414 

sample were also similar across all watersheds (10.6 ± 1.3) and the total number of transformations 415 

observed (~8,000 to 80,000) overlaps within the range reported for surface waters spanning the 416 

contiguous United States (~10,000 to 50,000; Stegen et al. 2022). Interpreting patterns of FTICR-MS 417 

metrics (e.g., transformations) across gradients of explanatory variables (e.g., watershed size) can 418 

improve understanding of ecological drivers despite the limitations common to FTICR-MS 419 

methodologies. 420 

Although the seasonal sampling of the study design provided broader representation of annual 421 

watershed conditions, no clear pattern of DOC concentration or DOM composition emerged across 422 

winter, spring, summer, and fall seasons assigned for each region (Fig. S2). Thus, season was excluded 423 

as a supplemental explanatory variable for these data. Assessment of relations among five dependent 424 

variables and six explanatory variables across five watersheds yielded 150 individual covariance results. 425 

Linear models for log-transformed explanatory variables watershed area, WRT, and Da indicated 32 426 

variable pairs with significant covariance (p < 0.1). Linear models for non-transformed land use and land 427 

cover explanatory variables indicated 26 variable pairs with significant linear covariance. 428 

No clear pattern of DOC concentration was observed across gradients of watershed area, WRT, 429 

or Da (Figs 2, 3, and 4). Although nearly all linear fit lines had positive slopes, the Gunnison watershed 430 

was the only watershed with statistically significant covariance (r > 0.7; p < 0.01) between DOC 431 

concentration and watershed area and WRT. DOC significantly increased with Da in the Gunnison and 432 

the Yakima watersheds (Fig. 4). Other studies have reported both increases in DOC yield at higher stream 433 

orders and chemostatic behavior (i.e., stable concentrations across a broad range of conditions) with 434 

increasing watershed size (Creed et al. 2015; Hosen et al. 2020). These results suggest that DOC in the 435 
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higher order rivers in this study represents an integration of DOC from the increased supply of carbon 436 

sources across the watersheds. In support of this broad interpretation are the increasing patterns of DOC 437 

concentrations with increasing LULC evenness (Fig 5) and decreasing DOC concentration with 438 

increasing % coniferous land cover in the Willamette watershed (Fig S3; r < -0.5) and with increasing % 439 

deciduous cover in the Connecticut watershed (Fig. S4). The lack of a universal pattern in DOC 440 

concentration could be considered consistent with the myriad processes influencing aquatic organic 441 

matter from degradation and decomposition to autochthonous production and transformation across the 442 

terrestrial-aquatic continuum (Hedges et al. 2000; Kaplan & Cory 2016). 443 

Similar to DOC concentration, aromaticity index was not significantly related to watershed size, 444 

WRT, nor Da except in the Gunnison watershed (r > 0.5), however, there was no evidence of decreasing 445 

aromaticity with these explanatory variables for all watersheds. These results contrast somewhat with 446 

Creed et al. (2015) who reported a decrease in DOM aromaticity with increasing stream order using an 447 

optical index, specific ultraviolet absorbance (SUVA254), at 200 sites within the USA. Higher SUVA254 448 

values indicate higher absorbance per unit carbon due generally to increased aromaticity of the dissolved 449 

organic matter commonly observed in wetlands and headwater streams (D'Andrilli et al. 2022). Similarly, 450 

there was no clear association between AImod and LULC evenness, although positive linear covariance 451 

was apparent in the Connecticut (r > 0.5) and Deschutes watersheds (Fig 5). Notably, covariance between 452 

aromaticity index and % coniferous land cover was significantly positive in the Gunnison watershed (Fig 453 

S3; r > 0.7) and negative in the Deschutes watershed (r < -0.7) although patterns for % deciduous land 454 

cover were less clear (Fig. S4). In contrast to the patterns of DOC, richness, and AImod, the relative 455 

abundance of CHON formulas showed strong positive covariance with watershed area, WRT, and Da 456 

with the notable exception in the Deschutes watershed which contained one outlier sample site (Table S1; 457 

TRO-GAT). CHON formulas also strongly increased with LULC diversity in some watersheds (Fig. 4) 458 

but decreased with % coniferous land cover (Fig. S3). We interpret increases in the relative abundance of 459 

N-containing DOM as an indicator of increased DOM bioavailability (Vaughn et al. 2023) and/or 460 

increased anthropogenic inputs (Wagner et al. 2015).  461 

The assessment of covariance of DOM chemical and functional diversity metrics with explanatory 462 

variables showed variability across watersheds similar to that of DOC and aromaticity. However, of all 463 
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dependent variables, normalized putative biochemical transformations had the highest number of 464 

significant relations (17) across watersheds and explanatory variables (see discussion below). These 465 

general results are consistent with previous studies indicating that chemometric processing of DOM 466 

molecular formulas through mass difference analyses can be good indicators of the strong influence of 467 

external environmental conditions, microbial community composition, and other factors influencing 468 

DOM reactivity and fate in river networks (Danczak et al. 2023; Stegen et al. 2022). Further detailed 469 

discussion of the covariance of DOM richness and functional diversity with explanatory variables is 470 

structured by the study hypotheses in section 3.2. Overall, no single dependent variable (e.g., DOC, 471 

aromaticity index, etc.) co-varied with all explanatory variables (e.g., watershed size, WRT) in the same 472 

direction or the same magnitude and all significant covariance was in the positive direction except for 473 

increasing % coniferous and deciduous land cover for some watersheds. 474 

 475 
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3.2 Hypotheses of DOM diversity patterns with explanatory variables 476 

 477 

 478 

Fig 2 Dependent variables dissolved organic carbon (DOC) concentration, number of assigned formulas 479 

(Richness), modified aromaticity index (AI_mod), the percent relative abundance of assigned molecular 480 

formula containing carbon, hydrogen, oxygen, and nitrogen (C, H, O, and N) normalized to the total 481 

number of formula (CHON, % RA), and the total number of putative biochemical transformations 482 

normalized by number of peaks (Norm. Trans.) versus the logarithm (base 10) of watershed area for each 483 

watershed. Solid black points and error bars represent the mean and standard deviation of a sample site. 484 
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Open grey circles represent all data. Linear regression line of best fit is shown in blue and 95% confidence 485 

interval is shown in light blue. Correlation coefficients (r) are shown when p < 0.1 486 

 487 

We hypothesized that metrics of DOM chemical and functional diversity would increase with 488 

increasing watershed area (H1). We assume that watershed area is one proxy of the heterogeneity of 489 

landforms and carbon sources within a watershed and that DOM diversity in streamwater is an integrated 490 

signal from these landscapes. Thus, the diversity of potential DOM sources and opportunities for 491 

molecular transformation are hypothesized to increase with watershed area. Our results do not indicate a 492 

clear trend of decreasing DOM richness with increasing watershed area, although significant positive 493 

covariance was observed for the Yakima and Connecticut watersheds (Fig 2; r > 0.5). Casas‐Ruiz et al. 494 

(2020) used generalized additive models to determine that watershed area was a good predictor of solid 495 

phase extracted DOM molecular formula richness in sites throughout a 6th order stream watershed in the 496 

Iberian Peninsula. That study suggested both an increase in DOM richness from the headwaters (< 102 497 

km2) to larger rivers (~103 km2) especially at higher flows, and a decreased DOM richness with the largest 498 

watershed area, especially during lower flows. 499 

The River Continuum Concept predicted that DOM chemical diversity decreases by ~60% between 500 

first and third order streams and continues to steadily decrease longitudinally in higher order rivers 501 

(Vannote et al. 1980). More recent studies employing high resolution mass spectrometry have shown that 502 

DOM chemical diversity in temperate rivers is only reduced by 20-25% between first and second order 503 

streams, with varying but minimal changes among higher order streams (Mosher et al. 2015). In a 504 

Mediterranean river, the DOM chemical diversity was highest in mid-sized catchments relative to both 505 

headwaters and higher order stream (Casas‐Ruiz et al. 2020). In a tributary of the Connecticut River, 506 

DOM chemical diversity did not vary significantly among stream orders (Wagner et al. 2019). Since our 507 

knowledge of DOM sources, composition, and reactivity has deepened since the RCC was first proposed, 508 

we now understand that geomorphic features (e.g., wetlands) and autochthonous inputs (e.g., from 509 

phytoplankton) can greatly influence riverine DOM diversity (Inamdar et al. 2012; Roebuck et al. 2020). 510 

Taken together, these longitudinal trends indicate that an exponential decrease in DOM chemical diversity 511 

postulated in the RCC cannot be assumed, which has important implications for scaling and predictive 512 
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modeling of DOM export. In addition, identifying generalizable conclusions about the functional activity 513 

of DOM across watershed scales allows process-based models to more accurately integrate ecological hot 514 

spots, hot moments, and control points that yield outsized influence on biogeochemical processes 515 

(Bernhardt et al. 2017; McClain et al. 2003).  516 

Linear-log models between normalized transformations and increasing watershed area were 517 

significantly positive for all watersheds except the Willamette (Fig 2). Danczak et al. (2023) reported a 518 

stronger linear correlation (R2 = 0.93; p < 0.01) for the same sites in the Yakima watershed. However, 519 

watershed area in Danczak et al. (2023) was not log-transformed and fewer samples (< 50 samples across 520 

6 sites) were available for analysis in the earlier study. Our study included a full year of samples and a 521 

broader range of hydrologic and seasonal conditions. Thus, the reduced strength of the covariance in this 522 

study may reflect an increased influence of environmental variability across the broader sample set. 523 

Despite differences in the magnitude among rivers, these results suggest a strong relation between the 524 

degree of putative biogeochemical processing and increasing watershed area is consistent over time. The 525 

positive covariance of bulk DOM composition and metrics of molecular diversity with watershed area 526 

suggests relative catchment position is associated with watershed features that increase DOM diversity, 527 

although the strength of this pattern is expected to vary among watersheds and may not be universally 528 

applicable. 529 

Upstream watershed area is often a useful proxy for annual discharge, but it does not capture seasonal 530 

and interannual variability in discharge nor the impact of that discharge on DOM processing in rivers. 531 

Hydrology and season are inextricably linked in our temperate study watersheds where discharge is 532 

typically highest during spring and late fall driven by storms and/or snowmelt and lowest during late 533 

summer and early fall. As with most watersheds in the USA, all the watersheds in the current study contain 534 

reservoirs. However, the spatial organization of these reservoirs within the watersheds vary. For example, 535 

the Deschutes and Gunnison Rivers have large reservoirs on the mainstem that receive water from the 536 

entire upstream watershed. In contrast, the Connecticut, Willamette, and Yakima Rivers do not have 537 

significant mainstem reservoirs near the outlets, but they do have reservoirs associated with the lower 538 

order tributaries. WRTs calculated for samples in the Yakima watershed were more constrained (range = 539 
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16 to 226 h) than for the other four watersheds (range = 1 to 28,000 h), potentially due to differences in 540 

dam density (range 0 to 0.07 dams km-2). 541 

 542 

 543 

 544 

Fig 3 Dependent variables dissolved organic carbon (DOC) concentration, number of assigned formulas 545 

(Richness), modified aromaticity index (AI_mod), the percent relative abundance of assigned molecular 546 

formula containing carbon, hydrogen, oxygen, and nitrogen (C, H, O, and N) normalized to the total 547 

number of formula (CHON, % RA), and the total number of putative biochemical transformations 548 

normalized by number of peaks (Norm. Trans.) versus the logarithm (base 10) of the surface water 549 

residence time (WRT) for each watershed. Solid black points and error bars represent the mean and 550 
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standard deviation of dependent variables and WRT for each sample site. Open grey circles represent all 551 

data. Linear regression line of best fit is shown in blue and 95% confidence interval is shown in light blue. 552 

Correlation coefficients (r) are shown when p < 0.1 553 

 554 

 555 

Fig 4 Dependent variables dissolved organic carbon (DOC) concentration, number of assigned formulas 556 

(Richness), modified aromaticity index (AI_mod), the percent relative abundance of assigned molecular 557 

formula containing carbon, hydrogen, oxygen, and nitrogen (C, H, O, and N) normalized to the total 558 

number of formula (CHON, % RA), and the total number of putative biochemical transformations 559 

normalized by number of peaks (Norm. Trans.) versus the logarithm (base 10) of the Damköhler number 560 

(Da) for each watershed. Solid black points and error bars represent the mean and standard deviation of 561 
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dependent variables and Da for each sample site. Open grey circles represent all data. Linear regression 562 

line of best fit is shown in blue and 95% confidence interval is shown in light blue. Correlation coefficients 563 

(r) are shown when p < 0.1 564 

 565 

We hypothesized that metrics of DOM diversity would increase with increasing surface WRT (H2) 566 

and Da (H3) due to increased autochthonous DOM production and increased opportunity for 567 

biogeochemical transformations within the river network (Hosen et al. 2021; Liu et al. 2022b). Patterns 568 

of DOM richness and normalized transformations with increasing WRT across watersheds were similar 569 

to patterns described above for watershed area. However, watershed area does not scale consistently with 570 

WRT because of variation in riverbed morphology and reservoir distribution, and seasonal variation in 571 

discharge. Dimensionless Da calculated for individual samples ranged from 0.001 to 75 which spans the 572 

range of Da numbers calculated for global rivers (from <0.001 to >90; Liu et al. 2022b). Da was generally 573 

larger for higher order streams and lowest for headwater sites. Significant covariance between DOM 574 

richness and WRT or Da was observed only for the Gunnison watershed. The lack of clear trends across 575 

all watersheds could be interpreted as chemostatic behavior arising from the varying dominance of supply, 576 

transport, and reactivity controls within broadly sampled river systems (Creed et al. 2015). In contrast, 577 

linear-log models between normalized putative biochemical transformations and increasing WRT and Da 578 

were significantly positive for all watersheds except the Willamette watershed (Fig 3 & 4; 0.54 < r < 579 

0.87). In addition, significant positive covariance between normalized transformations and WRT and Da 580 

was strongest in the Yakima watershed, suggesting that although reservoirs increase WRT, the scaling of 581 

DOM functional metrics across watersheds may be most robust for watersheds with fewer large dams. 582 

Mean dam density for all Yakima sampling sites (0.0015 dams km-2) was lower than that of all other sites 583 

(0.007 dams km-2). 584 

Previous studies have shown that threshold points in river systems related to WRT may exist in which 585 

the composition of in-stream DOM becomes disconnected from upstream and lateral sources and instead 586 

reflects local inputs and microbial-mediated processes (Coble et al. 2022; Hosen et al. 2021). Therefore, 587 

a zone of inflection in DOM composition and reactivity could be expected to occur at the transition 588 

between allochthonous versus autochthonous control. The linear-log relations detected in the dependent 589 
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variables across watershed area and WRT is consistent with such an inflection point in mid-sized river 590 

reaches. Accordingly, Liu et al. (2022b) found that DOC uptake in global river networks becomes more 591 

reaction-dominated (i.e., autochthonously controlled) at the transition between 5th and 6th order streams. 592 

In addition, DOM composition can vary substantially more with discharge than with stream order 593 

(Wagner et al. 2019), highlighting how individual hydrologic events alter DOM composition and reactive 594 

potential that is normally present during low flow conditions. Thus, the location of any transition point 595 

would be dependent on flow conditions (Raymond et al. 2016). Overall, our results suggest that WRT 596 

and Da are associated with mechanisms across basins that increase DOM functional diversity across broad 597 

flow regimes and watershed morphology. 598 

 599 

 600 
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 601 

Fig 5 Dependent variables dissolved organic carbon (DOC) concentration, number of assigned formulas 602 

(Richness), modified aromaticity index (AI_mod), the percent relative abundance of assigned molecular 603 

formula containing carbon, hydrogen, oxygen, and nitrogen (C, H, O, and N) normalized to the total 604 

number of formula (CHON, % RA), and the total number of putative biochemical transformations 605 

normalized by number of peaks (Norm. Trans.) versus an index of land use and land cover (LULC) for 606 

each watershed (Eq. 3). Solid black points and error bars represent the mean and standard deviation of a 607 

sample site. Open grey circles represent all data. Linear regression line of best fit is shown in blue and 608 

95% confidence interval is shown in light blue. Correlation coefficients (r) are shown when p < 0.1 609 

 610 

We hypothesized that metrics of DOM diversity would increase with increasing land-cover diversity 611 

(H4a) and with the percent of dominant land-cover class for each watershed (H4b). The composition of 612 

allochthonous DOM is influenced by the type of terrestrial organic matter that is hydrologically connected 613 

to river systems whereby the integration of different allochthonous DOM sources increases DOM 614 

diversity. We estimated contributing organic matter source diversity using an index of land-cover 615 

diversity (LULC evenness; Equation 1) where higher evenness represents a greater number of land use 616 

classes contributing in similar proportions to a given sample site. DOM richness increased significantly 617 

with increasing LULC evenness in the Willamette and Connecticut watersheds (Fig 5; r > 0.5) while 618 

patterns for the other three watersheds were less clear. Putative biochemical transformations increased 619 

significantly with increasing LULC evenness in the Yakima (r = 0.87) and Deschutes watersheds (r = 620 

0.79), while nonsignificant increasing patterns were observed for the other three watersheds. No pattern 621 

in any watershed indicated any decreasing trend of biochemical transformations with increasing LULC 622 

evenness. The range of LULC evenness varied across watersheds and most sites in the Connecticut 623 

watershed had greater evenness (> 0.4) than all other watersheds. The similar ecosystems and physical 624 

geography within the Yakima and Deschutes watersheds may provide some explanation for similarities 625 

in patterns of DOM functional diversity with changes in land use and land cover. 626 

Due to the extensive connectivity between surface waters and the landscapes they drain, land cover 627 

and land use type can be more important controls on DOM composition than stream order (Coble et al. 628 



28 

 

2022; Roebuck et al. 2020). Vaughn et al. (2021) reported positive relations between DOM molecular 629 

formula associated with terrestrial allochthonous sources (e.g., aromatic, polyphenolic compounds) and 630 

percent forest cover in the Upper Mississippi watershed, and showed that multivariate indices of 631 

molecular composition were distinct among samples from primarily forest, agriculture, and urban sites 632 

throughout all seasons. Roebuck et al. (2020) used redundancy analysis to show that dominant land-use 633 

class explained ~50% of DOM composition, characterized using optical and FTICR-MS indices, across 634 

a large watershed in the southeast USA, while stream order explained only less than 10% of the variance. 635 

Human activities such as agriculture and urbanization are known to alter DOM composition in inland 636 

waters (Xenopoulos et al. 2021). DOM exported by anthropogenically impacted catchments has a 637 

different ecological and biogeochemical fate than DOM exported by predominantly forested catchments, 638 

even if bulk DOC concentrations are comparable (Roebuck et al. 2020; Vaughn et al. 2021; Wagner et al. 639 

2015). Although the contributing relative percentages of urban and agricultural areas to most of our 640 

sample sites were very low (< 1%), there remains a possibility that point source inputs in urban or 641 

agricultural areas may also contribute to variability in DOM chemistry in our results. 642 

Coniferous forest cover was common in all watersheds and dominated in most sites except for within 643 

the Connecticut watershed which was dominated by deciduous forest cover. Patterns of covariance among 644 

metrics of DOM diversity with % coniferous and % deciduous contributing forest cover were the most 645 

dynamic across watersheds of all the considered explanatory variables (Figs. S3 & S4). For example, 646 

DOM richness decreased significantly with increasing % coniferous forest cover in the Deschutes (r = -647 

0.78) watershed while richness strongly increased with % coniferous forest cover in the Gunnison 648 

watershed (r = 0.72). Similarly, putative biochemical transformations decreased with increasing % 649 

coniferous forest cover in the Yakima (r = -0.86) and Deschutes (r = -0.68) watersheds while increasing 650 

in the Gunnison watershed (r = 0.66). The Connecticut watershed was the only watershed in this study 651 

with deciduous forest as a dominant land cover, although % deciduous forest cover in the Gunnison 652 

watershed sites ranged from 1 to 18%. A significant negative covariance was observed between DOM 653 

richness and % deciduous forest cover in the Connecticut watershed and the linear model for normalized 654 

transformations also decreased with increasing % deciduous cover although this model was not 655 

significant. While the mechanisms remain unclear, the observed negative covariance with % dominant 656 



29 

 

land cover in some watersheds is consistent with the positive covariance patterns observed with watershed 657 

area because the percentage of forest cover was typically greatest in headwater sites with smaller 658 

catchment areas. These results are also consistent with an earlier study conducted in the Yakima 659 

watershed at the same sites that found significant decreasing linear relations between putative biochemical 660 

transformations and increasing % forest land cover (Danczak et al. 2023). 661 

While the direction of covariance between DOM diversity metrics and the proportion of dominant 662 

land cover is not conserved across watersheds, the significance of the relations suggest that the proportion 663 

of forest cover has a strong potential to coincide with watershed scale processes that drive DOM diversity. 664 

Despite the significant covariance observed with the land-use and land-cover explanatory variables in 665 

select watersheds, we reject hypotheses H4a and H4b because we did not find evidence of consistent 666 

patterns between DOM diversity metrics and land use explanatory variables that would allow for 667 

transferrable predictions across unsampled watersheds. These results further suggest that while land cover 668 

appears to be important for DOM diversity in all watersheds, the mechanisms underlying these 669 

connections likely vary across watersheds due to additional temporal and spatial factors (e.g., WRT) 670 

modulating the influence of land cover. 671 

4 Conclusions 672 

We explored relations among dependent variables that represent extractable DOM richness (e.g., 673 

number of assigned molecular formulas), composition (e.g., aromaticity index), and functional diversity 674 

(e.g., putative biochemical transformations) derived from FTICR-MS and explanatory variables 675 

associated with watershed characteristics (e.g., watershed area, surface-water residence time, land cover). 676 

While this study represents a significant sampling effort across a broad range of watershed characteristics 677 

in the United States, the results highlight both the continued challenges in generalizing interpretations 678 

that are applicable to all watersheds and the potential for overinterpreting studies that only consider a 679 

single watershed or watershed scale. The data presented here expand on many previous insightful 680 

investigations within smaller research watersheds (e.g., H.J. Andrews and Sleepers River; Silva et al. 681 

2021; Wagner et al. 2019) where the development of conceptual frameworks is limited in transferability 682 

to Earth system models at larger spatial scales. The FTICR-MS results showed that the mass difference 683 
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analysis generating putative biochemical transformations displayed more consistent trends with 684 

explanatory variables across watersheds than common bulk DOM parameters (e.g., DOC, aromaticity 685 

index). Of all dependent variables, normalized putative biochemical transformations was the dependent 686 

variable with the highest number of significant covariance across watersheds and explanatory variables 687 

(n = 17). This study also found that the increasing DOM functional diversity pattern with watershed area 688 

in the Yakima watershed was consistent across greater temporal resolution than previously reported by 689 

Danczak et al. (2023). This congruence, and the detection of similar patterns in other similarly sized 690 

watersheds in different ecological regions adds empirical evidence of trends in DOM diversity across 691 

watershed scales that align with the resolution of Earth system models (100 - 10,000 km2; Ward et al. 692 

2020). The positive covariance of DOM composition and diversity with watershed area suggests relative 693 

catchment position is associated with watershed processes that increase DOM diversity, although the 694 

strength of this pattern is expected to vary among watersheds and may not be universally applicable. 695 

We conclude that watershed area, WRT, and indices of temperature-dependent water column 696 

reactivity (approximated by Da) are associated with mechanisms that increase DOM functional diversity 697 

across basins (H1, H2, and H3) and that WRT in particular could be a universally applicable indicator of 698 

the magnitude of DOM transformation along river flow paths. The concomitant increase in N-containing 699 

DOM with these explanatory factors further supports the link between DOM composition and 700 

biogeochemical reactivity across watersheds. Future studies that test the transferability of these patterns 701 

across other similarly sized temperate watersheds are warranted. We also conclude that for some 702 

watersheds, land use diversity is associated with increasing DOM diversity, but the potential mechanisms 703 

underlying these relations may not be conserved across all watersheds. Future studies may build upon 704 

these and other results to develop conceptual models predicting DOM diversity dynamics across large 705 

watersheds of variable physiographic character. For example, assuming the dynamic range of normalized 706 

putative biochemical transformations observed throughout a given watershed is an indicator of DOM 707 

functional diversity, our results indicate that with each order of magnitude increase in watershed area, 708 

relative DOM functional diversity could be expected to increase by 6 to 12% (± 3.7%). Similarly, the 709 

linear-log model results indicate that relative DOM functional diversity increases by 5 to 22% (± 4.2%) 710 

with each order of magnitude increase in surface WRT across similar sized watersheds. Furthermore, the 711 
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limitations of the number of samples available and the assessment of linear and linear-log covariance in 712 

this study inform considerations of future study design used to characterize nonlinear patterns within 713 

longitudinal gradients across watersheds. Future syntheses of DOM molecular properties that aim to 714 

ascertain generalizable patterns to inform Earth system models are likely to benefit from this public 715 

dataset and from additional analyses. 716 
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Table S1. Characteristics of study sites in the United States including watershed, site, mean elevation (m, 

datum = NAVD88), stream order, watershed area (km2), dimensionless stream slope, and percent of 

contributing area land classification for water (% Wat.), developed (% Dev.), barren (% Bar.), forest (% 

Forest), ice and snow (% Ice_snow), grassland (% Grass.), shrubland (%Shrub.), agriculture (% Ag.), and 

wetland (% Wet.). Data are sourced from Blodgett and Johnson (2022) and Hill et al. (2016). CT = 

Connecticut River, Connecticut; DES = Deschutes River, Oregon; GUN = Gunnison River watershed, 

Colorado; WIL = Willamette River, Oregon; YRB = Yakima River Basin, Washington state. 

 

 

 

Watershed Site 
Elevation, 

m 
Stream 
Order 

Area 
Stream 
slope 

% 
Wat. 

% 
Dev. 

% 
Bar. 

% 
Forest 

% 
Ice_snow 

% 
Grass. 

% 
Shrub. 

% 
Ag. 

% 
Wet. 

CT 
CT-

BUNN 
281 1 10.5 0.0112 0.4 14.4 0 64.1 0 1 0.3 9.5 10.2 

CT 
CT-

EBRA 
518 3 139.3 0.0046 0.7 3.4 0 87.8 0 0.8 1.5 1 4.8 

CT 
CT-

FARM 
273 5 1492.9 0.0028 2.9 16.2 0.2 68 0 0.5 0.5 3.3 8.4 

CT 
CT-

MOOS 
536 3 208.9 0.007 0.1 1.8 0 89.1 0 0.6 1.6 0.2 6.7 

CT 
CT-

NEPA 
257 3 62.1 0.0009 0.3 9.8 0 75.1 0 0.5 0.8 6.2 7.3 

CT 
CT-

PASS 
440 4 1125.1 0.0066 0.4 6.5 0.1 77.9 0 0.6 2.1 8.2 4.3 

CT 
CT-

PHEL 
246 1 7.8 0.0207 0.3 9.6 0 70.1 0 1.6 0.5 4.3 13.7 

CT 
CT-

POPE 
492 1 11.1 0.0385 0 4.2 0 78.2 0 0.2 2.2 14 1.1 

CT 
CT-

SLPR 
402 3 120.5 0.0067 0 6.8 0.1 73.7 0 0.4 2.2 14 2.8 

CT 
CT-
STIL 

368 4 222.7 0.0057 2.3 9.8 0.2 76 0 0.4 0.3 2.4 8.7 

CT 
CT-

THOM 
384 6 25009 0.0006 1.9 8 0.2 76.6 0 0.6 1.5 5.6 5.6 

CT 
CT-

UNIO 
340 5 978.6 0 3.8 8.4 0.2 76.3 0 0.5 0.6 2 8.2 

CT 
CT-
W9 

570 1 0.41 0.206 0 0 0 100 0 0 0 0 0 

DES 
BRO-
LAP 

1575 2 51.9 0.0054 0.3 1.5 0.1 93.6 0 0.3 2.9 0 1.4 

DES 
CUL-
LAP 

1561 2 52 0.0018 0.7 0.6 0.4 94.6 0 0.2 3.1 0 0.4 

DES 
DES-
BFA 

1496 5 3606.9 0.0005 2.1 2.6 0.3 70.5 0 2.6 19 0.2 2.7 

DES 
DES-
LAP 

1605 2 106.6 0.0038 1.9 1.9 2.1 84.2 0 1.8 6.5 0 1.7 

DES 
DES-
MAD 

1314 6 18388 0.0029 0.7 2.7 0.6 31.6 0.1 5.1 55 2.8 1.4 

DES 
DES-
MOO 

1194 6 25189 0.0027 0.6 2.3 0.5 29.3 0.1 15.1 47.4 3.8 1.1 

DES 
DES-
WIC 

1523 4 662.4 0.0076 5.9 0.9 0.5 82.9 0 1 5.6 0 3.3 

DES 
LDS-
LAP 

1499 4 1862.2 0.0004 1 2 0.2 65.8 0 2.4 25.6 0.2 2.9 

DES 
TRO-
GAT 

1002 5 1668.3 0.0088 0 0.9 0 12.5 0 37.8 43.9 4.8 0.1 

DES 
WHY-

SIS 
1709 3 166.3 0.0114 0.1 0.5 17.3 33.2 3.2 26.9 18.1 0.3 0.3 

GUN 
EAS-
ALM 

3131 4 749.4 0.0086 0.1 1.9 3.3 48 0.5 4.3 34.3 1.3 6.4 

GUN 
EAS-
BRA 

3507 1 4.9 0.1294 0 0.3 23.7 33.9 2.4 7.2 29 0 3.6 

GUN 
EAS-
PUM 

3335 2 86.7 0.0135 0.1 1.2 11 34.2 2.5 6.1 37.4 0 7.5 

GUN 
EAS-
ROC 

3358 1 4.6 0.1524 0 0.4 2.8 57.2 0.1 5.6 30 0 4 



GUN 
EAS-
RUS 

3483 1 15 0.1043 0 0 11.9 20.3 2.7 13.5 40.6 0 11 

GUN 
GUN-
GRJ 

2668 6 20482 0 0.4 1.4 2.3 53.2 0 4.3 31.9 4.4 2.1 

GUN 
GUN-
GUN 

3106 5 2645.9 0.0085 0.4 1.2 2.3 53.7 0.3 3.6 31.5 2 5.1 

GUN 
GUN-
R32 

3027 6 5509.4 0.0065 0.2 0.9 1.6 50.7 0.1 4.1 36.4 2 4 

GUN 
GUN-
TUN 

3009 6 10284 0 0.5 0.7 2.9 52.2 0.1 6.6 32.7 1.3 3 

GUN 
TAY-
RES 

3314 5 662.7 0.0264 1.2 0.4 4.2 56.4 0.4 5.2 25 0 7.2 

GUN 
TAY-
TAY 

3329 4 331.3 0.0142 0.1 0 4.3 54.9 0.4 5.2 26.6 0 8.5 

WIL 
BLU-
BLU 

929 4 228 0.0412 1.2 0.2 0.2 95.2 0 0.3 3 0 0 

WIL 
BLU-
TID 

974 3 119.4 0.007 0 0 0 95.9 0 0.3 3.8 0 0 

WIL 
LOO-
BLU 

980 3 63.6 0.0205 0 0 0 98.5 0 0.1 1.4 0 0 

WIL 
MCK-
WAL 

1078 5 2730.9 0.0011 0.6 0.9 3.3 83.8 0.2 5.8 4.9 0.3 0.3 

WIL 
WIL-
COR 

725 6 11376 0.0003 1.3 4.3 0.9 71.4 0.1 3.1 5.5 12.1 1.5 

WIL 
WIL-
GOS 

598 5 1664.3 0.0013 0.6 3.1 0 75.8 0 4 8 7.4 1.1 

WIL 
WIL-
HAR 

881 6 8825.8 0.0009 1.2 2.6 1.1 80.8 0.1 3.5 6.1 3.9 0.8 

WIL 
WIL-
JAS 

1006 5 3494.9 0.009 1.9 0.9 0.3 87.7 0 1.5 6.2 1.4 0.3 

WIL 
WIL-
POR 

555 7 28922 0 1 8.1 0.4 59.8 0 2.6 5.3 20.9 1.7 

WIL 
HJA-
WS2 

812 1 0.6 0.5319 0 0 0 100 0 0 0 0 0 

WIL 
HJA-
WS1 

733 1 0.96 0.5935 0 0 0 100 0 0 0 0 0 

YRB T02 905 7 13462 0.0004 0.7 5.2 0.6 32.6 0.1 23.7 22.2 13.4 1.5 

YRB T03 1030 7 8977.1 0.0008 0.9 5.4 0.9 41.6 0.1 17.4 24.5 8.3 1 

YRB T05P 1311 4 383.9 0.0056 0.1 2.1 0.2 78.2 0 13.1 5.6 0 0.8 

YRB T06 1464 3 206.2 0.0173 0.2 0.8 1 65.7 0 22.3 8.4 0.2 1.4 

YRB T07 880 7 14145 0.0017 0.7 5.5 0.6 31.1 0.1 23.6 22.3 14.8 1.5 

YRB T41 1315 6 2465.9 0.006 0.9 2.8 1.5 70.9 0.2 8.9 13.5 0.4 1.1 

YRB T42 1315 6 2465.9 0.006 0.9 2.8 1.5 70.9 0.2 8.9 13.5 0.4 1.1 

 

 

 

 

 

  



 

 
Figure S1. Boxplot of dependent variables versus watershed for five watersheds in the United States.  Y-

axis variables are dissolved organic carbon (DOC) concentration, number of assigned formulas 

(Richness), modified aromaticity index (AI_mod), the percent relative abundance of assigned molecular 

formula containing carbon, hydrogen, oxygen, and nitrogen (C, H, O, and N) normalized to the total 

number of formula (CHON, % RA), and the total number of putative biochemical transformations 

normalized by number of assigned formulas (Norm. Trans.). Box plots depict the median and first and 

third quartiles. Whiskers extend to the minimum or maximum value no further than 1.5 times the inner 

quartile range. Grey points depict all of the data used to generate the box plots.  Connecticut = 

Connecticut River, Connecticut; Deschutes River, Oregon; Gunnison River watershed, Colorado; 

Willamette River, Oregon; Yakima River Basin. Washington state. 

 

  



 

 
 

Figure S2. Boxplot of dependent variables versus season for five watersheds in the United States. Y-axis 

variables are dissolved organic carbon (DOC) concentration, number of assigned formulas (Richness), 

modified aromaticity index (AI_mod), the percent relative abundance of assigned molecular formula 

containing carbon, hydrogen, oxygen, and nitrogen (C, H, O, and N) normalized to the total number of 

formula (CHON, % RA), and the total number of putative biochemical transformations normalized by 

number of assigned formulas (Norm. Trans.). Box plots depict the median and first and third quartiles. 

Whiskers extend to the minimum or maximum value no further than 1.5 times the inner quartile range. 

Grey points depict all of the data used to generate the box plots.  

 

 

  



 

 

 

Figure S3. Dependent variables dissolved organic carbon (DOC) concentration, number of assigned 

formulas (Richness), modified aromaticity index (AI_mod), the percent relative abundance of assigned 

molecular formula containing carbon, hydrogen, oxygen, and nitrogen (C, H, O, and N) normalized to the 

total number of formula (CHON, % RA), and the total number of putative biochemical transformations 

normalized by number of assigned formulas (Norm. Trans.) versus percent coniferous land cover for each 

of five watersheds in the United States. Solid black points and error bars represent the mean and standard 

deviation of a sample site. Open grey circles represent all data. Linear regression line of best fit is shown 

in blue and 95% confidence interval is shown in light blue. Correlation coefficients (r) are shown when p 

< 0.1. 

  



 

 

 

Figure S4. Dependent variables dissolved organic carbon (DOC) concentration, number of assigned 

formulas (Richness), modified aromaticity index (AI_mod), the percent relative abundance of assigned 

molecular formula containing carbon, hydrogen, oxygen, and nitrogen (C, H, O, and N) normalized to the 

total number of formula (CHON, % RA), and the total number of putative biochemical transformations 

normalized by number of assigned formulas (Norm. Trans.) versus percent deciduous land cover for each 

of two watersheds (Gunnison River, Connecticut River) in the United States. Solid black points and error 

bars represent the mean and standard deviation of a sample site. Open grey circles represent all data. Linear 

regression line of best fit is shown in blue and 95% confidence interval is shown in light blue. Correlation 

coefficients (r) are shown when p < 0.1.
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