First Results from a Hybrid Network of Reference and Low-Cost PM2.5 Monitors in Mombasa, Kenya

Moses Njeru¹, Elijah Mwangi², Michael J Gatari², Ian M Kaniu², Josephine N Kanyeria³, Garima Raheja⁴, and Daniel M Westervelt⁴

¹Unknown ²University of Nairobi ³Jomo Kenyatta University of Agriculture and Technology ⁴Lamont-Doherty Earth Observatory

March 25, 2024

Abstract

The paucity of fine particulate matter (PM2.5) measurements limits estimates of air pollution mortality in Sub-Saharan Africa. If well calibrated, low-cost sensors can provide reliable data especially where reference monitors are unavailable. We evaluate the performance of Clarity Node-S PM monitors against a Tapered element oscillating microbalance (TEOM) 1400a and develop a calibration model in Mombasa, Kenya's second largest city. As-reported Clarity Node-S data from January 2023 through April 2023 was moderately correlated with the TEOM-1400a measurements (R2 = 0.61) and exhibited a mean absolute error (MAE) of approximately 7.03 µg m–3. Employing three calibration models, namely, multiple linear regression (MLR), gaussian mixture regression (GMR) and random forest (RF) decreased the MAE to 4.28, 3.93, and 4.40 µg m–3 respectively. The R2 value improved to 0.63 for the MLR model but all other models registered a decrease (R2 = 0.44 and 0.60 respectively). Applying the correction factor to a 5-sensor network in Mombasa that was operated between July 2021 and July 2022 gave insights to the air quality in the city. The average daily concentrations of PM2.5 within the city ranged from 12 to 18 µg m–3. The concentrations exceeded the WHO daily PM2.5 limits more than 50% of the time, in particular at the sites nearby frequent industrial activity. These results represent some of the first air quality monitoring measurements in Mombasa and highlight the need for more study.

Hosted file

Njeru et al Mombasa AQ final v2.docx available at https://authorea.com/users/757016/articles/ 729071-first-results-from-a-hybrid-network-of-reference-and-low-cost-pm2-5-monitors-inmombasa-kenya First Results from a Hybrid Network of Reference and Low-Cost PM_{2.5} Monitors in
 Mombasa, Kenya
 Mombasa, Kenya

M. N. Njeru¹, E. Mwangi¹, M. J. Gatari¹, M. I. Kaniu², J. Kanyeria³, G. Raheja^{4,5}, D. M.
 Westervelt⁵

- ⁶ ¹Institute of Nuclear Science and Technology, University of Nairobi, Kenya.
- ⁷ ²Department of Physics, University of Nairobi, Kenya.
- ³Institute of Energy and Environmental Technology, Jomo Kenyatta University of Agriculture
 and Technology, Kenya.
- ⁴Department of Earth and Environmental Sciences, Columbia University, New York, NY, USA
- ⁵Lamont-Doherty Earth Observatory of Columbia University, New York, NY, USA
- 12
- 13 Corresponding author: Daniel M. Westervelt (<u>danielmw@ldeo.columbia.edu</u>)
- 14 Key Points:
- Mean daily PM_{2.5} concentrations in Mombasa ranged from 12-18 µg m⁻³ depending on site location and time of year
- Daily PM_{2.5} concentrations were higher during the dry seasons, early morning and afternoon and lower during the wet seasons
- Sites nearby frequent industrial activity exceeded the WHO daily limits of PM_{2.5} more than 50% of the time

21 Abstract

The paucity of fine particulate matter $(PM_{2.5})$ measurements limits estimates of air pollution 22 23 mortality in Sub-Saharan Africa. If well calibrated, low-cost sensors can provide reliable data especially where reference monitors are unavailable. We evaluate the performance of Clarity 24 Node-S PM monitors against a Tapered element oscillating microbalance (TEOM) 1400a and 25 26 develop a calibration model in Mombasa, Kenya's second largest city. As-reported Clarity Node-S data from January 2023 through April 2023 was moderately correlated with the TEOM-1400a 27 measurements ($R^2 = 0.61$) and exhibited a mean absolute error (MAE) of approximately 7.03 µg 28 m^{-3} . Employing three calibration models, namely, multiple linear regression (MLR), gaussian 29 mixture regression (GMR) and random forest (RF) decreased the MAE to 4.28, 3.93, and 4.40 30 μ g m⁻³ respectively. The R² value improved to 0.63 for the MLR model but all other models 31 registered a decrease ($R^2 = 0.44$ and 0.60 respectively). Applying the correction factor to a 5-32 sensor network in Mombasa that was operated between July 2021 and July 2022 gave insights to 33 the air quality in the city. The average daily concentrations of PM_{2.5} within the city ranged from 34 12 to 18 μ g m⁻³. The concentrations exceeded the WHO daily PM_{2.5} limits more than 50% of the 35 time, in particular at the sites nearby frequent industrial activity. Higher averages were observed 36 during the dry and cold seasons and during early morning and evening periods of high activity. 37 These results represent some of the first air quality monitoring measurements in Mombasa and 38

39 highlight the need for more study.

40 **1 Introduction**

41 Air pollution poses a considerable threat on world health, with its most pronounced impact felt in low- and middle- income countries (LMICs). Currently ranking fourth among the 42 leading causes of global morbidity and mortality, it closely trails high blood pressure, smoking 43 and unhealthy diets (Hoffmann et al., 2021). The gravity of the situation is underscored by 44 45 epidemiological studies associating about 6.5 million premature deaths and 6 million preterm births globally each year to air pollution (Ghosh et al., 2021; McDuffie et al., 2021). These 46 statistics highlight the imperative to prioritize interventions that tackle the diverse health risks 47 posed by air pollution. 48

Fine particulate matter, known as PM_{2.5}, stands out as the most hazardous among major 49 air pollutants. These particles are easily respirable and exhibit a propensity to deposit in the 50 pulmonary region based on their size (Dharaiya et al., 2023). Controlling particulate matter 51 pollution is a key focus of national and local government bodies in many countries (for example, 52 the Environmental Protection Agency in the United States) and is historically measured using 53 certified reference methods, with a high degree of accuracy and precision. Devices fitting this 54 description are normally filter-based methods like high volume samplers, though near real time 55 56 monitoring methods like beta attenuation monitors (BAM) and tapered element oscillating microbalance (TEOM) are also certified and used in air quality management (Ghamari et al., 57 2022; Hagan & Kroll, 2020). While these meet most legal requirements, equipping and 58 maintaining air quality stations with such monitors can be a financial burden and often results in 59 relatively sparse monitoring. In a complex urban environment, for instance, a single reference 60 monitor costing more than \$10,000 cannot give information about localized variations that are 61 important for protecting health. Depending on deployment characteristics, a single reference 62 monitor may only represent tens or hundreds km^2 by area and inform pollution in highly specific 63 geographies (Alfano et al., 2020; Levy Zamora et al., 2019). 64

65 Fortunately, there has been a new paradigm shift in conventional PM monitoring with the

advent of low-cost sensor systems. These devices, primarily portable optical particle counters or

67 nephelometers, operate based on the principle of light scattering to infer the PM number

- concentration, which can then be converted to mass concentration assuming a particle density
 and shape. Priced between \$150 to \$3,000, these devices offer a cost-effective solution to capture
- spatiotemporal variability, enabling high-density near real-time air quality monitoring (Feenstra
- 71 et al., 2019; Zimmerman et al., 2018).

72 For LMICs like Kenya, where adequate monitoring and scientific information are

⁷³ lacking, the potential of low-cost sensors cannot be overstated. With only a few reference

monitors and a few sensors reporting air quality data, primarily concentrated in the capital,

75 Nairobi, there is a pressing need for comprehensive monitoring in other regions of the country.

Previous studies on air quality in Mombasa are few (Simiyu et al., 2018; Yussuf et al., 2023) and

have only relied on simulated model output, e.g. from the Modern-Era Retrospective analysis for
 Research and Applications version 2 reanalysis (MERRA-2). This work therefore presents, to

our knowledge, the first surface observations of $PM_{2.5}$ in the city of Mombasa, and represents

some of the first dedicated air quality research in this area.

81 2 Materials and Methods

82 2.1 Clarity Node-S

Clarity Node-S (Clarity Movement Co., Berkeley, CA, USA) is a low-cost multipollutant 83 monitor that consists of a Plantower PMS6003, an electrochemical cell sensor (Alphasense), and 84 a Bosche BME280 sensor for the simultaneous measurement of particulate matter, NO₂, 85 temperature, and relative humidity (Nobell et al., 2023). The Plantower PMS6003 sensors are 86 specifically designed for the measurement of particulate matter (PM) and are equipped with two 87 dual lasers that operate alternately, providing continuous cross-verification to ensure sensor 88 longevity (Nobell et al., 2023). When the sensor draws ambient air containing particles of 89 different sizes into its measurement volume, a laser beam illuminates these particles. The 90 resulting scattered light is then detected perpendicularly by a photodiode detector. Subsequently, 91 the raw light signals undergo filtering and amplification through electronic filters and circuitry 92 before being converted into mass concentrations. According to the manufacturer's data sheet, this 93 particular sensor model has a measurement range spanning from 0.3 to 10 µm (Demanega et al., 94 95 2021; Kaur & Kelly, 2023), though laboratory studies have found that the Plantower PMS6003 and similar sensors have no ability to detect supermicron particles (Molina Rueda et al., 2023). 96

97 2.2 TEOM

The TEOM 1400a is a gravimetric particulate matter monitor with the ability to make 98 continuous mass measurements. It is one of the devices that has been designated as a Federal 99 Equivalent Method by the United States Environmental Protection Agency. In principle, particle-100 101 laden air streams are drawn through a filter medium weighed in near real-time, usually every 2 seconds. The filter is placed on an elastic hollow glass-like tube (the tapered element), free on 102 one end but clamped on the other, and set in constant oscillation by an electronic feedback 103 system. This motion has a light-blocking effect on an LED-phototransistor pair and can be used 104 to detect the frequency of oscillation of the element. As more particles are deposited on the filter, 105 this frequency decreases and the changes are converted into a mass measurement (Ardon-Dryer 106 et al., 2020; Kulkarni et al., 2011). 107

108 2.3 Sampling locations

Mombasa is the second largest city in Kenya and lies on the southeast of the Kenyan coast within coordinates (3°80', 4°10'S and 39°60', 39°80'E). The city has an area of 295 km² with an increasing number of inhabitants at more than 3.5 million (KNBS, 2019). It is arguably the largest port in East Africa and plays a pivotal role in trade in the region. It is home to several manufacturing and processing industries including iron smelting, steel rolling mills, cement mining and oil companies. Mombasa is also an iconic tourist destination with clusters of sandy

beaches and World Heritage sites (KPA, 2017).

Despite its economic significance, Mombasa faces understudied environmental challenges, particularly in terms of air quality. Potential anthropogenic sources of pollution include operation of minibuses (Matatus), motorized tricycles (Tuk Tuks), cargo ships, haulage trucks, container handling equipment, thermal power plants, cement factories, and the burning of open and biomass fuels. The combination of industrial activities, transportation, and tourism makes Mombasa a complex urban environment susceptible to air quality issues.

122 To gain a comprehensive understanding of air quality in Mombasa, this study focused on

five distinct sampling locations in Changamwe, Vescon, Bamburi, the University of Nairobi
(UoN), Jomo Kenyatta University of Agriculture and Technology (JKUAT) and Nyali (Fig. 1).

(UoN), Jomo Kenyatta University of Agriculture and Technology (JKUAT) and Nyali (Fig.
 These locations (coordinates in Table 1) were strategically chosen to capture the diverse

126 environmental conditions and potential sources of pollution within the city.

- Figure 1. A map of Mombasa and the deployment sites of the clarity Nodes and the TEOM. The 128
- pie charts show the percentage of days where the concentration of $PM_{2.5}$ at each site exceeded (red) the WHO daily limit (15 µg m⁻³). 129
- 130

131	Table 1. Sensor Deployment Locations in Mombasa						
	Sita	Sita	I atituda	Longitudo			

Site	Site	Latitude	Longitude	Description
	Code			
Changamwe	СН	-4.027	39.626	Industrial near port
Vescon	VE	-4.003	39.704	Industrial site
Bamburi	BA	-4.009	39.710	Industrial and residential site
UON	UO	-4.061	39.665	Urban site
JKUAT	JK	-4.064	39.672	Ocean-influenced
Nyali	NY	-4.020	39.725	Suburban residential area and Ocean- influenced

132 Changamwe, being an industrial area and home to the city's port activities, represents a 133 hotspot for various industrial emissions. Vescon, situated in proximity to manufacturing and 134 processing facilities, provides insights into the impact of industrial operations on air quality. 135 Bamburi, with its mix of residential and industrial zones, serves as a representative sampling 136 point for urban air quality. Nyali, a residential and tourist-centric area with scenic beaches, 137 contributes information on air quality in areas frequented by residents and visitors.

The UoN site serves as a reference point, providing data on air quality in an educational and research setting. It houses the reference monitor (TEOM) and one of the low-cost sensors used in this study. The location at JKUAT has close proximity to the coastline and raises the possibility of sea spray contributing to local air quality dynamics. This is also true for Nyali found along the North coast of Mombasa. Each location offers a unique perspective on the challenges faced by Mombasa in maintaining air quality standards amid its economic and industrial activities.

145 2.4 Calibration models

146 We collocated one Clarity Node-S with a reference-grade ThermoFisher Tapered Element Oscillating Microbalance (TEOM) 1400a installed at the UoN site from February to 147 April 2023. We compared the PM_{2.5} data from these devices using a univariate regression model 148 similar to Badura et al., 2019, a multiple linear regression (MLR), a Gaussian Mixture 149 Regression (GMR), and a random forest (RF) model similar to approaches followed by Malings 150 et al., 2019 and McFarlane et al., 2021. The best performing correction model with respect to the 151 152 R^2 and MAE values was retrospectively applied to a 5-sensor network in Mombasa that was operated between July 2021 and May 2022 to provide an overall survey of the air quality data in 153 the city. 154

155 **3 Results and Discussions**

156 3.1 Correction of Low-Cost Sensor Measurements

Fig. 2 shows the daily averaged Clarity Node-S PM_{2.5} data initial correlation with reference grade (TEOM) PM_{2.5} data with an R² value of 0.61 and initial mean absolute error (MAE =7.03 μ g m⁻³).

- 139 (10
- 160

Figure 2. Performance evaluation and calibration of daily mean Clarity Node-S against TEOM-162 1400a PM_{2.5} data 163

Including temperature and humidity data and modelling it using MLR, RF and GMR models reduces the bias (Table 2). The MLR model had the best R^2 score of 0.61 and a 164

165 reasonable MAE value of 4.28 μ g m⁻³. 166

Table 2. The Statistical Performance Metrics of The Correction Models
 167

Model	Statistical Performance Metrics				
	Coefficient of Determination (R^2)	Mean Absolute Error (MAE) (µg m ⁻³)			
SLR	0.61	7.03			
MLR	0.63	4.28			
RF	0.60	4.40			
GMR	0.44	3.93			

Fig. 3 shows the raw (purple), TEOM (olive) and corrected (red) hourly $PM_{2.5}$ data collected at the UoN site from February to April 2023. On most days, the temporal trend was reproduced and the sensors responded well to sudden spikes of mass concentrations. However, the raw and reference data were within 10 µg m⁻³ in the month of March but within 20 µg m⁻³ in February. In addition, the daily averaged raw data of the Clarity Nodes in most cases overpredicted the concentrations compared to reference grade TEOM monitor during the collocation period.

- 175
- 176

Figure 3. A time series plot displaying the corrected, Clarity Node-S and TEOM-1400a

179 PM_{2.5} data.

177

180 3.2 Daily PM_{2.5} measurements

Fig. 4 summarizes the daily means of corrected PM_{2.5} data from all six sites in a violin 181 plot. Overall, the distributions are positively skewed mostly depicting a unimodal pattern and a 182 majority of points between 10-20 μ g m⁻³. Some sites like Changamwe and Vescon have long-tail 183 distributions compared to the rest, possibly alluding to heavy traffic or industrial activity 184 185 experienced on some days. This is however not an exact intercomparison as different sites have different daily samples (indicated as N in the plots). According to the corrected plots, the highest 186 daily PM_{2.5} values are observed in Changamwe (42 μ g m⁻³) while the lowest daily concentrations 187 are observed in Nyali (4 μ g m⁻³). The average concentrations are also the highest and lowest at 188 these sites with Changamwe recording daily average of 16 µg m⁻³ respectively while Nyali has 189 average of 11 μ g m⁻³ respectively. Only the daily average of Changamwe exceeded the WHO 190 dailly $PM_{2.5}$ limit of 15 µg m⁻³ though there were days when this limit was exceeded in the other 191 sites. 192

Figure 4. Violin plots of daily averaged corrected PM_{2.5} values for the entire dataset at each

196 location and six sites in Mombasa.

193

3.3 PM_{2.5} Time Series plot at each site 197

Fig. 5 shows the temporal variations of corrected daily PM_{2.5} concentrations from the six sites in 198

Mombasa. Overall, the concentrations at each site exceeds the WHO annual guidelines of 5.0 µg 199 m^{-3} in all days and exceeded the daily limit of 15.0 µg m^{-3} on only some days, ranging from 20%

200

to 64% of days depending on the location (see pie charts in Fig 1). 201

202

Figure 5. Timeseries plots of the daily PM_{2.5} concentrations in six sites in Mombasa from 203 July 2021 to May 2022 204

Seasonal variations in PM_{25} concentrations are evident with the highest monthly 205 averages observed during the dry months (December to February) when the wet deposition is 206 greatly reduced. This was followed by the cold months (July and August) where elevated PM_{25} 207 averages are also consistent with the lack of precipitation during this time period. By 208 comparison, the lowest averages were in April and between October and November which 209 correspond to the wet months where washout effect of the rain and wet deposition reduce the 210 PM_{2.5} levels. 211

3.4 Temporal Patterns in PM_{2.5} Concentrations 212

213 The diurnal cycles, weekly and daily variations of $PM_{2.5}$ in the 6 sites in Mombasa are presented in Fig. 6. The highest PM_{2.5} concentrations are most likely to appear on during 214 weekends in a weekly cycle, and most unlikely to appear on Thursdays. The large increases in 215 tourist activity and consequently motor vehicles in the weekends are likely to be a reason leading 216

217 to elevated $PM_{2.5}$ levels.

Figure 6. Hourly average PM_{2.5} concentrations of six sites in Mombasa organized into hour-of-day and day-of-week temporal trends. Shading represents the range

220

For 5 of the sites the diurnal cycles of $PM_{2.5}$ (top-left panel) displayed a bimodal pattern with early morning peaks between (6:00 am and 8:00 am) and afternoon peaks between (5.00 pm and 9:00 pm). This was consistent with the increased anthropogenic activity caused by commuter travel habits during rush hour times and also by the changing mixing height. This is with exception to Changamwe whose morning and evening peaks came in much earlier than the other

- sites, most likely because of the activities at the port. During the rest of the day, traffic activities
- reduce and there is more mixing of pollutants hence a decrease in $PM_{2.5}$ concentrations.

230 4 Conclusion and Recommendations

231 In conclusion, this study addresses the significant challenge of limited surface measurements of fine PM_{2.5} in Sub-Saharan Africa, particularly in Mombasa, Kenya. The 232 233 evaluation of Clarity Node-S PM sensors against a Tapered Element Oscillating Microbalance (TEOM) revealed moderate correlation and a mean absolute error (MAE) of approximately 7.03 234 $\mu g m^{-3}$ in raw, manufacturer-reported data. Through the application of calibration models, 235 including multiple linear regression (MLR), gaussian mixture regression (GMR), and random 236 forests (RF), the MAE was reduced to 4.28, 3.93, and 4.40 µg m⁻³, respectively, with MLR 237 achieving the highest R^2 value of 0.63. 238

Applying the correction factor to a 5-sensor network in Mombasa provided valuable insights into the air quality, revealing average daily $PM_{2.5}$ concentrations ranging from 12 to 18 μ g m⁻³. Some sites, such as Changamwe, Vescon, and Bamburi, exceeded WHO daily $PM_{2.5}$ guidelines more than 50% of the time. Higher averages were observed during dry and cold seasons and during early morning and evening hours.

244 The study highlights the potential of low-cost sensor systems in regions with limited monitoring infrastructure, emphasizing their role in providing reliable air quality data where 245 reference monitors are scarce. The findings contribute to the nascent field of air quality research 246 in Mombasa, offering valuable information for future interventions and policies aimed at 247 mitigating the health risks associated with air pollution. Though additional investigation is 248 needed with larger networks, our first results suggest that PM_{2.5} concentrations are moderately 249 lower than other major African cities (for example, Nairobi) (Pope et al., 2018). This could be 250 attributed to many factors, likely including the close proximity to clean oceanic air masses owing 251 to Mombasa's coastal location. The temporal and spatial variations in PM2.5 concentrations 252 253 underscore the need for continuous monitoring and targeted interventions to address air quality challenges in LMICs like Kenya. Future research should explore other areas within the city or 254 other air pollutants not yet explored. Satellite data can also be used to map out potential hotspots 255 followed by dedicated studies looking at the sources of pollution in the city. 256

257 Acknowledgments

We thank Dr. Sarah Kinyanjui, Director of the University of Nairobi's Mombasa Campus, and Dr. Evelyn Datche, Director of Jomo Kenyatta University of Agriculture and Technology's Mombasa Campus, as well as their dedicated support teams, for facilitating our access to research sites. Special acknowledgment goes to the manager of the Shell Petrol Station in Changamwe for granting us permission to install our sensor on their premises. Their collaboration has been pivotal in enabling our scientific investigations to progress smoothly and effectively. We also thank the AfriqAir team including executive director Michael Giordano for supporting instrument acquisition. This work is funded by US Department of State

Grant SLMAQM20CA2347 and US National Science Foundation Grant 2020677."

267

268 **Conflict of Interest Statement**

269 The authors have no conflicts of interest to declare.

270

271 Open Research and Data Availability

- All data and scripts used in this project are available on the Zenodo repository, which follows
- FAIR data guidelines (Westervelt, 2024).
- 274

275 **References**

- Alfano, B., Barretta, L., Del Giudice, A., De Vito, S., Di Francia, G., Esposito, E., Formisano, F.,
 Massera, E., Miglietta, M. L., & Polichetti, T. (2020). A Review of Low-Cost Particulate
 Matter Sensors from the Developers' Perspectives. *Sensors (Basel, Switzerland)*, 20(23),
 6819. https://doi.org/10.3390/s20236819
- Ardon-Dryer, K., Dryer, Y., Williams, J. N., & Moghimi, N. (2020). Measurements of PM_{2.5}
 with PurpleAir under atmospheric conditions. *Atmospheric Measurement Techniques*,
 13(10), 5441–5458. https://doi.org/10.5194/amt-13-5441-2020
- Badura, M., Batog, P., Drzeniecka-Osiadacz, A., & Modzel, P. (2019). Regression methods in
 the calibration of low-cost sensors for ambient particulate matter measurements. SN
 Applied Sciences, 1(6), 622. https://doi.org/10.1007/s42452-019-0630-1
- Demanega, I., Mujan, I., Singer, B. C., Anđelković, A. S., Babich, F., & Licina, D. (2021).
 Performance assessment of low-cost environmental monitors and single sensors under
 variable indoor air quality and thermal conditions. *Building and Environment*, 187, 107415. https://doi.org/10.1016/j.buildenv.2020.107415
- Dharaiya, V. R., Malyan, V., Kumar, V., Sahu, M., Venkatraman, C., Biswas, P., Yadav, K.,
 Haswani, D., Raman, R. S., Bhat, R., Najar, T. A., Jehangir, A., Patil, R. P., Pandithurai,
 G., Duhan, S. S., & Laura, J. S. (2023). Evaluating the Performance of Low-cost PM
 Sensors over Multiple COALESCE Network Sites. *Aerosol and Air Quality Research*,
- 294 23(5), 220390. https://doi.org/10.4209/aaqr.220390
- Feenstra, B., Papapostolou, V., Hasheminassab, S., Zhang, H., Boghossian, B. D., Cocker, D., &
 Polidori, A. (2019). Performance evaluation of twelve low-cost PM2.5 sensors at an
 ambient air monitoring site. *Atmospheric Environment*, *216*, 116946.
 https://doi.org/10.1016/j.atmosenv.2019.116946
- Ghamari, M., Soltanpur, C., Rangel, P., Groves, W. A., & Kecojevic, V. (2022). Laboratory and
 field evaluation of three low-cost particulate matter sensors. *IET Wireless Sensor Systems*, *12*(1), 21–32. https://doi.org/10.1049/wss2.12034
- Ghosh, R., Causey, K., Burkart, K., Wozniak, S., Cohen, A., & Brauer, M. (2021). Ambient and
 household PM2.5 pollution and adverse perinatal outcomes: A meta-regression and

304	analysis of attributable global burden for 204 countries and territories. PLOS Medicine,
305	18(9), e1003718. https://doi.org/10.1371/journal.pmed.1003718
306	Hagan, D. H., & Kroll, J. H. (2020). Assessing the accuracy of low-cost optical particle sensors
307	using a physics-based approach. Atmospheric Measurement Techniques, 13(11), 6343-
308	6355. https://doi.org/10.5194/amt-13-6343-2020
309	Hoffmann, B., Boogaard, H., de Nazelle, A., Andersen, Z. J., Abramson, M., Brauer, M.,
310	Brunekreef, B., Forastiere, F., Huang, W., Kan, H., Kaufman, J. D., Katsouyanni, K.,
311	Krzyzanowski, M., Kuenzli, N., Laden, F., Nieuwenhuijsen, M., Mustapha, A., Powell,
312	P., Rice, M., Thurston, G. (2021). WHO Air Quality Guidelines 2021–Aiming for
313	Healthier Air for all: A Joint Statement by Medical, Public Health, Scientific Societies
314	and Patient Representative Organisations. International Journal of Public Health, 66,
315	1604465. https://doi.org/10.3389/ijph.2021.1604465
316	Kaur, K., & Kelly, K. E. (2023). Laboratory evaluation of the Alphasense OPC-N3, and the
317	Plantower PMS5003 and PMS6003 sensors. Journal of Aerosol Science, 171, 106181.
318	https://doi.org/10.1016/j.jaerosci.2023.106181
319	KPA. (2017). Environmental and Social Impact Assessment Study Report for Rehabilitation of
320	Berths 1-14.
321	Kulkarni, P., Baron, P. A., & Willeke, K. (2011). Aerosol Measurement: Principles, Techniques,
322	and Applications (3rd ed.). Wiley.
323	http://gen.lib.rus.ec/book/index.php?md5=051eda4f5298dbb0b039d8426e664ed2
324	Levy Zamora, M., Xiong, F., Gentner, D., Kerkez, B., Kohrman-Glaser, J., & Koehler, K.
325	(2019). Field and Laboratory Evaluations of the Low-Cost Plantower Particulate Matter
326	Sensor. Environmental Science & Technology, 53(2), 838–849.
327	https://doi.org/10.1021/acs.est.8b05174
328	Malings, C., Tanzer, R., Hauryliuk, A., Kumar, S. P. N., Zimmerman, N., Kara, L. B., Presto, A.
329	A., & R. Subramanian. (2019). Development of a general calibration model and long-
330	term performance evaluation of low-cost sensors for air pollutant gas monitoring.
331	Atmospheric Measurement Techniques, 12(2), 903–920. https://doi.org/10.5194/amt-12-
332	903-2019
333	McDuffie, E., Martin, R., Yin, H., & Brauer, M. (2021). Global Burden of Disease from Major
334	Air Pollution Sources (GBD MAPS): A Global Approach. Research Report (Health
335	<i>Effects Institute</i>), 2021(210), 1–45.
336	McFarlane, C., Raheja, G., Malings, C., Appoh, E. K. E., Hughes, A. F., & Westervelt, D. M.
337	(2021). Application of Gaussian Mixture Regression for the Correction of Low Cost
338	PM2.5 Monitoring Data in Accra, Ghana. ACS Earth and Space Chemistry, 5(9), 2268–
339	2279. https://doi.org/10.1021/acsearthspacechem.1c00217
340	Molina Rueda, E., Carter, E., L'Orange, C., Quinn, C., & Volckens, J. (2023). Size-Resolved
341	Field Performance of Low-Cost Sensors for Particulate Matter Air Pollution.
342	Environmental Science & Technology Letters, 10(3), 247–253.
343	https://doi.org/10.1021/acs.estlett.3c00030
344	Nobell, S., Majumdar, A., Mukherjee, S., Chakraborty, S., Chatterjee, S., Bose, S., Dutta, A.,
345	Sethuraman, S., Westervelt, D. M., Sengupta, S., Basu, R., & McNeill, V. F. (2023).
346	Validation of In-field Calibration for Low-Cost Sensors Measuring Ambient Particulate
347	Matter in Kolkata, India. Aerosol and Air Quality Research, 23(11), 230010.
348	https://doi.org/10.4209/aaqr.230010

- ³⁴⁹ Pope, F. D., Gatari, M., Ng'ang'a, D., Poynter, A., and Blake, R.: Airborne particulate matter
- monitoring in Kenya using calibrated low-cost sensors, Atmos. Chem. Phys., 18, 15403–15418,
- 351 https://doi.org/10.5194/acp-18-15403-2018, 2018.
- Raheja, G., Sabi, K., Sonla, H., Gbedjangni, E. K., McFarlane, C. M., Hodoli, C. G., &
 Westervelt, D. M. (2022). A Network of Field-Calibrated Low-Cost Sensor
 Measurements of PM2.5 in Lomé, Togo, Over One to Two Years. ACS Earth and Space
- 355 *Chemistry*, 6(4), 1011–1021. https://doi.org/10.1021/acsearthspacechem.1c00391
- Simiyu, A. H., Muthama, J., Ngaina, J., & Onwonga, R. (2018). Anthropogenic Contribution to
 Air Pollution with Background Emissions; Case of Nairobi, Mombasa and Kisumu.
 International Journal of Scientific and Research Publications (IJSRP), 8(8).
 https://doi.org/10.29322/IJSRP.8.8.2018.p8047
- Yussuf, E., Muthama, J. N., Mutai, B., & Marangu, D. M. (2023). Impacts of air pollution on
 pediatric respiratory infections under a changing climate in Kenyan urban cities. East
 African Journal of Science, Technology and Innovation, 4(2).
- 363 https://doi.org/10.37425/eajsti.v4i2.579
- Westervelt, D. (2024). Mombasa TEOM and Clarity network data [Data set]. Zenodo.
 https://doi.org/10.5281/zenodo.10825787
- Zimmerman, N., Presto, A. A., Kumar, S. P. N., Gu, J., Hauryliuk, A., Robinson, E. S.,
 Robinson, A. L., & R. Subramanian. (2018). A machine learning calibration model using
 random forests to improve sensor performance for lower-cost air quality monitoring.
 Atmospheric Measurement Techniques, *11*(1), 291–313. https://doi.org/10.5194/amt-11 291-2018
- 371