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Abstract

The paucity of fine particulate matter (PM2.5) measurements limits estimates of air pollution mortality in Sub-Saharan Africa.

If well calibrated, low-cost sensors can provide reliable data especially where reference monitors are unavailable. We evaluate the

performance of Clarity Node-S PM monitors against a Tapered element oscillating microbalance (TEOM) 1400a and develop a

calibration model in Mombasa, Kenya’s second largest city. As-reported Clarity Node-S data from January 2023 through April

2023 was moderately correlated with the TEOM-1400a measurements (R2 = 0.61) and exhibited a mean absolute error (MAE)

of approximately 7.03 μg m–3. Employing three calibration models, namely, multiple linear regression (MLR), gaussian mixture

regression (GMR) and random forest (RF) decreased the MAE to 4.28, 3.93, and 4.40 μg m–3 respectively. The R2 value

improved to 0.63 for the MLR model but all other models registered a decrease (R2 = 0.44 and 0.60 respectively). Applying the

correction factor to a 5-sensor network in Mombasa that was operated between July 2021 and July 2022 gave insights to the air

quality in the city. The average daily concentrations of PM2.5 within the city ranged from 12 to 18 μg m–3. The concentrations

exceeded the WHO daily PM2.5 limits more than 50% of the time, in particular at the sites nearby frequent industrial activity.

Higher averages were observed during the dry and cold seasons and during early morning and evening periods of high activity.

These results represent some of the first air quality monitoring measurements in Mombasa and highlight the need for more

study.
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Key Points: 14 

 Mean daily PM2.5 concentrations in Mombasa ranged from 12-18 µg m
-3 

depending on 15 

site location and time of year 16 

 Daily PM2.5 concentrations were higher during the dry seasons, early morning and 17 

afternoon and lower during the wet seasons 18 

 Sites nearby frequent industrial activity exceeded the WHO daily limits of PM2.5 more 19 

than 50% of the time  20 
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Abstract 21 

The paucity of fine particulate matter (PM2.5) measurements limits estimates of air pollution 22 

mortality in Sub-Saharan Africa. If well calibrated, low-cost sensors can provide reliable data 23 

especially where reference monitors are unavailable. We evaluate the performance of Clarity 24 

Node-S PM monitors against a Tapered element oscillating microbalance (TEOM) 1400a and 25 

develop a calibration model in Mombasa, Kenya’s second largest city. As-reported Clarity Node-26 

S data from January 2023 through April 2023 was moderately correlated with the TEOM-1400a 27 

measurements (R
2 

= 0.61) and exhibited a mean absolute error (MAE) of approximately 7.03 µg 28 

m
–3

. Employing three calibration models, namely, multiple linear regression (MLR), gaussian 29 

mixture regression (GMR) and random forest (RF) decreased the MAE to 4.28, 3.93, and 4.40 30 

µg m
–3

 respectively. The R
2
 value improved to 0.63 for the MLR model but all other models 31 

registered a decrease (R
2 

= 0.44 and 0.60 respectively). Applying the correction factor to a 5-32 

sensor network in Mombasa that was operated between July 2021 and July 2022 gave insights to 33 

the air quality in the city. The average daily concentrations of PM2.5 within the city ranged from 34 

12 to 18 µg m
–3

. The concentrations exceeded the WHO daily PM2.5 limits more than 50% of the 35 

time, in particular at the sites nearby frequent industrial activity. Higher averages were observed 36 

during the dry and cold seasons and during early morning and evening periods of high activity. 37 

These results represent some of the first air quality monitoring measurements in Mombasa and 38 

highlight the need for more study. 39 

1 Introduction 40 

Air pollution poses a considerable threat on world health, with its most pronounced 41 

impact felt in low- and middle- income countries (LMICs). Currently ranking fourth among the 42 

leading causes of global morbidity and mortality, it closely trails high blood pressure, smoking 43 

and unhealthy diets (Hoffmann et al., 2021). The gravity of the situation is underscored by 44 

epidemiological studies associating about 6.5 million premature deaths and 6 million preterm 45 

births globally each year to air pollution (Ghosh et al., 2021; McDuffie et al., 2021). These 46 

statistics highlight the imperative to prioritize interventions that tackle the diverse health risks 47 

posed by air pollution. 48 

Fine particulate matter, known as PM2.5, stands out as the most hazardous among major 49 

air pollutants. These particles are easily respirable and exhibit a propensity to deposit in the 50 

pulmonary region based on their size (Dharaiya et al., 2023). Controlling particulate matter 51 

pollution is a key focus of national and local government bodies in many countries (for example, 52 

the Environmental Protection Agency in the United States) and is historically measured using 53 

certified reference methods, with a high degree of accuracy and precision. Devices fitting this 54 

description are normally filter-based methods like high volume samplers, though near real time 55 

monitoring methods like beta attenuation monitors (BAM) and tapered element oscillating 56 

microbalance (TEOM) are also certified and used in air quality management (Ghamari et al., 57 

2022; Hagan & Kroll, 2020). While these meet most legal requirements, equipping and 58 

maintaining air quality stations with such monitors can be a financial burden and often results in 59 

relatively sparse monitoring. In a complex urban environment, for instance, a single reference 60 

monitor costing more than $10,000 cannot give information about localized variations that are 61 

important for protecting health. Depending on deployment characteristics, a single reference 62 

monitor may only represent tens or hundreds km
2
 by area and inform pollution in highly specific 63 

geographies (Alfano et al., 2020; Levy Zamora et al., 2019).  64 

https://en.wikipedia.org/wiki/Tapered_element_oscillating_microbalance
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Fortunately, there has been a new paradigm shift in conventional PM monitoring with the 65 

advent of low-cost sensor systems. These devices, primarily portable optical particle counters or 66 

nephelometers, operate based on the principle of light scattering to infer the PM number 67 

concentration, which can then be converted to mass concentration assuming a particle density 68 

and shape. Priced between $150 to $3,000, these devices offer a cost-effective solution to capture 69 

spatiotemporal variability, enabling high-density near real-time air quality monitoring (Feenstra 70 

et al., 2019; Zimmerman et al., 2018). 71 

For LMICs like Kenya, where adequate monitoring and scientific information are 72 

lacking, the potential of low-cost sensors cannot be overstated. With only a few reference 73 

monitors and a few sensors reporting air quality data, primarily concentrated in the capital, 74 

Nairobi, there is a pressing need for comprehensive monitoring in other regions of the country. 75 

Previous studies on air quality in Mombasa are few (Simiyu et al., 2018; Yussuf et al., 2023) and 76 

have only relied on simulated model output, e.g. from the Modern-Era Retrospective analysis for 77 

Research and Applications version 2 reanalysis (MERRA-2). This work therefore presents, to 78 

our knowledge, the first surface observations of PM2.5 in the city of Mombasa, and represents 79 

some of the first dedicated air quality research in this area. 80 

2 Materials and Methods 81 

2.1 Clarity Node-S 82 

Clarity Node-S (Clarity Movement Co., Berkeley, CA, USA) is a low-cost multipollutant 83 

monitor that consists of a Plantower PMS6003, an electrochemical cell sensor (Alphasense), and 84 

a Bosche BME280 sensor for the simultaneous measurement of particulate matter, NO2, 85 

temperature, and relative humidity (Nobell et al., 2023). The Plantower PMS6003 sensors are 86 

specifically designed for the measurement of particulate matter (PM) and are equipped with two 87 

dual lasers that operate alternately, providing continuous cross-verification to ensure sensor 88 

longevity (Nobell et al., 2023). When the sensor draws ambient air containing particles of 89 

different sizes into its measurement volume, a laser beam illuminates these particles. The 90 

resulting scattered light is then detected perpendicularly by a photodiode detector. Subsequently, 91 

the raw light signals undergo filtering and amplification through electronic filters and circuitry 92 

before being converted into mass concentrations. According to the manufacturer's data sheet, this 93 

particular sensor model has a measurement range spanning from 0.3 to 10 µm (Demanega et al., 94 

2021; Kaur & Kelly, 2023), though laboratory studies have found that the Plantower PMS6003 95 

and similar sensors have no ability to detect supermicron particles (Molina Rueda et al., 2023). 96 

2.2 TEOM 97 

The TEOM 1400a is a gravimetric particulate matter monitor with the ability to make 98 

continuous mass measurements. It is one of the devices that has been designated as a Federal 99 

Equivalent Method by the United States Environmental Protection Agency. In principle, particle-100 

laden air streams are drawn through a filter medium weighed in near real-time, usually every 2 101 

seconds. The filter is placed on an elastic hollow glass-like tube (the tapered element), free on 102 

one end but clamped on the other, and set in constant oscillation by an electronic feedback 103 

system. This motion has a light-blocking effect on an LED-phototransistor pair and can be used 104 

to detect the frequency of oscillation of the element. As more particles are deposited on the filter, 105 

this frequency decreases and the changes are converted into a mass measurement (Ardon-Dryer 106 

et al., 2020; Kulkarni et al., 2011).  107 
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2.3 Sampling locations  108 

Mombasa is the second largest city in Kenya and lies on the southeast of the Kenyan 109 

coast within coordinates (3°80', 4º10'S and 39º60', 39º80'E). The city has an area of 295 km
2
 110 

with an increasing number of inhabitants at more than 3.5 million (KNBS, 2019). It is arguably 111 

the largest port in East Africa and plays a pivotal role in trade in the region. It is home to several 112 

manufacturing and processing industries including iron smelting, steel rolling mills, cement 113 

mining and oil companies. Mombasa is also an iconic tourist destination with clusters of sandy 114 

beaches and World Heritage sites (KPA, 2017). 115 

Despite its economic significance, Mombasa faces understudied environmental 116 

challenges, particularly in terms of air quality. Potential anthropogenic sources of pollution 117 

include operation of minibuses (Matatus), motorized tricycles (Tuk Tuks), cargo ships, haulage 118 

trucks, container handling equipment, thermal power plants, cement factories, and the burning of 119 

open and biomass fuels. The combination of industrial activities, transportation, and tourism 120 

makes Mombasa a complex urban environment susceptible to air quality issues. 121 

To gain a comprehensive understanding of air quality in Mombasa, this study focused on 122 

five distinct sampling locations in Changamwe, Vescon, Bamburi, the University of Nairobi 123 

(UoN), Jomo Kenyatta University of Agriculture and Technology (JKUAT) and Nyali (Fig. 1). 124 

These locations (coordinates in Table 1) were strategically chosen to capture the diverse 125 

environmental conditions and potential sources of pollution within the city. 126 
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 127 

Figure 1.  A map of Mombasa and the deployment sites of the clarity Nodes and the TEOM. The 128 

pie charts show the percentage of days where the concentration of PM2.5 at each site exceeded 129 

(red) the WHO daily limit (15 µg m
-3

).  130 

Table 1.  Sensor Deployment Locations in Mombasa 131 

Site Site 

Code 

Latitude Longitude Description 

Changamwe CH -4.027 39.626 Industrial near port 

Vescon VE -4.003 39.704 Industrial site 

Bamburi BA -4.009 39.710 Industrial and residential site 

UON UO -4.061 39.665 Urban site 

JKUAT JK -4.064 39.672 Ocean-influenced 

Nyali NY -4.020 39.725 Suburban residential area and Ocean-

influenced 
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Changamwe, being an industrial area and home to the city's port activities, represents a 132 

hotspot for various industrial emissions. Vescon, situated in proximity to manufacturing and 133 

processing facilities, provides insights into the impact of industrial operations on air quality. 134 

Bamburi, with its mix of residential and industrial zones, serves as a representative sampling 135 

point for urban air quality. Nyali, a residential and tourist-centric area with scenic beaches, 136 

contributes information on air quality in areas frequented by residents and visitors. 137 

The UoN site serves as a reference point, providing data on air quality in an educational 138 

and research setting. It houses the reference monitor (TEOM) and one of the low-cost sensors 139 

used in this study. The location at JKUAT has close proximity to the coastline and raises the 140 

possibility of sea spray contributing to local air quality dynamics. This is also true for Nyali 141 

found along the North coast of Mombasa. Each location offers a unique perspective on the 142 

challenges faced by Mombasa in maintaining air quality standards amid its economic and 143 

industrial activities. 144 

2.4 Calibration models 145 

We collocated one Clarity Node-S with a reference-grade ThermoFisher Tapered 146 

Element Oscillating Microbalance (TEOM) 1400a installed at the UoN site from February to 147 

April 2023. We compared the PM2.5 data from these devices using a univariate regression model 148 

similar to Badura et al., 2019,  a multiple linear regression (MLR), a Gaussian Mixture 149 

Regression (GMR), and a random forest (RF) model similar to approaches followed by Malings 150 

et al., 2019 and McFarlane et al., 2021.The best performing correction model with respect to the 151 

R
2
  and MAE values was retrospectively applied to a 5-sensor network in Mombasa that was 152 

operated between July 2021 and May 2022 to provide an overall survey of the air quality data in 153 

the city. 154 

3 Results and Discussions 155 

3.1 Correction of Low-Cost Sensor Measurements 156 

Fig. 2 shows the daily averaged Clarity Node-S PM2.5 data initial correlation with 157 

reference grade (TEOM) PM2.5 data with an R
2
 value of 0.61 and initial mean absolute error 158 

(MAE =7.03 μg m
–3

).  159 

 160 
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 161 

Figure 2.  Performance evaluation and calibration of daily mean Clarity Node-S against TEOM-162 

1400a PM2.5 data 163 

Including temperature and humidity data and modelling it using MLR, RF and GMR 164 

models reduces the bias (Table 2). The MLR model had the best R
2
 score of 0.61 and a 165 

reasonable MAE value of 4.28 μg m
–3

. 166 

Table 2.  The Statistical Performance Metrics of The Correction Models  167 

Model Statistical Performance Metrics 

Coefficient of 

Determination 

(R
2
) 

Mean Absolute 

Error (MAE) 

(μg m
–3

) 

SLR 0.61 7.03 

MLR 0.63 4.28 

RF 0.60 4.40 

GMR 0.44 3.93 
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Fig. 3 shows the raw (purple), TEOM (olive) and corrected (red) hourly PM2.5 data 168 

collected at the UoN site from February to April 2023. On most days, the temporal trend was 169 

reproduced and the sensors responded well to sudden spikes of mass concentrations. However, 170 

the raw and reference data were within 10 μg m
–3

 in the month of March but within 20 μg m
-3

 in 171 

February. In addition, the daily averaged raw data of the Clarity Nodes in most cases 172 

overpredicted the concentrations compared to reference grade TEOM monitor during the 173 

collocation period. 174 

 175 

 176 

 177 

Figure 3.  A time series plot displaying the corrected, Clarity Node-S and TEOM-1400a 178 

PM2.5 data. 179 

3.2 Daily PM2.5 measurements 180 

Fig. 4 summarizes the daily means of corrected PM2.5 data from all six sites in a violin 181 

plot. Overall, the distributions are positively skewed mostly depicting a unimodal pattern and a 182 

majority of points between 10-20 μg m
–3

. Some sites like Changamwe and Vescon have long-tail 183 

distributions compared to the rest, possibly alluding to heavy traffic or industrial activity 184 

experienced on some days. This is however not an exact intercomparison as different sites have 185 

different daily samples (indicated as N in the plots). According to the corrected plots, the highest 186 

daily PM2.5 values are observed in Changamwe (42 μg m
-3

) while the lowest daily concentrations 187 

are observed in Nyali (4 μg m
-3

). The average concentrations are also the highest and lowest at 188 

these sites with Changamwe recording daily average of 16 μg m
-3

 respectively while Nyali has 189 

average of 11 μg m
-3

 respectively. Only the daily average of Changamwe exceeded the WHO 190 

dailly PM2.5 limit of 15 μg m
-3

 though there were days when this limit was exceeded in the other 191 

sites. 192 
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 193 

 194 

Figure 4. Violin plots of daily averaged corrected PM2.5 values for the entire dataset at each 195 

location and six sites in Mombasa.  196 
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3.3 PM2.5 Time Series plot at each site 197 

Fig. 5 shows the temporal variations of corrected daily PM2.5 concentrations from the six sites in 198 

Mombasa. Overall, the concentrations at each site exceeds the WHO annual guidelines of 5.0 μg 199 

m
-3

 in all days and exceeded the daily limit of 15.0 μg m
-3

 on only some days, ranging from 20% 200 

to 64% of days depending on the location (see pie charts in Fig 1).  201 

 202 

Figure 5. Timeseries plots of the daily PM2.5 concentrations in six sites in Mombasa from 203 

July 2021 to May 2022 204 

Seasonal variations in PM2.5 concentrations are evident with the highest monthly 205 

averages observed during the dry months (December to February) when the wet deposition is 206 

greatly reduced. This was followed by the cold months (July and August) where elevated PM2.5 207 

averages are also consistent with the lack of precipitation during this time period. By 208 

comparison, the lowest averages were in April and between October and November which 209 

correspond to the wet months where washout effect of the rain and wet deposition reduce the 210 

PM2.5 levels.  211 

3.4 Temporal Patterns in PM2.5 Concentrations 212 

The diurnal cycles, weekly and daily variations of PM2.5 in the 6 sites in Mombasa are 213 

presented in Fig. 6. The highest PM2.5 concentrations are most likely to appear on during 214 

weekends in a weekly cycle, and most unlikely to appear on Thursdays. The large increases in 215 

tourist activity and consequently motor vehicles in the weekends are likely to be a reason leading 216 

to elevated PM2.5 levels.217 
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 218 

 219 

 220 

Figure 6. Hourly average PM2.5 concentrations of six sites in Mombasa organized into hour-of-day and day-of-week temporal 221 

trends. Shading represents the  range 222 
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For 5 of the sites the diurnal cycles of PM2.5 (top-left panel) displayed a bimodal pattern 223 

with early morning peaks between (6:00 am and 8:00 am) and afternoon peaks between (5.00 pm 224 

and 9:00 pm). This was consistent with the increased anthropogenic activity caused by commuter 225 

travel habits during rush hour times and also by the changing mixing height. This is with 226 

exception to Changamwe whose morning and evening peaks came in much earlier than the other 227 

sites, most likely because of the activities at the port. During the rest of the day, traffic activities 228 

reduce and there is more mixing of pollutants hence a decrease in PM2.5 concentrations. 229 

4 Conclusion and Recommendations 230 

In conclusion, this study addresses the significant challenge of limited surface 231 

measurements of fine PM2.5 in Sub-Saharan Africa, particularly in Mombasa, Kenya. The 232 

evaluation of Clarity Node-S PM sensors against a Tapered Element Oscillating Microbalance 233 

(TEOM) revealed moderate correlation and a mean absolute error (MAE) of approximately 7.03 234 

µg m
–3

 in raw, manufacturer-reported data. Through the application of calibration models, 235 

including multiple linear regression (MLR), gaussian mixture regression (GMR), and random 236 

forests (RF), the MAE was reduced to 4.28, 3.93, and 4.40 µg m
–3

, respectively, with MLR 237 

achieving the highest R
2
 value of 0.63. 238 

Applying the correction factor to a 5-sensor network in Mombasa provided valuable 239 

insights into the air quality, revealing average daily PM2.5 concentrations ranging from 12 to 18 240 

µg m
–3

. Some sites, such as Changamwe, Vescon, and Bamburi, exceeded WHO daily PM2.5 241 

guidelines more than 50% of the time. Higher averages were observed during dry and cold 242 

seasons and during early morning and evening hours. 243 

The study highlights the potential of low-cost sensor systems in regions with limited 244 

monitoring infrastructure, emphasizing their role in providing reliable air quality data where 245 

reference monitors are scarce. The findings contribute to the nascent field of air quality research 246 

in Mombasa, offering valuable information for future interventions and policies aimed at 247 

mitigating the health risks associated with air pollution. Though additional investigation is 248 

needed with larger networks, our first results suggest that PM2.5 concentrations are moderately 249 

lower than other major African cities (for example, Nairobi) (Pope et al., 2018). This could be 250 

attributed to many factors, likely including the close proximity to clean oceanic air masses owing 251 

to Mombasa’s coastal location. The temporal and spatial variations in PM2.5 concentrations 252 

underscore the need for continuous monitoring and targeted interventions to address air quality 253 

challenges in LMICs like Kenya. Future research should explore other areas within the city or 254 

other air pollutants not yet explored. Satellite data can also be used to map out potential hotspots 255 

followed by dedicated studies looking at the sources of pollution in the city.  256 
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