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Key Points:6

• Solar wind monitor distance from Sun-Earth line impacts the sign of SYM-H me-7

dian errors where it overpredicts (-4.16 nT) for distances <20 RE .8

• Standard deviation of SYM-H error increases with solar wind driving intensity (199

nT to 28 nT), but is less dependent on phase front normal.10

• Regression coefficients show a dependence of the SYM-H error standard deviations11

on the phase front normal (0.123) and on pressure (0.293).12
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Abstract13

Some space weather models, such as the Space Weather Modeling Framework (SWMF)14

used in this study, use solar wind propagated from the first Lagrange point (L1) to the15

bow shock nose (BSN) to forecast geomagnetic storms. The SWMF is a highly coupled16

framework of space weather models that include multiple facets of the Geospace envi-17

ronment, such as the magnetosphere and ionosphere. The propagated solar wind mea-18

surements are used as a boundary condition for SWMF. The solar wind propagation method19

is a timeshift based on the calculated phase front normal (PFN) which leads to some un-20

certainties. For example, the propagated solar wind could have evolved during this timeshift.21

We use a dataset of 123 geomagnetic storms between 2010-2019 run by the SWMF Geospace22

configuration to analyze the impact solar wind propagation and solar wind driving has23

on the geomagnetic indices. We look at the probability distributions of errors in SYM-24

H, cross polar cap potential (CPCP), and auroral electrojet indices AL and AU. Through25

studying the median errors (MdE), standard deviations and standardized regression co-26

efficients, we find that the errors depend on the propagation parameters. Among the re-27

sults, we show that the accuracy of the simulated SYM-H depends on the spacecraft dis-28

tance from the Sun-Earth line. We also quantify the dependence of the standard devi-29

ation in SYM-H errors on the PFN and solar wind pressure. These statistics provide an30

insight into how the propagation method affects the final product of the simulation, which31

are the geomagnetic indices.32

Plain Language Summary33

Space weather models use measurements from spacecraft that measure the space34

plasma heading towards Earth. The plasma can cause storms to occur in space. In an-35

ticipation of the plasma arriving at Earth, predictions are made using physics principles36

about when the plasma will arrive at Earth. The assumption that the plasma has not37

changed over time may cause inaccuracies in the model’s final product, which is the pre-38

diction of the space storm’s strength. We investigate the errors that may arise due to39

these assumptions. We show the dependency on the errors to the methods used to pre-40

dict arrival times and strength of the space plasma.41

1 Introduction42

The modern society relies on space-based and ground-based technologies that are43

susceptible to space weather hazards (National Research Council, 2008). Accurate and44

timely space weather forecasts can mitigate risks associated with, for example, increased45

errors in positioning and navigation applications, malfunctioning satellites and their sub-46

systems, or large-scale power failures caused by geomagnetically induced currents (GIC)47

(Maynard, 1995). Such models that forecast these kinds of events, be they global mag-48

netospheric simulations or empirical models derived from observations, rely on observa-49

tions in the solar wind and/or in the magnetosphere–ionosphere system. While the re-50

quirements for model accuracy increase, it is important to review all potential error sources51

in the input-output analyses.52

A geomagnetic index is typically a summary of ground magnetometer observations53

that can be used as a proxy of the global level of geomagnetic activity. The hourly Dis-54

turbance Storm-Time index Dst and its one-minute-cadence variant SYM-H are computed55

as a weighted average of magnetic perturbations of mid-latitude magnetic stations (Sugiura,56

1964; Iyemori, 1990), and give a proxy of the ring current intensity. On the other hand,57

the polar cap index (PCI) is based on observations of a single ground magnetometer at58

the Thule station, and is used as a proxy for the electric potential across the polar cap59

(O. A. Troshichev et al., 1988). The Auroral Electrojet indices are aggregates of the min-60

imum (AL) or maximum (AU) observations made by a set of northern hemisphere high-61
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latitude ground magnetometer stations (Davis & Sugiura, 1966), and provide an estimate62

of the westward and eastward electrojet current intensity, respectively. The interpretabil-63

ity of these indices and the wide availability of the data make them useful for model val-64

idation, especially when the models can easily output corresponding time series.65

Operationally, the National Oceanic and Atmospheric Administration (NOAA) Space66

Weather Prediction Center (SWPC) predicts geomagnetic indices such as the Auroral67

Electrojet (AE, AU and AL) and the Disturbance Storm-Time (Dst) by running global68

magnetohydrodynamic (MHD) simulations, whose results can be used to compute cor-69

responding model indices (A. Pulkkinen et al., 2013). Generally, these models use ideal70

MHD coupled with modules representing processes in the ionosphere (Janhunen et al.,71

2012) and the inner magnetosphere (Toffoletto et al., 2003; Lyon et al., 2004; Gombosi72

et al., 2021). The Space Weather Modeling Framework (SWMF) Geospace configuration73

is a combination of models that represent the magnetosphere, inner magnetosphere and74

ionosphere, and uses solar wind input and the solar radio flux (F10.7) to forecast geomag-75

netic geomagnetic activity (Tóth et al., 2012).76

The solar wind input for the global MHD simulations is prepared from solar wind77

observations that are typically obtained from spacecraft such as the Advanced Compo-78

sition Explorer (ACE) (Stone et al., 1998) and Wind (Wilson III et al., 2021) that or-79

bit close to the first Lagrangian point (L1). The solar wind observations are then prop-80

agated to the magnetospheric bow shock nose (BSN) to serve as inputs into the mod-81

els (A. Pulkkinen & Rastätter, 2009). This propagation is done to avoid running an MHD82

simulation from L1 to the BSN, over a distance that is similar to the length of the en-83

tire magnetotail. Here we focus on one particular aspect of the propagation problem, the84

accuracy of the empirically estimated time shift from the observing solar wind spacecraft85

to the magnetopause.86

1.1 Model Validation through Geomagnetic Indices87

M. W. Liemohn et al. (2018) discuss guidelines for model validation using geomag-88

netic indices SYM-H, AL, and AU. For prediction of geomagnetic indices, the study eval-89

uated the model accuracy using multiple criteria, which can be divided into fit metrics90

or event detection performance metrics. The fit metrics include statistical evaluation of91

the error defined as the difference between the model and the observed values. These met-92

rics include the root mean squared error (RMSE), the mean error (ME), and the mean93

absolute error (MAE). Event detection performance metrics are binary evaluations of94

the model ability to correctly assess whether an event would exceed a chosen index thresh-95

old. These metrics include skill scores such as the Heidke Skill Score (HSS), probabil-96

ity of detection (POD), and probability of false detection (POFD).97

Many efforts have been undertaken to validate SWMF’s ability to predict geomag-98

netic indices (Rastaetter et al., 2013; Haiducek et al., 2017; Welling et al., 2017; M. Liemohn99

et al., 2018). SWMF has been shown to predict SYM-H well with an RMSE of 17–18100

nT, when the ring current effects simulated by the Rice Convection Model (RCM) are101

included. In the case of a pure MHD magnetosphere, the RMSE is almost double, ∼29102

nT (Haiducek et al., 2017). Rastaetter et al. (2013) studied the performance of 30 model103

configurations regarding their ability to predict SYM-H, and showed that physics-based104

models that include a ring current model are comparable to empirical or statistical mod-105

els, indicating that models such as the SWMF can predict magnetic disturbances at the106

mid-latitudes associated with the ring current processes.107

Several studies have also addressed the auroral latitude index predictions. The SWMF108

has been shown to underpredict the magnitude of AL with RMSE of 230-270 nT (Haiducek109

et al., 2017; Al Shidi et al., 2022; T. I. Pulkkinen et al., 2022). However, the skill scores110

of SWMF are relatively good (HSS of 0.4-0.6) if a threshold value of 200 nT is used (Al Shidi111
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et al., 2022). This means although the model underpredicts the actual currents, it can112

still detect the times of auroral electrojet intensification during geomagnetic storms.113

Finally, Morley, Brito, and Welling (2018) present robust accuracy metrics for the114

radiation belt electron flux predictions. An interesting outcome of that study is that they115

found the median absolute error (MdAE) to be a robust metric, while the MAE/RMSE116

in their data set was not. The signed median is of interest to this study, as it indicates117

whether a model is over/under-predicting, and is easy to interpret. These results led us118

to use the median error (MdE) for this study.119

1.2 Solar Wind Propagation120

Generally, the solar wind input for any input-output analyses relies on solar wind121

observations propagated from L1 to close to the BSN. L1 monitors such as Wind or ACE122

have orbits that can be as far as ∼236 Earth radii (RE) from the Earth, and >100 RE123

away from the Sun-Earth line. There are multiple ways to propagate the solar wind the124

200 RE to reach the vicinity of the Earth’s magnetosphere – one way would be to run125

an MHD simulation from L1 to the Earth and use that as input. However, in practice,126

most applications use a time-delay technique based on 1-D propagation and the method127

of characteristics (Weimer et al., 2003; Cash et al., 2016).128

The propagation time is determined using the solar wind speed, distance to the ob-129

serving spacecraft, and by finding a phase front normal (PFN) that describes the orien-130

tation of the solar wind front that is approaching the Earth (see Figure 1). The PFN131

can be found using several methods, such as the minimum variance analysis (MVA) tech-132

nique (Sonnerup & Scheible, 1998; Weimer et al., 2002) or the cross-product technique133

(Horbury et al., 2001). Typically, a combination of these techniques are used, and this134

is also what is used for the widely available propagated solar wind dataset in the OMNI135

database (King & Papitashvili, 2023).136

In Figure 1, we show a schematic drawing that shows the principle behind solar wind137

propagation from L1 to the BSN. The axes are in the Geocentric Solar Ecliptic (GSE)138

coordinate system with the Earth marked by a blue circle at the origin. The bow shock139

enveloping the Earth is shown in brown. The black cross represents the location of the140

L1 spacecraft observing the solar wind. The phase front normal (n̂ see calculation be-141

low) is shown by the the red arrow and the phase front is illustrated by the red dashed142

line. The instantaneous solar wind measurement is propagated along the phase front line143

to the location marked by a red cross. The velocity of the solar wind is shown as a blue144

arrow at the propagated location. The position of the spacecraft relative to the BSN, r,145

is represented as well as its components, ∆x and ∆y. In this 2-dimensional case ∆y would146

represent the perpendicular distance of the spacecraft to the Sun-Earth line. The uncer-147

tainty arises when from the assumption that the solar wind quantities at the measure-148

ment point can be propagated unchanged to the Earth and/or the satellite is in similar149

conditions to the location being propagated.150

While the solar wind and IMF parameters have their intrinsic uncertainties related
to the measurement techniques, the uncertainties related to the time shifting to the bow
shock create an additional source of (timing) errors. The time shift of the solar wind is
calculated by considering a solar wind front detected at time t at an upstream spacecraft
(at location rspacecraft), and assuming that it reaches the bow shock nose at time t+
∆t. The transit time or timeshift ∆t can be calculated by advecting the phase front nor-
mal plane using the equation

∆tarrival =
(rBSN − rspacecraft) · n̂

V · n̂
, (1)

where rBSN is the location of bow shock nose, V is the solar wind velocity observed at151

L1, and n̂ is the shock phase front normal derived from the solar wind observations at152
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the spacecraft location (see Figure 1 demonstrating the principle of the PFN advection).153

Errors of this propagation method will arise from errors in the solar wind speed, posi-154

tioning accuracy of the spacecraft, as well as the evaluation of the PFN orientation.155

Cameron and Jackel (2019) have shown that using a numerical simulation to prop-156

agate the solar wind can capture some features that the time shifting method cannot.157

Weimer et al. (2003) suggests that using the MVA technique to determine PFN is prone158

to some uncertainty based on the number of data points used. Several studies conclude159

that the errors in timing the arrival of the phase fronts can be of the order of several min-160

utes (A. Ridley, 2000; Weimer et al., 2002, 2003; Mailyan et al., 2008; A. Pulkkinen &161

Rastätter, 2009; Milan et al., 2022).162

Figure 1. A diagram (not to scale) showing a simplified version of how solar wind parameters

are propagated from L1. The Earth is shown in blue at the origin of the GSE coordinate system,

with the bow shock engulfing the magnetosphere oriented by the direction of the solar wind

flow velocity V (blue arrow). The spacecraft situated upstream (black cross) observes a phase

front plane (dashed red line; phase front normal n̂ is shown with the red arrow) The position r

from the bow shock to the spacecraft has GSE components (∆x) and (∆y). The distance of the

front plane from the bow shock along the solar wind flow direction is marked with a red x. The

propagation time from the front plane to the bow shock is then determined by the distance of x

to the bow shock and the solar wind speed.

This study focuses on the uncertainty and errors that are related with the solar wind163

propagation. Specifically, we analyze the relationship between solar wind propagation164

parameters (i.e PFN, time shift, spacecraft displacement from Sun-Earth line) to the fi-165

nal product of the simulation (geomagnetic indices). The aim is to statistically quantify166

the errors and conditional distributions of the errors in order to have a better understand-167

ing of how SWMF performs based on the preparation of the measurements in the input.168

We find the median errors, which show the tendency of the simulation to over/underestimate169

geomagnetic indices, and the standard deviation of errors, which shows the spread of the170

distribution of the errors. The following sections will focus on how we achieve this anal-171

ysis.172

2 Methodology173

2.1 The SWMF Geospace Model174

The SWMF Geospace configuration (Tóth et al., 2012) consists of three coupled175

models describing the different regimes in the global magnetosphere-ionosophere system (Gombosi176

et al., 2021). The Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme (BATSRUS) code177

(Powell et al., 1993) solves the ideal magnetohydrodynamic equations in the solar wind178
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and magnetosphere regions. The model uses Adaptive Mesh Refinement (AMR) to re-179

fine the grid size in regions of large gradients or of special interest. The highest resolu-180

tion used for the simulations analyzed in this study was set to 1/8 Earth radii (RE), which181

is mostly used in the inner magnetosphere and close to the magnetospheric boundaries.182

The simulation box covers the region around the Earth with the x-axis spanning from183

-224 RE in the magnetotail to 32 RE in the sunward direction, and the y and z-axes span184

from −128RE to 128RE in Geocentric Solar Magnetospheric coordinates. The Rice Con-185

vection Model (RCM) is an inner-magnetosphere model primarily used to account for186

the effects of the ring current (Wolf, 1983). RCM solves bounce-averaged drift kinetic187

equations for the particle populations on a polar grid (Toffoletto et al., 2003). RCM is188

two-way coupled between BATSRUS and the the Ridley Ionosphere Model (RIM) iono-189

sphere. The coupling takes place every 10 seconds. BATSRUS supplies the electromag-190

netic fields to the RCM, and RCM nudges the plasma pressure to account for the ener-191

getic particle impacts for the BATSRUS inner magnetosphere region. RIM is a poten-192

tial solver for the ionosphere that solves the Poisson equation on a spherical grid (A. J. Ri-193

dley et al., 2004). It is coupled with RCM and the BATSRUS, and uses an empirical con-194

ductance model to find the electric field in the ionosphere. The coupling between BAT-195

SRUS with RIM happens every 5 seconds. BATSRUS supplies RIM with field-aligned196

currents (FAC), which enables RIM to solve the electric potential using the conductance197

model.198

2.2 Simulation Runs199

We ran 123 storms using SWMF in the Geospace configuration for a previous study200

of ground magnetometer observations (Al Shidi et al., 2022; Al Shidi & Pulkkinen, 2022).201

In this study, we use that dataset and its output of geomagnetic indices. The storms were202

selected based on having a minimum Dst stronger than -50 nT. Each storm was run for203

54 hours in total, including 6 hours before the storm onset time and 48 hours thereafter.204

Thus, the dataset comprises a mix of quiet time, storm main and recovery phases.205

2.3 Simulation Inputs206

The storms were simulated with the SWMF Geospace model using the OMNI so-207

lar wind and interplanetary magnetic field (IMF) observations (N. Papitashvili et al., 2014)208

as input for the simulation Sunward (upstream) boundary. The observations come from209

a collection of spacecraft, most of them located at or near the first Lagrangian point L1.210

The solar wind observations are then propagated to the BSN to represent the solar wind211

and IMF parameters encountered by the Earth’s magnetosphere. We use the multi-spacecraft212

solar wind parameter data as input into the model. Also, from OMNI, we use the hourly213

average 10.7 cm solar radio flux (F10.7) as an input to RIM which uses it for its conduc-214

tance model (A. J. Ridley et al., 2004).215

In this study, we use the IMF components in GSM coordinates (Bx, By, Bz), the
solar wind speed (V ) and density (n) to get the solar wind dynamic pressure (p), solar
wind electric field (Ey = −V Bz) and an empirical solar wind–magnetosphere coupling
function (Newell et al., 2007)

dΦ

dt
= α

[
v2BT sin4

(
θ

2

)]2/3
(2)

where θ = tan−1(By/Bz) is the IMF clock angle and BT = (B2
y +B2

z)
1/2 is the trans-216

verse component of the magnetic field perpendicular to the Sun-Earth line. The normal-217

izing factor α ∼ 103 provides conversion to units of Wb/s, which allows interpreta-218

tion of the parameter as the rate of magnetic flux conversion at the dayside magnetopause219

(Newell et al., 2007). The dynamic pressure was chosen as a solar wind driving param-220

eter because of its ability to affect SYM-H and AL (Zhao et al., 2021; O. Troshichev et221
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al., 2022). The Newell coupling function is a good analogue that combines the IMF and222

flow pressure effects of the solar wind.223

We use the 1-min cadence OMNI dataset which combines spacecraft solar wind ob-224

servations propagated to the BSN as input to BATSRUS. When there are data gaps in225

the input, BATSRUS uses the previously given solar wind measurement. OMNI includes226

ACE and WIND measurements but does not include certain solar wind propagation pa-227

rameters such as the PFN. Therefore, we use the separate propagated WIND measure-228

ments provided by NASA Space Physics Data Facility (SPDF) to collate missing param-229

eters such as the phase front normal with the outputs.230

2.4 Simulation Outputs231

Each storm simulation was configured to output geomagnetic indices including SYM-
H, AL, AU, and the northern hemisphere polar cap index PCI, which can be used to de-
rive an estimate for the Cross-Polar Cap Potential (CPCP) (A. J. Ridley & Kihn, 2004)
in the form

CPCP = 29.28− 3.31 sin(T + 1.49) + 17.81PCI, (3)

where the time of year is specified as T = 2π(NMONTH/12) with numbering of months232

starting from zero (Jan = 0).233

To examine the errors in the local geomagnetic field prediction, the simulation out-234

put includes magnetic field perturbations ∆B at over a hundred ground magnetometer235

station locations perturbations (the amount of stations depend on data availability at236

the time) at 1-minute cadence (Al Shidi & Pulkkinen, 2022). The simulation output also237

includes geomagnetic indices at 1-minute cadence derived from virtual ground magne-238

tometer perturbations in their respective latitude bands. The ground magnetic field is239

calculated through a Biot-Savart intergral from the inner boundary of the simulation through-240

out the simulation box (Gombosi et al., 2021).241

2.5 Error Analysis242

The observations and simulation outputs are compiled to time series vectors yj,observed
and yj,model, where yj is the value of the geomagnetic index j (j = SYM-H, AU, AL, CPCP).
The simulation prediction error at time ti is then defined as

ϵj(ti) = yj,model(ti)− yj,observed(ti). (4)

Using the time series of errors for each index, we then bin conditional probability dis-243

tributions under different solar wind driving and propagation parameters, k = (Ey, dΦ/dt,244

PFN, the perpendicular distance from the Sun-Earth line |x̂×r|, ∆t), where r = rspacecraft−245

rBSN . Statistical analyses are then performed on these errors, such as calculating the246

median error and standard deviation. For both median and standard deviation, when247

a 95% confidence interval is presented, a bootstrapping method was used. The number248

of resamples chosen was 100 due to the large sample sizes, n, in the data.249

3 Results and Analysis250

This study focuses on the magnitude of the errors in the simulation output as com-251

pared to the observations for given solar wind input. We note that the solar wind driver252

parameters used here are not independent, but reflect different characteristics of the in-253

coming solar wind. Specifically, we examine the intensity of the driving using the solar254

wind electric field and the Newell et al. (2007) coupling function (Ey, dΦ/dt), which both255

depend on solar wind velocity and magnetic field. Likewise, parameters associated with256

solar wind front orientation and its propagation to the bow shock nose (see Figure 1, PFN257

n̂ · x̂, |x̂× r|, and timeshift ∆t) are functions of magnetic field orientation and solar258

wind velocity.259
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Table 1 gives a quantitative summary of the median errors (MdE) and their 95%260

confidence intervals between the simulated and observed magnetospheric response pa-261

rameters CPCP, SYM-H, AL, and AU. The distributions of the errors are approximately262

Gaussian with skewness (g1) being −0.5 < g1 < 0.5 for all but the AL index. The263

distributions of errors in AL is right-skewed (g1 = 1.66), which is consistent with pre-264

vious studies showing that the simulation has a tendency to underpredict the observa-265

tions (model value less negative than observed) (Haiducek et al., 2017; T. I. Pulkkinen266

et al., 2022). A skewness test for each distribution results in a p-value of zero (pskew =267

0), which confirms they are skewed from the normal distribution.268

Table 1. A quantitative summary of the overall error distributions for the geomagnetic indices.

From left to right the columns give the geomagnetic parameter, the median error (MdE), the 95%

confidence interval of the MdE, and the skewness respectively.

Parameter MdE 95% CI Skewness

CPCP [kV] 3.27 3.15 3.41 -0.25
SYM-H [nT] 3.61 3.52 3.67 -0.22
AL [nT] 38.49 37.59 39.15 1.66
AU [nT] 6.53 6.20 6.86 0.30

3.1 Univariate Analysis269

In this section, we examine the probability distributions of the errors for each of270

the driver parameters. Figures 2, 5, and 6 show the error probability distributions as a271

functions of the driver parameters for each of the activity measures yj . The error dis-272

tributions are computed for 10 ranges of the driver parameter values, and the figures show273

the errors normalized for each driver value (vertical bin). The error distributions were274

discretized into 50 bins. Normalization of each driver parameter bin means that the fig-275

ures do not give the absolute value of the error, but rather a distribution of the error mag-276

nitudes within that particular range of the driver parameter.277

For more quantitative assessment of the SYM-H and AL indices, which are routinely278

used for evaluation of model performance (M. W. Liemohn et al., 2018), we tabulate the279

MdE and standard deviation of errors (σE). The conditional bounds and limits to cal-280

culate the errors were chosen to encompass 95% of all the samples in the data set. Sec-281

tion 3.1.1 discusses the errors related to the global geomagnetic indices, while section 3.1.2282

assesses the capability of the model to predict localized errors by examining magnetic283

perturbations at two individual ground magnetometer stations, one at auroral and an-284

other at sub-auroral latitude. We focus mainly on the global geomagnetic indices errors.285

3.1.1 Global Geomagnetic Indices286

The four panels in Figure 2 show the errors in the activity indices (from left to right)287

SYM-H, CPCP, AL, and AU as a function of the intensity of the solar wind electric field288

Ey (top row) and the Newell et al. (2007) coupling parameter (bottom row). The errors289

are mostly centered around zero. The error distributions widen in the polar cap poten-290

tial slightly both for strong driving (strongly positive Ey) and for strong electric field291

in a closed magnetosphere configuration (strongly negative Ey). The SYM-H, AL, and292

AU index errors have widest distributions for strong driving, with SYM-H and AU cen-293

tered around zero, but the AL errors strongly biased toward positive error (model un-294

derestimating the observed AL) typical of the Geospace simulation results (Haiducek et295

al., 2017; Al Shidi et al., 2022; T. I. Pulkkinen et al., 2022). These trends are similar for296
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both solar wind driving functions (compare positive Ey on the top row and and the al-297

ways positive coupling function in the bottom row for each of the indices).298

Figure 2. From left to right: Binned probability distribution of errors in SYM-H, CPCP, AL

and AU as a function of the (top) solar wind electric field and (bottom) the Newell coupling

function at the bow shock nose. The driver parameters were binned into 10 bins, and the errors

into 50 bins. Each driver bin is normalized to highlight the distribution of the errors rather than

their magnitude.

Taking a closer look at the numbers, Table A1 shows the MdE and σE with their299

95% CI. Figure 3 and Figure 4 provide a visual representation of the aforementioned Ta-300

ble. The number of samples in each bin of Ey values, n, is also included (note that the301

bin ranges are asymmetric due to the choice of including 95% of all data in the analy-302

sis). For the SYM-H index, the median error is closest to zero for high solar wind driv-303

ing, while the error increases toward lower driving and has a strongly negative bias for304

the strongly negative electric field (strongly positive IMF Bz and/or high solar wind speed).305

This means that under those conditions, the model overpredicts SYM-H, which may be306

an indication of the model’s ability to reproduce the magnetospheric configuration un-307

der a closed magnetosphere conditions. On the other hand, the SYM-H error standard308

deviation increases with larger solar wind driving.309

The median error MdE of the AL index increases with increasing Ey, as does its310

standard deviation σE : During the strongest solar wind driving (Ey > 6 mV/m), the311

MdE is 351.91 nT with the standard deviation σE being to 359.34 nT. This is a signif-312

icant difference from the overall AL error distribution where the MdE = 38.49 nT (see313

Table 1). A 2-sample Kolmogorov-Smirnov test (KS test) (Hodges, 1958), which will test314

how likely the overall distribution of errors (-∞ <Ey < ∞) and the error distribu-315

tion with the strongest solar wind driving (Ey > 6 mV/m) confirms these two distri-316

butions are from different distributions (pks = 1.1 × 10−319). The sample sizes are317

173269 and 5592, respectively, and the KS statistic is 0.44. The small p-value is a reflec-318

tion on how the subsampling (Ey > 6 mV/m) of the parent distribution generates a319

distinct distribution.320

Figure 5, similarly to Figure 2, shows probability distributions of errors in (left to321

right) SYM-H, CPCP, AL, and AU in relation to (top to bottom) phase front normal322

(PFN, n̂ · x̂), spacecraft perpendicular distance (|x̂×r|), and timeshift (∆t). Examina-323
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Figure 3. From top to bottom, left to right, the blue line shows median errors calculated in

bins for SYM-H and AL, with respect to Ey, PFN n̂ · x̂, and spacecraft perpendicular distance.

The orange bars show the 95% CI of the calculated medians for each bin.

tion of the error distributions of the global indices as a function of PFN shows that there324

is less dependence of the error distributions on the phase front orientation than on the325

solar wind driver function magnitude: The standard deviations and the medians are rel-326

atively similar for angles perpendicular and oblique to the sun-earth line (smaller and327

larger n̂ · x̂, respectively).328

The error distributions in the geomagnetic indices as function of the perpendicu-329

lar distance of the spacecraft to the Sun-earth line (|x̂ × r|) show mostly consistent330

standard deviation throughout. However, there is a noticeable change in the medians (not331

shown) for each given distance whose origin remains unclear. For example, calculating332

Cohen’s D for a SYM-H errors between the two ranges of (0, 20) Re and (80, 100) Re333

gives a value of -0.48 which shows a medium-sized effect of half a standard deviation be-334

tween the two. Lastly, we examine the effect of the time shift ∆t from the spacecraft lo-335

cation to the bow shock nose. Noting that most of the OMNI observations come from336

spacecraft at or near L1, higher values of ∆t imply slower solar wind and the lower val-337

ues imply high solar wind speed. Alternatively (referring to Figure 1), higher values of338

∆t imply close to perpendicular PFN angles and smaller propagation times imply more339

oblique PFN orientation. The error distributions for all parameters are slightly larger340

for low time shifts (high solar wind speed, oblique fronts). The polar cap potential and341

the AU index show very little variation across the range of values in ∆t.342

Table A2, Figure 3, and Figure 4 show a summary of the corresponding numeri-343

cal values. The bounds were chosen to correspond to Figure 5, but including fewer bins344

to maintain readability. Table A2 shows the number of samples and the bin sizes, the345
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Figure 4. From top to bottom, left to right, the blue line shows standard deviation of errors

calculated in bins for SYM-H and AL, with respect to Ey, PFN n̂ · x̂, and spacecraft perpendicular

distance. The orange bars show the 95% CI of the calculated standard deviation for each bin.

median error MdE and standard deviation σE with their 95% CI conditional to phase346

front normal (PFN n̂ · x̂) and the perpendicular distance from the spacecraft location347

to the Sun-Earth line (|x̂× r|).348

The SYM-H MdE and its 95% CI decreases when the PFN is closer to the Sun-Earth349

line, from 9.52 nT in its most oblique orientation to 1.05 nT in cases where the front is350

close to perpendicular to the Sun-Earth line. The uncertainty in the median at the most351

oblique angles could be caused by lack of samples (n = 192) (see Table A2), but the352

trend can still be seen with smaller CI widths of around ∼ 0.4 nT in the next bin 0.2 <353

|n̂ · x̂| < 0.4, which has a much larger sample size (n = 17664). However, the standard354

deviation σE increases when the PFN projects closer to the Sun-Earth line from 13.78355

nT to 18.19 nT. Thus, both the errors and standard deviation show a conditional depen-356

dence on the PFN, which may be related to the fact that the oblique fronts are almost357

in the direction of the solar wind velocity.358

The next section of Table A2 shows the errors in AL conditional to the PFN |n̂ ·359

x̂|. The dependence of the errors seems relatively weak. The overall distribution MdE360

and its 95% CI from Table 1 is 38.49 [37.59, 39.15] nT. The MdE conditional to PFN361

are relatively close to that with the closest distribution being 37.86 [36.16, 38.81] nT, which362

has some overlap in their CI. Again, the uncertainty in the median (the MdE CI width)363

is larger than the rest when n̂ · x̂ < 0.2 (55.18 nT to ∼ 3 nT). This is likely due to the364

–11–



manuscript submitted to Space Weather

Figure 5. From left to right: Binned conditional probability distribution of errors in SYM-H,

CPCP, AL and AU as a function of the (top) the PFN projection to the x axis (x̂ · n̂), (middle)

the perpendicular distance from the Sun-Earth line (|x̂× r|), and (bottom) time shift to the bow

shock nose ∆t. The driver parameters were binned into 10 bins, and the errors into 50 bins. Each

driver bin is normalized to highlight the distribution of the errors rather than their magnitude.

smaller sample size, the large uncertainty when the PFN angle is so oblique to the Sun-365

Earth line, or a combination of both.366

We then discuss the effects of the perpendicular distance of the spacecraft to the367

BSN. The third section of Table A2 shows the SYM-H errors conditional to the perpen-368

dicular distance. A conditional dependence is especially noticeable when the distance369

is < 20RE . The MdE in the < 20RE case suggests that SWMF is in these cases over-370

predicting SYM-H, as opposed to the more typical underprediction (MdE = -4.16 [-4.77,371

-3.61] nT). The σE stays relatively constant (∼ 17 nT) and becomes larger in the case372

of the closer distance (< 20RE), to 20.52 [20.27, 20.82] nT.373

The MdE of the AL index shows a similar trend to that of SYM-H, as shown in374

the right most sub-figures of Figure 3 and bottom section of Table A2. In the < 20RE375

case, the MdE becomes smaller (from ∼ 40 nT to 14.86 [12.14, 16.59] nT). However,376

unlike the SYM-H, the standard deviation also becomes smaller, reducing from ∼ 210377

nT to 187.76 [182.43, 198.50] nT. In both SYM-H and AL cases, however, we note that378

the smallest distance bin has a factor of 3-5 smaller sample size.379

The table and figure summaries confirm a conditional dependence between prop-380

agation parameters (PFN and perpendicular distance) and MdE and/or σE . We note381

here that the errors analyzed are errors in magnitude between the observed and simu-382

lated values, not errors related to timing. Perhaps the most noteworthy result is for the383
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smallest spacecraft perpendicular distance from the Sun-Earth line (< 20RE). In that384

case, both SYM-H and AL errors show a marked change in behavior. The conclusion from385

Figure 5 suggesting that stronger solar wind driving leads to a larger spread in errors386

(larger σE) is quantitatively confirmed by the standard deviations and their confidence387

intervals given in Table A2.388

3.1.2 Local Magnetometer Recordings389

The analysis in the previous section focused on global geomagnetic activity as de-390

scribed by the geomagnetic indices. In order to study the localized effects, in this sub-391

section, we examine the role of each of the driver parameters in generating errors at in-392

dividual magnetometer stations. We select two representative stations, Yellowknife, Canada393

(YKC) in the auroral latitudes recording both eastward and westward ionospheric elec-394

trojets (Lyatsky et al., 2006), and Boulder, CO, USA (BOU), at the mid-latitude range395

that mostly reacts to the ring current and field-aligned currents coupling the magneto-396

sphere and ionosphere (Dubyagin et al., 2014). The errors computed use the observed397

and simulated ground magnetic perturbations horizontal (magnitude of northward and398

eastward components) to the Earth’s surface.399

The four panels in each row of Figure 6 shows the error probability distributions400

for each of the driver parameters (Ey, dΦ/dt, n̂ · x̂, and |x̂× r|) for YKC at the top401

and BOU at the bottom panel. Note that due to the very different scales of the signals402

(the auroral zone magnetometers record variations in the 100s of nT, whereas the mid-403

latitude stations typically record variations of the order of 10s of nT), the horizontal scales404

are different for the two stations. The local individual recordings show similar dependence405

on the driver parameters to the aggregated global indices, although the error distribu-406

tions in the perpendicular component are narrower than those of the global indices (see407

also Table A3). Note, however, that for the solar wind driver functions the horizontal408

components are centered around zero error. This result is consistent with the detailed409

analysis of individual stations by Al Shidi et al. (2022), who concluded that the errors410

for the north and east components are typically larger than the total horizontal compo-411

nent. As the geomagnetic indices are based on the north component records, any errors412

in that will translate to errors in the indices. Furthermore, the stations show an increase413

in standard deviation for strong driving in the closed magnetosphere configuration (strongly414

positive Ey). Neither station show a dependence of the standard deviations on either the415

phase front normal or the perpendicular distance to the Sun-Earth line.416

The results of this section were meant to illustrate the more localized effects of so-417

lar wind propagation and driving. The primary motivation of this study is the geomag-418

netic indices errors that are a summary of individual stations like these. The YKC sta-419

tion is a station that can be used to find AL or AU. The BOU station is a station that420

can be used to find Dst or SYM-H. We show that solar wind driving has a dependence421

on the standard deviations of the BH errors.422

3.2 Regression Analysis423

In order to study the relationship between the solar wind parameters and the sim-
ulation errors, we perform a linear regression analysis to examine how the errors change
with the varying inputs. We determine the regression coefficients, bk, where k is the off-
axis distance of the spacecraft to the BSN (|x̂× r|), the PFN projection on the Sun-
Earth line (|n̂·x̂|), solar wind driving electric field analogues V By, and V Bz and lastly
the solar wind dynamic pressure (p). We then compute the Standardized Regression Co-
efficients (SRCjk) to determine the magnitude of the effect of a solar wind quantity k
on the errors for each geomagnetic index j. The SRC is given by the equation

SRCjk =
σk

σj
bk, (5)
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Figure 6. From left to right: Binned probability distribution of errors the horizontal magnetic

field at (top) YKC and (bottom) BOU as a function of the solar wind Ey, the Newell coupling

function dΦ/dt, the PFN projection to the x axis (|x̂ · n̂|), and the perpendicular distance from

the Sun-Earth line (|x̂× r|). The driver parameters were binned into 10 bins, and the errors into

50 bins. Each driver bin is normalized to highlight the distribution of the errors rather than their

magnitude.

where σ is the standard deviation of the solar wind parameter k or activity index error424

j. The SRC is a measure of how much of the standard deviation in the errors can be at-425

tributed to the standard deviation in the inputs. This allows us to make a relational in-426

ference between the solar wind inputs and activity index errors, and to directly compare427

across the parameters as the SRCs are unitless. Table 2 shows the SRCs found for each428

solar wind input and geomagnetic index error and the SRC confidence intervals.429

Table 2. Table of the SRC and their 95% confidence intervals in brackets. From top to bottom

the rows are the geomagnetic index errors of SYM-H, CPCP, AL and AU, respectively. The

columns from left to right are the off-axis distance of the spacecraft (|x̂× r|), the PFN projected

on the Sun-Earth line (n̂ · x̂), solar wind drivers V By, V Bz, and flow pressure p, respectively.

Driver SYM-H CPCP AL AU

|x̂× r| 0.077 [0.074, 0.082] 0.018 [0.013, 0.022] 0.005 [0.001, 0.010] 0.021 [0.017, 0.025]

PFN n̂ · x̂ 0.123 [0.117, 0.128] 0.105 [0.100, 0.109] 0.018 [0.014, 0.022] 0.013 [0.008, 0.017]

V By 0.017 [0.012, 0.022] 0.095 [0.088, 0.102] 0.312 [0.307, 0.316] 0.480 [0.475, 0.486]

V Bz 0.153 [0.148, 0.160] 0.109 [0.101, 0.117] 0.294 [0.289, 0.299] 0.066 [0.060, 0.074]

Pressure p 0.293 [0.288, 0.299] 0.071 [0.058, 0.083] 0.098 [0.090, 0.104] 0.008 [0.001, 0.016]

The SRCs show that the standard deviation in the errors of SYM-H relates strongest430

to the standard deviation in pressure with an SRC of 0.293. It also suggests relationships431

with the PFN and V Bz with SRC’s between ∼0.1–0.2. Interestingly, the SRC of the space-432

craft off-axis distance, |x̂×r|, is strongest with SYM-H when compared with the other433

indices. The standard deviation of errors in AL have strongest dependence on the stan-434

dard deviations in solar wind driving V By and V Bz with SRC ∼0.3. We note that the435
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relation of AL and AU to the propagation parameters |x̂× r| and n̂ · x̂ are relatively436

weak (SRC∼0.01–0.02).437

Through the SRC analysis, we can conclude that the standard deviations in solar438

wind propagation parameter |x̂× r| and n̂ · x̂ does have a connection to the SYM-H,439

and n̂ · x̂ to the CPCP as they both have an SRC of around 0.1. This is in contrast to440

other indices such as AL and AU, whose SRCs are an order of magnitude smaller (∼0.01).441

We can also conclude that the electric field components V By and V Bz shows a strong442

relationship with AL (SRC 0.3). This is to be expected, as it is widely accepted that there443

is a correlation between solar wind electric field and AL (e.g., O. Troshichev et al., 2022).444

4 Discussion445

This study focuses on the analysis of the magnitude and probability distribution446

of errors between observations of geomagnetic indices and their predictions using the Space447

Weather Modeling Framework Geospace simulation. The errors can arise either from in-448

accuracies in the measurement (measurement errors), errors in the predicted magnitude449

with the correct driver profile (model error), or errors in timing of the arrival of the so-450

lar wind and IMF at the bow shock nose. The dataset is over-represented by storm-time451

data, however, this is a conscious choice to evaluate the performance of SWMF during452

storm time specifically and not dominate the analysis with quiet time conditions. For453

a dataset that includes a month long of data which includes quiet time intervals, please454

see M. Liemohn et al. (2018).455

Our results indicate that the median errors show a dependence on the geometric456

parameters such as the phase front normal angle or the perpendicular distance from the457

Sun-Earth line of the observing spacecraft, while the widest distributions of the errors458

are obtained for high solar wind driving and high dynamic pressure. An earlier study459

(A. J. Ridley, 2000) demonstrated that the uncertainty in timing between measurements460

at L1 with WIND and closer to the BSN with the spacecraft IMP 8 can be on average461

7.5–8.5 minutes. However, their study was limited to the solar wind, and did not assess462

the impact of these timing errors on the errors in geomagnetic indices, which have their463

own intrinsic time scales as they respond to the variable solar wind driving. More recently,464

Milan et al. (2022) found that the correlation of peaks in the cusp field-aligned currents465

observed by the AMPERE satellites with IMF By deteriorates with larger perpendicu-466

lar distance of the solar wind monitor from the Sun-Earth line. Furthermore, they find467

an average time lag of about 17 minutes between the solar wind front arrival at the bow468

shock nose and the response caused by the front in the ionosphere. The simulation is ex-469

pected to also respond with the same time lag and follow the same processes which makes470

calculating errors on the same minute fair. BATS-R-US has been shown in the past its471

ability to recreate the global circulation pattern (Gordeev et al., 2011).472

The nonlinear relationship between the solar wind inputs and the geomagnetic in-473

dex errors poses limitations to the regression analysis performed in Section 3.2. The value474

of the regression analysis is in its ability to address the relationship between the stan-475

dard deviations of both input and output simultaneously, characterized by the standard-476

ized regression coefficients. The fact that the SRC of the spacecraft perpendicular dis-477

tance in relation to the errors is relatively small could be due to the lack of standard de-478

viation in the spacecraft orbit. The spacecraft flies a steady path and that path’s stan-479

dard deviation is truly independent to the standard deviation in the errors.480

We note that this study does not address errors in propagation time. We believe481

it is important for solar wind monitor measurements to publish error bars as that could482

strengthen studies like this and provide better insight as to the origins of certain errors,483

specifically measurement uncertainty. Inputs such as F10.7 would provide better detail484

if we are provided error bars. Further investigations into the cause of the errors would485
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require better metadata for the observational inputs and outputs: Neither the geomag-486

netic indices nor the space-borne solar wind measurements and propagation times come487

with uncertainty estimates or error bars. Such parameters would be necessary to under-488

stand how the uncertainties propagate from the input to the output measurements, and489

would be valuable for uncertainty quantification and validation of space weather forecasts.490

Lacking these, Morley, Welling, and Woodroffe (2018) attempted to quantify the uncer-491

tainty of measurement errors in the solar wind input by ensemble modeling with SWMF,492

and showed that using ensemble modeling can improve the mean error of SYM-H by a493

few nT.494

5 Conclusion495

We present the conditional dependence of the SWMF Geospace simulation errors496

in geomagnetic indices (as compared to observed ones) of the solar wind driver and prop-497

agation (from L1 to bow shock nose) parameters. Based on a large simulation dataset,498

we draw the following conclusions of SWMF behavior during geomagnetic storm times:499

1. The standard deviation of the errors is generally dependent on the intensity of the500

driving, such that stronger driving (larger Ey) produces larger standard deviations501

in SYM-H and AL errors. This implies that the errors are known to lesser accu-502

racy during strong geomagnetic activity.503

2. We show that there is a dependence of the median error (MdE) on the phase front504

normal angle and spacecraft perpendicular distance from the Sun-Earth line. The505

MdE for both SYM-H and AL decreases when the perpendicular distance is < 20RE .506

An interesting detail is that the SYM-H that typically is underpredicted by the507

model (observed values show higher activity than the simulation), shows the op-508

posite behavior when the perpendicular distance is < 20RE .509

3. The standard deviations of the errors are more dependent on the intensity of the510

solar wind driving, Ey, than on the solar wind propagation parameters, such as511

PFN and spacecraft perpendicular distance to the Sun-Earth line.512

4. Using standardized regression coefficients, we show the dependence of the error513

standard deviations on the inputs. We confirm that there is a relationship between514

the standard deviations in the phase front normal (PFN) with the standard de-515

viations in SYM-H, and an even stronger relationship between the flow pressure516

and SYM-H standard deviations.517

5. Perhaps not surprisingly, the standard deviations in the electric field components518

V By and V Bz show the strongest relationship with standard deviations in AL. The519

standardized regression coefficients provide a (unitless) measure of the degree to520

which the solar wind parameters impact the errors.521

For future studies, we propose a multivariate approach: The phase front normal522

(PFN) and solar wind monitor locations are not direct inputs into the simulation, and523

are not necessarily orthogonal to the real inputs. It would be interesting to see the de-524

pendence of the errors with PFN during stronger solar wind driving. Furthermore, a more525

3-dimensional approach instead of only investigating projections to the Sun-Earth line526

might provide valuable insights of the spatial structuring of the solar wind and its im-527

pacts on solar wind – magnetosphere coupling. We believe the different components, el-528

liptical and zenithal, of the distances can contribute to errors in the geomagnetic indices.529
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Table A1. Statistics of the (top) SYM-H and (bottom) AL errors [nT] conditional to Ey

[mV/m]. From left to right the columns give the number of samples in driver (Ey) bin of the

geomagnetic parameter (SYM-H or AL), the bounds of the driver bin, the median error (MdE),

the 95% confidence interval of the MdE, the standard deviation and its 95% confidence interval,

respectively.

n (SYM-H, Ey) Bounds MdE 95% CI σE 95% CI

5592 [6,∞) 1.89 0.97 3.09 28.18 27.67 28.6
9256 [4, 6) 4.09 3.60 4.65 23.73 23.34 24.19
28908 [2, 4) 6.03 5.82 6.15 18.23 18.03 18.4
55639 [0, 2) 5.17 4.98 5.27 15.09 14.98 15.19
46930 [−2, 0) 3.89 3.75 4.06 14.90 14.77 15.02
18475 [−4,−2) -1.48 -1.82 -1.17 16.60 16.43 16.87
8469 [−∞,−4) -11.91 -12.26 -11.24 18.94 18.57 19.15

n (AL, Ey) Bounds MdE 95% CI σE 95% CI

5592 [6,∞) 351.91 341.13 364.6 359.34 351.27 366.58
9256 [4, 6) 243.34 234.03 250.73 304.16 299.48 312.98
28908 [2, 4) 131.41 129.22 133.59 226.32 223.52 228.41
55639 [0, 2) 37.60 36.08 38.82 182.46 181.00 184.23
46930 [−2, 0) 8.18 7.52 8.91 159.48 157.86 162.69
18475 [−4,−2) 11.04 10.28 12.09 166.92 164.46 171.16
8469 (−∞,−4) 14.56 12.99 16.94 218.27 212.52 226.03

Appendix A Tables of Median Errors and Standard Deviation of Er-530

rors531
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Table A3. Statistics of the BH Errors [nT] at YKC and BOU conditional to Ey [mV/m] and

|n̂ · x̂|. The columns show the number of datapoints in each bin, the bin boundaries, the median

error, confidence interval of the median error, the standard deviation σE , and confidence interval

of σE .

n(BH(YKC), Ey) Bounds MdE 95% CI σE 95% CI

5592 [6,∞) 31.11 26.28 34.6 249.37 243.23 255.25
9256 [4, 6) 22.12 19.22 24.78 197.41 193.59 200.22
28908 [2, 4) 14.42 13.24 15.53 161.06 158.87 163.11
55639 [0, 2) 12.83 12.36 13.32 115.33 114.15 116.95
46930 [−2, 0) 6.30 6.00 6.61 92.88 91.57 94.53
18475 [−4,−2) 2.12 1.82 2.46 92.30 89.07 94.94
8469 [−∞,−4) 3.20 2.34 3.99 111.24 107.94 114.36

n(BH(BOU), Ey) Bounds MdE 95% CI σE 95% CI

5592 [6,∞) -8.38 -9.48 -7.07 38.24 37.57 38.95
9256 [4, 6) -6.57 -7.02 -6.03 28.19 27.62 28.88
28908 [2, 4) -5.79 -5.98 -5.61 22.11 21.87 22.45
55639 [0, 2) -5.04 -5.16 -4.92 15.51 15.32 15.61
46930 [−2, 0) -4.82 -4.91 -4.72 13.88 13.74 14.01
18475 [−4,−2) -5.21 -5.38 -5.04 15.44 15.26 15.64
8469 [−∞,−4) -6.16 -6.41 -5.84 17.68 17.30 18.08

n(BH(YKC), n̂ · x̂) Bounds MdE 95% CI σE 95% CI

61413 [0.8, 1.0) 9.96 9.45 10.36 134.75 133.54 136.12
50934 [0.6, 0.8) 9.73 9.17 10.16 130.65 129.28 132.29
40137 [0.4, 0.6) 6.8 6.38 7.23 122.65 120.84 125.36
17664 [0.2, 0.4) 4.14 3.37 4.53 109.38 106.63 112.55
192 [0.0, 0.2) -9.05 -35.92 -2.53 108.29 90.33 128.52

n(BH(BOU),n̂ · x̂) Bounds MdE 95% CI σE 95% CI

61413 [0.8, 1.0) -4.46 -4.56 -4.36 19.76 19.53 20.05
50934 [0.6, 0.8) -4.88 -4.98 -4.70 18.36 18.17 18.56
40137 [0.4, 0.6) -6.15 -6.27 -6.03 17.21 17.07 17.38
17664 [0.2, 0.4) -6.84 -7.04 -6.60 16.9 16.51 17.19
192 [0.0, 0.2) -8.48 -15.09 -6.04 20.91 18.63 23.20
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