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Abstract

Water level variations influence the biochemical and hydrological processes within river networks. Through river cameras,

obtaining reliable water segmentation from image data can practically support the monitoring of water level. However, limited

annotated data and tedious local deployment restrict the applicability of current deep learning water segmentation models in

new river scenarios. To pursue transferability, this study proposes a novel framework that combines domain-specific models

with General AI for water segmentation. The framework utilizes a ResUnet model pre-trained on a non-local dataset to identify

the pixel with the highest probability of being water from the image. The Segment Anything Model (SAM), a promptable

foundational computer vision model developed by Meta AI, is then adopted to use the pixel as prompt for generating water

masks. When prompted, different modes of SAM are used for comparison. We applied the framework to image sequences

acquired from river cameras stationed at four locations in Tewkesbury, UK. The framework significantly improved segmentation

performance, with an increase of over 15% in Intersection over Union (IoU) over the single ResUnet model. Meanwhile, the

results substantiated point prompt as the optimal mode for feeding prior knowledge on water to SAM. The static observer

flooding index (SOFI) time series calculated based on the framework’s segmented masks under point prompt mode exhibit an

average correlation of 0.90 with real water level fluctuations, significantly surpassing the correlation of 0.54 attained by ResUnet.

Our study thus represents a step toward implementing river cameras for robust water level trend monitoring.
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Key points 

⚫ A deep learning framework for water segmentation in river camera images and 

water level trend monitoring is developed. 

⚫ The framework’s transferability in new river scenarios is achieved by combining 

domain-specific models and General AI. 

⚫ The static observer flooding index calculated by the framework can accurately 

characterize water level variations. 

 

Keywords: 

River; Water level trend monitoring; Water segmentation; Segment Anything Model 

  

mailto:lyu81@purdue.edu)


2 

 

Monitoring Water Level Trend Using River Cameras: Integrating 

Domain-Specific Models and Segment Anything Model (SAM) for 

Transferable Water Segmentation 

 

Abstract 

Water level variations influence the biochemical and hydrological processes within 

river networks. Through river cameras, obtaining reliable water segmentation from image 

data can practically support the monitoring of water level. However, limited annotated 

data and tedious local deployment restrict the applicability of current deep learning water 

segmentation models in new river scenarios. To pursue transferability, this study proposes 

a novel framework that combines domain-specific models with General AI for water 

segmentation. The framework utilizes a ResUnet model pre-trained on a non-local dataset 

to identify the pixel with the highest probability of being water from the image. The 

Segment Anything Model (SAM), a promptable foundational computer vision model 

developed by Meta AI, is then adopted to use the pixel as prompt for generating water 

masks. When prompted, different modes of SAM are used for comparison. We applied 

the framework to image sequences acquired from river cameras stationed at four locations 

in Tewkesbury, UK. The framework significantly improved segmentation performance, 

with an increase of over 15% in Intersection over Union (IoU) over the single ResUnet 

model. Meanwhile, the results substantiated point prompt as the optimal mode for feeding 

prior knowledge on water to SAM. The static observer flooding index (SOFI) time series 

calculated based on the framework’s segmented masks under point prompt mode exhibit 

an average correlation of 0.90 with real water level fluctuations, significantly surpassing 

the correlation of 0.54 attained by ResUnet. Our study thus represents a step toward 

implementing river cameras for robust water level trend monitoring. 
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1. Introduction 

River networks act as conduits between terrestrial and aquatic environments, 

mediating hydrological processes that regulate river flow status dynamics (Mosley, 2015; 

Whitworth et al., 2012). In both headwater streams and continental-scale basins, river 

flow is dominated by water level gradients. The river water level variation controls the 

biochemical transport and determines the inundated extent of floodplains (Richey et al., 

2002). Thus, continuous monitoring of water level is key to unravelling the complex 

exchange fluxes among multiple hydrological components, as well as for water resources 

management and establishing flood early warning systems (Yamazaki et al., 2012). 

Due to the high costs associated with the installation and long-term maintenance of 

gauging stations, water level observations currently are unattainable for many rivers 

(Fekete et al., 2012; Ruhi et al., 2018). Other observational approaches, such as remote 

sensing, can supplement the data from hydrometric networks (Tauro et al., 2018). 

Nevertheless, satellite and airborne optical techniques are limited to their daylight-only 

application, susceptibility to obstruction by clouds and vegetation, and relatively long 

revisit intervals (Grimaldi et al., 2016; Yan et al., 2015). Acquiring high spatial-temporal 

resolution water level data in real-time or long-term is, thus, still challenging. 

As computer vision develops, river cameras provides a novel path to collect water 

level data (Spasiano et al., 2023). River cameras are generally consumer-grade field 

cameras powered by electricity grids or (backup) batteries, resulting in low costs on 

equipment, installation, and maintenance (Noto et al., 2022; Sabbatini et al., 2021). They 

are increasingly installed for hydrological monitoring, offering extensive coverage of the 

river network (Gupta et al., 2022; Lo et al., 2015; Perks et al., 2020). These cameras 

continuously transmit live images from rivers and can store images locally or upload them 

to the cloud in real-time. The accumulation of image data has laid the foundation for the 

automatic extraction of water level variation information. 

Aided by deep learning models, interpreting river water levels in the continuous 

domain from images can already be realized (Vandaele et al., 2023). Deep learning 

models can transform water level interpretation into regression tasks by directly 

establishing the mapping relationship between images and water level values. However, 

the establishment of the training dataset necessitates sites equipped with both cameras 

(for input preparation) and gauging stations (for label preparation), a requirement that 

cannot be met in certain regions given their local monitoring conditions. Furthermore, 
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deep learning-based regression models are typically limited by their inability to 

extrapolate outputs, making it challenging to monitor extremely high or low water levels 

(Vanden Boomen et al., 2021). 

An alternative approach to imaging-based water level monitoring involves 

segmenting water pixels within each image, which no longer requires additional 

deployment of gauging stations. The segmented water masks can be transformed using 

photogrammetric techniques and then overlaid onto the topography of river channels to 

derive scalar water level values (Sermet & Demir, 2023). If fine-scale terrain data cannot 

be obtained, each image’s static observer flooding index (SOFI), which indicates the 

proportion of water pixels among the total pixels, can be adopted as surrogate index to 

monitor water level trends (Moy De Vitry et al., 2019). According to previous studies, a 

robust characterization of water level trends is already informative for hydrological model 

calibration, with the Spearman rank correlation coefficient serving as the optimization 

objective, even in the absence of scalar water level values (Etter et al., 2020; Seibert & 

Vis, 2016; Weeser et al., 2019). Therefore, imaging-based water level trend monitoring 

based on water segmentation can be a more flexible and robust technical path. 

Currently, water segmentation mainly relies on deep learning semantic segmentation 

models for their high automation and scalability (Eltner et al., 2018). A series of classic 

model structures, including SegNet, Fully Convolutional Networks, Fully Convolutional 

DenseNets, and Conditional Adversarial Networks, have already been applied to water 

segmentation for river camera images (Akiyama et al., 2020; Erfani et al., 2022; Lopez-

Fuentes et al., 2017). However, deep learning models are significantly influenced by the 

amount of training data. Large-scale annotated river image data is still unavailable, 

limiting the potential transfer of trained models to new river scenes (i.e., locations unseen 

in the training dataset). Transfer learning offers an available route to enhance model 

transferability by fine-tuning deep learning models on a small subset of annotated data 

from new monitoring sites (Akiyama et al., 2021; Eltner et al., 2021; Vandaele et al., 

2021). Nevertheless, fine-tuned deep learning models often experience catastrophic 

forgetting (Kirkpatrick et al., 2017), wherein excessive adaption to new data results in a 

notable drop in performance on the original dataset, rendering the model to be overly 

localized. Meanwhile, one-size-fits-all transfer learning strategies that accommodate 

diverse model architectures and application scenarios are still lacking (Weiss et al., 2016). 

A transferable water segmentation framework that necessitates minimal local adjustments 

and can be readily deployed in new river scenarios is called for. 
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The emergence of General AI such as Segment Anything Model (SAM, Kirillov et al., 

2023) for computer vision tasks are reshaping the application of deep learning, and also 

lay a groundwork for developing transferable water segmentation models. General AI 

enables the comprehension and preprocessing of images, significantly reducing the 

domain-specific knowledge (i.e., additional training data) required for downstream tasks. 

However, General AI cannot be independently used for handling specific tasks due to its 

generality. It requires prompts, either as additional inputs during the modeling process or 

for post-processing model results. In this study, we employ a combination of domain-

specific models and General AI for water segmentation on images captured by river 

cameras, aiming to balance the strengths and weaknesses of each model to achieve 

transferability. This approach is intended to mitigate the necessity for localized 

adjustments, such as the manual annotation and model parameter fine-tuning, required in 

new river scenes. 

Overall, the main objective of this study is to developing a novel transferable deep 

learning-based water segmentation framework for monitoring the water level trend using 

river cameras. The framework was applied to four spots in Tewkesbury, UK, under 

different prompt modes of SAM. Its performance was compared with a single domain-

specific deep learning model, ResUnet. Finally, SOFI was used as a qualitative index for 

monitoring the water level trend. 

The remainder of this paper is organized as follows: Section 2 elaborates on the 

framework for water segmentation, along with the dataset used in this study. The detailed 

model results, and the evaluation of the model performance are presented in Section 3. 

Section 4 further discusses the value of the extracted water level trend, the superiority of 

the methods, and the implications for future studies. Finally, the conclusions are given in 

Section 5. 

 

2. Methods and materials 

2.1 Water segmentation model structure 

2.1.1 Brief introduction to ResUnet model 

In this study, the ResUnet model is adopted as the representative domain-specific 

deep learning model and pre-trained for water segmentation. ResUnet is a conventional 

end-to-end convolutional neural network, employing the Unet structure as its backbone 
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(Figure 1a). As a fully convolutional network, Unet has shown efficacy in pixel-level 

tasks such as semantic segmentation (Ronneberger et al., 2015).  

The Unet-based model comprises a contraction (encoding) and an expanding 

(decoding) path, creating a symmetric U-shaped architecture. During contraction, spatial 

information decreases while feature information increases. The expanding path decodes 

extracted features into spatial information. The model combines features and spatial 

information through skip connections, aiding in preserving spatial detail (Drozdzal et al., 

2016). The change in feature size is opposite between the contraction and expanding paths. 

ReLU activation is applied to features in each block. The symmetric structure allows the 

decoding layers to match their encoding layers, transmitting initial context and texture 

information for accurate segmentation. 

Each encoding or decoding block of ResUnet integrates ResNet-50, a validated 

model structure for water segmentation (Wagner et al., 2023). ResNet-50 is a well-known 

convolutional neural network architecture in computer vision tasks, exceling in image 

recognition and can capture intricate features of images. ResNet-50 addresses vanishing 

gradient problems through residual blocks, enabling the stable training of multiple-layer 

based model architecture. With 50 layers, shortcut connections efficiently learn residual 

functions (Figure 1 (b) and (c)). 

The ResUnet can theoretically accomplish water segmentation tasks independently 

but may struggle with qualified precision, particularly given limited training data or when 

facing new scenes that are significantly divergent from its training dataset’s contexts. The 

model may not accurately identify the edges of water bodies, thus affecting the precise 

delineation of water body contours. 

Figure 1. Diagram of (a) the structure of ResUnet model; (b) the structure of the ResNet-50; and (c) 

the residual operations in the ResNet-50.  
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2.1.2 Brief introduction to SAM model 

SAM is an innovative foundational computer vision model developed by Meta AI for 

image segmentation. SAM departs from conventional segmentation frameworks by 

introducing a novel promptable segmentation task, which is facilitated by a prompting-

enabled model architecture and a diverse pool of training data. In the model training phase, 

a data engine is used to establish a cyclic process that employs the model for data 

collection and then exploits the newly gathered data to enhance the model performance. 

Ultimately, SAM undergoes training on an extensive dataset consisting of over one billion 

masks extracted from 11 million images.  

As shown in Figure 2, SAM comprises three components: an image encoder, a 

prompt encoder, and a mask decoder. The image encoder, built on the backbone of ViT, is 

pre-trained using the masked autoencoder technique (He et al., 2022). It takes a single 

image as input and generates image embeddings. The embeddings can be either combined 

with the prompt encoding output, generated by the prompt encoder that includes dense 

branches (for masks) and sparse branches (for points, boxes, and texts), or directly passed 

to the mask decoder for decoding the corresponding masks. 

SAM offers support for both automatic everything and manual prompt modes. The 

fundamental distinction between the two modes lies in whether SAM uses guided prompts 

during its segmentation process and whether its resulting segmentation contains specific 

semantic information. For the former, SAM will automatically generate a series of 

semantically unknown masks for the image without manual priors. For the latter, users 

need to provide additional hints to SAM, including boxes, points, and texts. These hints 

serve to guide SAM in the segmentation process for the expected object. 

Given no prior knowledge, SAM cannot accomplish water segmentation tasks 

independently under either mode. In everything mode, although SAM can fully exploit 

its segmentation capability to accurately segment the image, the semantic understanding 

of each individual object remains unknown. In prompt mode, SAM even requires prior 

knowledge on water to be provided in the input. Therefore, SAM needs to be used in 

combination with other domain-specific models either during the segmentation process 

or in the post-processing of segmentation results. 
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Figure 2. Diagram of the structure of the SAM model. The SAM supports both the everything and 

prompt modes for image segmentation. 

 

2.1.3 The integration of ResUnet and SAM 

As described in Section 2.1.1 and 2.1.2, in the context of image segmentation, 

domain-specific models and General AI manifest distinct characteristics. General AI 

models represented by SAM possess state-of-the-art segmentation capability at the pixel 

level, while mainly focus on localizing class-agnostic masks. Conversely, domain-

specific models such as ResUnet model are tailored to exclusively extract visual 

semantics and their region-level variants, but limited in precision on edge detection. 

Integrating the two approaches can potentially lead to an enhancement on segmentation 

efficiency. Accordingly, this study integrates General AI with domain-specific models to 

formulate a novel deep learning framework for water segmentation in river images.  

As depicted in Figure 3, within the framework, the ResUnet model is pre-trained on 

a limited dataset that does not include images taken at the river awaiting observation. It 

then outputs the water probability map and identifies the pixel with the highest water 

probability. Subsequently, we use SAM as the foundational model to generate water 

masks. Both SAM modes will be performed for comparison. In the everything mode, 

SAM automates the segmentation of river images into multiple discrete objects, even 

though their semantics are unknown (“Everything Mask”). The coordinates of the most 

water-like pixel identified by ResUnet are superimposed onto the “Everything Mask” 

segmented by SAM, facilitating the identification of the water object and thereby 

completing the water segmentation. In the prompt mode, the point prompt is adopted. The 

most-water-like pixel coordinate is fed to SAM along with the original image as inputs, 

and SAM will directly output the water mask. Finally, the SOFI is calculated based on 

the segmented water mask, enabling the monitoring of river water levels. 
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Figure 3. Diagram of the water segmentation framework. The framework is developed by coupling 

an SAM and a ResUnet model. The ResUnet outputs a water probability map for locating the 

coordinate of the pixel with highest water probability. The coordinate will then be adopted by SAM 

as water-related hints for water segmentation in either everything or point prompt modes. 

 

2.2 Data 

2.2.1 Dataset for pre-training ResUnet 

The ResUnet model is pre-trained on the RIWA dataset (River Water Segmentation 

Dataset; Wagner et al., 2023). The dataset offers pixel-wise binary river water 

segmentation with resolutions of up to 1536×1536 pixels. Comprising a total of 789 

training images, 228 validation images, and 111 testing images, RIWA is a compilation 

of fine-labeled images captured by smartphones, drones, and digital single lens reflex 

cameras, in addition to suitable images extracted from the Water Segmentation Dataset 

(Liang et al., 2020). As shown in Figure 4, the images in this dataset encompass various 

lighting conditions, weather scenarios, and perspectives. 

Figure 4. Illustration of example images in the RIWA dataset. Images with widths or heights exceeding 

512 are divided into 512×512 sub-patches for model input. 
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2.2.2 Dataset for the application of ResUnet+SAM framework 

The framework was applied to a river camera image dataset collected in the 

Tewkesbury, UK (Vetra-Carvalho et al., 2020). The dataset comprises images and water 

level observations acquired from river cameras installed at four spots: Diglis Lock, 

Evesham, Strensham Lock, and Tewkesbury Marina, situated along the rivers Avon and 

Severn in the UK (Figure 5). These observations cover the period between November 

21st and December 5th, 2012, during a significant flooding event in the Tewkesbury 

region. The dataset offers daytime water level data for both River Avon and River Severn, 

encompassing both the rising and falling limbs of the flood. 

The water level values for the four river camera images during this period are also 

extracted. High-accuracy field-of-view point measurements are utilized for each camera, 

employing Leica TS 12 (TS) and Leica CS10/CS15 & GS Sensor instruments (GNSS) 

and Total Station. The dataset includes a total of 141, 136, 144, and 138 images from the 

Diglis Lock, Evesham, Strensham Lock, and Tewkesbury Marina, respectively. However, 

not every image in the dataset is labeled with a water level value, the number of images 

with associated valid water level records in the four locations is 50, 46, 114, and 138, 

respectively. The position of water and non-water pixels for each image is manually 

annotated to serve as the ground truth water masks. 

Figure 5. Camera perspectives from (a) Diglis Lock, (b) Evesham, (c) Strensham Lock, and (d) 

Tewkesbury Marina. The yellow dots depict a selection of measured points within the cameras’ field 

of view in the construction of the original dataset, utilized for extracting water level from the images. 

The above example images are referenced from Vandaele et al (2021). 
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2.3 Experimental setup 

2.3.1 Model setup 

The ResUnet model was pre-trained on the RIWA dataset for 100 epochs using cross 

entropy (Lecun et al., 2015) as loss function, a learning rate of 0.001, and a batch size of 

16. Parameter updates were performed using the training set, and the model parameters 

from the epoch with the optimal performance on the validation set were chosen as the 

final parameters. 

The official GitHub repository of SAM offers three types of pre-trained models 

distinguished by varying backbone sizes: ViT-B, ViT-L, and ViT-H. These models’ 

parameter sizes span from small to large. ViT-H notably outperforms ViT-B, though its 

increased complexity leads to multiplied testing time. For our research, we chose to adopt 

ViT-H as the encoder to achieve the optimal performance of SAM. 

2.3.2 Image preprocessing 

Both images and masks in the RIWA dataset have arbitrary sizes. To standardize 

image inputs for ResUnet, the dataset underwent automated preprocessing to generate 

squared input samples, all with dimensions of 512×512 pixels. For images larger than 512 

pixels in width or height, they and their masks were divided into multiple 512×512 sub-

patches (Figure 4). Images with dimensions smaller than 512 pixels in either width or 

height were resampled to 512 pixels in the corresponding dimension. 

In the application of the ResUnet+SAM framework to the river image dataset in 

Tewkesbury, UK, the initial step also involved dividing the images into 512×512 sub-

patches as described above. These sub-patches were then input into the pre-trained 

ResUnet to calculate the probability of each pixel belonging to the water class. The 

probability distributions of all sub-patches were combined to determine the position of 

the pixel with the highest probability in the complete image. Specifically, if different sub-

patches had overlapping regions, the probability of the overlapping region was calculated 

by averaging the probabilities of each sub-patch. However, when SAM was applied to the 

image to perform segmentation under either everything or point prompt mode, the image 

was input to SAM in its entirety, eliminating the need to slice the image into sub-patches. 

Additionally, during the data quality control process, the size of the sub-patch for SOFI 

calculation was also configured as 512×512 pixels. 
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2.3.3 Evaluation metrics 

To assess the reliability of the pixel identified as being most water-like by ResUnet, 

accuracy was introduced as the metric to indicate the proportion of pixels that truly 

represent water among all the identified most water-like pixels for each of the four 

locations. 

As for the water segmentation task, the intersection over union ratio (IoU), also 

known as the Jaccard index (Rezatofighi et al., 2019), was used for comparing the water 

segmentation result (𝑆) to the manually annotation (�̂�). IoU is computed as:   

𝐼𝑜𝑈 =  
1

𝑛
|

𝑆𝑖∩�̂�𝑖

𝑆𝑖∪�̂�𝑖
|                          (1) 

where 𝑆𝑖  and �̂�𝑖  is the area covered by water in a segmented image and 

corresponding ground truth water mask, respectively. The index varies from 0% to 100% 

to represent complete misclassification to perfect classification. 

Meanwhile, to further compare the model’s ability to identify water bodies at 

different pixel coordinates within images, accuracy was used again but to indicate the 

proportion of times a pixel coordinate is correctly recognized as water body by models, 

out of all the times this pixel truly belongs to water body across different images taken in 

the same location.  

Moreover, the Spearman correlation coefficient and Pearson correlation coefficient 

(de Winter et al., 2016), were applied to images affiliated with ground truth water level 

data in the four locations. These coefficients were used to evaluate and describe the extent 

of correlation between the estimated SOFI values and the scalar values of water level. 

 

3. Results 

3.1 The performance on most water-like pixel identification 

Firstly, we investigates the distribution patterns of most water-like pixels identified 

by ResUnet, and whether the identified pixels correspond to actual water. This serves as 

the premise for ResUnet to provide effective water-related hints for SAM. 

Figure 6 provides a visualization of the spatial distribution of pixels most resembling 

water, as identified by the ResUnet model in images captured at the four different 

locations by river cameras. The illustration highlights that, across different moments in 
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time, pixels identified as closely resembling water exhibited a clustering pattern, with 

their clustering centers shifting in response to fluctuations in river water levels. Moreover, 

these pixels mainly clustered within the central regions of the water bodies rather than at 

the interfaces between water and the non-water background. Therefore, the confidence of 

the single pre-trained ResUnet model in discerning water within the interior of river 

channels is higher, while its efficacy at the water body’s periphery cannot be guaranteed. 

Figure 6. The kernel density of pixels with the highest probability of belonging to water identified by 

the ResUnet model in river camera images taken at different time points at the four locations. 

 

Figure 7 further statistically analyzes the probability values associated with pixels 

identified by the pre-trained ResUnet model as having the highest likelihood of belonging 

to water. Across all four locations, the majority of the identified pixels exhibited a 

probability of being water exceeding 0.95, and the accuracy that the pixel identified as 

the most water-like pixel is truely a water pixel exceeded 90%. The identified pixels can 

effectively represent water bodies. 
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Figure 7. (a) The box plot depicting the probability values corresponding to the pixel with the highest 

probability of belonging to water among different images at Diglis Lock, Evesham, Strensham Lock, 

and Tewkesbury Marina. The upper and lower boundary of the box represent the upper (0.75) and 

lower quartile (0.25), the solid line represents the median, the whiskers extend to 1.5 times the 

interquartile range, and the dots are outliers. (b) The accuracy that the pixel with the highest probability 

of belonging to water is truly a water pixel. 

 

3.2 The performance on water segmentation 

Given the reliable coordinates of the pixel with the highest water probability provided 

by ResUnet, SAM can use it to filter the corresponding object from the Everything Mask 

under everything mode or take it as inputs for guiding subsequent segmentation under 

point prompt mode, and has produced the corresponding water masks. 

Compared with the single pre-trained model, the framework’s superior performance 

under either everything mode or point prompt mode on water segmentation is 

demonstrated. As depicted in Figure 8, at Diglis Lock, Evesham, and Strensham Lock, 

the ResUnet+SAM framework under both the two different modes consistently 

outperformed the single ResUnet model with statistically significant superiorities in terms 

of IoU values. The statistical significance was verified by the Analysis of Variance 

(ANOVA), with p-value less than 0.01 given the confidence level of 95%. At these three 

locations, the median IoU values for individual images all exceeded 0.95. 

At Tewkesbury Marina, the advantage of the ResUnet+SAM framework under 

everything mode over the ResUnet model was less pronounced. This is attributed to SAM 

conflating water bodies and wet embarkment ground as a unified object in some images. 

However, the median IoU value of the framework for single images was still close to 1. 

Meanwhile, predictions with very low IoU values (<0.5) were also fewer than those 
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produced by the single ResUnet model. While under the point prompt mode, the 

framework continued to demonstrate considerable superiority over the ResUnet model. 

Unlike under everything mode, it did not exhibit an inclination to overestimate the water 

body area within the image, thereby facilitating a more precise water segmentation 

process. 

The findings across the four locations collectively suggest that the integration of 

ResUnet and SAM can refine the water segmentation process and has generated more 

reliable water masks. Moreover, the segmentation results obtained under point prompt 

mode are slightly better than those achieved under everything mode. On average, there is 

a 15% and 16% improvement under everything mode and point prompt mode, 

respectively, compared to ResUnet. 

Figure 8. The IoU values for water body segmentation by the ResUnet+SAM framework under 

everything mode and point prompt mode, as well as the ResUnet model at Diglis Lock, Evesham, 

Strensham Lock, and Tewkesbury Marina. 

 

Figure 9 further compares the accuracy achieved by the ResUnet model and the 

ResUnet+SAM framework under different modes across various pixel coordinates within 

the images. As for the single ResUnet model, it performed well on discerning water pixels 

within the central regions of the water bodies but encountered challenges in accurately 
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segmenting water pixels in transitional zones between water and non-water pixels, 

notably around the pillar at Diglis Lock, as well as the objects along the riverbank in the 

other three locations. Consequently, ResUnet falls short in delineating the contours of the 

water bodies with the same level of precision as the coupling framework. In contrast, no 

matter under everything mode or point prompt mode, the ResUnet+SAM framework 

consistently presented a high degree of accuracy at not only pixels residing within the 

water bodies, but also those positioned along the interfaces between the water and 

adjacent elements, such as river banks, trees, pillars, and other background features.  

Figure 9. The accuracy achieved by the ResUnet+SAM framework and the ResUnet across various 

pixel coordinates within the river camera images for the four locations. 

 

In Figure 10, three example images with varying water levels at each of the four 

locations, along with their corresponding water masks, as well as the water segmentation 

results achieved by different methods are visualized. These examples can be considered 

to demonstrate relatively high predictive performance within each method across all 

images. It can be observed that the single ResUnet model struggled to extract water pixels 

as accurately as the ResUnet+SAM framework. Similar to previous findings illustrated in 

Figure 10, in some images, the sky was misclassified as water due to its blue appearance, 

while in other cases, damp ground and the reflections of trees or pillars on the water 

surface led to misclassification by ResUnet, causing the water areas covered by 

reflections to be unrecognized. However, these interfering factors have not significantly 

impacted water segmentation when using the ResUnet+SAM framework. For each 

example image, the framework has effectively captured the water body outlines, 

achieving precise segmentation of water pixels. 
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Figure 10. Illustrative examples of water segmentation results of ResUnet+SAM and ResUnet at 

Diglis Lock, Evesham, Strensham Lock, and Tewkesbury Marina. The IoU for each mask was attached.  

 

However, as depicted above, significant mis-segmentation can occur under the 

everything mode, even worse than ResUnet, especially in Tewkesbury Marina. Figure 11 

presents a specific instance of significant segmentation errors by the ResUnet+SAM 

framework under the everything mode. The image depicts a scenario where the riverbank, 

situated at the lower portion, is obscured by shadows, rendering it featureless and 

appearing entirely dark. Consequently, SAM, operating under the everything mode, 

erroneously identified this shadowed area as part of the water surface. However, the true 

delineation between the actual water surface and the shadowed region is actually distinct, 

with even single ResUnet model capable of accurately delineating its edges. While under 

the point prompt mode, SAM performed effectively in water segmentation for this 

scenario. Taking point as inputs has made a positive impact on guiding segmentation. 
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Figure 11. Examples of significant segmentation errors made by the ResUnet+SAM framework under 

the everything mode, along with segmentation results under point prompt mode or from ResUnet. 

 

3.3 The performance on water level trend monitoring 

The inception of this study is to employ river camera image sequences to monitor the 

trend in water levels. Figure 12 presents a comparative analysis of the trend in SOFI time 

series contrasted against the actual water level time series at four locations. 

The figure illustrates that, across Diglis Lock, Evesham, and Strensham Lock, the 

SOFI variations obtained using the ResUnet+SAM framework under both everything 

mode and point prompt mode closely aligned with the actual water level fluctuations. The 

alignment remained consistent irrespective of high or low water levels, effectively 

capturing the water level dynamics. Notably at Strensham Lock, where water level 

changes were substantial, the SOFI derived from the framework still matched the water 

levels, accurately capturing even minor variations. In contrast, the SOFI values calculated 

based on the water segmentation results given by the ResUnet model exhibit significant 

variability, with a notable presence of extreme erroneous values. Many of these values 

tended to underestimate the water level due to insufficient segmentation of water bodies 

in the images, thereby compromising the accurate depiction of actual water level trends. 

At Tewkesbury Marina, the framework still demonstrated its ability to accurately 

depict water level trends under point prompt mode, providing predictions that were 

relatively accurate in magnitude for extremely high and low water levels. However, under 
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the everything mode, the framework tended to overestimate water levels at specific 

intervals, thereby producing SOFI anomalies.  

Figure 12. The trends of the actual water levels and the SOFI time series derived from both the 

ResUnet+SAM framework and the ResUnet model at Diglis Lock, Evesham, Strensham Lock, and 

Tewkesbury Marina. The images from different locations are sorted by time, but the time intervals 

between individual images are not uniform. 

 

From quantitative perspective, the Spearman correlation coefficient and Pearson 

correlation coefficient between the SOFI time series obtained from the ResUnet+SAM 

framework and the actual water level time series under both modes were superior to those 

of the ResUnet model across all locations (Table 1). The superiority is more pronounced 

under point prompt mode: the Pearson correlation coefficient exceeded 0.90 in most 

locations, and the Spearman correlation coefficient even reached 0.94 at Tewkesbury 

Marina. 

These results quantitatively demonstrate the strong correlation between the SOFI 

time series obtained from the ResUnet+SAM framework and the actual water level time 

series, confirming the earlier assertion from Figure 12. Hence, the framework based on 

the integration of ResUnet and SAM practically facilitates the monitoring of the temporal 

water level trend, especially under point prompt mode. 
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Table 1. The Spearman correlation coefficient and Pearson correlation coefficient between the SOFI 

time series obtained using the ResUnet+SAM framework under two different modes, the ResUnet 

model, and the actual water level time series at various locations 

 Spearman correlation coefficient Pearson correlation coefficient 

 ResUnet 
Everything 

Mode 

Point 

Prompt 
ResUnet 

Everything 

Mode 

Point 

Prompt 

Diglis Lock 0.28 0.84 0.87 0.26 0.88 0.90 

Evesham 0.39 0.78 0.88 0.18 0.83 0.87 

Strensham Lock 0.74 0.92 0.92 0.58 0.83 0.93 

Tewkesbury Marina 0.76 0.78 0.94 0.59 0.78 0.92 

 

4. Discussion 

4.1 The value of the water segmentation-based river water level observations 

If local topography situation is available, the water mask segmented by the 

framework can be transformed and overlaid with the riverbed terrain to derive scalar 

water level values, which can support real-time observations of river flow conditions. 

However, obtaining fine-scale terrain data is often challenging. Despite the limitation in 

underlying surface data, the water mask remains valuable for calibrating hydrological 

models through calculating SOFI based on it.  

The calibration efficacy of hydrological models depends on the water segmentation 

algorithm’s performance, with a higher correlation between SOFI and actual water level 

values enhancing hydrological model calibration. According to the scenarios analysis 

conducted by Moy de Vitry & Leitão (2020), with correlation coefficients no less than 0.6 

between SOFI time series and real water level values, hydrological models could be 

calibrated to achieve significantly higher predictive level than uncalibrated benchmark. 

The SOFI sequences generated by the ResUnet+SAM framework under different modes 

can achieve correlation coefficients of over 0.8 for most regions in this study, thus are 

informative for hydrologic model calibration.  

Especially under point prompt mode, the framework’s SOFI time series display 

negligible systematic errors, avoiding overall overestimation or underestimation of water 

levels, with minimal and random errors. Based on the research by Moy de Vitry & Leitão 

(2020) and Ilja Van Meerveld et al. (2017), a greater degree of randomness in the error 
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distribution of water level class is more advantageous for model calibration when errors 

are minor. This phenomenon can be attributed to the compensating effect of the number 

of observations and their accuracy, as the random errors will average out when a sufficient 

number of observations are utilized. Therefore, SOFI under point prompt mode is more 

robust to practically support hydrological modeling. 

 

4.2 The compromise between the Narrow AI and General AI in imaging-

based hydrological monitoring 

AI is gradually progressing from the era of Narrow AI towards the era of General AI 

(Bundy, 2017). During the Narrow AI stage, researchers aim to develop AI models with 

highly specialized intelligence in specific domains, while in the General AI stage, the 

potential for large models pre-trained on web-scale datasets to revolutionize computer 

vision with robust zero-shot and few-shot generalization capabilities has emerged. Taking 

SAM as an example, it possesses the capacity to segment distinct entities in any given 

image, as long as no less than two separate objects exist. However, similar to other 

General AI, SAM cannot provide insights into the identity of a segmented object without 

prior hints. Hence, for conducting downstream tasks such as water segmentation, prompt 

engineering becomes essential. Typically, the task of providing prompts is executed by 

humans, following predefined guidelines (Liu & Chilton, 2022). In our study, we 

automate the entire process by leveraging General AI (SAM) as the foundational 

component while employing Narrow AI (ResUnet) as a prompter.  

Furthermore, as mentioned above, different prompt modes, i.e., the ways of 

integrating prior knowledge provided by domain-specific models, also influence the 

performance of General AI. Approaches such as those used in the everything mode for 

our study, which apply post-processing on General AI results, may not fully inspire 

General AI’s image understanding capabilities. This conclusion aligns with findings in 

other fields such as medical image analysis (Huang et al., 2024), indicating that for 

General AI, or at least for SAM, it is not yet capable of flawlessly segmenting each object 

in an image independently. In contrast, incorporating prior knowledge directly into the 

segmentation process can guide the General AI to achieve conditional segmentation, 

resulting in more accurate outcomes, thus representing a more optimal prompt mode. 

The framework proposed in this study also holds the potential for application to other 
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imaging-based hydrological monitoring tasks that are currently constrained by the 

availability of annotated data. Examples include water quality monitoring or the detection 

of floating debris on the water surface (Ramírez et al., 2023; Solé Gómez et al., 2022). 

The combination paradigm maximizes the utilization of costs already consumed in 

General AI development, while compressing the marginal costs associated with 

developing domain-specific models for downstream tasks. The developers of the General 

AI, often large corporations like Meta AI and OpenAI who can access substantial datasets 

and computational power resources, have shouldered the burden of training big 

foundation models for the public. The time and learning costs associated with the creation 

of standardized datasets and model selection by individual users in domain-specific 

model development can be substantially reduced. This facilitates a more convenient 

utilization of AI tools for non-computer science professionals, as exemplified by 

hydrologists in this study. 

 

4.3 Future work 

This study introduces a transferrable solution for monitoring river water level trends. 

However, adaptive strategies such as transfer learning, which were previously considered 

for adaptability to new locations, are not rendered completely obsolete. In fact, SAM can 

be enhanced through fine-tuning only two parameters via one-shot learning, facilitated by 

providing a single labeled image-mask pair (Zhang et al., 2023). This refinement may aid 

in overcoming challenges related to the confusion between water bodies and wet ground 

occurred in Tewkesbury Marina under everything mode. Furthermore, with a future 

consideration for deployment on mobile applications or real-time usage, the exploration 

of lightweight versions of SAM, such as EfficientSAM (Xiong et al., 2023), can be 

pursued to establish a more energy-efficient observational paradigm. 

Besides everything mode and point prompt mode, SAM can also be prompted in other 

forms such as mask and text. Future work should continue to perform in-depth 

comparisons among more prompt forms and address the hydrodynamic conditions of 

various river types to determine optimal prompt configurations. Different surface flow 

characteristics may have varying requirements for the form and magnitude of prompts. 

The exploration of effective strategies for prompting General AI can contribute to more 

adaptive imaging-based hydrological monitoring across different rivers. 
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Moreover, in subsequent research, the framework proposed in this study will be 

extended to regions with more pronounced variations in seasonal conditions, lighting 

backgrounds, and other factors, for evaluation. Also, we will select appropriate locations 

to construct hydrological models like HBV (Seibert & Bergström, 2022) and utilize the 

SOFI sequences derived from our proposed framework for model calibration, aiming to 

elevate the local hydrological forecasting capabilities, facilitating improved 

understanding of the hydrological process. If fine-scale terrain data is available, the water 

segmentation results can also be used for overlaying analysis to infer scalar river water 

level, which can then be compared with the data recorded by gauging stations. 

 

5. Conclusions 

In this study, we propose a novel transferable deep learning framework that combines 

General AI (SAM) with a domain-specific model (ResUnet pre-trained on a non-local 

river image dataset) for water segmentation and water level trend monitoring. The 

framework was implemented in four different riverside locations in Tewkesbury, UK, and 

compared with the single ResUnet model. Moreover, different modes of SAM, including 

the everything mode and point prompt mode, were both adopted and contrasted. 

Our results indicated the transferability of the ResUnet+SAM framework for water 

segmentation, with an average improvement of 15% and 16% in IoU under the everything 

mode and point prompt mode, respectively, compared to ResUnet. Requiring no local data 

annotation or model parameter fine-tuning, the proposed framework accurately identified 

water pixels in the images and delineated the water body’s outline. Moreover, utilizing 

SAM under the point prompt mode represents a superior strategy for the fusion of prior 

knowledge provided by domain-specific models. For all four locations, the spearman 

correlations between the SOFI derived by the framework under point prompt mode and 

the actual water level exceeded 0.87, and the errors were randomly distributed. Regarding 

both the error magnitude and error distribution pattern, the segmentation results can 

practically support the monitoring of water level trend. 

Overall, this study establishes a transferable imaging-based water level trend 

monitoring paradigm through the use of Narrow AI and General AI in tandem, 

substantially lowering the requirement for localized data annotation and model 

deployment. Future work is recommended to adopt one-shot learning or other forms of 

prompts to adapt the framework to more diverse and complex monitoring conditions. 
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Meanwhile, the data processed by the framework will be further integrated with 

hydrological models to evaluate its enhancement of hydrological forecasting performance 

or overlaid with riverbed terrain data to infer scalar water level values. 

 

Code and data availability statement 

1. The links to the river image datasets were given in the paper. 

2. ResUnet and its pre-trained parameters on ImageNet dataset can be directly used 

within the PyTorch framework using the segmentation_models_pytorch module:  

https://github.com/qubvel/segmentation_models.pytorch 

3. The code of SAM and its pre-trained parameters can be accessed in the Github 

repository through the following link: 

https://github.com/facebookresearch/segment-anything  
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