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Abstract

Coastal oceans may play an important role in regulating the concentration of carbon dioxide in the atmosphere. Quantification

of carbon fluxes at this highly dynamic land-ocean interface will aid in monitoring, reporting, and verification for marine carbon

dioxide removal. Here, we use a two-step neural network approach to generate basin-wide estimates from sparse observational

data in the coastal Northeast Pacific Ocean at an unprecedented spatial resolution of 1/12° with coverage in the nearshore (0 -

25 km offshore). We compiled partial pressure of carbon dioxide (pCO2) observations as well as a range of predictor variables

including satellite-based and physical oceanographic reanalysis products. With the predictor variables representing processes

affecting pCO2, we created non-linear relationships to interpolate observations from 1998-2019. Compared to in situ shipboard

and mooring observations, our coastal pCO2 product captures broad spatial patterns and seasonal cycle variability well. A

sensitivity analysis identifies that the parameters responsible for the neural network’s ability to capture regional pCO2 variability

agrees with mechanistic processes. Using wind speed and atmospheric CO2, we calculated air-sea CO2 fluxes. We report an

anticorrelation between net annual air-sea CO2 flux and air-sea CO2 flux seasonal amplitude and suggest the relationship is

driven by regional processes. We show the inclusion of nearshore net outgassing fluxes lowers the overall regional net flux.

Overall, our results suggest that the region is a net sink (-0.7 mol m-2 yr-1) for atmospheric CO2 with trends indicating

increasing oceanic uptake due to strong connectivity to subsurface waters.
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Key Points: 10 

• The coastal Northeast Pacific is a net sink for atmospheric CO2 with increasing air-sea 11 

pCO2 disequilibrium trends in most of the region. 12 

• Regional processes drive net annual air-sea CO2 flux to be anticorrelated with air-sea 13 

CO2 flux seasonal amplitude. 14 

• Estimated pCO2 reproduces observed seasonal cycle phase and amplitude well along with 15 

broad spatial patterns of variability.  16 
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Abstract 17 

Coastal oceans may play an important role in regulating the concentration of carbon dioxide in 18 

the atmosphere. Quantification of carbon fluxes at this highly dynamic land-ocean interface will 19 

aid in monitoring, reporting, and verification for marine carbon dioxide removal. Here, we use a 20 

two-step neural network approach to generate basin-wide estimates from sparse observational 21 

data in the coastal Northeast Pacific Ocean at an unprecedented spatial resolution of 1/12° with 22 

coverage in the nearshore (0 - 25 km offshore). We compiled partial pressure of carbon dioxide 23 

(pCO2) observations as well as a range of predictor variables including satellite-based and 24 

physical oceanographic reanalysis products. With the predictor variables representing processes 25 

affecting pCO2, we created non-linear relationships to interpolate observations from 1998-2019. 26 

Compared to in situ shipboard and mooring observations, our coastal pCO2 product captures 27 

broad spatial patterns and seasonal cycle variability well. A sensitivity analysis identifies that the 28 

parameters responsible for the neural network’s ability to capture regional pCO2 variability 29 

agrees with mechanistic processes. Using wind speed and atmospheric CO2, we calculated air-30 

sea CO2 fluxes. We report an anticorrelation between net annual air-sea CO2 flux and air-sea 31 

CO2 flux seasonal amplitude and suggest the relationship is driven by regional processes. We 32 

show the inclusion of nearshore net outgassing fluxes lowers the overall regional net flux. 33 

Overall, our results suggest that the region is a net sink (-0.7 mol m
-2

 yr
-1

)  for atmospheric CO2 34 

with trends indicating increasing oceanic uptake due to strong connectivity to subsurface waters. 35 

Plain Language Summary 36 

The importance of the coastal ocean as a hub of exchange for carbon between terrestrial 37 

ecosystems, the open ocean, and the atmosphere is still unclear. In this study, we investigate how 38 

much carbon dioxide moves between the ocean and the atmosphere in the coastal Northeast 39 

Pacific. We use a mathematical technique (i.e., machine learning) to transform limited 40 

observational data to a high-resolution estimate of this exchange across the entire region. We 41 

found this method effectively captured the big picture patterns and seasonal changes in ocean 42 

carbon dioxide levels. We report that the coastal Northeast Pacific absorbs slightly more carbon 43 

dioxide than it releases, helping regulate atmospheric levels of this greenhouse gas. However, 44 

there are large differences regionally with some coastal zones absorbing substantial amounts of 45 

carbon dioxide and others releasing the gas, such as the nearshore. We report a trend of 46 

increasing ocean uptake over time, suggesting the region may play an increasingly important role 47 
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in reducing atmospheric carbon dioxide levels. This study provides valuable baseline information 48 

for efforts to reduce carbon dioxide in the atmosphere through artificially enhancing ocean 49 

uptake in the region. 50 

1 Introduction 51 

The global ocean takes up nearly a quarter of anthropogenic carbon dioxide (CO2) 52 

emissions annually (Friedlingstein et al., 2023). It has been suggested coastal oceans contribute 53 

disproportionately to oceanic CO2 uptake relative to global ocean by surface area (Bourgeois et 54 

al., 2016; Chau et al., 2022; Laruelle et al., 2014; Resplandy et al., 2024; Roobaert et al., 2019, 55 

2024), but exhibit far greater heterogeneity in air-sea CO2 fluxes (Liu et al., 2010) and may be 56 

changing at a different rate compared to the open ocean (Laruelle et al., 2018; Resplandy et al., 57 

2024). Coastal oceans serve as an important hub of exchange, outgassing carbon delivered by 58 

terrestrial ecosystems to the ocean (Regnier et al., 2022), while facilitating transport between the 59 

coast and open ocean, and directly absorbing CO2 from the atmosphere (Bauer et al., 2013; C.-T. 60 

A. Chen & Borges, 2009; Mackenzie et al., 1998; Ward et al., 2020). However, the role of the 61 

coastal ocean in the global carbon budget is not well-constrained due to lack of observations 62 

relative to the complexity of highly localized variability (Chavez et al., 2007; Dai, 2021; Dai et 63 

al., 2022). 64 

Gap filling approaches (i.e., methods to interpolate sparse observations) used to inform 65 

coastal ocean air-sea CO2 flux estimates are often at coarse resolution and often operate as a 66 

“black box.” Interpolation techniques have been widely used to inform air-sea CO2 flux 67 

estimates in the coastal ocean both regionally and globally (e.g., S. Chen et al., 2016; Hales et 68 

al., 2012; Laruelle et al., 2017; G. Parard et al., 2015; Gaëlle Parard et al., 2016; Roobaert et al., 69 

2019, 2024; Sharp et al., 2022; Xu et al., 2019). These approaches extend the temporal and 70 

spatial coverage of partial pressure of CO2 in seawater (pCO2) observations from community 71 

synthesis efforts (e.g., through the Surface Ocean CO2 Atlas (SOCAT); Bakker et al., 2016) and 72 

can be used to calculate air-sea CO2 fluxes using wind speed and atmospheric CO2 (Wanninkhof, 73 

2014). Historically, coastal ocean approaches have been adopted from their open ocean 74 

counterparts (Chau et al., 2022; Landschützer, Laruelle, et al., 2020), and thus most of these 75 

estimates have at best a monthly, 1/4x1/4 latitude by longitude resolution, which is incapable 76 

of resolving smaller scale processes in coastal regions, especially nearshore, that experience high 77 
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variability and short autocorrelation length scales (Jones et al., 2012). Interpolation techniques, 78 

which lack transparency, also rarely probe internal relationship dependency between variables. 79 

Large heterogeneity in air-sea CO2 fluxes exist in the coastal Northeast Pacific, with 80 

substantial expanses of the coast completely absent of observations (Benway et al., 2016). Large 81 

discrepancies exist between previous air-sea CO2 flux estimates within this region, with 82 

disagreement over the net annual flux magnitude and direction (i.e., as a net sink or source for 83 

atmospheric CO2; Duke, Richaud, et al., 2023; Fennel et al., 2019). Air-sea CO2 flux variability 84 

in the region is heavily impacted by coastal processes such as upwelling, river plumes, tidal 85 

mixing, and coastal currents (Evans et al., 2012, 2019; Evans & Mathis, 2013; Hales et al., 2005; 86 

Ianson et al., 2003; Nemcek et al., 2008). Upwelling along the Pacific eastern boundary shelf has 87 

contrasting impacts on the oceanic CO2 sink reflected in complex interactions between biological 88 

carbon drawdown fueled by upwelled nutrient and carbon-rich waters (Hales et al., 2005; Messié 89 

& Chavez, 2015; Ribalet et al., 2010) and outgassing associated with the same subsurface waters 90 

brought to the surface (Chan et al., 2017; Christensen, 1994; Evans et al., 2011; Feely et al., 91 

2008; Hales et al., 2005; Ianson & Allen, 2002). Closer to shore, within the Salish Sea, and along 92 

Alaska’s Inside Passage, air-sea CO2 fluxes into and out of the ocean are highly episodic and 93 

spatially heterogeneous (Evans et al., 2022; Jarníková, Ianson, et al., 2022). Binning regional 94 

pCO2 observations in three dimensions into monthly, 1/12x1/12 grid cells over the period 95 

1998–2019, reveals the data scarcity (Figure 1). Of the 6,030,816 spatial and temporal grid cells 96 

just 0.6% have an associated gridded pCO2 value. Observations are concentrated along shipping 97 

lanes, have a summer bias, and increase in frequency during later years (Figure 1). No 98 

observations exist in vast areas of the coastal Gulf of Alaska and along extensive stretches of 99 

shoreline (Figure 1c). 100 
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 101 

Figure 1. Number of grid cells (of 54782 total spatial grid cells) with coastal pCO2 observation 102 

data (Section 2.1) in (a) months reveals a summer bias, and (b) years showing increased 103 

sampling closer to present. (c) Total number of months of observational coverage per grid cell 104 

displays better coverage along shipping routes. 300 km offshore line shown for coastal/open 105 

oceanic boundary used in this study (solid blue line labelled ‘300’). 106 

Here we investigate how well a high-resolution regional artificial neural network (ANN) 107 

approach can determine air-sea CO2 fluxes in the coastal Northeast Pacific (NEPc). We build on 108 

an existing global setup (Landschützer et al., 2013) adopted previously in stepping to a higher 109 

spatial resolution in the open Northeast Pacific (Duke, Hamme, et al., 2023b). In Section 2, we 110 

describe the creation of a gridded pCO2 data product for the coastal Northeast Pacific monthly 111 

from January 1998 to December 2019 at an unprecedented 1/12x1/12 resolution to resolve 112 

coastal ocean processes. In Section 3, we demonstrate that our product robustly recreates gridded 113 
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observation data, comparable to a less variable open ocean product. In Section 4, we directly 114 

compare our pCO2 product with in situ shipboard and mooring observations and detail potential 115 

capabilities and limitations in the continuous, gridded product. In Section 5, we examine the 116 

regional patterns of variability in the net annual air-sea CO2 flux relative to the seasonal cycle 117 

and describe potential drivers through a spatial sensitivity analysis. We conclude by calculating 118 

surface ocean pCO2 trends in the last decades. 119 

2 Data and methods 120 

We created a coastal pCO2 data product spanning a geographic area between 45 - 62°N 121 

and 120 - 155°W, and within 6 to 300 km of shore building on the methods of Duke, Hamme, et 122 

al. (2023b). (ANN-NEPc; Duke et al., 2024). Briefly, our first step identified grid cells with 123 

similar environmental characteristics, provinces, using a self-organizing map approach (SOM) 124 

(Landschützer et al., 2013). In the second step, within each province, we used a feed-forward 125 

neural network (FFN) to create non-linear functional relationships between pCO2 observations 126 

and independent predictor variables (Landschützer et al., 2013). Third, we applied these 127 

relationships to the predictor data to generate continuous monthly sea surface pCO2 maps from 128 

1998-2019 in the coastal Northeast Pacific (NEPc). ANN-NEPc fills the gap between open ocean 129 

(> 300 km offshore) pCO2 (Duke, Hamme, et al., 2023b) to as close to the shoreline as reanalysis 130 

and satellite-based products reach. In stepping to 1/12 spatial resolution (approximately 9 km by 131 

5 km, latitude by longitude), this work represents a three times increase in spatial resolution over 132 

previous 1/4 global and regional coastal ocean products with an overlapping domain 133 

(Landschützer, Laruelle, et al., 2020; Laruelle et al., 2017; Roobaert et al., 2024; Sharp et al., 134 

2022), with extended coverage into the nearshore (defined here as 0 - 25 km offshore). 135 

2.1 pCO2 observations 136 

ANN target pCO2 data came from the Surface Ocean CO₂ Atlas (SOCAT) v2021 (Bakker 137 

et al., 2016), the Fisheries and Oceans Canada February 2019 Line P cruise 138 

(https://www.waterproperties.ca/linep/), a West Coast Ocean Acidification cruise from July and 139 

August 2010 (Evans et al., 2012), and La Perouse cruises from May 2007 and May 2010 (Tortell 140 

et al., 2012). Sea surface CO2 fugacity (fCO2) was converted to sea surface pCO2 (supplementary 141 

Text S1; Körtzinger, 1999). We did not correct in situ pCO2 observations to sea surface mass 142 

boundary layer temperature, because following previous techniques introduced significant 143 

https://www.waterproperties.ca/linep/
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additional uncertainty in our coastal study area (supplementary Text S2). pCO2 observations 144 

were bin-averaged (monthly from 1998–2019, at 1/12x1/12), computing the mean and standard 145 

deviation within each grid cell. 146 

2.2 Predictor data 147 

Predictor data were chosen based on accessibility and ability to represent processes that 148 

mechanistically impact surface ocean pCO2 (Table 1). Selected predictor variables primarily 149 

originate from satellite observations or reanalysis models (Table 1; supplementary Text S3). 150 

Predictors differ slightly from a regional open ocean estimate (Duke, Hamme, et al., 2023b). 151 

Here, we used a high-resolution regional wind speed product and not reanalysis model derived 152 

mixed layer depth. Capturing greater variability in the coastal ocean required a high-resolution 153 

regional wind speed product over a low-resolution global product (supplementary Figure S2). 154 

Latitude, longitude, and time were not used as predictor variables.  155 
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Table 1. Northeast Pacific Coastal Ocean artificial neural network predictor variables, and their 156 

corresponding source, original temporal and spatial resolutions, and processing steps used for 157 

this study. 158 

Predictor variable Source 
Original resolution 

Processing 
Temporal Spatial 

Satellite-based product 

Sea surface temperature 

(SST) 

SST_cci: Level 4 Analysis Climate Data 

Record, version 2.1 
Daily 1/20°x1/20° 

Averaged to monthly, 

aggregated to 

1/12°x1/12° 

Chlorophyll-a (Chl) Ocean_Colour_cci: Version 5.0 Daily 1/24°x1/24° 

Averaged to monthly, 

aggregated to 

1/12°x1/12°, log10-

transformed 

Satellite and in-situ observation data assimilated reanalysis product 

Sea surface salinity 

(SSS) Copernicus Marine Service 

GLOBAL_REANALYSIS_PHY_001_030 
Monthly 1/12°x1/12° 

None 

Sea surface height 

(SSH) 
None 

Atmospheric-measurement-based interpolation product 

Atmospheric pCO2 
Landschützer et al. (2020b) - NCEI 

Accession 0160558 
Monthly 1°x1° 

Interpolated to 

1/12°x1/12° 

High-resolution regional forecast model 

Wind speed 
Regional Deterministic Reforecast System 

(RDRS-v2.1) 
Hourly 1/11°x1/11° 

Averaged to monthly, 

interpolated to 

1/12°x1/12° 

2.3 Neural network construction 159 

To reach the optimal ANN-NEPc architecture, we performed a series of tuning tests using 160 

the MATLAB Neural Network Toolbox, with sequential improvements impacting future tests 161 

(Duke, Hamme, et al., 2023b). The choice of three dynamic (i.e., changing shape at every 162 

timestep) self-organizing map (SOM) based clusters represented the lowest number for a typical 163 

clustering structure to emerge (supplementary Figure S3a). All spatial grid cells within the study 164 

area belong to more than one SOM cluster at some point over 1998-2019 (supplementary Figure 165 

S3b). SOM predictor variables (SST, SSS, SSH only; Table 1) were normalized to a mean of 0 166 

and standard deviation of 1. The second FFN step used all six predictor variables in Table 1, in 167 

addition to each predictor variable anomaly (i.e., deseasonalized; calculated by subtracting the 168 

climatological monthly mean), bringing the total number of predictors to 12. Anomaly values 169 

were used to highlight interannual to decadal variability within our predictor data sets. The 170 
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number of neurons within the first hidden layer varied by province with the optimal number of 171 

neurons determined in a pre-training run (Landschützer et al., 2013, 2014). The second hidden 172 

layer used seven static neurons, which slightly improved performance. To further decrease the 173 

risk of overfitting, we used a 10-fold cross-evaluation approach to create an ANN ensemble 174 

(Duke, Hamme, et al., 2023b; Li et al., 2019, 2020) and a bootstrapping method (Landschützer et 175 

al., 2013). Observation cruises were randomly divided into 10 equal subsamples (10% each) 176 

using expocodes (i.e., unique identifiers corresponding to complete underway cruise tracks or 177 

mooring deployments) prior to gridding, leaving some data splits with more (or less) gridded 178 

pCO2 targets (Section 2.1). We repeated the FFN training step 10 times, using each of the 10 179 

subsamples once as the internally withheld evaluation dataset and the rest as the training dataset 180 

(with a separate independent data always withheld; Section 2.4). In each iteration, we trained the 181 

ANN for 10 rounds. The robustness and reliability of an ANN estimate has been shown to be 182 

significantly improved by combining a ANN ensemble (Duke, Hamme, et al., 2023b; Fourrier et 183 

al., 2020; Linares-Rodriguez et al., 2013; Sharkey, 1999). Here, we take the mean of the 10-fold 184 

estimates. 185 

2.4 Evaluation 186 

Comparisons of ANN output to training and independent withheld data were made 187 

throughout tuning tests. ANN-NEPc performance for each tuning test was evaluated using five 188 

statistical metrics: root mean squared error (RMSE), coefficient of determination (r
2
), mean 189 

absolute error (MAE), mean bias (calculated as the mean residual), and the slope of the linear 190 

regression (c1) between the ANN and the corresponding gridded pCO2 observations. One subset 191 

of data was selected from the observation data using associated expocodes to be entirely 192 

withheld from the FFN training step. We tested 100 random independent withheld data splits and 193 

selected the one with the best observational coverage over a wide range of seasons, years, and 194 

locations (supplementary Figure S4). These independent withheld data represented 195 

approximately 4.5% of the total study area gridded pCO2 data. 196 

2.5 Sensitivity analysis 197 

We used a perturbation approach to quantitatively assess the impact of each predictor 198 

variable on estimated pCO2 (e.g., Broullón et al., 2018; Li et al., 2020; Sun et al., 2021). To 199 

diagnose how important different predictor variables were across the study area, a single set of 200 
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non-linear relationships was used inside a single uniform SOM cluster. We then applied this 201 

single FFN to our continuous, gridded predictor dataset and to perturbed versions of that dataset. 202 

For each predictor variable separately, we introduced a perturbation increasing the value within 203 

each grid cell by 50% of the standard deviation within that grid cell (𝑋′ = 𝑋 + 0.5(𝑠𝑡𝑑(𝑋)); N = 204 

264 months per grid cell; de Oña & Garrido, 2014) and calculated the resulting predicted pCO2. 205 

We then took the difference between the perturbed run and a baseline run using unperturbed 206 

predictor variables. 207 

2.6 Computation of air-sea fluxes 208 

Using our pCO2 product, we calculated the air-sea CO2 flux (𝐹CO2; mol m
-2

 yr
-1

): 209 

𝐹CO2 = 𝐾0𝑘∆𝑝CO2 ,          (1) 210 

from the Henry’s Law solubility constant (𝐾0; mmol m
-3

 atm
-1

) as a function of temperature and 211 

salinity (Table 1; Weiss, 1974), gas transfer velocity (𝑘; m day
-1

), and the gradient between 212 

pCO2 in the surface ocean and the atmosphere (pCO2; atm). Here, the gas transfer velocity is 213 

derived from Wanninkhof (2014), a function of wind‐speed at 10 meter elevation (Table 1) and 214 

the temperature dependent Schmidt number specific to CO2 (Wanninkhof, 2014). Negative flux 215 

values indicate CO2 uptake by the ocean. We assume that the uncertainty in our air-sea CO2 flux 216 

estimate results from a 20% uncertainty in 𝑘 (Wanninkhof, 2014) and the overall product 217 

uncertainty in estimated pCO2 (pCO2; Section 3.3 below). As the uncertainty of pCO2 is 218 

dominated by the uncertainty in estimated surface ocean pCO2, we neglect the small contribution 219 

from atmospheric CO2 (< 1 μatm; Landschützer et al., 2014). 220 

3 Network performance 221 

3.1 Evaluation with respect to observational data 222 

Comparing our estimated pCO2 product with the gridded observations across both the 223 

training data (Figure 2a) and independent withheld data (Figure 2b) demonstrates fits with an 224 

MAE less than 30 atm and RMSE of around 40 atm. The mean bias is negligible over the full 225 

range (< 0.2 atm, smaller than observational uncertainty; Section 3.3). 70% of the calculated 226 

residuals fall within the -20 to 20 μatm range, while 47% of the grid cells have absolute residuals 227 

< 10 μatm especially further offshore (supplementary Figure S5). Despite seasonal and annual 228 

biases in observations (Figure 1; Section 2.1), our product performs similarly across different 229 
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months and years (supplementary Table S1). The ANN ensemble model mean demonstrated 230 

improved performance compared to each individual ensemble member (supplementary Figure 231 

S6; supplementary Text S4). 232 

Larger bias exists at the upper and lower limits of the gridded pCO2 observational range. 233 

Our product underestimates pCO2 observations greater than the 90
th

 percentile (> 412 atm; 234 

mean bias = -28 atm), and overestimates values less than the 10
th

 percentile (< 306 atm; mean 235 

bias = 13 atm). The spatial structure of the residuals reflects this bias distribution 236 

(supplementary Figure S5), with negative residuals in the strong mixing regions of the Salish Sea 237 

commonly characterized by high pCO2 (Evans et al., 2012, 2019; Jarníková, Ianson, et al., 2022), 238 

and positive residuals along the upwelling zone off the west coast of Oregon and Washington 239 

States characterized by low pCO2 (Evans et al., 2011). Observation-based pCO2 products 240 

commonly overestimate pCO2 in highly biologically productive coastal upwelling regions (Chau 241 

et al., 2022; Hales et al., 2012; Roobaert et al., 2024; Sharp et al., 2022). Chlorophyll (Table 1) 242 

as a proxy for biological productivity in training may not fully represent biological control on 243 

pCO2. Ford et al. (2022) showed that in regions with high biological activity and nutrients 244 

supplied from depth (i.e., South Atlantic upwelling mesoscale eddies) regional, algorithm-245 

derived net community production estimates (Ford et al., 2021) improved ANN pCO2 estimates. 246 

Creation of coastal, regionally specific net community production algorithms, and inclusion as a 247 

predictor variable, may help reduce bias of low pCO2 values in our study area. 248 
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 249 

Figure 2. Our ensemble mean pCO2 estimate (ANN-NEPc) against (a) observed pCO2 training 250 

data, (b) observed pCO2 independently withheld data, and (c) individual ensemble member 251 

estimates. Data are binned into 5 atm by 5 atm bins with data density shown in the colorbar on 252 

a log scale (note order of magnitude difference between panels). Dashed black line is the 1:1. 253 

Dotted blue line is the least squares best fit. Also shown are number of observations (N), root 254 

mean squared error (RMSE), coefficient of determination (r
2
), mean absolute error (MAE), mean 255 

bias (calculated as the mean residual), and the slope of the linear regression (c1). 256 

In relative terms, our pCO2 product performs nearly as well as an open ocean product, 257 

even nearshore (Table 2). Nearshore pCO2 exhibits a much larger range of variability compared 258 

to the continental shelf and the offshore marine environment. Table 2 displays relative percent 259 

error (RPE) binned by distance offshore (𝑑) calculated as: 260 

RPE𝑑 = RMSE𝑑/[prctile95(𝑝CO2 𝑑
𝑜𝑏𝑠) −  prctile5(𝑝CO2 𝑑

𝑜𝑏𝑠)] × 100,              (2) 261 
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where RMSEd is the RMSE from gridded observational data averaged over the distance bin, 262 

prctile95(𝑝CO2 𝑑
𝑜𝑏𝑠) is the 95

th
 percentile observed pCO2 in that distance bin and 263 

prctile5(𝑝CO2 𝑑
𝑜𝑏𝑠) is the 5

th
 percentile. Compared to a high-performance, regional open ocean 264 

product (Table 2; Duke, Hamme, et al., 2023a), RMSE increases moving toward shore but so 265 

does the range in pCO2 such that the RPE is constant within a factor of two. 266 

Table 2. Error statistics for our ensemble mean pCO2 estimate against all gridded observation 267 

data binned by distance offshore: number of observations (N) per bin, observed range of 268 

variability (range; difference between the 95
th

 and 5
th

 percentile), root mean squared error 269 

(RMSE), and relative percent error (RPE; Eq. 2). 270 

Distance offshore (km) N Range (atm) RMSE (atm) RPE (%) 

0-25 (nearshore) 8669 481 54 11 

25-50 4763 215 33 16 

50-100 5770 153 24 15 

100-150 3324 114 16 14 

150-200 3317 90 12 13 

200-300 6501 106 10 10 

High-resolution Northeast Pacific open ocean product (Duke, Hamme, et al., 2023a) 

> 300 34096 83 7 8 

3.2 Comparison to other products 271 

Our pCO2 estimate agrees well with one other Northeast Pacific coastal ocean estimate 272 

but diverges from coarser resolution global products (supplementary Figure S7). The regional 273 

Sharp et al. (2022) product within the northern extension of the California current system (45 N 274 

to 59  N, east of 140 °W) is nearly equivalent to our pCO2 product within reported uncertainties 275 

(r
2
 = 0.57; supplementary Figure S7a). However, our product produces estimates closer to shore 276 

(Section 5.2 below). Compared to our product and in situ observations, a global coastal 277 

climatology (Landschützer, Laruelle, et al., 2020; Laruelle et al., 2017) and multiyear product 278 

(Roobaert et al., 2024) do not capture the same pCO2 range (supplementary Figure S7c&e; 279 

supplementary Figure S8). For example, both global products underestimate winter pCO2 values 280 

closer to shore in the coastal Gulf of Alaska region (> 52 N & < 50 km offshore; area-averaged 281 

climatological winter pCO2 of 300 atm and 290 atm respectively compared to 330 atm in 282 

this study; supplementary Figure S7d&f), highlighting the importance of finer resolution in 283 



manuscript submitted to JGR Oceans 

 

coastal systems. This region also has the scarcest pCO2 observations within our study area 284 

(0.37% coverage; Figure 1). Global SOM clusters commonly group the California current system 285 

with the Northwest European shelf and Sea of Japan (Laruelle et al., 2017; Roobaert et al., 286 

2024). FFN non-linear relationships inside such clusters may not be suitable for regionally 287 

specific processes dominated by downwelling (Stabeno et al., 2004), glacial runoff (Pilcher et al., 288 

2018; Siedlecki et al., 2017), significant seasonal biological productivity (Coyle et al., 2012; 289 

Fiechter & Moore, 2009; Hermann et al., 2009), and the influence of the upwelling subpolar 290 

Alaskan Gyre (Duke, Hamme, et al., 2023b; Hauri et al., 2021). This finding supports the Sharp 291 

et al. (2022) recommendation of increasing the number of SOM clusters for observation-based 292 

coastal ocean pCO2 estimates to capture more regionally specific non-linear relationships, 293 

cognizant of SOCAT observation data density. 294 

3.3 Uncertainty estimate 295 

Uncertainty in the ANN-NEPc estimated pCO2 product was determined following Duke, 296 

Hamme, et al. (2023b). The overall pCO2 product uncertainty (pCO2 = 49 µatm in our coastal 297 

product) is calculated from the square root of the sum of the four squared errors: observational 298 

uncertainty based on reported SOCAT QA/QC flags (obs = 3.7 µatm), gridding uncertainty 299 

based on the average standard deviation from gridding observations into monthly 1/12°x1/12° 300 

bins  (grid = 22.4 µatm; with an increasing gradient shoreward), ANN interpolation uncertainty 301 

based on the RMSE comparing the ANN-NEPc estimated pCO2 to independent withheld data 302 

(map = 42.9 µatm; Section 3.1), and ANN run randomness uncertainty based on the mean 303 

standard deviation between 10-fold ensemble members (run = 6.8 µatm; supplementary Figure 304 

S9). ANN interpolation uncertainty is the largest contribution overall. Combining the reported 305 

uncertainty in the gas transfer velocity (Section 2.6) and the overall pCO2 product uncertainty 306 

yields an average uncertainty of 0.18 mol-C m
-2

 yr
-1

 in the air-sea gas flux across all grid cells, 307 

with the largest fraction of the error stemming from the uncertainty in the gas transfer velocity. 308 

Our reported total uncertainty may appear high relative to other coastal pCO2 products, 309 

but we include higher variability regions and more stringent error estimates. Other observation-310 

based interpolated pCO2 products in the coastal ocean report lower uncertainty values (RMSE 311 

values generally between 10 and 35 μatm in regional estimates detailed in S. Chen et al., (2016); 312 

29 μatm globally in Roobaert et al. (2024); approximately 30 μatm in the California current 313 
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system in Sharp et al. (2022); 55 μatm in the coastal subpolar Pacific in Chau et al. (2022)). 314 

However, most other estimates did not use independent withheld data to report total product 315 

uncertainty. Roobaert et al. (2024) point out their largest RMSE values are calculated along the 316 

Cascadia Shelf in our study area (62 μatm). Our pCO2 product is also the only estimate that 317 

includes the nearshore, introducing higher variability (Table 2). Excluding the nearshore across 318 

all components of the uncertainty calculation yields an overall uncertainty of 40 µatm, more 319 

comparable to other coastal ocean estimates. 320 

4.0 Comparison to high-resolution observations 321 

Comparison to in situ observations shows that our ANN-NEPc estimated pCO2 product 322 

resolves seasonal variability and broad spatial patterns well. Despite high spatial resolution, our 323 

design of a monthly timestep product means the ANN cannot reproduce short temporal (e.g., 324 

days) events. Predictor variable inaccuracy also contributes to pCO2 estimate uncertainty, 325 

particularly in the nearshore where data assimilation into reanalysis models is limited (e.g., SSS 326 

and coastal limitations of Argo float array) and retrieval issues affect satellite estimates (e.g., 327 

SST and cloud masking, impact of aerosols, diurnal variability, uncertainty estimation, and 328 

validation). In situ measurements show that biogeochemical and hydrographic variability in our 329 

region occurs on spatial scales of less than 20 km (Nemcek et al., 2008), with spatial 330 

autocorrelation lengths increasing offshore (Murphy et al., 2001), and timescales of days to 331 

weeks (Evans et al., 2011, 2012, 2019; Fassbender et al., 2018). Our product is constrained by 332 

initial binning of observations to 1/12x1/12 (approximately 9 km by 5 km) and a monthly time 333 

step, as well as scarcity of observations used to train (Figure 1). Comparing it directly with in 334 

situ mooring and shipboard underway pCO2 system measurements in the coastal zone provides 335 

insight into when and where the ANN is both capable and incapable of resolving variability. 336 

Our pCO2 estimate captures the observed seasonal cycle (phase and amplitude) at 337 

regional mooring time series sites well (Figure 3; full time series at all five regional mooring 338 

sites in supplementary Figure S8). At NOAA’s Gulf of Alaska Ocean Acidification (GAKOA) 339 

site south of Alaska’s Kenai Peninsula, our product tends to overestimate seasonal summer 340 

minima and winter maxima values. However, it captures seasonal cycle timing well with a 341 

similar average seasonal amplitude even when not all mooring data are included in 342 

SOCATv2021 (this study = 144 μatm; GAKOA = 169 μatm; Figure 3b). At another NOAA Gulf 343 
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of Alaska mooring site south of Kodiak Island, our estimate also captures the phase of the 344 

seasonal cycle well (r
2
 = 0.89; N = 31 months; supplementary Figure S8a). 345 

 346 

Figure 3. (a) Map of mean estimated surface ocean pCO2 seasonal amplitude (1998-2019; range; 347 

annual maximum minus minimum) in µatm. Nearshore mooring time series at (b) Gulf of Alaska 348 

Ocean Acidification mooring (GAKOA), (c) Quadra, and (d) Cape Elizabeth mooring in situ 349 

pCO2 data (black diamonds; not all included in SOCATv2021) plotted with co-located gridded 350 

SOCATv2021 (orange solid line), this study pCO2 (blue solid line), and atmospheric pCO2 (light 351 

blue dashed line). Kodiak and Chá bă and Roobaert et al. (2024) comparison time series in 352 

supplementary Figure S8. 353 

The ANN recreates the seasonal cycle well at Hakai Institute’s Quadra Island Station, but 354 

its monthly timestep does not capture higher frequency variability (Figure 3c). In some instances, 355 

measured pCO2 at the Quadra mooring increases over 500 μatm within three days (e.g., June 9-356 

12, 2015), leading to a strong outgassing signal. The ANN monthly estimate does not capture 357 

such short events. Monthly binning impacts net annual air-sea CO2 fluxes within a single grid 358 

cell (2015 mean annual flux from daily mooring pCO2 and wind speed: 0.08 mol m
-2

 yr
-1

; 359 

compared to this study: 0.26 mol m
-2

 yr
-1

) but likely has a smaller impact when quantifying the 360 

larger regional flux. Near the end of the time series (late 2017 to 2020), the gridded SOCAT data 361 

deviates from the in situ mooring data due to inclusion of nearby shipboard data, yet our 362 

estimated pCO2 continues to better represent the mooring seasonal cycle. When evaluating ANN 363 



manuscript submitted to JGR Oceans 

 

performance (Section 3.1), this difference from the gridded observation data contributes to a 364 

higher measure of uncertainty, yet in situ representation is still preserved compared to the 365 

mooring data. 366 

The ANN does capture part of the signal from somewhat longer (i.e., weeks) summer 367 

high pCO2 events at NOAA’s Cape Elizabeth mooring off the west coast of Washington State 368 

(Figure 3d). Horizontal advection of freshwater (July 2007) or upwelling events (> 500 μatm; 369 

July 2008; Evans et al., 2015) can cause high summer pCO2 values. These extreme events impact 370 

bin-averaged training data, allowing the ANN to recover some of the short duration signal, albeit 371 

at a lower value. Our product reproduces both persistent, weeks long events < 35 km offshore, in 372 

line with the monthly averaged observations.  373 
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 374 

Figure 4. (a) pCO2 along 2010 West Coast Ocean Acidification cruise track from 21 Jul 2010 to 375 

15 Aug 2010 (Evans et al., 2012). Data is gridded into 1/12 by 1/12 bins. Events indicate (1) 376 

cruise start, (2) Johnstone Strait, (3) Hecate Strait, (4) intense upwelling plume near Brooks 377 

Peninsula, and (5) Juan de Fuca Strait respectively. Subplots against time along cruise track for 378 

(b) pCO2 where underway in situ pCO2 data (black diamonds) are plotted with co-located 379 

monthly gridded data (orange solid line), this study pCO2 (blue solid line), and atmospheric 380 

pCO2 (light blue dashed line). (c) Sea surface salinity (SSS) with underway in situ SSS (light 381 

blue dots) and co-located reanalysis SSS (dark blue solid line; used as a predictor variable). SSS 382 

values near cruise start as low as 15 in situ and 24 from reanalysis (not shown). (d) Sea surface 383 

temperature (SST) with underway in situ SST (red dots) and co-located satellite-based SST (dark 384 

red solid line; used as a predictor variable). Gray boxes highlight tidal mixing zones (e.g., 385 

Johnstone Strait, Juan de Fuca and Haro Straits and connecting waters). 386 

Direct comparison to a cruise from July/August 2010 provides another example of our 387 

pCO2 product’s ability to capture broadscale patterns. The ANN estimate resolves undersaturated 388 

pCO2 conditions in the Salish Sea at the start of the cruise well (point 1; Figure 4). Through 389 

Johnstone Strait (50.5 N, 126.5 W), a strong tidal mixing zone (Evans et al., 2022), lack of 390 

predictor data coverage prevents estimation of pCO2 in those grid cells at all (point 2; Figure 4). 391 

The ANN captures the lower variability continental shelf and slope environment in Queen 392 

Charlotte Sound and around Haida Gwaii well (between points 2 and 4; Figure 4). Differences 393 
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between estimated and observed pCO2 exist in Hecate Strait (point 3; Figure 4) likely due to 394 

strong underestimation of SSS as a predictor in the reanalysis product (point 3; Figure 4c). Along 395 

the west coast of Vancouver Island, shipboard observations captured an upwelling event off 396 

Brooks Peninsula (50.14 N, 127.78 W; Asher et al., 2017), visible in decreased temperatures, 397 

elevated salinity, and very high in situ pCO2 (point 4; Figure 4). The ANN does not replicate this 398 

short upwelling event (i.e., days; Asher et al., 2017). High pCO2 driven by tidal mixing in the 399 

Juan de Fuca and Haro Straits are captured by the ANN (point 5; Figure 4; Jarníková, Olson, et 400 

al., 2022). An abundance of consistently high pCO2 observations results in a strong 401 

reconstruction by the ANN in this region (Evans et al., 2012). 402 

5 Air-sea CO2 flux and pCO2 drivers 403 

Long-term (1998–2019) mean air-sea CO2 fluxes display a pronounced juxtaposition 404 

between strong uptake and outgassing regions in the coastal Northeast Pacific Ocean (Figure 5c). 405 

Overall, air-sea CO2 flux estimates from our product show this coastal zone acts as a net sink for 406 

atmospheric CO2, drawing down 0.960.25 Tg C yr
-1

 with a mean flux of -0.7 mol m
-2

 yr
-1

 but 407 

high variability with a standard deviation of 1.4 mol m
-2

 yr
-1

. Mean pCO2 and air-sea CO2 fluxes 408 

display similar patterns, with high pCO2 nearshore leading to outgassing and low pCO2 along the 409 

transition zone and continental shelf environments taking up atmospheric CO2 (Figure 5a&c). 410 

Canada’s West Coast exclusive economic zone has a CO2 uptake of 0.610.11 Tg C yr
-1

. 411 

Compared to the open ocean region of the Northeast Pacific (Duke, Hamme, et al., 2023b), the 412 

adjacent coastal ocean is a weaker sink for atmospheric CO2 by area (40% weaker compared to -413 

1.2 mol m
-2

 yr
-1

 in the open ocean), taking up 64% less CO2 total within 40% less area (open 414 

ocean uptake = 2.630.53 Tg C yr
-1

; open ocean surface area  = 1.8x10
6
 km

2
; coastal ocean 415 

surface area = 1.1x10
6
 km

2
). Elevated pCO2 and outgassing is also reported in the subpolar 416 

Alaskan Gyre system (Figure 5a&c), consistent with Duke, Hamme, et al. (2023b). 417 
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 418 

Figure 5. (a) Mean pCO2 (1998-2019) in atm. 140 W meridian divide used in Section 5.2 419 

analysis shown for reference. (b) Ratio of pCO2 seasonal amplitude in thermal component (i.e., 420 

changes due to temperature; pCO2 (T)) and biophysical component (i.e., changes due to 421 

circulation, mixing, gas exchange, and biology; pCO2 (BP)). (c) Mean air–sea CO2 flux (1998-422 

2019) in mol m
−2

 yr
−1

. Negative flux values indicate CO2 uptake by the ocean. (d) Mean air-sea 423 
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CO2 flux seasonal amplitude (range; annual maximum minus minimum) in mol m
-2

 yr
-1

. (e) 424 

Mean air-sea CO2 flux vs. mean air-sea CO2 flux seasonal amplitude (grid cell by grid cell). 425 

Dotted blue line is the least squares best fit. Dashed black line separates values of outgassing 426 

(positive) from uptake (negative). 427 

5.1 Regional patterns 428 

Spatially, the study area can be divided into four distinct regions based on air-sea CO2 429 

flux patterns in our product. The net annual air-sea CO2 flux is anti-correlated with the mean air-430 

sea CO2 flux seasonal amplitude (r
2
 = 0.56; p < 0.01; Figure 5e). We identify four regions that 431 

drive this pattern from most offshore to inshore: the transitional zone connecting the open ocean 432 

and the coast is a net sink with a small seasonal cycle, the Cascadia Shelf where the net sink is 433 

even stronger but the seasonal cycle remains low, nearshore regions with large seasonal cycles, 434 

and semi-enclosed estuaries with strong outgassing. To further disentangle driving processes 435 

between these four regions we decompose the estimated pCO2 into a thermal (pCO2 (T)) and 436 

biophysical (pCO2 (BP)) component (supplementary Text S5; Takahashi et al., 1993, 2002). We 437 

then take the ratio (RT BP
-1

) of the seasonal amplitude (climatological maximum minus minimum) 438 

of the two components (pCO2 (T)/pCO2 (BP); Figure 5b), where biophysical processes dominate if 439 

RT BP
-1

 is less than one and vice versa. 440 

Much of the offshore transitional zone (medium blue colours in Figure 5c) acts as a sink 441 

for atmospheric CO2 year-round where thermal and biophysical pCO2 components are nearly 442 

balanced. Low air-sea CO2 flux seasonal amplitudes in the transitional zone (> 50 km offshore; 443 

excluding the subpolar Alaska Gyre) correspond to net annual atmospheric CO2 uptake. In the 444 

southeast of the study area (Figure 5b), the North Pacific Current region experiences a relative 445 

balance of opposing thermal and biophysical pCO2 components seasonally (RT NT
-1

 446 

approximately = 1; Duke, Hamme, et al., 2023b; A. J. Sutton et al., 2017; Takahashi et al., 2006; 447 

Wong et al., 2010). Along most of the transitional zone where RT NT
-1

 is closer to one (Figure 448 

5b), we also report low pCO2 seasonal amplitudes (Figure 3a) allowing for continuous pCO2 449 

undersaturation with respect to the atmosphere and continuous annual uptake with low air-sea 450 

CO2 flux seasonal amplitudes (supplementary Figure S12; Figure 5d). Advection of low pCO2 451 

(Duke, Hamme, et al., 2023b; Takahashi et al., 2006) water by the North Pacific Current from 452 

the open ocean toward the coast causes overall pCO2 undersaturation in this region (Reed & 453 

Schumacher, 1986; Thomson, 1981; Weingartner et al., 2002). The low pCO2 amplitudes are 454 

maintained by the effect of temperature on pCO2 (increasing during warming and decreasing 455 
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during cooling) dampening changes due to spring phytoplankton blooms (drawing down pCO2) 456 

and winter surface mixed layer deepening (increasing pCO2). 457 

The most prominent CO2 sink region is found along the Cascadia Shelf, inshore of the 458 

transitional zone, with a mean flux of -1.5 mol m
-2

 yr
-1

 (darkest blue colours in Figure 5c). Along 459 

the continental shelf and within much of the nearshore, biophysical processes (e.g., coastal 460 

upwelling, seasonal biological drawdown, mixing) dominate the seasonal cycle of pCO2 with RT 461 

NT
-1

 values < 1. Summer upwelling fuels primary productivity causing surface pCO2 drawdown 462 

as waters are advected offshore (Hales et al., 2005; Teeter et al., 2018; Ware & Thomson, 2005). 463 

Winter downwelling drives onshore transport of low pCO2 offshore waters and prevents 464 

subsurface waters, with elevated respiratory CO2, from mixing to the surface (i.e., coastal 465 

nutrient trap; Ianson et al., 2009; F. A. Whitney et al., 2005; Wilkerson & Dugdale, 1987). This 466 

general circulation of shelf waters maintains low seasonal flux amplitudes and strong CO2 uptake 467 

on the Cascadia Shelf. 468 

Much of the nearshore tends to experience seasonally strong, juxtaposing air-sea CO2 469 

fluxes, leading to near zero net annual CO2 fluxes (nearshore white colours in Figure 5c). For 470 

example, closer to shore north of 50 N and south of the Southeast Alaska Archipelago, winter 471 

mixed layer deepening brings water rich in nutrients and CO2 from respired organic matter to the 472 

surface, increasing pCO2, leading to strong CO2 outgassing to the atmosphere when light is 473 

limiting (supplementary Figure S12a; Marchese et al., 2022). In the spring, substantial primary 474 

productivity draws down pCO2 (Marchese et al., 2022), reverting the region to a prominent sink 475 

for atmospheric CO2 (supplementary Figure S12b). This large seasonal amplitude results in a net 476 

neutral flux. 477 

Semi-enclosed, nearshore estuarine environments display strong CO2 outgassing in our 478 

product, that is not always observed in regional high-resolution models. High pCO2 values and 479 

outgassing fluxes (mean CO2 flux of 0.7 mol m
-2

 yr
-1

) occur in Cook Inlet, the Salish Sea, and 480 

the Southeastern Alaska Archipelago (Figure 5c). Globally, the source strength of these 481 

integrated estuarine environments is comparable to (or smaller than) other nearshore source 482 

regions that decrease averaged coastal ocean CO2 uptake (Section 5.2 below; Duke, Richaud, et 483 

al., 2023; Fennel et al., 2019; Laruelle et al., 2018). In high-resolution regional models, the 484 

Salish Sea has been reported as a weak net annual source (this study: 1.0 mol m
-2

 yr
-1

; 485 
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comparable to Jarníková, Ianson, et al. (2022): 0.69 mol m
-2

 yr
-1

), and Cook Inlet as a net sink 486 

(Hauri et al., 2020; Pilcher et al., 2018). Limited observations used to constrain both our 487 

observation-based estimate and regional models may create discrepancies between them. Our 488 

estimate is based on all available surface ocean pCO2 observations along with a suite of predictor 489 

variables (Figure 1; Table 1), whereas regional process-based models using data for boundary 490 

conditions simplify and parameterise mechanisms (Hauri et al., 2020; Jarníková, Ianson, et al., 491 

2022; Pilcher et al., 2018). Global observation-based estimates and models also disagree, where 492 

model fluxes are often more negative (stronger sink) at northern latitudes, attributed to a smaller 493 

seasonal pCO2 amplitude (Resplandy et al., 2024). 494 

5.2 Nearshore fluxes 495 

The nearshore coastal environment (0 - 25 km offshore) exhibits large air-sea CO2 fluxes, 496 

over a relatively small surface area, impacting regional marine carbon budgeting. As our 497 

estimate wraps around the coast from primarily E-W to primarily N-S, we split the region along 498 

the 140 W meridian (Figure 5a). Averaging grid cells approximately parallel to the regional 499 

coastline along longitudinal bands (155 W to 140 W west of 140 W; Figure 6a&b) and along 500 

latitudinal bands (56 N to 45 N east of 140 W; Figure 6c&d), the inclusion or exclusion of the 501 

nearshore environment creates large differences in estimated net annual air-sea CO2 fluxes, for 502 

example, between 154 W to 149 W encompassing Cook Inlet (absolute flux difference of 503 

250%, switching from a net sink to a source; Figure 6b). North to south from 56 N  to the 504 

northern extension of the California current system at 45N (Figure 6d), including the nearshore 505 

leads to a slightly weaker net annual sink for atmospheric CO2. The difference is largest within 506 

latitudinal bands inclusive of the Salish Sea (49-51 N; 20% weaker). Differences in zonally 507 

averaged pCO2 and air-sea CO2 fluxes also exist between products with varying nearshore 508 

coverage (Section 3.2; Roobaert et al., 2024; Sharp et al., 2022). Basin-wide, inclusion of the 509 

nearshore changes the annual exchange with the atmosphere within the study area by 0.06 Tg C 510 

yr
-1

 (6%). These results highlight the importance of including the nearshore in regional marine 511 

carbon budgets. 512 
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 513 

Figure 6. Longitudinally averaged estimates west of 140 W of mean (a) pCO2 and (b) air-sea 514 

CO2 flux of: this study (dark blue), this study removing the nearshore (cyan). (c) and (d) are 515 

latitudinally averaged estimates east of 140 W respectively. Additional observation-based 516 

estimates with overlapping domains including: Sharp et al. (2022) (dot-dash beige), and 517 

Roobaert et al. (2024) (dashed lime green). Sharp et al. (2022) air-sea CO2 fluxes calculated 518 

following Section 2.6. 519 

5.3 Dominant controls on variability 520 

Four distinct tiers of predictor variable importance rankings emerged from a perturbation-521 

based spatial sensitivity analysis in estimated pCO2 (Figure 7a). The ANN is purely a set of 522 

empirical, not mechanistic, relationships between pCO2 observations and predictor variables, 523 

though variables were selected with mechanism in mind (Table 1). We used a perturbation-based 524 

spatial sensitivity analysis (Section 2.5) to probe the dependency of the ANN relationships on 525 

each variable, as they cannot be viewed directly (unlike a multiple linear regression). 526 

Atmospheric pCO2 and atmospheric pCO2 anomaly (removing the seasonal cycle; Section 2.2) 527 

are the most important predictors, followed by SST, and then process-driven controls whose 528 

importance varies spatially. Atmospheric pCO2 and atmospheric pCO2 anomaly are the only two 529 

predictor variables that capture a trend in time from 1998 to 2019 (i.e., increase of 2.12 atm yr
-1

 530 

due to anthropogenic emissions). Due to the trend, these variables also experienced the largest 531 

absolute value perturbation (mean basin-wide increase of 7 atm), at least one order of 532 

magnitude greater than other variables. The third most important predictor for estimating pCO2 is 533 

SST. Basin-wide, the sensitivity test introduced a mean SST increase of 1.5 C, resulting in a 534 

mixed pCO2 response where generally there was a decrease, outside of the Gulf of Alaska central 535 
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glacial drainage basin where pCO2 increased (supplementary Figure S13a). This result does not 536 

follow the mechanistic reduced solubility of CO2 in warmer water. However, it emphasizes the 537 

importance of the SST seasonal cycle as a predictor (strong correlation, typically negative, 538 

between pCO2 and SST; supplementary Figure S13b). 539 
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 540 

Figure 7. (a) Predictor variables ordered by absolute mean pCO2 change from baseline run 541 

during perturbation-based spatial sensitivity analysis (Section 2.5). (b) Most dominant process-542 

based predictor variable mapped by largest absolute mean pCO2 change from baseline run during 543 

perturbation-based spatial sensitivity analysis (excluding top three variables from (a)). No grid 544 
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cells displayed Chl or Chl anomaly as the largest absolute mean pCO2 change from baseline over 545 

the full study time range (1998-2019). Major river outflows are labelled for reference. 546 

Excluding the three most dominate controls (atmospheric pCO2, atmospheric pCO2 547 

anomaly, and SST), the spatial distribution of predictor variable importance rankings can be 548 

explained by mechanistic drivers even though the ANN is purely empirical. SSH anomaly is 549 

important along the Alaskan Gyre boundary, where the upwelling gyre exerts control over local 550 

biogeochemistry (Figure 7b; Duke, Hamme, et al., 2023b; Hauri et al., 2021). Wind speed (as a 551 

proxy for mixed layer depth) is important throughout most regions along the continental shelf 552 

and the outer coast as winter mixed layer deepening brings CO2-rich subsurface waters to the 553 

surface (mean basin-wide increase of 0.4 m s
-1

 resulting in a pCO2 increase of 1.7%; Figure 7b). 554 

SSH and SSH anomaly are additionally important offshore of Sitka, Alaska (57 N, 143 W) and 555 

Haida Gwaii (52 N, 133 W) where mesoscale anticyclonic eddies with enhanced primary 556 

productivity and high SSH propagate away from the continental margin (Figure 7b; Batten & 557 

Crawford, 2005; Crawford et al., 2007; Crawford & Whitney, 1999; F. A. Whitney et al., 2005; 558 

F. Whitney & Robert, 2002). In the North Pacific Current influenced region southeast of the 559 

study area, SST anomaly and wind speed anomaly are the most important predictors linked to the 560 

relative balance of opposing mechanisms (i.e., thermal and biophysical pCO2 components; 561 

Figure 5b). 562 

Nearshore regions experience a range of predictors with prominent features mostly 563 

controlled by salinity (SSS and SSS anomaly) in coastal estuarine areas (Figure 7b), and tidally 564 

mixed areas (e.g., Juan de Fuca Strait, Johnstone Strait; Figure 4a). In additional regions where 565 

freshwater discharge is important (e.g., supplementary Table S2), SSH and SSH anomaly emerge 566 

as important predictors potentially linked to discharge associated changes to nearshore sea level 567 

(Figure 7b; Durand et al., 2019). Neither perturbation to Chl nor Chl anomaly resulted in the 568 

largest absolute mean pCO2 change from baseline over 264 months in a single grid cell (Figure 569 

7b). However, seasonally Chl emerges as a prominent predictor in scattered grid cells along 570 

nearshore West Coast Vancouver Island and in the Southeast Alaska Archipelago during the 571 

spring (i.e., March, April, and May; not shown). 572 
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5.4 Air-sea pCO2 trends 573 

Trends in the last decades (1998-2019) in pCO2 (sea – air) display spatial heterogeneity 574 

in the coastal Northeast Pacific, with a gradient of smaller trends moving offshore. A linear fit 575 

was applied to the pCO2 anomaly time series within each grid cell to calculate the trend and 576 

standard error (i.e., deseasonalized; Section 2.2). Regions that experience an increase in surface 577 

ocean pCO2 close to the increase in atmospheric (i.e., resulting in a small pCO2 trend) are 578 

spatially distinct from those that have an insignificant trend in pCO2 leading to a large 579 

divergence with the atmosphere (i.e., large pCO2 trend). Grid cells with a small pCO2 trend 580 

are dominantly located in the outer coast (> 50 km offshore) and in the southeast of the study 581 

area (Figure 8a). Trends are closer to the atmospheric trend in this region (2.12 atm yr
-1

), 582 

meaning any change in the carbon sink due to anthropogenic climate change will require long 583 

observation time series to detect, as the signal is small relative to internal variability (Gooya et 584 

al., 2023; McKinley et al., 2016; Resplandy et al., 2015; Adrienne J. Sutton et al., 2019). We 585 

report trends in pCO2 that are similar to those observed at time series sites along Fisheries and 586 

Ocean Canada Line P stations (this study: P4 = 1.30.1 atm yr
-1

; P12 = 1.60.1 atm yr
-1

; 587 

comparable to Franco et al. (2021): P4 = 1.01.4 atm yr
-1

; P12 = 1.50.6 atm yr
-1

).  588 
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 589 

Figure 8. 1998-2019 trend in (a) pCO2 anomaly (i.e., deseasonalized) where more negative 590 

(darker) values indicate an increase in air-sea pCO2 disequilibria with time. Black crosshatches 591 

show grid cells with an insignificant calculated trend (outside the 95% confidence level; p ≥ 592 

0.05; 0.4% of total grid cells). (b) Standard error of the estimated slope in the pCO2 trend fit. 593 

Large pCO2 trends (and low or insignificant pCO2 trends) occur in regions experiencing 594 

strong connectivity to the older subsurface waters of the Northeast Pacific (e.g., subpolar 595 

Alaskan Gyre, west coast upwelling zone; Figure 8a). This older water has a lower 596 

anthropogenic carbon load (Carter et al., 2019; Clement & Gruber, 2018; Gruber et al., 2019; 597 

Sabine et al., 2004), which may be responsible for the lag in the increase in surface ocean pCO2 598 

(e.g., Duke, Hamme, et al., 2023b). The pCO2 trend in the Alaska Gyre is dominated by the 599 

winter trend, whereas the west coast upwelling zone is dominated by the summer trend 600 

(supplementary Figure S14). These seasonal trends coincide with the timing of greatest 601 

connectivity to depth in each region. Strongest Alaskan gyre upwelling occurs in winter (Gargett, 602 

1991; Talley, 1985), whereas the coastal upwelling season is spring and summer (Dorman & 603 

Winant, 1995; Hsieh et al., 1995) with downwelling occurring in the winter (Section 5.1; 604 

Thomson & Ware, 1996). In the nearshore (e.g., Southeast Alaska Archipelago, Salish Sea), 605 

subsurface waters exchange through estuarine flow and tidal mixing. In these regions, we report 606 

low or insignificant winter pCO2 trends and large negative summer trends in agreement with 607 

regional model results (e.g., Jarníková, Ianson, et al., 2022). Increasing summer air-sea pCO2 608 

disequilibria enhances ocean CO2 uptake, whereas winter air-sea disequilibria has remained 609 

relatively constant, maintaining ocean outgassing. In winter, light limits biological productivity, 610 

resulting in higher total CO2 in the surface (Evans et al., 2019; Ianson et al., 2016; Simpson et 611 
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al., 2022). This increase in total CO2 reduces the buffer capacity of the carbonate system 612 

(Revelle & Suess, 1957), so that the pCO2 increase due to anthropogenic carbon uptake is larger 613 

than it is in summer in many temperate zones (e.g., Jarníková, Ianson, et al., 2022; Landschützer 614 

et al., 2018). Our findings are consistent with global pCO2 trend estimates where most coastal 615 

regions appear to exhibit negative pCO2 trends (i.e., likely becoming stronger atmospheric CO2 616 

sinks or weaker sources; Fennel et al., 2019; Laruelle et al., 2018; Resplandy et al., 2024; 617 

Roobaert et al., 2024; Wang et al., 2017). 618 

6 Conclusions 619 

Our high-resolution, neural network created pCO2 product reproduces observed coastal 620 

Northeast Pacific Ocean variability well, from the outer transitional zone to the nearshore (0 – 25 621 

km offshore). We interpolated sparse observations using non-linear relationships developed with 622 

a neural network based on predictor data from satellite and reanalysis products to create a 623 

continuous, gridded monthly pCO2 estimate at a 1/12 spatial resolution, inclusive of the 624 

nearshore. This pCO2 product provides a baseline environmental context for pCO2 and air-sea 625 

CO2 flux variability in the study area with an uncertainty of 49 µatm and 0.24 mol-C m
-2

 yr
-1

, 626 

respectively. The product resolves seasonal variability (phase and amplitude) and broad spatial 627 

patterns well compared to high-resolution in situ observations. The product is not designed to 628 

capture daily – weekly variability. 629 

A unique ANN sensitivity analysis shows that variations in pCO2 results agree with 630 

mechanistic drivers even though the ANN itself is purely empirical. ANNs are not based on 631 

predefined equations but their ability to capture information inherent to the training data, 632 

preventing any explicit explanation of how predictor variables and their output are related. We 633 

suggest a new systematic sensitivity analysis introducing perturbations to predictor variables, 634 

with a consideration for natural spatial variability, to produce mapped variable importance 635 

rankings. This approach offers insight providing greater transparency to ANN “black box” 636 

techniques. 637 

We describe the coastal Northeast Pacific as a net sink for atmospheric CO2 with large 638 

spatial heterogeneity between outgassing in the nearshore and uptake on the outer coast. Net 639 

annual air-sea CO2 flux is largely anticorrelated with seasonal air-sea CO2 flux amplitude. 640 

Patterns inherent to specific regions drive this anticorrelation, including circulation and opposing 641 
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seasonal upwelling or relaxation vs. downwelling, and may make the relationship regionally 642 

specific rather than applicable to the wider global coastal ocean. Our results also emphasize the 643 

importance of including nearshore fluxes (often omitted by other coastal products), which are 644 

likely to be a source reducing the net coastal sink, when constructing marine carbon budgets 645 

(e.g., Legge et al., 2020). These findings could be potentially important considerations for 646 

reporting marine carbon dioxide removal approaches in the study area, as interventions 647 

impacting source areas are treated differently from those enhancing natural sinks (Verra, 2023). 648 

Trends over the last decades show outer coast pCO2 may be experiencing the largest 649 

increase in air-sea pCO2 disequilibrium, due to strong connectivity with subsurface waters low in 650 

anthropogenic CO2, while pCO2 in the North Pacific Current region tracks increasing 651 

atmospheric pCO2 more closely. Trends reported here across the coastal Northeast Pacific 652 

indicate most regions are likely to become stronger atmospheric CO2 sinks or weaker sources. 653 

Improving regional observational coverage and continuity and advancing the ANN 654 

approach will improve future air-sea CO2 flux estimates. Some regions in the coastal Gulf of 655 

Alaska display large net annual air-sea CO2 fluxes (e.g., Cook Inlet) yet are extremely sparsely 656 

monitored. A higher temporal resolution, such as daily, could enable the ANN to capture highly 657 

episodic air-sea CO2 flux events common to the nearshore. However, this approach would 658 

dramatically reduce the percent coverage of observation training targets. A solution may be 659 

creating ANN non-linear relationships to interpolate pCO2 directly from in situ observations. 660 

Using high frequency, collocated sensors and non-uniform “highest available resolution” satellite 661 

and reanalysis datasets for predictor variables not collected in situ, a higher temporal and/or 662 

spatial resolution coastal product could be developed without substantial loss in ANN training 663 

targets. 664 
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