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Abstract 

Continuous measurement and monitoring of river or creek surface water coverage is crucial for 

studying the exchange fluxes between the surface and subsurface water. These fluxes directly 

impact carbon and nitrogen exchange and cycles, which are related to organic matter transport 

and reactions. While satellite and related techniques have been widely used for large-scale 

monitoring, they may not be accurate, sensitive, or cost-efficient for monitoring and tracking of 

surface water at fine-scale spatial (i.e., sub-meter) and temporal (i.e., daily) variations. This is 

especially true for small creeks with large plant canopy coverage. On-site in-situ sensors 

monitoring methods primarily yield point data, often insufficient in capturing the entire spatial 

distribution. Wildlife cameras have proven a cost-efficient way to continuously monitor surface 

water coverage of rivers and creeks. To efficiently analyze the images and/or videos from the 

wildlife cameras, in this study, two machine learning approaches, YOLOv8 and Mask2Former, 

have been applied. Both models were trained by images obtained from the public dataset 

ADE20k along with a small dataset from wildlife camera photos collected at the current study 

area. Once surface water coverage is segmented, the width of the surface water in real world can 

be approximated according to the wildlife camera, lens, and positioning parameters. In this 



study, surface water was detected and monitored by applying the proposed approaches for the six 

wildlife cameras in the Yakima River Basin in 2023 to 2024 in United States of America. 

Though Mask2Former model provides slightly better transferability, both models can accurately 

capture the surface water from the wildlife cameras, which are installed in significantly different 

environments, such as the different brightness, contrast, and varying front scene object 

blockages. The proposed approach enables long-term continuous monitoring and quantification 

of river intermittency and water availability with high accuracy and low-cost, which will benefit 

river ecosystem research and management. 

 

1. Introduction 

River networks act as conduits between terrestrial and aquatic environments, mediating 

important biochemical processes that regulate the transport and fate of carbon and other nutrients 

(Battin, Kaplan et al. 2008).  Research in stream metabolism, gas exchange, and sediment 

dynamics, repeatedly demonstrate how river networks are a critical component of  

biogeochemical cycles (Wohl, Hall et al. 2017) in space and time (Fisher, Brimm et al. 1998, 

Schlesinger and Bernhardt 2020).  

The relevance and widespread occurrence of non-perennial streams have garnered rising interest 

in recent years. Non-perennial streams, which flow intermittently or episodically, are prevalent 

worldwide and constitute greater than 50% of global river networks (Snelder, Datry et al. 2013, 

Datry, Larned et al. 2014). Their unique hydrological, biological, and geochemical 

characteristics play critical roles in ecosystem functions, providing distinctive habitats and 

influencing biogeochemical processes such as nutrient cycling and organic matter 



decomposition. However, non-perennial streams have been historically understudied, though the 

pioneering works were reported around 1960s to 1970s (Larimore, Childers et al. 1959, Clifford 

1966, Williams and Hynes 1976). Recent research highlights their substantial contribution to 

hydrological and biogeochemical connectivity, emphasizing the urgency for their preservation 

and further study in order to predict and manage the impacts of climate change and human 

activities on water resources (Larned, Datry et al. 2010). 

Monitoring non-perennial stream hydrodynamics presents a significant challenge due to their 

spatiotemporal variability. A straightforward approach is deploying sensors in the stream to 

monitor the water/no-water condition and/or the flow rate of the stream (Assendelft and 

Meerveld 2019). These in-situ monitoring methods primarily yield point data, often insufficient 

in capturing the entire spatial distribution of surface water within a stream.  

In contrast, satellite remote sensing techniques offer broader spatial coverage and continuity, but 

they come with limitations, such as the spatial resolution, revisit frequency, and penetration.   

High-resolution satellite remote sensing images, whose space resolution reaches 0.15 m, are 

available for commercial use (MAXAR 2020), but their use for continuous monitoring over long 

time periods is limited by high costs. Therefore, more affordable and accessible multispectral 

images with systematic global coverage is usually at space resolution around 10 to 20 m, and the 

revisiting frequency around 5 to 10 days (Cavallo, Papa et al. 2022, Sentinel 2024). Therefore, 

the generally affordable satellite remote sensing is currently better suited for streams larger than 

10 meters, because smaller, including intermittent, streams require high resolution images. 

Additionally, the plant and forest canopies may also a challenge for satellite remote sensing 

technique to stably visualize the stream surface water (Smith 1997, Hugue, Lapointe et al. 2016, 

Tomsett and Leyland 2019).  



Besides the satellite remote sensing approach,  on-site optical camera-based remote monitoring 

methods have been widely used to study water resources, such as large-scale particle image 

velocimetry (LSPIV) (Tauro, Olivieri et al. 2016, Zhen, Yang et al. 2017, Ghaffarian, Piegay et 

al. 2020) and stage-camera systems (Noto, Tauro et al. 2022, Tauro, Noto et al. 2022, Spasiano, 

Grimaldi et al. 2023). LSPIV can compute the stream velocity according to the video of the 

water surface pattern. Because it needs continuous video data, it is usually used in areas with 

long-term power supply or requires frequent visits to collect short term (less than one day) data 

over long timeframes. In contrast, stage-camera is a low-cost monitoring system for small 

streams and can work long-term off-grid. It uses a camera to record photos of the water surface 

with a reference scale in the water, which are used to back calculate the water surface elevation 

with a post-processing algorithm. Because the cameras have to be placed close to the reference 

scale, it is usually applied at small ephemeral streams (Noto, Tauro et al. 2022). Therefore, for 

the non-perennial streams with relatively large width varying, like between wider than 10 meters 

to near 0 meter, the stage-camera system may not get the representative wet fraction and width 

information of the stream. 

Wildlife cameras, also known as trail cameras or game cameras, are typically used to observe 

animals in their natural habitats (Kemp, yarchuk et al. 2022). However, they have also found as a 

low-cost monitoring approach of water resources for scientific research, safety, and recreation 

activities (CreekVT 2024, NOC 2024, USGS 2024), due to its durability in outdoor conditions 

and fewer maintenance requirements with long-term use. Generally, wildlife cameras provide a 

view, which can be stored as time series photos and videos, of water surface and/or landscape of 

interests, so it is adaptable to various stream categories from small ephemeral streams to large 

perennial rivers. However, the photos and videos recorded by wildlife cameras cannot provide 



quantitative measurements of the targeted stream directly. Traditionally it requires manual 

marking of the water boundaries on the photos for further analysis, making it too time consuming 

to be practical for long-term river water monitoring.  

In this study, we developed a framework to monitor surficial river width and wet fraction using 

wildlife cameras in diverse river networks. The framework includes camera deployment 

instructions, a maintenance protocol, and machine learning models that can efficiently segment 

the stream water surface from the background of photos. Two machine learning models were 

investigated for the task of water surface recognition and separation. One is the convolutional 

neural network-based model YOLOv8 (Ultralytics 2023), and another model is the vision 

transformer-based model Mask2Former (Facebook 2022). The detailed introduction about the 

models and the training, validation, and testing are introduced in Section 2.2 and 3.1. Though 

Mask2Former model provides slightly better transferability, both models can accurately track the 

stream width and wet fraction, except several extreme weather and lighting conditions discussed 

in Section 3.2. 

2. Methodology 

2.1. Study domain and installation of wildlife cameras 

Our 6 study sites are within the Satus Creek watershed, which is a 1114 km2 watershed in the 

Yakama Nation Reservation in south-central Washington state, Untied States of America 

(Mundorff, Nish et al. 1977, Gellenbeck 1999). It spans from the Toppenish ridge in the north 

down to Horse Heaven Hills in the south (Mundorff, Nish et al. 1977). The area is mostly 

underdeveloped and is encompassed mostly by shrub-steppe vegetation, but also has some 

regions of coniferous forest and irrigated agriculture (Gellenbeck 1999). The Satus Creek 



Watershed also accounts for nearly 10% of the Yakima river subbasin (NOAA 2020). The 

average precipitation ranges from 35 inches in the west to 10 inches in the east, of which is 

mostly snow (Mundorff, Nish et al. 1977). Sites (S30R, S31, S32, S38, S63, and S63P) were 

chosen to represent the watershed, including both perennial and non-perennial locations, and we 

have previously collected hydrobiogeochemical data (Fulton, Barnes et al. 2022, Grieger, Barnes 

et al. 2022, Delgado, Barnes et al. 2023, Kaufman, Delgado et al. 2023). For simple and short in 

this study, we call these deployed cameras as Yakima River Basin (YRB) cameras. The 

representative view of the six sites and the locations with corresponding latitude and longitude 

are show in Figure 1. 

 

Figure 1: Locations and representative photos of the wildlife cameras deployed at six sites. 

 



Depending on cellular service, we either deployed a cellular capable camera (SPYPOINT FLEX) 

or a non-cellular camera (CAMPARK TC08-4K). Only one camera was deployed per site.  Both 

cameras cost between $100-200, and are widely available on various local or on-line stores. The 

SPYPOINT FLEX’s cellular connection capability provides the convenience of accessing the 

photos and camera settings remotely, deployed at sites S38 and S63P, which can help on 

checking the status of cameras without visiting the sites after the first-time deployment. 

However, due to the cellular connection downloading speed limitation and only low-resolution 

images (highly compressed 720P image) downloadable through cellular connection, it is highly 

recommended to copy the raw high-resolution photos from the SD card directly during routine 

on-site work, if there are too many photos, like more than a hundred. The CAMPARK TC08-4K 

cameras were deployed at the locations without cellular service. Similarly, though CAMPARK 

TC08-4K camera can be accessed through Wi-Fi and Bluetooth connection remotely in a short 

distance range, it is still highly recommended to copy the raw high-resolution photos from the 

SD card directly during routine on-site work.  

To deploy each of the cameras, we first selected a location along the river edge that had a clear 

view of the channel from bank to bank, and then pointed and positioned the lens towards the 

water. The camera was mounted on either a tree trunk, tripod, or attached to a tripod then 

attached to a tree trunk depending on the site, vegetation, and view. They were attached using a 

strap and secured with a locked wire rope.  It was critical to make sure the camera was easily 

accessible, but outside of the public’s view. The cameras were set to a timelapse mode and 

programmed to take pictures every 4 hours. A reference photo was taken at each camera during 

the initial deployment which had a measuring tape displaying 1 m in length, and the distance 

from the camera view was recorded. Various metadata were taken related to the location and tilt 



of the camera, the surrounding environment, and some characteristics of the river. Every two 

weeks, pictures were directly downloaded from each SD card, each SD card was reformatted by 

using the reformat settings on the camera, and new metadata was recorded.  

 

2.2. Image segmentation models and training dataset for wildlife camera photo 

For measuring and monitoring the stream water surface, image segmentation machine learning 

models are needed to extract the stream water surface from the background on the wildlife 

camera photos. Image segmentation involves partitioning an image into multiple segments or 

'pixels' which share similar attributes, and grouping these pixels together to form a more 

comprehensive understanding of the image. This plays a vital role in enriching object detection 

as it allows the model to differentiate individual objects in an image, even if they belong to the 

same category or are closely grouped. In this study, two state-of-the-art machine learning image 

segmentation models are used.  

The first model is YOLOv8, which stands for "You Only Look Once version 8" (Redmon, 

Divvala et al. 2016). It is the eighth major iteration of an object detection system that is widely 

recognized for its superior effectiveness and efficiency. The model was developed and open-

source released by Ultralytics (Ultralytics 2023). The primary goal of YOLOv8, is to precisely 

identify and localize objects in images and videos in real time. Generally, YOLOv8 is 

constructed by a series of convolutional layers (Zhang, Itoh et al. 1990), modified bottleneck 

cross stage partial network layers (Wang, Liao et al. 2020), a spatial pyramid pooling-faster layer 

(He, Zhang et al. 2015), concatenate layers, and up-sampling layers (PyTorch 2024). Because the 

training and inference speed is not the main concern in this study, the largest model (YOLOv8x-



seg) was used, which includes about 344.1 million trainable parameters in the whole neural 

networks.  

The second model is Mask2Former, which is an innovative architecture designed for universal 

image segmentation (Facebook 2022). Different from the series of convolutional layers in 

YOLOv8 model, Mask2Former is based on the vision transformer model (Vaswani, Shazeer et 

al. 2017, Dosovitskiy, Beyer et al. 2020) which employs masked attention to extract localized 

features by constraining cross-attention within predicted mask regions (Chen, Schwing et al. 

2021, Chen, Misra et al. 2022). This mechanism allows the model to focus on relevant areas, 

enhancing segmentation accuracy. In this study, the large size shifted window (Swin-L) 

transformer architecture (Liu, Lin et al. 2021) is used as the backbone in the Mask2Former 

model, and the model contains about 200 million trainable parameters.   

For both models, the inputs of the model are the photos, and the outputs are the mask map of the 

detected objects and the corresponding class of the objects. There are two categories of labeled 

dataset used as training datasets in this study. One is the ADE20K public dataset (ADE20K 

2017, Zhou, Zhao et al. 2017, Zhou, Zhao et al. 2018). There are totally 25,574 general photos 

with 150 labeled classes, which includes the most common objects in scenes of daily life, in 

ADE20K dataset. We subset these photos to include only natural landscapes for training and 

validation. Besides that, only the labeled objects that are related to natural surface waters were 

kept in the training, which included classes “sea”, “river”, “water”, “lake,” “whitewater”, and 

“wave”. These listed classes were merged into one class named as “surface water”. All the other 

irrelevant labels were removed from the training dataset. With such pre-treatment on the 

ADE20K dataset, there were a total of 1312 photos with 1437 labeled natural surface waters in 

the training dataset, and 59 photos with 65 labeled natural surface water in the validation dataset. 



In this manuscript, we call this dataset as ADE20K for short, though it is just a subset of 

ADE20K dataset. The second category of labeled dataset is directly from the YRB wildlife 

cameras’ photos. 304 photos were selected from all the YRB wildlife camera photos with 1546 

natural surface water labels. 76 photos were selected with 361 labeled natural surface water for 

validation.  

Additionally, there are two categories of labeled dataset were used as testing dataset for 

benchmarking accuracy of trained models. One is the YRB wildlife cameras’ photos. There are 

24 photos with 104 labeled natural surface water patches. These 24 photos are not in either 

training or validation dataset. The second category of testing dataset is from wildlife camera 

photo available on creekvt.com (CreekVT 2024), which are monitoring the creeks in the state 

Vermont United States of America for identifying whether the stream condition safe for 

kayakers. 12 photos are selected with 19 labeled natural surface water patches. Figure 2 shows 

the example photos from ADE20K, YRB wildlife cameras, and CreekVT wildlife cameras for 

the training, validation, and testing in this study. The sources of the images, the number of the 

images and labels are summarized in Table 1. 

   

(a) (b) (c) 

Figure 2: Example of the labeled photos. (a) ADE20K dataset; (b) YRB wildlife cameras’ photo; 

(c) CreekVT wildlife cameras’ photo. 

Table 1: Summary of dataset used in this study. 



Source of the images ADE20K YRB cameras CreekVT 

Training (Num. of 
images/Num. of labels) 

1312/1437 304/1546 NA 

Validation (Num. of 
images/Num. of labels) 

59/65 76/361 NA 

Testing (Num. of 
images/Num. of labels) 

NA 24/104 12/19 

 

2.3. Post-processing to the real dimensions with cameras’ metadata 

For accurate conversion from photo to real-world dimensions, a widely applied rectifying 

algorithm is using at least 6 ground control points (GCP), with known real-world coordinates, to 

calibrate all the parameters in the rectifying algorithm (Mikhail and Ackermann 1976, Fujita, 

Muste et al. 1998, Muste, Fujita et al. 2008). However, in this study, no GCP has been used on-

site, so a relatively simple algorithm was used to approximate the real-word dimensions, 

according to the metadata of the cameras, including the camera height above the water surface, 

camera tilt angle, the camera senser size, and camera focal length. The actual distance (𝐷) 

between the camera and the object on the photo is estimated by 

𝐷 = tan(𝛽) 𝐻 , (1) 

where 𝐻 is the camera height above the water surface. 𝛽 = − 𝜏 − 𝛼, where 𝜏 is the camera tilt 

angle, as shown in Figure 3(a), and 𝛼 = atan ( ). ℎ is the distance between the object and center 

line on the camera sensor, as shown in Figure 3(b) (dark blue: river, green: ground, light blue: 

sky), and 𝑓 is the focal length of camera lens. The actual width (𝑊) of the water surface is 

estimated by 

𝑊 =
 ( )

 ( )
 , (2) 



where 𝜔 is the width of the water surface on the camera sensor. The value of ℎ and 𝜔 are 

estimated according to the relative position on the photo and the sensor size, which are 4.22× 

2.38 mm in this study.  

  

(a) (b) 

Figure 3: Sketch of the method for approximate the actual distance and width of the water 

surface according to the wildlife camera photos. (a) Sketch of the camera’s parameters used for 

estimation; (b) Sketch of the image on the camera sensor for estimation. 

The examples of the estimated water surface width maps on wildlife camera’s photos are shown 

in Figure 4. The comparisons between the photo-based stream width approximation and the on-

site measurements are shown and discussed in Section 3.2. Please note that there are several 

issues in the Equation (2) would cause uncertainty on stream width approximation. The camera 

height above the water (𝐻) is not a constant value in real-world, because surface water elevation 

varies with time, while camera is usually installed at a fixed height above ground. Additionally, 

Eq. (2) also assume the water surface is perfect horizontal, but the practical stream water surface 

usually has elevation gradient.  



  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4: Example width map of the surface water for the six sites. (a) S30R; (b) S31; (c) S32; 

(d) S38; (e) S63; (f) S63P. 

3. Results 



3.1. Model accuracy 

Both YOLOv8 and Mask2Former models were trained on the two training datasets (ADE20K 

and YRB wildlife cameras) separately, so there are four trained models: YOLOv8 trained by 

ADE20K nature landscape photos, Mask2Former trained by ADE20K nature landscape photos, 

YOLOv8 trained by YRB wildlife camera photos, and Mask2Former trained by YRB wildlife 

camera photos. For short, they are named as YOLOv8-ADE20K, Mask2Former-ADE20K, 

YOLOv8-YRB, and Mask2Former-YRB respectively as listed in Table 2. The model was trained 

on one Nvidia A100 80G GPU. The four trained models were evaluated by the two testing 

datasets (YRB and CreekVT wildlife camera). The example of the model predicted masks for the 

segmented surface water comparing with the ground truth are listed in Figure 5. The identified 

water surfaces are marked by the semi-transparent red mask in Figure 5. The evaluation of the 

accuracy of the models are listed in Table 2. The average precision (AP) is used as the metrics of 

quantifying model accuracy. The AP50 represent the average precision calculated at an IoU 

(intersection over union) threshold of 0.5. In other words, it only counts detections as true 

positives if they have IoU of 50% or more with the ground truth. Similarly, AP75 only counts 

detections as true positives if they have IoU of 75% or more. AP, in the table, represent the 

average from AP50 to AP95 with increased interval of IoU of 5%.  

It is obvious that the modeled trained by ADE20K dataset cannot capture the stream surface 

accurately, especially for the sites S32, S38, S63, and S63P, because the boundary of the stream 

water surface is very complex, which are not common in the general landscaping photos in 

public dataset ADE20K. The models trained with YRB wildlife camera photos can provide much 

better inference accuracy. The YOLOv8-YRB model has AP at 39% for the YRB test dataset, 

which is better than Mask2Former’s accuracy 31%. For the test dataset from CreekVT, the 



model YOLOv8-YRB model’s accuracy decrease obviously to AP=31%. In contrast, 

Mask2Former-YRB model’s accuracy increased to AP=41% for the CreekVT data. The potential 

reason is the complex stream surface boundary in YRB wildlife camera photos. YOLOv8 

focuses on the details of the small patches of water surface and their complex boundaries, but 

loses partial of the feature capturing accuracy of general water surface. While Mask2Former-

YRB keeps accuracy on capture features of the general understanding of water surface, by 

partially sacrificing the accuracy on tracking the small patches of water and their complex 

boundaries. This makes Mask2Former-YRB provide more reliably monitoring results when 

applied it to different camera photos that are from various locations. 

Camera 

ID 

Ground truth YOLOv8-

ADE20K 

Mask2Former-

ADE20K 

YOLOv8-YRB Mask2Former-

YRB 

S30R 

S31 

S32 

S38 

S63 



S63P 

Creek

VT 

Figure 5: Examples of the model prediction on the test dataset comparing to the ground truth. 

 

Table 2: Model accuracy on the two test datasets: YRB wildlife camera dataset and CreekVT 

dataset. 

 YOLOv8-
ADE20K 

Mask2Former-
ADE20K 

YOLOv8-YRB Mask2Former-
YRB 

 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 
YRB 
wildlife 
camera 
test 
dataset 

5.2 10.1 6.6 5.4 15.6 1.9 39.1 71.0 41.4 29.9 55.5 25.4 

CreekVT 
test 
dataset 

16.2 50.8 5.7 14.4 39.1 15.1 30.9 56.3 24.9 41.0 57.0 52.5 

 

3.2. Steam width variation with time for the 6 cameras 

As discussed in Section 3.1, the model trained by ADE20K dataset cannot provide accurate and 

reliable segmentation on water surface, so only the models trained by YRB wildlife camera 

photos (YOLOv8-YRB, Mask2Former-YRB) are used to inference the time series photos for the 

six sites. The cameras were set to take photo every 4 hours, so there are large number of photos 

in night vision mode. Such photos are very dark, and extremely difficult to recognize the objects, 



so only the photos taken during day light conditions are used for stream surface segmentation 

and evaluations.  

The wet fraction variations and the estimated width for the six investigated sites are shown in 

Figure 6. Because the cameras were not installed at the same time, the start dates of the data in 

Figure 6 are not the same for the six sites. The wet fraction is defined as the actual wetted area 

normalized by the possible maximum wetted area of the stream water surface, so it is unitless 

value. The rocks and/or small islands that are out of the water surface are deducted from the 

calculation of wetted area, so  the wet fraction calculation deducts the dry areas in the middle of 

the stream. The width is the distance between the two shorelines of the stream as introduced in 

Section 2.3, so the small dry islands and/or the rocks out of the water surface does not impact the 

measurements of the width. There are several data gap in Figure 6. This is caused by the cameras 

not taking any day light condition photos during these gap time periods, due to the camera’s 

settings error. Additionally, as stated in Section 2.3, the algorithm from photo to real-world 

dimensions was a simplified approximation approach when no on-site GPC data available, so it 

is possibly less reliable than wet fraction data, which does not need any addition conversion 

algorithm. The on-site measured stream widths are also shown in Figure 6. Generally, the 

estimated width of the water surface match the on-site measurements fairly well. Please note that 

the on-site measurements were the distance between two arbitrarily selected points at the two 

sides of the stream, which are not exactly the surface water edge-to-edge distance and may 

include the partially wet riverbank and riverbed. It is not the averaged width of the stream 

surface in the view of the wildlife camera, and the on-site measurements at different time may 

from different measuring points. Therefore, the on-site measurements are only for providing 

references of the scale of the investigated streams, like sub meter small creek, 5-meter level, 10-



meter level, above 20-meter level, and so on, so it is not expected to provide actual time varying 

width information. 

(a) 
 

(b) 

(c) 
 

(d) 

(e) 
 

(f) 

Figure 6: Stream wet fraction and width time series for the investigated six sites. (a) S30R; (b) 

S31; (c) S32; (d) S38; (e) S63; (f) S63P. 



Generally, both YOLOv8 and Mask2Former models provide similar long-term wet fraction 

variation for the six sites. However, the wet fraction estimated based on YOLOv8 inference 

shows slightly higher short-term fluctuation than the ones from Mask2Former, especially for 

sites S30R, S31, and S63. The stream water surface usually does not dramatically change in a 

short duration, such as one or two days. These higher fluctuations are caused by the stability and 

transferability of the image segmentation models. The accuracy comparison in Table 2 shows 

that Mask2Former provide higher stability and transferability then YOLOv8 when processing the 

photos, that the contents in it are quite different from the training dataset. In all the photo series 

for inference, there are many photos with different light conditions that are not available in the 

training dataset, though the landscaping scene are the same. For example, variability in sunlight 

may cause lens flare, over exposure, and sometimes loss of necessary details in the shadow 

regions. An example comparison between the two models’ inference in an extreme lighting 

condition for site S63 is shown in Figure 7(a) for YOLOv8-YRB and (b) Mask2Former-YRB. 

The photo was taken on October 28th, 2023, 3:15PM PST during sunset at site S63. It is obvious 

that YOLOv8 model does not detect the water surface in red circle, neither the rocks in yellow 

circle, while Mask2Former provides much better results. In such or similar situation, 

Mask2Former’s inference is more stable that YOLOv8, and then slightly lower short-term 

fluctuations on stream surface water wet fractions. 

Additionally, frozen surface water and snow also cause uncertainty on the inference of water 

surface from the two models. An example comparison for the frozen surface water covered by 

snow is shown in Figure 8(a) for YOLOv8-YRB and (b) Mask2Former-YRB. The photo was 

taken on January 19th, 2024, 5:00PM PST at site S32. It is challenging to differentiate whether 

the surface below the snow is frozen stream or the terrestrial landscape without seeing the photos 



taken in warmer conditions. YOLOv8-YRB model simply considers the large flat surface as 

stream water surface, while Maks2Former-YRB model does not treat it as surface water. In such 

situations, the wet fraction estimated from Mask2Former-YRB model shown in Figure 6(c) 

provide very large fluctuation from January 17th 2024 to January 22nd 2024. It is possible that 

adding a few such photos with labeled snow surface as water surface may reduce the uncertainty 

on the inference. However, it is not recommended due to potential model stability and 

transferability issues. Labeling some object that is obviously not visually belonging to the object 

class may significantly confuse the model and would be harmful to the overall model accuracy. 

Therefore, the wildlife camera-based stream surface monitoring is only recommended for areas 

that do not continuously have frozen surface water and snow. For example, the frozen time 

should no longer than 20% of the total monitoring time.  

 

(a) (b) 

Figure 7: Comparison between the two models’ inference in an extreme lighting condition for 

site S63. (a) YOLOv8-YRB; (b) Mask2Former-YRB. 



(a) (b) 

Figure 8: Comparison between the two models’ inference for frozen stream water surface 

covered by snow for site S32. (a) YOLOv8-YRB; (b) Mask2Former-YRB. 

 

Besides the scenarios mentioned above, there are several conditions that are difficult for image 

segmentation models to handle, such as night vision mode and mist as the example photos shown 

in Figure 9(a) and (b) respectively. Therefore, the wildlife camera photos cannot be used to 

monitor water coverage changes within one day for the purpose of comparing the variation 

between day and nighttime. The mist and/or rain is usually not a major issue, because it should 

not last very long. The mist on lens usually disappear after a sunny day without needs of in-

person maintenance. Missing a few days tracking information is acceptable for the long-term 

monitoring. If the length of nighttime and the length of mist or raining time is main concern in 

the area of investigation, the proposed wildlife camera photo with machine learning water 

surface separation may not be an appropriate approach. 

 



(a) (b) 

Figure 9: Examples of the photos that are difficult for image segmentation model. (a) night 

vision mode photo; (b) photo in mist or rain. 

4. Conclusion and discussion 

Both YOLOv8 and Mask2Form image segmentation models were tested in this study to separate 

the stream water surface from the wildlife camera photos for monitoring the wet fraction 

variation at six sites in Status creek watershed in Yakima River Basin. It is demonstrated that, the 

models trained by the general public photo dataset ADE20K are not accurate enough for the task 

of wildlife camera photos recognition. It is very necessary to use the actual wildlife camera 

photos to train the models to enhance accuracy of the surface water segmentation. With a total of 

380 labeled wildlife camera photos used as training and validation datasets, accuracy of both 

models significantly increased. The Mask2Former-YRB model showed better stability and 

transferability for the different landscaping scene and extreme lighting conditions compared to 

the YOLOv8 model. As shown in Table 2, for the photos from CreekVT, which is completely 

not used in model training and validation, Mask2Former-YRB model still achieve average 

precision 41%, while YOLOv8-YRB only has 31%. Overall, Mask2Former-YRB provided more 

reliable monitoring results as discussed in Section 3.2 and compared in Figure 7. This means that 



for new installed cameras in the future, Mask2Former-YRB model can directly be used for the 

segmentation task without retraining, while YOLOv8-YRB model would need adding new 

cameras’ photo to the training dataset for retraining.  

As demonstrated in this study, wildlife cameras are a cost-efficient way to continuously monitor 

the river or creek surface water, and machine learning models can provide efficient and accurate 

estimation of variable wet fractions, although there are still several scenarios where this 

application is limited. The first situation is the frozen water surface covered by snow as 

discussed in Section 3.2 and shown in Figure 8. Without collecting photos taken during warmer 

time points, it is hard to justify whether the surface below the snow is frozen stream or other 

possible flat surface such as land or dry riverbed. Therefore, the proposed approach is not 

recommended for the areas that continuously have frozen and/or snow weather conditions. For 

example, the frozen time should be no longer than 20% of the total monitoring time. In addition, 

it is almost impossible to separate the water surface from the terrestrial landscape with night 

vision mode photos as shown in Figure 9(a). The third situation is mist and rain as shown in 

Figure 9(b). In such weather conditions, the photo can be very blurred, making the model unable 

to differentiate the surface water during the segmentation step.  

The proposed framework of wildlife camera with AI image segmentation provides a cost-

efficient monitoring system for both small perennial and non-perennial. For large perennial 

stream, though the proposed framework technically is also capable, satellite based remote 

sensing would be a more efficient approach. The proposed framework works completely off-

grid, and can be applied in many environments and locations. It can adapt to monitoring large 

variations in stream width from over 10 meters to near zero. It can work continuously for a few 

months without any on-site maintenance, and still can provide sub-daily temporal resolution. The 



proposed AI model also provides the flexibility of measuring the stream width with or without 

deduction of the dry island or rocks in the middle of the surface water.  
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