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Abstract

Integrating air quality information from models, satellites, and in-situ monitors allows for both better estimation of air quality

and better quantification of uncertainties in this estimation. Uncertainty quantification is important to appropriately convey

confidence in these estimates and forecasts to users who will base decisions on these. Uncertainty quantification also allows

tracing the value of information provided by different data sources. This can identify gaps in the monitoring network where

additional data could further reduce uncertainties. This paper presents a framework for data fusion with uncertainty quan-

tification, applicable to multiple air-quality-relevant pollutants. Testing of this framework in the context of nitrogen dioxide

forecasting at sub-city scales shows promising results, with confidence intervals typically encompassing the expected number

of actual measurements during cross-validation. The framework is now being implemented into an online tool to support local

air quality management decision-making. Future work will also include the incorporation of low-cost air sensor data and the

quantification of uncertainty at hyper-local scales.
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Key Points: 12 

• The proposed data fusion method produces a-priori uncertainty assessments and 13 
confidence intervals for estimates and forecasts 14 

• Confidence intervals were found to be mostly reasonable in a test case study for nitrogen 15 
dioxide across four months and two cities 16 

• The method provided overconfident estimates for sites within 100 meters of highways  17 
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Abstract 18 
Integrating air quality information from models, satellites, and in-situ monitors allows for both 19 
better estimation of air quality and better quantification of uncertainties in this estimation. 20 
Uncertainty quantification is important to appropriately convey confidence in these estimates and 21 
forecasts to users who will base decisions on these. Uncertainty quantification also allows tracing 22 
the value of information provided by different data sources. This can identify gaps in the 23 
monitoring network where additional data could further reduce uncertainties. This paper presents 24 
a framework for data fusion with uncertainty quantification, applicable to multiple air-quality-25 
relevant pollutants. Testing of this framework in the context of nitrogen dioxide forecasting at sub-26 
city scales shows promising results, with confidence intervals typically encompassing the expected 27 
number of actual measurements during cross-validation. The framework is now being 28 
implemented into an online tool to support local air quality management decision-making. Future 29 
work will also include the incorporation of low-cost air sensor data and the quantification of 30 
uncertainty at hyper-local scales. 31 

Plain Language Summary 32 
Poor air quality has adverse impacts on human and environmental health. Estimating and 33 
forecasting air quality accurately can improve early warnings and mitigation for poor air quality. 34 
Furthermore, understanding the uncertainties and degree of confidence in these forecasts and 35 
estimates can help air quality managers know when and where they can be relied upon, and where 36 
more data might still be needed. This paper outlines a method to combine air quality information 37 
from models, satellites, and ground-based monitors, and to assess the confidence in the combined 38 
output. Combining all these data sources can give us a better overall understanding of air quality, 39 
and making comparisons between them allows us to better understand uncertainties. Testing out 40 
the method proposed in this paper, we find that the method can produce reasonable assessments of 41 
the confidence it has in its estimates, with the expected numbers of actual measurements usually 42 
falling within the confidence intervals produced by the method. An exception is when this method 43 
is applied very close to a major pollution source (e.g., a highway, in our study). In such cases, since 44 
the method does not know that there is such a source nearby, it tends to be overconfident in its 45 
prediction. 46 

1 Introduction 47 
Poor air quality is a major global public health concern. The 2019 Global Burden of Disease 48 

study identified air pollution as the leading environmental risk factor for human premature 49 
mortality (Murray et al., 2020). To mitigate this public health problem on a global scale, air quality 50 
managers and practitioners first need access to accurate and comprehensive information on the 51 
state of air quality in their areas. Such information might come from a variety of disparate sources. 52 
In-situ measurements of air quality, typically obtained from instruments operated by regulatory 53 
bodies, e.g., the Environmental Protection Agency in the United States, are considered the trusted 54 
standard for assessing air quality. At a global scale, however, the relatively low density of such 55 
measurements means that regulatory instruments alone often cannot provide necessary air quality 56 
information to answer basic questions relevant to public health (Martin et al., 2019). Low-cost air 57 
quality sensors (LCS) are increasing in prominence to address this in-situ data gap (e.g., Tanzer et 58 
al., 2019; Rose Eilenberg et al., 2020). As the name implies, these provide a less expensive 59 
alternative to traditional regulatory-grade air quality monitors (RGM). As a tradeoff to achieve this 60 
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lower cost, LCS suffer from greater measurement uncertainties, and thus, require extensive 61 
calibration and validation efforts to generate useable data (Giordano et al., 2021). LCS can also be 62 
deployed to new areas which do not have the infrastructure to support RGM. LCS provide the only 63 
currently feasible means of routine air quality assessment in many low-and-middle-income 64 
countries (Hodoli et al., 2023; McFarlane, Isevulambire, et al., 2021; Raheja et al., 2022). 65 

Even so, the availability of local air quality data from in-situ RGM or LCS may not provide 66 
sufficient situational awareness to air quality managers. Other, more globally available data 67 
sources may be required. One important source of such global data is satellite remote sensing 68 
retrievals of atmospheric composition. These data are provided by a fleet of instruments operated 69 
by national aerospace agencies and the private sector. By providing in many cases globe-spanning 70 
monitoring of the chemical and physical properties of the atmosphere at increasingly fine spatial 71 
resolution, satellite data can fill many gaps in our understanding of the composition of the 72 
atmosphere. However, satellite remote sensing has some key limitations with respect to air quality 73 
applications. Typically, remote sensing estimates take account of the entire atmospheric column, 74 
rather than the surface-level concentrations which are most relevant to air quality and the 75 
associated health exposure risk. The relationship between surface and column quantities is 76 
dependent on many factors. Thus, while promising, certain expertise and domain knowledge is 77 
required to correctly interpret satellite data for air quality purposes, which may be a barrier to its 78 
routine use in many areas (Anenberg et al., 2020; Duncan et al., 2021; Holloway et al., 2021). 79 

Other sources of global air quality information are atmospheric chemistry and transport 80 
models (CTM). These models seek to estimate the state of the atmosphere, including parameters 81 
relevant for air quality, based on mathematical representations of chemical and physical processes 82 
combined with input data related to boundary conditions, e.g., the estimated emissions of various 83 
pollutants into the atmosphere. These models produce spatially comprehensive datasets and have 84 
the potential to forecast future air quality. However, their estimates may be biased due to 85 
incomplete and/or outdated input information or by inadequate representation of some chemical 86 
or physical processes. For example, inadequate temporal resolution for emissions data, differing 87 
vertical representations between the model and observations, as well as boundary layer mixing 88 
were found to impact the ability of the GEOS-Chem model to represent diel variations in fine 89 
particulate matter (PM2.5) over the United States (Y. Li et al., 2023). Constraining CTM with 90 
observations from satellites, RGM, LCS, or a combination thereof via data assimilation is a widely 91 
used approach to addressing these model shortcomings. Assimilation of satellite data is more 92 
typical for global-scale CTM (Bocquet et al., 2015; Kelp et al., 2023), while in-situ data 93 
assimilation is more typical for sub-city to national scale CTM (Lopez-Restrepo et al., 2021; 94 
Schneider et al., 2023; Hassani et al., 2023). 95 

Data fusion is an approach for bringing together various data sources. In contrast to data 96 
assimilation, where observations are used to update the state of a model, data fusion combines 97 
multiple data sources to produce a new data product, distinct from the inputs. A typical niche filled 98 
by data fusion is “downscaling” of coarser-resolution regional or global CTM output to produce 99 
more locally applicable outputs (Diao et al., 2019). A myriad of approaches using different inputs 100 
and methodologies has been proposed. On a local scale, data fusion of a dispersion model and LCS 101 
data has supported hourly PM10 mapping in Nantes, France (Gressent et al., 2020). Regionally, 102 
satellite information is commonly used to support data fusion approaches; fusion of satellite 103 
aerosol optical depth (AOD), land use information, and meteorological data with surface 104 
observations from RGM and LCS allowed for daily 1-km resolution estimation of PM2.5 over 105 
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California, USA (Bi et al., 2020). Satellite AOD, RGM, and LCS data were similarly combined 106 
for PM2.5 mapping over Taiwan (J. Li et al., 2020). Globally, data fusion approaches are used to 107 
create yearly, monthly, or daily average surface PM2.5 and constituent estimates (van Donkelaar et 108 
al., 2015, 2021; Wei et al., 2023). These estimates support analysis of the global impacts of air 109 
quality (Murray et al., 2020). For forecasting applications, i.e., prediction of surface concentrations 110 
in advance, bias correction for an ensemble of CTM was performed using surface RGM 111 
observations in both urban and rural areas to improve hourly PM2.5 forecasting over the USA 112 
(Zhang et al., 2020, 2022). CTM, satellite and RGM data are combined to improve hourly NO2 113 
forecasts at sub-city scale (Malings et al., 2021). Machine learning methods have also been used 114 
for bias-correction of global CTM to produce daily PM2.5 forecasts at 1-km resolution for 115 
applications at sub-city scale (Keller et al., 2020; Duncan et al., 2021; Bi et al., 2022). These studies 116 
demonstrate the wide applicability and flexibility of data fusion to incorporate models with various 117 
observational datasets.  118 

In contrast to deterministic methods, probabilistic estimates and forecasts for air quality 119 
may be better suited to the needs of air quality managers and policy makers. For example, in a 120 
decision-focused analysis of ozone forecasting based on public health protection, it was found that 121 
single deterministic forecasts may produce less robust results compared to the use of multiple 122 
forecasts or an ensemble of forecasts for guiding air quality decision-making (Balashov et al., 123 
2017; Garner & Thompson, 2012). This was because the ensemble forecasts more readily allowed 124 
for choosing actions which would be robust under a range of outcomes, i.e., robust under 125 
uncertainty. For global data fusion estimates of monthly PM2.5, uncertainty quantification also 126 
supports analyzing the impact of this uncertainty on global health and epidemiological assessments 127 
(van Donkelaar et al., 2021). Several recent efforts have aimed at the quantification of uncertainty 128 
in air quality estimation and forecasting. Most of these approaches make use of ensembles of 129 
deterministic models (Garaud & Mallet, 2011; Gilliam et al., 2015; Riccio & Chianese, 2024) or 130 
machine learning methods, e.g., using generative models to produce a simulated ensemble 131 
(Fanfarillo et al., 2019). Data fusion approaches making use of geostatistical methods, especially 132 
Gaussian process or kriging approaches, have inherent capabilities to constrain estimates and 133 
quantify uncertainties for air quality estimation and forecasting (Wang et al., 2021). Kriging is 134 
referred to as “objective analysis” or “optimum interpolation” in the early numerical weather 135 
prediction literature (Diggle, 2010, p. 8). A major barrier to the wider use of probabilistic forecasts 136 
in air quality applications has been the difficulty associated with the interpretation of probabilistic 137 
forecasts by decision-makers and effectively communicating these to the public. Recent work has 138 
aimed at addressing these issues by explicitly analyzing different interpretation strategies 139 
corresponding with different desired outcomes (Balashov et al., 2023). 140 

This paper presents a framework for combining CTM output, satellite remote sensing data, 141 
and in-situ measurements from a combination of RGM and LCS via a data fusion approach to 142 
support air quality estimation and/or forecasting. This framework includes explicit quantification 143 
of uncertainties associated with outputs from each stage, i.e., as each additional dataset is added. 144 
This paper aims at presenting a simple, generalizable method for data fusion with uncertainty 145 
quantification which can be implemented for near-real-time applications, with more limited 146 
computational requirements than a full data assimilation approach. We demonstrate this framework 147 
with a case study, focusing on estimation and forecasting of nitrogen dioxide in two US cities (San 148 
Francisco and New York City) in 2019. Nitrogen dioxide (NO2), a regulated pollutant in the US 149 
(US EPA, 2017), represents a useful test case since it is known to vary on fine spatial scales in 150 
urban areas, which may not be captured even in high-resolution satellite datasets (e.g., Judd et al., 151 
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2019). The ability to characterize this variability is an informative illustration of the capabilities 152 
of the proposed framework. The development of analysis tools and data products which combine 153 
multiple sources of air quality information, alongside methods to express confidence in or 154 
quantification of uncertainties in these products, has been suggested as a key need of air quality 155 
managers worldwide (Duncan et al., 2021). The methods presented in this paper are being 156 
implemented as part of a NASA-funded project to develop such tools for air quality data managers. 157 

2 Methods 158 

2.1 Input datasets 159 
The proposed data fusion approach makes use of three categories of input information: 160 

CTM-based estimates and forecasts, satellite remote sensing data, and ground monitor data. 161 

The NASA Global Earth Observing System Composition Forecast (GEOS-CF) system 162 
generates CTM outputs used in this paper. GEOS-CF couples the GEOS atmospheric general 163 
circulation model with the GEOS-Chem chemistry module (Keller et al., 2021). GEOS-CF 164 
produces 5-day forecasts initialized every day, following a 24-hour historical simulation for the 165 
previous day with the meteorology constrained by assimilated fields, to provide the best estimates 166 
for the past atmospheric composition. Both forecast and historical model output are used here. 167 
Hourly-average “surface-level” (average for the GEOS model’s lowest level, nominally 130 m 168 
thick) nitrogen dioxide concentrations along with tropospheric column concentrations are used for 169 
the year 2019. GEOS-CF outputs are on a 0.25° or roughly 25 km latitude-longitude grid. 170 

The TROPOMI instrument on the Sentinel 5P satellite provides retrievals related to 171 
tropospheric column concentrations of NO2 (Veefkind et al., 2012). Through an agreement with 172 
the European Space Agency, TROPOMI data are also hosted at the NASA Goddard Earth Sciences 173 
Data and Information Services Center (GES DISC), searchable via the Common Metadata 174 
Repository system; these systems were used to identify and access relevant TROPOMI datasets. 175 
Tropospheric NO2 concentration data products are used here, with recommended data quality 176 
filters for “good quality” retrievals. The latest high-resolution data product with a nominal pixel 177 
size of 5.5 by 3.5 km is used. 178 

This paper presents a case study focused on San Francisco, California, USA (defined as 179 
between 37° N and 39° N and between 121° W and 123° W). Data for the month of September 180 
2019 were used for the primary analysis; additional data from calendar year 2019 were also 181 
included as potential inputs for calibration purposes and for additional analysis presented in 182 
Section 3.3. An additional case study focused on New York City, New York, USA is also presented 183 
in the supplemental materials, described in supplemental text S1. These locations were selected 184 
due to their relatively high density of RGM for NO2, as well as for comparability with previous 185 
related work (Malings et al., 2021). Ground monitoring data for hourly NO2 were obtained from 186 
the US EPA’s RGM network. Relevant data were queried using the Air Quality System API. 187 

2.2 Data fusion approach and uncertainty quantification 188 
The method for air quality data fusion outlined here is adapted from prior work (Malings 189 

et al., 2021). The major improvements presented here include (1) a generalization of the 190 
methodology and notation, where relevant changes to corresponding elements of the prior work 191 
will be noted, and (2) development of a framework for quantifying the uncertainty in fused 192 
estimates of surface air quality, which was not present in the prior work. The method is separated 193 
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into four phases: phase 1 involves model-based historical estimates and forecasts only; phase 2 194 
fuses satellite with model data; phase 3 integrates in-situ measurements in an “offline” manner, 195 
useful mainly for bias correction; phase 4 integrates in-situ measurements in an “online” manner, 196 
useful for near-term estimate and forecast updating. 197 

2.2.1 Phase 1: model-based estimation and uncertainty 198 
This data fusion approach starts with air quality estimate and forecast model outputs. Let 199 

𝑀(𝑥, 𝑡, 𝜏) denote the estimated surface concentration of a given pollutant applicable at location 𝑥 200 
and time 𝑡 produced by an air quality model (the GEOS-CF model in the current work). The 201 
forecasting lead-time is denoted by 𝜏. If target time 𝑡 is in the future, lead-time 𝜏 will be the 202 
difference between 𝑡 and when the model forecast was initialized. If 𝑡 is in the past, then 𝜏 = 0, 203 
and the latest available model output covering time 𝑡 is used. Lead-time 𝜏 may not always be 204 
explicitly noted for notational convenience; when it is omitted, assume 𝜏 = 0. The phase 1 estimate 205 
is simply the relevant model output: 206 

𝐸!(𝑥, 𝑡, 𝜏) = 𝑀(𝑥, 𝑡, 𝜏).  (1) 207 

Practically, it is important to note that while 𝑥 represents a location on the Earth’s surface 208 
to arbitrary precision, the spatial resolution on which 𝐸! will be defined is limited to the spatial 209 
resolution of the model. In future work, it is considered that an ensemble of air quality models, 210 
either from different modeling systems or multiple initializations of the same model system, may 211 
be used to inform the data fusion. In that case, 𝐸!(𝑥, 𝑡, 𝜏) could be the mean of multiple available 212 
models. Furthermore, the ensemble spread could be used for uncertainty quantification. 213 

To better inform end-users on the uncertainty in data fusion estimates, we also aim to 214 
quantify the uncertainty of 𝐸!(𝑥, 𝑡, 𝜏) in terms of the expected mean square error of the estimate 215 
with respect to the true concentration. We denote this uncertainty as 𝑉!(𝑥, 𝑡, 𝜏). We estimate this 216 
uncertainty as the sum of four components, where independence between the components is 217 
assumed. These components are the uncertainty in the forecast due solely to its lead-time, 218 
𝑉"!(𝑥, 𝑡, 𝜏), the uncertainty due to local variability in the air quality model output, 𝑉#(𝑥, 𝑡), the 219 
uncertainty due to potential bias in the air quality model, 𝑉$!(𝑥, 𝑡), and the uncertainty due to the 220 
representational error of the model,	𝑉%!(𝑥, 𝑡), due to its relatively coarse spatial resolution. Thus: 221 

𝑉!(𝑥, 𝑡, 𝜏) = 𝑉"!(𝑥, 𝑡, 𝜏) + 𝑉#(𝑥, 𝑡) + 𝑉$!(𝑥, 𝑡) +	𝑉%!(𝑥, 𝑡). (2) 222 

Model-based uncertainties 𝑉"!(𝑥, 𝑡, 𝜏) and 𝑉#(𝑥, 𝑡) are estimated empirically using model 223 
outputs. 𝑉"!(𝑥, 𝑡, 𝜏) is estimated using the mean square difference of past model forecasts at lead-224 
time 𝜏 and estimates at lead-time 0 for location 𝑥. This is evaluated over a set of times denoted 225 
𝑇&,(.*.+.(𝑡), representing times during a calibration period in the recent past, e.g., the prior week, at 226 
the same time-of-day (t.o.d.) as the time of interest 𝑡. This is meant to account for potential 227 
systematic differences in forecasting capabilities at different times of the day due to diel cycles or 228 
initialization times. 229 

𝑉"!(𝑥, 𝑡, 𝜏) ≅ 𝔼(!∈-",$.&.'.(() 12𝑀(𝑥, 𝑡
0, 𝜏) − 𝑀(𝑥, 𝑡0, 0)415, (3) 230 

where 𝔼2[∙] denotes the expected value, i.e., the mean, of the expression in brackets with respect 231 
to indexing parameter 𝑖. Note that 𝑉"!(𝑥, 𝑡, 0) = 0 by design, and so this term can be ignored for 232 
𝜏 = 0.  233 
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𝑉#(𝑥, 𝑡) is estimated as the expected square difference of model outputs in the immediate 234 
vicinity of location 𝑥 and time 𝑡, i.e., the mean square difference of the model outputs in the grid 235 
cells immediately surrounding it in space and time: 236 

𝑉#(𝑥, 𝑡) ≅ 𝔼3!∈4((3),(!∈-((() 12𝑀(𝑥
0, 𝑡0) − 𝑀(𝑥, 𝑡)415, (4) 237 

where 𝑋5(𝑥) represents the neighborhood of location 𝑥, i.e., its adjoining model grid cells 238 
depending on the model spatial resolution, and 𝑇5(𝑡) represents the neighborhood of time 𝑡, i.e., 239 
the preceding and subsequent time steps according to the model temporal resolution. The logic 240 
behind this estimate is that, where model outputs are “smooth” in space and time, there is less 241 
uncertainty in the model outputs, while when the model outputs are more variable in space and 242 
time, there is greater uncertainty. This estimate depends on the model resolution, with lower 243 
uncertainties estimated for finer resolutions, all else being equal. We consider this to be reasonable, 244 
as finer resolution models will tend to explicitly represent processes at the relevant scale. However, 245 
simply interpolating model outputs to a finer resolution would artificially reduce the uncertainty 246 
estimate. This analysis should therefore be conducted at the native resolution of the model. A 247 
schematic for this phase is provided in Supplemental Figure S1. 248 

The remaining terms 𝑉$!(𝑥, 𝑡) and 𝑉%!(𝑥, 𝑡) are impossible to assess using the model alone 249 
and must be estimated using external information, as will be discussed later (see Section 2.2.5). 250 
Note that, if an ensemble of models is used, it may be possible to estimate 𝑉$!(𝑥, 𝑡) using the mean 251 
square differences between models in the ensemble (Riccio & Chianese, 2024). However, it may 252 
still be the case that all models within an ensemble are systematically biased due to some common 253 
underlying factor, e.g., all models using the same emissions dataset. 254 

2.2.2 Phase 2: model downscaling with satellite data 255 
In phase 2, relationships between column concentrations from model and satellite data are 256 

used to inform the sub-model-grid variability of the pollutant of interest. The phase 2 estimate of 257 
the concentration of this pollutant at time 𝑡 and location 𝑥, 𝐸1(𝑥, 𝑡, 𝜏), is the phase 1 estimate 258 
modified by the satellite-informed sub-grid difference pattern 𝐷(𝑥, 𝑡): 259 

𝐸1(𝑥, 𝑡, 𝜏) = 𝐸!(𝑥, 𝑡, 𝜏) + 𝐷(𝑥, 𝑡), (5) 260 
where: 261 

𝐷(𝑥, 𝑡) = 𝔼(!∈-",&)*+,-..(() 1<𝑆&*6(𝑥, 𝑡′) − 𝐸!,&*6(𝑥, 𝑡′)?𝜙(𝑥, 𝑡
0)	𝜓(𝑥, 𝑡, 𝑡′)5. (6) 262 

This difference pattern is the mean of the difference between the satellite-retrieved column 263 
concentration of the pollutant of interest, 𝑆&*6, and the estimate of the same column quantity by the 264 
model used in phase 1, 𝐸!,&*6, multiplied by two scaling factors 𝜙 and 𝜓. This mean is calculated 265 
during the calibration period associated with time of interest 𝑡 considering only times when the 266 
satellite was overhead, denoted 𝑇&,*789:;<<(𝑡). Practically, both 𝜙 and 𝜓 are informed by the 267 
model, which provides simulated data for all relevant surface and column quantities.  Scaling 268 
factor 𝜙(𝑥, 𝑡) accounts for the change in surface concentration corresponding with a unit change 269 
in column concentration at location 𝑥 and time 𝑡. We approximate this sensitivity using a ratio of 270 
model values at this location and time:  271 

𝜙(𝑥, 𝑡) ≅ #(3,(,=)
#"&/(3,(,=)

. (7) 272 
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Scaling factor 𝜓(𝑥, 𝑡, 𝑡′) accounts for the ratio of changes in surface concentrations at 273 
location 𝑥 and time 𝑡 to changes at location 𝑥 and time 𝑡’. Again, we approximate this with a ratio 274 
of model values: 275 

𝜓(𝑥, 𝑡, 𝑡′) ≅ #(3,(,=)
#(3,(0,=)

. (8) 276 

The definition of 𝐷(𝑥, 𝑡) presented in equation 6 is a generalization of “typical pattern” 277 
extraction described in equations 1 and 2 of Malings et al. (2021). This generalization now 278 
explicitly captures the relationship between surface concentrations and column quantities, which 279 
was only implicit before. Equation 5 here then replaces equation 3 of Malings et al. (2021). A 280 
schematic for this phase is provided in Supplemental Figure S2. 281 

In general, it may be necessary to consider the observational operator and air mass factor 282 
used in the satellite retrieval algorithm, as these affect the comparability between satellite retrieved 283 
𝑆&*6 and modeled 𝐸!,&*6 (e.g., Cooper et al., 2020). No explicit consideration of this is made here; 284 
instead, this will contribute to variability as discussed below. Future work may explicitly consider 285 
these impacts, likely leading to a reduced uncertainty. Note that in the case of PM2.5, AOD would 286 
be the column quantity considered. 287 

Similar to phase 1, the uncertainty of the phase 2 estimate, 𝑉1(𝑥, 𝑡, 𝜏), is estimated as the 288 
sum of the uncertainty due to forecast lead-time, 𝑉"1(𝑥, 𝑡, 𝜏), the local variability of the model, 289 
𝑉#(𝑥, 𝑡), the variance in the satellite-informed sub-grid difference pattern, 𝑉>(𝑥, 𝑡), twice the co-290 
variance of the model and sub-grid difference pattern, 𝑉#>(𝑥, 𝑡), the uncertainty due to the 291 
potential bias in the model-and-satellite-derived surface concentration estimates, V$1(𝑥, 𝑡), and the 292 
uncertainty due to the representational error of the model-and-satellite-derived surface 293 
concentration estimates,	𝑉%1(𝑥, 𝑡):  294 

𝑉1(𝑥, 𝑡, 𝜏) = 𝑉"1(𝑥, 𝑡, 𝜏) + 𝑉#(𝑥, 𝑡) + 𝑉>(𝑥, 𝑡) + 2𝑉#>(𝑥, 𝑡) + V$1(𝑥, 𝑡) +	𝑉%1(𝑥, 𝑡). (9) 295 

Model local variability 𝑉#(𝑥, 𝑡) is carried from phase 1, and as in phase 1, 𝑉"1(𝑥, 𝑡, 𝜏) can 296 
be empirically estimated by examining the mean squared difference of forecasts with lead time 𝜏 297 
over the calibration interval at the same time of day: 298 

𝑉"1(𝑥, 𝑡, 𝜏) ≅ 𝔼(!∈-",$.&.'.(() 12𝐸1(𝑥, 𝑡′, 𝜏) − 𝐸1(𝑥, 𝑡′, 0)4
15. (10) 299 

𝑉>(𝑥, 𝑡) and 𝑉#>(𝑥, 𝑡) can be estimated with the empirical variance and co-variance of 300 
relevant terms involved in computation of the satellite-informed sub-grid difference pattern: 301 

𝑉>(𝑥, 𝑡) ≅ 𝕍(!∈-",&)*+,-..(() 1<𝑆&*6(𝑥, 𝑡′) − 𝐸!,&*6(𝑥, 𝑡′)? 𝜙(𝑥, 𝑡
0)	𝜓(𝑥, 𝑡, 𝑡′)5, (11) 302 

where 𝕍 denotes a variance computation, and:  303 

𝑉#>(𝑥, 𝑡) 	≅ 𝔼3!∈4((3),(!∈-((()F2𝐸!(𝑥
0, 𝑡0) − 𝐸!(𝑥, 𝑡)42𝐷(𝑥0, 𝑡0) − 𝐷(𝑥, 𝑡)4	G. (12) 304 

Note that in this formulation, 𝑋5(𝑥) now denotes the neighboring locations of 𝑥 at the 305 
(finer) spatial resolution of the satellite data, i.e., the adjoining pixel centroids. The final terms 306 
related to bias V$1(𝑥, 𝑡) and representational errors 𝑉%1(𝑥, 𝑡) again cannot be estimated using the 307 
model and satellite information alone and require surface-level information, as will be discussed 308 
later (see Section 2.2.5). 309 
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Comparing 𝑉!(𝑥, 𝑡, 𝜏) with 𝑉1(𝑥, 𝑡, 𝜏), and assuming a zero lead-time such that forecast-310 
related uncertainty can be ignored, we can establish some constraints on the bias and 311 
representational error from phase 1 using phase 2 results. Due to the inclusion of satellite data in 312 
phase 2 compared to phase 1, we might assume that 𝑉1(𝑥, 𝑡, 𝜏) will be less than or equal to 313 
𝑉!(𝑥, 𝑡, 𝜏) generally. Thus: 314 

𝑉$!(𝑥, 𝑡) + 𝑉%!(𝑥, 𝑡) ≥ 𝑉>(𝑥, 𝑡) + 2𝑉#>(𝑥, 𝑡) + V$1(𝑥, 𝑡) + 𝑉%1(𝑥, 𝑡). (13) 315 
That is, uncertainty due to bias and representativity errors in phase 1 should be larger than 316 

the analogous terms from phase 2 plus the variance and co-variance related to the satellite-317 
informed sub-model-grid difference patterns. Note that the inclusion of satellite information is 318 
informing both sub-model-grid variability, which would tend to reduce (though not eliminate) 319 
representational errors captured in 𝑉%!(𝑥, 𝑡), as well as bringing in real-world measurement data, 320 
which would tend to reduce (though not eliminate) model bias as represented in 𝑉$!(𝑥, 𝑡). Using 321 
this relationship, estimates of the phase 1 uncertainty terms can be made based on the relevant 322 
phase 2 uncertainty terms, e.g., using the average of these terms within each model grid cell. 323 

2.2.3 Phase 3: linear correction with reliable surface measurements 324 
Phase 3 uses in-situ measurement data to correct for possible regional systematic errors in 325 

the model-and-satellite-derived estimates of surface air quality from phase 2. As a simple case, a 326 
linear correction is assumed with slope 𝛼 and intercept 𝛽: 327 

𝐸?(𝑥, 𝑡, 𝜏) = 𝛼	𝐸1(𝑥, 𝑡, 𝜏) + 𝛽. (14) 328 
This corresponds directly with equation 10 of Malings et al. (2021). 329 

Coefficients 𝛼 and 𝛽, as well as estimates of their variance 𝑉@ and 𝑉A, co-variance 𝑉@A, and 330 
residual regression variance 𝑉%?, are derived from a linear regression analysis between phase 2 331 
estimates 𝐸1(𝑥, 𝑡) as the independent variable and ground-based air quality measurements 𝐺(𝑥, 𝑡) 332 
as the dependent variable over the calibration time interval 𝑇& and the set of discrete surface 333 
monitoring sites in the region available during the calibration time interval 𝑋&: 334 

𝛼, 𝛽, 𝑉@ , 𝑉A , 𝑉@A , 𝑉%? = 𝕃ℝ(!∈-"((),3!∈4"(3)[𝐺(𝑥
0, 𝑡0)~𝐸1(𝑥0, 𝑡0, 0)], (15) 335 

where 𝕃ℝ+*B;25[𝑣+~𝑣2] denotes a linear regression with independent variable 𝑣2 and 336 
dependent variable 𝑣+, conducted over a domain specified in the subscript of 𝕃ℝ. Since this 337 
regression is being applied for historical data collected during the calibration time interval, the 338 
phase 2 estimate with 𝜏 = 0 is used, and so 𝜏 has been dropped here for notational convenience. 339 
Note that a weighted linear regression can be applied, e.g., using a weight factor related to the 340 
time-of-day as suggested in previous work (Malings et al., 2021, Section 3.5). In principle, other 341 
approaches to regression can also be applied, including for example machine learning techniques 342 
to account for non-linear relationships (e.g., as in Wei et al., 2023). In such a case, appropriate 343 
characterization of the variance of the regression estimates and their covariance with explanatory 344 
inputs would have to be performed. In this work, a linear regression approach is adopted as there 345 
are well known closed-form solutions for computing the variance and covariance of the 346 
parameters. A schematic for this phase is provided in Supplemental Figure S3. 347 

In cases where both RGM and LCS provide in-situ data, a modified approach is 348 
recommended. First, available RGM are used in phase 3 as outlined above. Then, LCS are 349 
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regionally calibrated before incorporating their data in phase 4. Details are provided in 350 
supplemental text S2. 351 

Uncertainty in the phase 3 estimate is based on the phase 2 estimated uncertainty, re-scaled 352 
with regression terms, and with the uncertainties in these regression terms and residual variance 353 
included: 354 

𝑉?(𝑥, 𝑡, 𝜏) = 𝑉"?(𝑥, 𝑡, 𝜏) + 𝛼1[𝑉#(𝑥, 𝑡) + 𝑉>(𝑥, 𝑡) + 2𝑉#>(𝑥, 𝑡)] + 𝑉@𝐸1(𝑥, 𝑡)1 +355 
2𝑉@A𝐸1(𝑥, 𝑡) + 𝑉A + 𝑉%?. (16) 356 

Now that in-situ data have been included, systematic bias due to the misrepresentation of 357 
the surface air quality due to model and satellite information only, as well as representational issues 358 
due to the limited spatial resolutions of the model and satellite data with respect to specific points 359 
represented in the surface data, are considered to be captured in terms related to regression 360 
coefficient variance and residual variance. However, practical limitations on the availability of 361 
surface air quality measurement sites, as well as the tendencies of such sites to be clustered in 362 
high-population-density areas, might mean that there are some residual biases which are not fully 363 
captured in this formulation. In other words, by necessity, the data fusion process will be tailored 364 
towards better representing locations where surface monitors already exist, and the above 365 
formulation for phase 3 uncertainty will tend to be more appropriate in those types of areas, rather 366 
than, e.g., more rural areas which are not covered by surface-based monitors. Furthermore, biases 367 
in the in-situ data will not be accounted for, e.g., the known sensitivity of NO2 monitors to other 368 
species (e.g., Steinbacher et al., 2007). 369 

Comparing the phase 2 and 3 variance estimates, assuming zero lead-time, and assuming 370 
that inclusion of surface information will tend to decrease phase 3 uncertainty with respect to phase 371 
2, we can establish that: 372 

V$1(𝑥, 𝑡) + 𝑉%1(𝑥, 𝑡) ≥ (𝛼1 − 1)[𝑉#(𝑥, 𝑡) + 𝑉>(𝑥, 𝑡) + 2𝑉#>(𝑥, 𝑡)] + 𝑉@𝐸1(𝑥, 𝑡)1 +373 
2𝑉@A𝐸1(𝑥, 𝑡) + 𝑉A + 𝑉%?. (17) 374 

Note that we have now established a “chain” of relationships connecting various bias and 375 
representational error terms, which could not be directly quantified, to terms which can be 376 
empirically estimated based on the data fusion process. This gives us a basis for quantifying these 377 
uncertainties in earlier phases as well; this will be discussed further in Section 2.2.5. 378 

2.2.4 Phase 4: updating with recent, nearby in-situ data 379 
Phase 4 enables the use of recent and nearby surface measurement data to provide updates 380 

to estimates and forecasts from phase 3 via a spatio-temporal kriging approach. This process is 381 
expressed as: 382 

𝐸C(𝑥, 𝑡, 𝜏) = 𝐸?(𝑥, 𝑡, 𝜏) + ∑ 𝐾(𝑥, 𝑥0, 𝑡, 𝑡′)3!∈4(*-+(3),(!∈-+*"*($(() [𝐺(𝑥0, 𝑡′) − 𝐸?(𝑥0, 𝑡′)],383 
 (18) 384 

where 𝑋58;9(𝑥) denotes surface measurement locations arbitrarily “nearby” to 𝑥, 𝑇98&85((𝑡) 385 
denotes times arbitrarily “recent” with respect to 𝑡, and 𝐾(𝑥, 𝑥0, 𝑡, 𝑡′) is the kriging update factor, 386 
encompassing the relationship between concentrations at spatio-temporal coordinates 𝑥, 𝑡 and 387 
𝑥′, 𝑡′. This relationship is a combination of variance and co-variance relationships between the 388 
locations as well as the measurement noise. 𝐾(𝑥, 𝑥0, 𝑡, 𝑡′) is evaluated with the assistance of a 389 
kernel function, used in Gaussian process regression to parameterize these co-variances based on, 390 
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e.g., the difference in space and time between the two sets of coordinates (Rasmussen & Williams, 391 
2006). Recent work has proposed the use of Gaussian process regression for interpolating air 392 
quality data in space and/or time based on sparse measurements, and have proposed using square 393 
exponential, Matérn, and periodic kernel functions for this purpose for different pollutants of 394 
interest (Jang et al., 2020; Malings et al., 2021; Wang et al., 2021). The approach used here to 395 
determine appropriate kernel functions and parameters is described in (Malings et al., 2021, section 396 
3.7). Equation 18 combines equations 11 and 14 of Malings et al. (2021), using a more generic 397 
notation of the kernel. A schematic for this phase is provided in Supplemental Figure S4. 398 

Spatio-temporal kriging also quantifies the resulting uncertainty reduction: 399 

𝑉C(𝑥, 𝑡, 𝜏) = 𝑉?(𝑥, 𝑡, 𝜏) − ∑ 𝐾(𝑥, 𝑥0, 𝑡, 𝑡′)3!∈4(*-+(3),(!∈-+*"*($(() cov[𝐸?(𝑥′, 𝑡′), 𝐸?(𝑥, 𝑡)],400 
 (19) 401 

where cov[𝐸?(𝑥′, 𝑡′), 𝐸?(𝑥, 𝑡)] denotes the covariance between surface concentrations of the 402 
pollutant of interest between spatio-temporal coordinates 𝑥, 𝑡 and 𝑥′, 𝑡′, which is again evaluated 403 
using the kernel function. 404 

For practical purposes, appropriate definitions for 𝑋58;9(𝑥) and 𝑇98&85((𝑡) will have to be 405 
chosen to balance accuracy with the computational intensiveness of considering many 406 
measurements in this updating, which is a typical limitation of Gaussian process regression. In this 407 
paper, we use all surface measurement locations in our application region but use only the most 408 
recent measurement from each location. 409 

2.2.5 Quantifying uncertainties in phases 1 and 2 410 
Following phases 1 and 2 of the data fusion approach outlined above, there remain several 411 

terms related to potential bias and representativity errors which are not quantifiable given the 412 
inputs available at these phases. However, following phase 3, the inclusion of ground-based 413 
monitor data allowed the full quantification of uncertainty as expressed in equation (16). Using 414 
this fact, alongside the inequality relationships presented in equations (13) and (17), we conducted 415 
an empirical analysis comparing the quantified uncertainties at different phases. Based on this 416 
analysis, we propose the following parametric estimates for the unquantified portions of the 417 
uncertainties in phases 1 and 2: 418 

𝑉$!(𝑥, 𝑡) + 𝑉%!(𝑥, 𝑡) ≅ 𝜂!1(𝑡	mod	24h)	𝔼(!∈-"(()	𝑉#(𝑥, 𝑡′), (20) 419 

V$1(𝑥, 𝑡) + 𝑉%1(𝑥, 𝑡) ≅ 𝜂11(𝑡	mod	24h)	𝔼(!∈-"(()[𝑉#(𝑥, 𝑡′) + 𝑉>(𝑥, 𝑡′) + 2𝑉#>(𝑥, 𝑡′)].420 
 (21) 421 
In these estimates, the unquantified portions of the uncertainty are related to the quantified 422 

performance via empirically determined factors 𝜂! for phase 1 and 𝜂1 for phase 2. These factors 423 
are assumed to vary as a function of time-of-day, based on observations for how relationships 424 
between different portions of the quantified uncertainty varied over the calibration period 425 
investigated here. Empirically determined values of 𝜂! and 𝜂1 for San Francisco are presented 426 
Supplemental Figure S5; values for New York City are presented in Supplemental Figure S6. 427 

This proposed approach has important limitations. Most notably, it relies on proceeding to 428 
phase 3 of the data fusion approach. In regions without ground-based monitoring, or where only a 429 
small number of ground-based monitors are available, the results from phase 3 of the data fusion 430 
approach will be unavailable or highly unreliable. Empirically determined values of 𝜂! and 𝜂1 431 
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from another region might be used, but there is no reason to expect these to generalize well. Thus, 432 
in the absence of surface data, full uncertainty quantification in phase 1 or 2 of the data fusion 433 
approach becomes unreliable. 434 

2.3 Confidence interval determination 435 
Following the approaches for data fusion with uncertainty quantification presented in the 436 

previous section, for a location of interest 𝑥 and time of interest 𝑡, with forecast lead time 𝜏, and 437 
for data fusion phase 𝑝, a data fusion “best estimate” for the quantity of interest 𝐸:(𝑥, 𝑡, 𝜏) will be 438 
available, along with an uncertainty estimate for this quantity, 𝑉:(𝑥, 𝑡, 𝜏). To make practical use of 439 
these outputs, in this work, we use them to define confidence intervals (CI) for our estimates or 440 
forecasts. To do this, a probabilistic distribution must be assumed for the quantity of interest. In 441 
this work, we assume a lognormal distribution, which is a typical assumption for many non-442 
negative quantities relevant to air quality. This distribution is parameterized by the mean 𝜇 and 443 
standard deviation 𝜎 of the associated normal distribution. These are calculated from the outputs 444 
of the data fusion process as follows: 445 

𝜇:(𝑥, 𝑡, 𝜏) = log

⎣
⎢
⎢
⎢
⎡

D,(3,(,E)

F!G
0,(2,$,3)
5,(2,$,3)6⎦

⎥
⎥
⎥
⎤
, (22) 446 

𝜎:(𝑥, 𝑡, 𝜏) = 	flog g1 + H,(3,(,E)

D,(3,(,E)6
h. (23) 447 

The quantity of interest 𝐹:(𝑥, 𝑡, 𝜏) is then a lognormally distributed random variable: 448 

𝐹:(𝑥, 𝑡, 𝜏)	~	LN <𝜇:(𝑥, 𝑡, 𝜏), 𝜎:(𝑥, 𝑡, 𝜏)?. (24) 449 

where LN(𝜇, 𝜎) denotes a lognormal distribution with mean 𝜇 and standard deviation 𝜎 for the 450 
associated normal distribution. This distribution can be used to determine a CI for the quantity of 451 
interest. For example, the 75 % confidence range is defined with a lower bound, representing the 452 
12.5th percentile of the lognormal distribution, and an upper bound, representing the 87.5th 453 
percentile of the lognormal distribution.  454 

The lognormal distribution assumption is of course an approximation of the true 455 
distribution of the quantity of interest. Therefore, the CI determined as described above would not 456 
necessarily correspond to the actual CI for the quantity of interest, even if the mean and variance 457 
were known exactly. However, some assumption about the distribution of the quantity of interest 458 
is necessary, as its true distribution will not be known a priori. 459 

3 Results 460 
In this section, we investigate the performance of the proposed data fusion framework 461 

described above through testing with actual data. In all cases, a leave-one-site-out cross-validation 462 
approach is used. For the given domain of interest, data from all but one of the active ground 463 
monitoring sites are considered as inputs to the data fusion algorithm. Concentrations are estimated 464 
or forecast via the data fusion approach for the location of the single held-out site. All sites are 465 
cycled through in this manner, resulting in estimates and forecasts of concentrations at each 466 
monitoring site using data from all other sites. This allows for comparisons to be made between 467 
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actual concentration measurements at each site and the estimates or forecasts from the data fusion 468 
using all information except for any measurements at the site in question. This allows for 469 
evaluating how the method would perform at an arbitrary location without in-situ data. A 14-day 470 
moving calibration time window is used across all phases, i.e., for a given time of interest 𝑡 and 471 
forecast lead time 𝜏, the calibration interval 𝑇& ranges from 𝑡 − 𝜏 − 14	days to 𝑡 − 𝜏. This ensures 472 
that only input data available at or before a given time are used, with lead time measured from the 473 
time of the most recently available data. However, data latency effects are not considered, e.g., 474 
satellite data are assumed to be available as soon as the satellite passes overhead. Data latency 475 
effects can be estimated by inflating the lead time, e.g., performance of a 1-day forecast using 476 
inputs with a 1-day data latency is assumed to be similar to a 2-day forecast.  477 

For illustrative purposes, an example of time series output from the data fusion approach 478 
is presented in Figure 1. Outputs from phase 4 of the data fusion process, the colored line, including 479 
a 50 % CI, the colored area, are compared to actual measurements from the RGM at this location, 480 
the black line. In the figure, local midnight of September 17th is considered to be “the present” 481 
(marked by grey dotted vertical line). Before this time, estimates are shown considering zero lead 482 
time, i.e., GEOS-CF historical outputs are used together with satellite and RGM data available up 483 
to and including the indicated time. After midnight of September 17th, forecasts are shown with 484 
increasing lead time, i.e., the latest GEOS-CF forecast initialized 12 UTC the previous day is used, 485 
together with satellite and RGM data collected prior to September 17th. For the historical estimates, 486 
availability of in-situ measurements at other RGM sites has allowed short-term spikes to be better 487 
represented, with the CI likewise being wider to capture the variability. For the forecasts, such 488 
spikes are not specifically captured, but the CI tends to be wider throughout the timeseries, 489 
accounting for the potential for such spikes to occur. In this example, the estimated CI tend to be 490 
underconfident: 75 % of actual measurements fell within the 50 % CI depicted. An analysis of the 491 
accuracy and precision of the forecasts (not considering their confidence estimates) is presented in 492 
Supplemental Figure S7. 493 
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 494 
Figure 1. Representative example of probabilistic estimates and forecasts for hourly surface-495 
level NO2 concentrations at the Redwood City monitor site (AQS ID 06-081-1001) in San 496 
Francisco, between September 12 and 22, 2019 local time. The black line indicates the 497 
reported concentrations from the regulatory monitor, i.e., the true concentration. The 498 
colored line indicates the mean estimated concentration from phase 4 of the data fusion 499 
process, 𝑬𝟒(𝒙, 𝒕).  The colored shaded areas denote the 50 % CI for the estimates. Estimates 500 
are presented with zero lead time up to midnight on September 17th, denoted with a vertical 501 
dotted line. Beyond this, forecasts with an increasing lead time are presented.  502 

3.1 Assessment of confidence interval coverage for different phases of data fusion  503 
To investigate the accuracy of the assessed uncertainties in the data fusion, the fraction of 504 

actual measurements falling within the estimated 75 % CI across different phases of the data fusion 505 
approach is presented in Figure 2. This analysis considers all NO2 monitor sites operating during 506 
September 2019 in the San Francisco study region, a total of 25 sites. The fraction of measurements 507 
falling within the 75 % CI is calculated for each site and considering the estimates for each phase 508 
of the data fusion process. Total uncertainties for phases 1 and 2 are estimated as outlined in section 509 
2.2.5. Horizontal colored solid and dotted lines indicate the median, 25th percentile, and 75th 510 
percentile values of these fractions across all sites for each phase. Furthermore, sites are divided 511 
into types based on their assumed scale of spatial representativity, which is assessed for each 512 
monitoring site by US EPA. The five site types are microscale (0-0.1 km; 5 sites), middle (0.1-0.5 513 
km; 3 sites), neighborhood (0.5-4 km; 13 sites), urban (4-50 km; 3 sites) and regional (50+ km; 1 514 
site), as defined in 40 CFR Part 58. By investigating the capacity of the data fusion system to 515 
capture uncertainties at different spatial scales in this way, its benefits and limitations can be better 516 
understood. 517 
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 518 
Figure 2. Assessment of the fraction of actual measurements falling within the estimated 75 519 
% CI for different phases of the data fusion process, with phases represented by different 520 
colors. The analysis represents data from 25 active NO2 ground monitoring sites in the San 521 
Francisco study region for September 2019. A horizontal dotted line across the figure 522 
indicates the goal, i.e., 75 % of measurements falling within the 75 % CI. For each ground 523 
monitor site, the fraction of measurements at that site falling within the 75 % CI is calculated. 524 
For each phase, a solid horizonal line in the corresponding color indicates the median of these 525 
fractions across sites, and two horizontal dotted colored lines indicate the 25th percentile and 526 
75th percentile of these fractions across sites. Furthermore, monitoring sites are divided into 527 
different site types. The spread in fraction of measurements falling within the 75 % CI for 528 
each site type is indicated with a box-and-whisker plot. In each box-and-whisker plot, the 529 
horizontal line inside the box denotes the median, the box denotes the 25th-to-75th-percentile 530 
range, and the whiskers denote the full range. 531 

Overall, for all phases of the data fusion process, the estimated 75 % CI captures roughly 532 
75 % of measured data. Performance is most consistent for phases 1 and 3, which have the smallest 533 
inter-quartile spreads in fraction of measurements falling within the 75 % CI. Focusing on phase 534 
1, where only model outputs are considered, performance is consistent across most site types. 535 
There is a slight bias towards underconfidence, i.e., more measurements falling within the 75 % 536 
CI than expected. For microscale sites, however, estimates are systematically overconfident, with 537 
fewer measurements falling within the 75 % CI than expected. Considering the native spatial 538 
resolution of the model, better representation of uncertainties at urban and regional scales is to be 539 
expected. There is a lack of information at this stage to make informed assessments of confidence 540 
at finer spatial scales. This manifests in the results with a slightly larger spread in performance for 541 
middle scale sites and the overconfidence noted for microscale sites. 542 
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In phase 2, this is exacerbated, with increased overconfidence for estimates of microscale 543 
sites. Again, this can be explained by considering that, at phase 2, satellite data from TROPOMI 544 
with a nominal spatial resolution on the order of 5 km has been incorporated. This would be 545 
expected to improve assessments at neighborhood sites. This is reflected in the results with a slight 546 
decrease in the underconfidence of estimates for sites at this scale. However, there continues to be 547 
a lack of relevant information at finer spatial scales, and so while uncertainty estimates seem to 548 
have been improved for most scales, they have substantially degraded for microscale sites. 549 

In phase 3, with the incorporation of ground-based data, uncertainties at microscale sites 550 
are now better represented overall, although one microscale site (denoted with the lower whisker) 551 
continues to be quite overconfidently estimated. However, middle scale sites are now being 552 
represented with systematic underconfidence. This might be a consequence of the relative numbers 553 
of sites in each type. There are 5 microscale and 3 middle scale sites in the study domain. 554 
Furthermore, because of the cross-validation approach, data from the site being evaluated are not 555 
included, underrepresenting that type. Thus, the approach of phase 3 would tend to better represent 556 
the more numerous site type. This could be accounted for by assigning lesser weights to certain 557 
types of sites when conducting the linear regression in phase 3. However, because one would not 558 
know a-priori the characteristics of the site at which concentrations are to be estimated, weighting 559 
different types of sites differently might not be an appropriate approach. Uncertainty estimates for 560 
neighborhood, urban, and regional sites appear reasonable, if slightly underconfident overall.  561 

In phase 4, while uncertainty estimates seem to be most accurate in the median, the spread 562 
in performance has increased. Microscale sites are again exhibiting systematic overconfidence, 563 
along with urban scale sites, while middle scale and regional sites are underconfident. With only a 564 
single regional site, however, that latter result is not necessarily robust. This varied performance 565 
might be understood by considering that, due to the heterogeneity of urban areas, monitoring sites 566 
of different types will tend to be interspersed with one another. For a given site, the closest site 567 
which will have the greatest influence in the kriging approach of phase 4 is likely to be of a 568 
different type than the site being estimated for in the cross-validation. Neighborhood sites are least 569 
susceptible to this effect since, as the most numerous site type in the study area, the closest RGM 570 
to a neighborhood site is often another neighborhood scale site. The microscale sites, on the other 571 
hand, are closest to either neighborhood or urban scale sites, and the neighborhood or urban scale 572 
sites likewise are often closest to microscale sites. A kernel function for the kriging approach not 573 
based solely on distance might alleviate this difficulty, e.g., by defining similarities based on 574 
similar land use and land cover factors (e.g., Gilpin et al., 2023). Such an approach would require 575 
additional input information and is left as a subject for future improvements. 576 

Across all phases, the best and most consistent results were observed for neighborhood 577 
scale sites. This is probably due in part to their relative abundance, but also to the fact that their 578 
representative scale (0.5-4 km) is of the same order as the satellite input data, which provides the 579 
most relevant information about spatial heterogeneity of pollutant concentrations. Overall, this is 580 
consistent with what might be expected, given the way in which the data fusion and associated 581 
uncertainty quantification are being conducted. Results were also similar for different CI (see 582 
Supplemental Figure S8). 583 

3.2 Assessment of confidence interval coverage for different forecast lead times 584 
Figure 3 presents an analysis of the fraction of measurements falling within the 75 % CI of 585 

the uncertainty estimate as a function of the forecasting lead time. Several discrete lead times are 586 
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considered, and results for zero lead time are also presented for comparison; these were previously 587 
presented in Figure 2. 588 

 589 
Figure 3. Assessment of the fraction of actual measurements falling within the estimated 75 590 
% CI for different phases of the data fusion process, with phases represented by different 591 
colors, as a function of forecasting lead time, in hours. The analysis represents data from 25 592 
active NO2 ground monitoring sites in the San Francisco study region for September 2019. A 593 
horizontal dotted line across the figure indicates the goal, i.e., 75 % of measurements falling 594 
within the 75 % CI. For each ground monitor site, the fraction of measurements at that site 595 
falling within the 75 % CI is calculated. The box-and-whisker plots denote the ranges of these 596 
fractions across sites, with the horizontal line in the box denoting the median, the box 597 
denoting the 25th-to-75th-percentile range, and the whiskers denoting the full range. 598 

Overall, there is little variation in the CI coverage as lead time increases, indicating that 599 
the uncertainty quantification approach is applicable for forecasts as well as historical estimates. 600 
For phase 3, there appears to be a tendency towards underconfidence at shorter lead times. For 601 
phase 4, the spread in coverage decreases as the forecasting lead time increases. As noted 602 
previously, the kriging approach of phase 4 with a distance-based kernel tends to induce under- or 603 
overconfidence at nearby sites. As the forecasting lead time increases, the influence of the most 604 
recent measurement data decreases, and the uncertainty quantification resembles that of phase 3. 605 
While the incorporation of near-real-time data in phase 4 has notable benefits in terms of near-606 
term forecast accuracy, as noted in previous work (Malings et al., 2021), these results indicate that 607 
there is also a trade-off in terms of slightly less realistic uncertainty estimates in the phase 4 near-608 
term forecasts compared to the other phases and to longer lead times.  609 
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3.3 Assessment of confidence interval coverage across different times of year 610 
As an additional assessment, the methodology was applied across different months. Results 611 

for CI coverage at zero forecast lead time in March 2019, June 2019, September 2019 (as presented 612 
previously), and December 2019 are shown in Figure 4. There is some variability in performance 613 
for different phases in different months. For example, in December 2019, phases 1, 3, and 4 show 614 
a tendency for underconfidence in their estimates, although this is not apparent in phase 2. 615 
Conversely, phase 2 exhibits overconfidence in June 2019, while this is not apparent for other 616 
phases. This might indicate monthly or seasonally varying biases in the input data sources which 617 
are not accounted for in the current method.  618 

 619 
Figure 4. Fractions of measurements falling within the estimated 75 % CI for different 620 
phases of the data fusion process, with phases represented by different colors, presented for 621 
different application months. Box-and-whisker plots denote ranges of these fractions across 622 
active NO2 monitor sites in San Francisco during that month, with the horizontal line in the 623 
box denoting the median, the box denoting the 25th-to-75th-percentile range, and the whiskers 624 
denoting the full range. The horizontal dotted line across the figure indicates the goal, i.e., 75 625 
% of measurements falling within the 75 % CI. 626 

A similar assessment was conducted for the region of New York City, as discussed in the 627 
supplemental materials. Results for CI coverage at zero forecast lead time in March 2019, June 628 
2019, September 2019, and December 2019 are shown in Supplemental Figure S9. Similar 629 
variability in performance for different phases in different months is observed as was noted above. 630 
Underconfidence in December 2019 seems to be more extreme, especially in phase 1, than in the 631 
case of San Francisco. Overconfidence in phase 2 also appears to be more severe. Again, monthly 632 
or seasonal differences in relevant parameters, especially the factors 𝜂! and 𝜂1 calculated for the 633 
domain and kriging spatial and temporal scales associated with phase 4, might be influencing this. 634 
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The fact that month-to-month differences appear to be greater in New York City, where seasonal 635 
differences in prevailing meteorological conditions are relatively greater than in San Francisco, 636 
where such changes are relatively smaller, seems to corroborate this hypothesis. Thus, future 637 
development should focus on better capturing such seasonal changes through dynamically 638 
recalculating relevant parameters as part of the calibration process. 639 

4 Conclusions 640 
Overall, the proposed framework to estimate uncertainties and CI for concentration 641 

estimates from data fusion produced reasonable results in most cases, with most CI coverage being 642 
within about 10 percentage points of the theoretical value. There were also few instances of 643 
extreme overconfidence (few measurements falling within the prescribed CI) or extreme 644 
underconfidence (almost all measurements falling within the prescribed CI) observed in the results 645 
presented here. These findings are encouraging given the various assumptions made in defining 646 
the uncertainty quantification framework, including the assumption of lognormally distributed 647 
concentrations.  648 

The uncertainty quantification was found to be least accurate overall for microscale sites, 649 
which are most impacted by hyperlocal sources. In the San Francisco case study, these sites were 650 
adjacent to highways, which are most heavily impacted by NO2 pollution. This finding is useful to 651 
convey to any user of this system, i.e., that results may not be reliable within about 100 meters of 652 
a major source like a highway or other intense combustion activity. Similar limitations are likely, 653 
should the method be applied to other constituents measured near their respective sources. 654 

It is also important to note that CI assessments are not being provided for independent data, 655 
but rather there is significant autocorrelation in the data. For example, while a measurement might 656 
have a 50 % chance of falling within a 50 % CI a-priori, if it is known that a recent measurement 657 
fell outside this CI, it becomes much less likely that a new measurement will fall within the CI.  658 
This effect can be noted on September 15th in Figure 1, when multiple measurements in sequence 659 
were observed outside the 50 % CI. 660 

Several areas of theoretical and practical improvement are noted for future work. As 661 
suggested in Section 2.2.1, use of an ensemble of models rather than a single model in phase 1 662 
would allow for estimating uncertainties at that phase based on variability across the ensemble. 663 
For incorporating satellite data in phase 2, multiple sources of satellite data might be considered, 664 
offering coverage at different times of day. Geostationary instruments like the recently launched 665 
TEMPO might be particularly useful in establishing different values of 𝐷(𝑥, 𝑡) corresponding to 666 
different times of day. Better definitions for the calibration dataset might also be explored, in 667 
contrast to a simple moving time window as presented in Section 2.2.2. For example, forecasted 668 
conditions might be matched to similar past conditions for which satellite data were available, in 669 
an attempt to identify past situations which approximately match forecasted future conditions in 670 
order to define a more suitable calibration dataset. There is also the possibility to include ancillary 671 
datasets, such as land use information, as additional co-variates to explain local variability. These 672 
might be incorporated using more sophisticated regression techniques, such as machine learning 673 
approaches, in contrast to the linear techniques presented for phase 3 in Section 2.2.3. While it 674 
would be necessary to develop customized uncertainty quantification schemes for these 675 
techniques, they might be better suited to capturing non-linear relationships in the data. Finally, 676 
the limitation of ground data availability and the resulting tendency of the approach to be biased 677 
towards such areas, as mentioned in Section 2.2.3, might be addressed in a more systematic way, 678 
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e.g., via resampling or application of different weightings to data from different types of 679 
monitoring sites in order to create a more unbiased calibration dataset. 680 

Nevertheless, the framework established here presents a reasonable prior CI for the 681 
estimates and forecasts of the proposed data fusion system, and this fact supports effective and 682 
appropriate interpretation of its output by users. For example, these uncertainty estimates might be 683 
applied with respect to a given regulatory pollutant threshold to estimate the probability of 684 
exceeding that threshold. Such information could support air quality management decision-685 
making. In an ongoing project supported by the NASA Health and Air Quality Applied Sciences 686 
Program, the authors are implementing the data fusion and uncertainty quantification scheme 687 
presented here in an online application via the Google Earth Engine platform. It is hoped that this 688 
application will present a useful tool for local air quality managers to visualize sub-city-scale 689 
atmospheric composition and variability using a combination of model, satellite, and in-situ data. 690 
This project is being conducted in collaboration with local environmental managers in the USA, 691 
Brazil, and Senegal. An example prototype for this tool is presented in Figure 5. As part of this 692 
project, the framework will also be extended to other relevant pollutants, primarily PM2.5 and O3. 693 

 694 
Figure 5. Screenshot of an application currently under development which will implement 695 
the data fusion framework presented here, including uncertainty quantification, via the 696 
Google Earth Engine platform. This application will enable air quality managers to access 697 
and visualize estimates and forecasts of relevant air quality parameters such as NO2, O3, 698 
PM2.5, along with associated expressions of confidence. Example outputs are presented for 699 
the city of Rio de Janeiro, Brazil, one of the partners for this project. 700 
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Key Points: 12 

• The proposed data fusion method produces a-priori uncertainty assessments and 13 
confidence intervals for estimates and forecasts 14 

• Confidence intervals were found to be mostly reasonable in a test case study for nitrogen 15 
dioxide across four months and two cities 16 

• The method provided overconfident estimates for sites within 100 meters of highways  17 
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Abstract 18 
Integrating air quality information from models, satellites, and in-situ monitors allows for both 19 
better estimation of air quality and better quantification of uncertainties in this estimation. 20 
Uncertainty quantification is important to appropriately convey confidence in these estimates and 21 
forecasts to users who will base decisions on these. Uncertainty quantification also allows tracing 22 
the value of information provided by different data sources. This can identify gaps in the 23 
monitoring network where additional data could further reduce uncertainties. This paper presents 24 
a framework for data fusion with uncertainty quantification, applicable to multiple air-quality-25 
relevant pollutants. Testing of this framework in the context of nitrogen dioxide forecasting at sub-26 
city scales shows promising results, with confidence intervals typically encompassing the expected 27 
number of actual measurements during cross-validation. The framework is now being 28 
implemented into an online tool to support local air quality management decision-making. Future 29 
work will also include the incorporation of low-cost air sensor data and the quantification of 30 
uncertainty at hyper-local scales. 31 

Plain Language Summary 32 
Poor air quality has adverse impacts on human and environmental health. Estimating and 33 
forecasting air quality accurately can improve early warnings and mitigation for poor air quality. 34 
Furthermore, understanding the uncertainties and degree of confidence in these forecasts and 35 
estimates can help air quality managers know when and where they can be relied upon, and where 36 
more data might still be needed. This paper outlines a method to combine air quality information 37 
from models, satellites, and ground-based monitors, and to assess the confidence in the combined 38 
output. Combining all these data sources can give us a better overall understanding of air quality, 39 
and making comparisons between them allows us to better understand uncertainties. Testing out 40 
the method proposed in this paper, we find that the method can produce reasonable assessments of 41 
the confidence it has in its estimates, with the expected numbers of actual measurements usually 42 
falling within the confidence intervals produced by the method. An exception is when this method 43 
is applied very close to a major pollution source (e.g., a highway, in our study). In such cases, since 44 
the method does not know that there is such a source nearby, it tends to be overconfident in its 45 
prediction. 46 

1 Introduction 47 
Poor air quality is a major global public health concern. The 2019 Global Burden of Disease 48 

study identified air pollution as the leading environmental risk factor for human premature 49 
mortality (Murray et al., 2020). To mitigate this public health problem on a global scale, air quality 50 
managers and practitioners first need access to accurate and comprehensive information on the 51 
state of air quality in their areas. Such information might come from a variety of disparate sources. 52 
In-situ measurements of air quality, typically obtained from instruments operated by regulatory 53 
bodies, e.g., the Environmental Protection Agency in the United States, are considered the trusted 54 
standard for assessing air quality. At a global scale, however, the relatively low density of such 55 
measurements means that regulatory instruments alone often cannot provide necessary air quality 56 
information to answer basic questions relevant to public health (Martin et al., 2019). Low-cost air 57 
quality sensors (LCS) are increasing in prominence to address this in-situ data gap (e.g., Tanzer et 58 
al., 2019; Rose Eilenberg et al., 2020). As the name implies, these provide a less expensive 59 
alternative to traditional regulatory-grade air quality monitors (RGM). As a tradeoff to achieve this 60 
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lower cost, LCS suffer from greater measurement uncertainties, and thus, require extensive 61 
calibration and validation efforts to generate useable data (Giordano et al., 2021). LCS can also be 62 
deployed to new areas which do not have the infrastructure to support RGM. LCS provide the only 63 
currently feasible means of routine air quality assessment in many low-and-middle-income 64 
countries (Hodoli et al., 2023; McFarlane, Isevulambire, et al., 2021; Raheja et al., 2022). 65 

Even so, the availability of local air quality data from in-situ RGM or LCS may not provide 66 
sufficient situational awareness to air quality managers. Other, more globally available data 67 
sources may be required. One important source of such global data is satellite remote sensing 68 
retrievals of atmospheric composition. These data are provided by a fleet of instruments operated 69 
by national aerospace agencies and the private sector. By providing in many cases globe-spanning 70 
monitoring of the chemical and physical properties of the atmosphere at increasingly fine spatial 71 
resolution, satellite data can fill many gaps in our understanding of the composition of the 72 
atmosphere. However, satellite remote sensing has some key limitations with respect to air quality 73 
applications. Typically, remote sensing estimates take account of the entire atmospheric column, 74 
rather than the surface-level concentrations which are most relevant to air quality and the 75 
associated health exposure risk. The relationship between surface and column quantities is 76 
dependent on many factors. Thus, while promising, certain expertise and domain knowledge is 77 
required to correctly interpret satellite data for air quality purposes, which may be a barrier to its 78 
routine use in many areas (Anenberg et al., 2020; Duncan et al., 2021; Holloway et al., 2021). 79 

Other sources of global air quality information are atmospheric chemistry and transport 80 
models (CTM). These models seek to estimate the state of the atmosphere, including parameters 81 
relevant for air quality, based on mathematical representations of chemical and physical processes 82 
combined with input data related to boundary conditions, e.g., the estimated emissions of various 83 
pollutants into the atmosphere. These models produce spatially comprehensive datasets and have 84 
the potential to forecast future air quality. However, their estimates may be biased due to 85 
incomplete and/or outdated input information or by inadequate representation of some chemical 86 
or physical processes. For example, inadequate temporal resolution for emissions data, differing 87 
vertical representations between the model and observations, as well as boundary layer mixing 88 
were found to impact the ability of the GEOS-Chem model to represent diel variations in fine 89 
particulate matter (PM2.5) over the United States (Y. Li et al., 2023). Constraining CTM with 90 
observations from satellites, RGM, LCS, or a combination thereof via data assimilation is a widely 91 
used approach to addressing these model shortcomings. Assimilation of satellite data is more 92 
typical for global-scale CTM (Bocquet et al., 2015; Kelp et al., 2023), while in-situ data 93 
assimilation is more typical for sub-city to national scale CTM (Lopez-Restrepo et al., 2021; 94 
Schneider et al., 2023; Hassani et al., 2023). 95 

Data fusion is an approach for bringing together various data sources. In contrast to data 96 
assimilation, where observations are used to update the state of a model, data fusion combines 97 
multiple data sources to produce a new data product, distinct from the inputs. A typical niche filled 98 
by data fusion is “downscaling” of coarser-resolution regional or global CTM output to produce 99 
more locally applicable outputs (Diao et al., 2019). A myriad of approaches using different inputs 100 
and methodologies has been proposed. On a local scale, data fusion of a dispersion model and LCS 101 
data has supported hourly PM10 mapping in Nantes, France (Gressent et al., 2020). Regionally, 102 
satellite information is commonly used to support data fusion approaches; fusion of satellite 103 
aerosol optical depth (AOD), land use information, and meteorological data with surface 104 
observations from RGM and LCS allowed for daily 1-km resolution estimation of PM2.5 over 105 
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California, USA (Bi et al., 2020). Satellite AOD, RGM, and LCS data were similarly combined 106 
for PM2.5 mapping over Taiwan (J. Li et al., 2020). Globally, data fusion approaches are used to 107 
create yearly, monthly, or daily average surface PM2.5 and constituent estimates (van Donkelaar et 108 
al., 2015, 2021; Wei et al., 2023). These estimates support analysis of the global impacts of air 109 
quality (Murray et al., 2020). For forecasting applications, i.e., prediction of surface concentrations 110 
in advance, bias correction for an ensemble of CTM was performed using surface RGM 111 
observations in both urban and rural areas to improve hourly PM2.5 forecasting over the USA 112 
(Zhang et al., 2020, 2022). CTM, satellite and RGM data are combined to improve hourly NO2 113 
forecasts at sub-city scale (Malings et al., 2021). Machine learning methods have also been used 114 
for bias-correction of global CTM to produce daily PM2.5 forecasts at 1-km resolution for 115 
applications at sub-city scale (Keller et al., 2020; Duncan et al., 2021; Bi et al., 2022). These studies 116 
demonstrate the wide applicability and flexibility of data fusion to incorporate models with various 117 
observational datasets.  118 

In contrast to deterministic methods, probabilistic estimates and forecasts for air quality 119 
may be better suited to the needs of air quality managers and policy makers. For example, in a 120 
decision-focused analysis of ozone forecasting based on public health protection, it was found that 121 
single deterministic forecasts may produce less robust results compared to the use of multiple 122 
forecasts or an ensemble of forecasts for guiding air quality decision-making (Balashov et al., 123 
2017; Garner & Thompson, 2012). This was because the ensemble forecasts more readily allowed 124 
for choosing actions which would be robust under a range of outcomes, i.e., robust under 125 
uncertainty. For global data fusion estimates of monthly PM2.5, uncertainty quantification also 126 
supports analyzing the impact of this uncertainty on global health and epidemiological assessments 127 
(van Donkelaar et al., 2021). Several recent efforts have aimed at the quantification of uncertainty 128 
in air quality estimation and forecasting. Most of these approaches make use of ensembles of 129 
deterministic models (Garaud & Mallet, 2011; Gilliam et al., 2015; Riccio & Chianese, 2024) or 130 
machine learning methods, e.g., using generative models to produce a simulated ensemble 131 
(Fanfarillo et al., 2019). Data fusion approaches making use of geostatistical methods, especially 132 
Gaussian process or kriging approaches, have inherent capabilities to constrain estimates and 133 
quantify uncertainties for air quality estimation and forecasting (Wang et al., 2021). Kriging is 134 
referred to as “objective analysis” or “optimum interpolation” in the early numerical weather 135 
prediction literature (Diggle, 2010, p. 8). A major barrier to the wider use of probabilistic forecasts 136 
in air quality applications has been the difficulty associated with the interpretation of probabilistic 137 
forecasts by decision-makers and effectively communicating these to the public. Recent work has 138 
aimed at addressing these issues by explicitly analyzing different interpretation strategies 139 
corresponding with different desired outcomes (Balashov et al., 2023). 140 

This paper presents a framework for combining CTM output, satellite remote sensing data, 141 
and in-situ measurements from a combination of RGM and LCS via a data fusion approach to 142 
support air quality estimation and/or forecasting. This framework includes explicit quantification 143 
of uncertainties associated with outputs from each stage, i.e., as each additional dataset is added. 144 
This paper aims at presenting a simple, generalizable method for data fusion with uncertainty 145 
quantification which can be implemented for near-real-time applications, with more limited 146 
computational requirements than a full data assimilation approach. We demonstrate this framework 147 
with a case study, focusing on estimation and forecasting of nitrogen dioxide in two US cities (San 148 
Francisco and New York City) in 2019. Nitrogen dioxide (NO2), a regulated pollutant in the US 149 
(US EPA, 2017), represents a useful test case since it is known to vary on fine spatial scales in 150 
urban areas, which may not be captured even in high-resolution satellite datasets (e.g., Judd et al., 151 
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2019). The ability to characterize this variability is an informative illustration of the capabilities 152 
of the proposed framework. The development of analysis tools and data products which combine 153 
multiple sources of air quality information, alongside methods to express confidence in or 154 
quantification of uncertainties in these products, has been suggested as a key need of air quality 155 
managers worldwide (Duncan et al., 2021). The methods presented in this paper are being 156 
implemented as part of a NASA-funded project to develop such tools for air quality data managers. 157 

2 Methods 158 

2.1 Input datasets 159 
The proposed data fusion approach makes use of three categories of input information: 160 

CTM-based estimates and forecasts, satellite remote sensing data, and ground monitor data. 161 

The NASA Global Earth Observing System Composition Forecast (GEOS-CF) system 162 
generates CTM outputs used in this paper. GEOS-CF couples the GEOS atmospheric general 163 
circulation model with the GEOS-Chem chemistry module (Keller et al., 2021). GEOS-CF 164 
produces 5-day forecasts initialized every day, following a 24-hour historical simulation for the 165 
previous day with the meteorology constrained by assimilated fields, to provide the best estimates 166 
for the past atmospheric composition. Both forecast and historical model output are used here. 167 
Hourly-average “surface-level” (average for the GEOS model’s lowest level, nominally 130 m 168 
thick) nitrogen dioxide concentrations along with tropospheric column concentrations are used for 169 
the year 2019. GEOS-CF outputs are on a 0.25° or roughly 25 km latitude-longitude grid. 170 

The TROPOMI instrument on the Sentinel 5P satellite provides retrievals related to 171 
tropospheric column concentrations of NO2 (Veefkind et al., 2012). Through an agreement with 172 
the European Space Agency, TROPOMI data are also hosted at the NASA Goddard Earth Sciences 173 
Data and Information Services Center (GES DISC), searchable via the Common Metadata 174 
Repository system; these systems were used to identify and access relevant TROPOMI datasets. 175 
Tropospheric NO2 concentration data products are used here, with recommended data quality 176 
filters for “good quality” retrievals. The latest high-resolution data product with a nominal pixel 177 
size of 5.5 by 3.5 km is used. 178 

This paper presents a case study focused on San Francisco, California, USA (defined as 179 
between 37° N and 39° N and between 121° W and 123° W). Data for the month of September 180 
2019 were used for the primary analysis; additional data from calendar year 2019 were also 181 
included as potential inputs for calibration purposes and for additional analysis presented in 182 
Section 3.3. An additional case study focused on New York City, New York, USA is also presented 183 
in the supplemental materials, described in supplemental text S1. These locations were selected 184 
due to their relatively high density of RGM for NO2, as well as for comparability with previous 185 
related work (Malings et al., 2021). Ground monitoring data for hourly NO2 were obtained from 186 
the US EPA’s RGM network. Relevant data were queried using the Air Quality System API. 187 

2.2 Data fusion approach and uncertainty quantification 188 
The method for air quality data fusion outlined here is adapted from prior work (Malings 189 

et al., 2021). The major improvements presented here include (1) a generalization of the 190 
methodology and notation, where relevant changes to corresponding elements of the prior work 191 
will be noted, and (2) development of a framework for quantifying the uncertainty in fused 192 
estimates of surface air quality, which was not present in the prior work. The method is separated 193 
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into four phases: phase 1 involves model-based historical estimates and forecasts only; phase 2 194 
fuses satellite with model data; phase 3 integrates in-situ measurements in an “offline” manner, 195 
useful mainly for bias correction; phase 4 integrates in-situ measurements in an “online” manner, 196 
useful for near-term estimate and forecast updating. 197 

2.2.1 Phase 1: model-based estimation and uncertainty 198 
This data fusion approach starts with air quality estimate and forecast model outputs. Let 199 

𝑀(𝑥, 𝑡, 𝜏) denote the estimated surface concentration of a given pollutant applicable at location 𝑥 200 
and time 𝑡 produced by an air quality model (the GEOS-CF model in the current work). The 201 
forecasting lead-time is denoted by 𝜏. If target time 𝑡 is in the future, lead-time 𝜏 will be the 202 
difference between 𝑡 and when the model forecast was initialized. If 𝑡 is in the past, then 𝜏 = 0, 203 
and the latest available model output covering time 𝑡 is used. Lead-time 𝜏 may not always be 204 
explicitly noted for notational convenience; when it is omitted, assume 𝜏 = 0. The phase 1 estimate 205 
is simply the relevant model output: 206 

𝐸!(𝑥, 𝑡, 𝜏) = 𝑀(𝑥, 𝑡, 𝜏).  (1) 207 

Practically, it is important to note that while 𝑥 represents a location on the Earth’s surface 208 
to arbitrary precision, the spatial resolution on which 𝐸! will be defined is limited to the spatial 209 
resolution of the model. In future work, it is considered that an ensemble of air quality models, 210 
either from different modeling systems or multiple initializations of the same model system, may 211 
be used to inform the data fusion. In that case, 𝐸!(𝑥, 𝑡, 𝜏) could be the mean of multiple available 212 
models. Furthermore, the ensemble spread could be used for uncertainty quantification. 213 

To better inform end-users on the uncertainty in data fusion estimates, we also aim to 214 
quantify the uncertainty of 𝐸!(𝑥, 𝑡, 𝜏) in terms of the expected mean square error of the estimate 215 
with respect to the true concentration. We denote this uncertainty as 𝑉!(𝑥, 𝑡, 𝜏). We estimate this 216 
uncertainty as the sum of four components, where independence between the components is 217 
assumed. These components are the uncertainty in the forecast due solely to its lead-time, 218 
𝑉"!(𝑥, 𝑡, 𝜏), the uncertainty due to local variability in the air quality model output, 𝑉#(𝑥, 𝑡), the 219 
uncertainty due to potential bias in the air quality model, 𝑉$!(𝑥, 𝑡), and the uncertainty due to the 220 
representational error of the model,	𝑉%!(𝑥, 𝑡), due to its relatively coarse spatial resolution. Thus: 221 

𝑉!(𝑥, 𝑡, 𝜏) = 𝑉"!(𝑥, 𝑡, 𝜏) + 𝑉#(𝑥, 𝑡) + 𝑉$!(𝑥, 𝑡) +	𝑉%!(𝑥, 𝑡). (2) 222 

Model-based uncertainties 𝑉"!(𝑥, 𝑡, 𝜏) and 𝑉#(𝑥, 𝑡) are estimated empirically using model 223 
outputs. 𝑉"!(𝑥, 𝑡, 𝜏) is estimated using the mean square difference of past model forecasts at lead-224 
time 𝜏 and estimates at lead-time 0 for location 𝑥. This is evaluated over a set of times denoted 225 
𝑇&,(.*.+.(𝑡), representing times during a calibration period in the recent past, e.g., the prior week, at 226 
the same time-of-day (t.o.d.) as the time of interest 𝑡. This is meant to account for potential 227 
systematic differences in forecasting capabilities at different times of the day due to diel cycles or 228 
initialization times. 229 

𝑉"!(𝑥, 𝑡, 𝜏) ≅ 𝔼(!∈-",$.&.'.(() 12𝑀(𝑥, 𝑡
0, 𝜏) − 𝑀(𝑥, 𝑡0, 0)415, (3) 230 

where 𝔼2[∙] denotes the expected value, i.e., the mean, of the expression in brackets with respect 231 
to indexing parameter 𝑖. Note that 𝑉"!(𝑥, 𝑡, 0) = 0 by design, and so this term can be ignored for 232 
𝜏 = 0.  233 
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𝑉#(𝑥, 𝑡) is estimated as the expected square difference of model outputs in the immediate 234 
vicinity of location 𝑥 and time 𝑡, i.e., the mean square difference of the model outputs in the grid 235 
cells immediately surrounding it in space and time: 236 

𝑉#(𝑥, 𝑡) ≅ 𝔼3!∈4((3),(!∈-((() 12𝑀(𝑥
0, 𝑡0) − 𝑀(𝑥, 𝑡)415, (4) 237 

where 𝑋5(𝑥) represents the neighborhood of location 𝑥, i.e., its adjoining model grid cells 238 
depending on the model spatial resolution, and 𝑇5(𝑡) represents the neighborhood of time 𝑡, i.e., 239 
the preceding and subsequent time steps according to the model temporal resolution. The logic 240 
behind this estimate is that, where model outputs are “smooth” in space and time, there is less 241 
uncertainty in the model outputs, while when the model outputs are more variable in space and 242 
time, there is greater uncertainty. This estimate depends on the model resolution, with lower 243 
uncertainties estimated for finer resolutions, all else being equal. We consider this to be reasonable, 244 
as finer resolution models will tend to explicitly represent processes at the relevant scale. However, 245 
simply interpolating model outputs to a finer resolution would artificially reduce the uncertainty 246 
estimate. This analysis should therefore be conducted at the native resolution of the model. A 247 
schematic for this phase is provided in Supplemental Figure S1. 248 

The remaining terms 𝑉$!(𝑥, 𝑡) and 𝑉%!(𝑥, 𝑡) are impossible to assess using the model alone 249 
and must be estimated using external information, as will be discussed later (see Section 2.2.5). 250 
Note that, if an ensemble of models is used, it may be possible to estimate 𝑉$!(𝑥, 𝑡) using the mean 251 
square differences between models in the ensemble (Riccio & Chianese, 2024). However, it may 252 
still be the case that all models within an ensemble are systematically biased due to some common 253 
underlying factor, e.g., all models using the same emissions dataset. 254 

2.2.2 Phase 2: model downscaling with satellite data 255 
In phase 2, relationships between column concentrations from model and satellite data are 256 

used to inform the sub-model-grid variability of the pollutant of interest. The phase 2 estimate of 257 
the concentration of this pollutant at time 𝑡 and location 𝑥, 𝐸1(𝑥, 𝑡, 𝜏), is the phase 1 estimate 258 
modified by the satellite-informed sub-grid difference pattern 𝐷(𝑥, 𝑡): 259 

𝐸1(𝑥, 𝑡, 𝜏) = 𝐸!(𝑥, 𝑡, 𝜏) + 𝐷(𝑥, 𝑡), (5) 260 
where: 261 

𝐷(𝑥, 𝑡) = 𝔼(!∈-",&)*+,-..(() 1<𝑆&*6(𝑥, 𝑡′) − 𝐸!,&*6(𝑥, 𝑡′)?𝜙(𝑥, 𝑡
0)	𝜓(𝑥, 𝑡, 𝑡′)5. (6) 262 

This difference pattern is the mean of the difference between the satellite-retrieved column 263 
concentration of the pollutant of interest, 𝑆&*6, and the estimate of the same column quantity by the 264 
model used in phase 1, 𝐸!,&*6, multiplied by two scaling factors 𝜙 and 𝜓. This mean is calculated 265 
during the calibration period associated with time of interest 𝑡 considering only times when the 266 
satellite was overhead, denoted 𝑇&,*789:;<<(𝑡). Practically, both 𝜙 and 𝜓 are informed by the 267 
model, which provides simulated data for all relevant surface and column quantities.  Scaling 268 
factor 𝜙(𝑥, 𝑡) accounts for the change in surface concentration corresponding with a unit change 269 
in column concentration at location 𝑥 and time 𝑡. We approximate this sensitivity using a ratio of 270 
model values at this location and time:  271 

𝜙(𝑥, 𝑡) ≅ #(3,(,=)
#"&/(3,(,=)

. (7) 272 
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Scaling factor 𝜓(𝑥, 𝑡, 𝑡′) accounts for the ratio of changes in surface concentrations at 273 
location 𝑥 and time 𝑡 to changes at location 𝑥 and time 𝑡’. Again, we approximate this with a ratio 274 
of model values: 275 

𝜓(𝑥, 𝑡, 𝑡′) ≅ #(3,(,=)
#(3,(0,=)

. (8) 276 

The definition of 𝐷(𝑥, 𝑡) presented in equation 6 is a generalization of “typical pattern” 277 
extraction described in equations 1 and 2 of Malings et al. (2021). This generalization now 278 
explicitly captures the relationship between surface concentrations and column quantities, which 279 
was only implicit before. Equation 5 here then replaces equation 3 of Malings et al. (2021). A 280 
schematic for this phase is provided in Supplemental Figure S2. 281 

In general, it may be necessary to consider the observational operator and air mass factor 282 
used in the satellite retrieval algorithm, as these affect the comparability between satellite retrieved 283 
𝑆&*6 and modeled 𝐸!,&*6 (e.g., Cooper et al., 2020). No explicit consideration of this is made here; 284 
instead, this will contribute to variability as discussed below. Future work may explicitly consider 285 
these impacts, likely leading to a reduced uncertainty. Note that in the case of PM2.5, AOD would 286 
be the column quantity considered. 287 

Similar to phase 1, the uncertainty of the phase 2 estimate, 𝑉1(𝑥, 𝑡, 𝜏), is estimated as the 288 
sum of the uncertainty due to forecast lead-time, 𝑉"1(𝑥, 𝑡, 𝜏), the local variability of the model, 289 
𝑉#(𝑥, 𝑡), the variance in the satellite-informed sub-grid difference pattern, 𝑉>(𝑥, 𝑡), twice the co-290 
variance of the model and sub-grid difference pattern, 𝑉#>(𝑥, 𝑡), the uncertainty due to the 291 
potential bias in the model-and-satellite-derived surface concentration estimates, V$1(𝑥, 𝑡), and the 292 
uncertainty due to the representational error of the model-and-satellite-derived surface 293 
concentration estimates,	𝑉%1(𝑥, 𝑡):  294 

𝑉1(𝑥, 𝑡, 𝜏) = 𝑉"1(𝑥, 𝑡, 𝜏) + 𝑉#(𝑥, 𝑡) + 𝑉>(𝑥, 𝑡) + 2𝑉#>(𝑥, 𝑡) + V$1(𝑥, 𝑡) +	𝑉%1(𝑥, 𝑡). (9) 295 

Model local variability 𝑉#(𝑥, 𝑡) is carried from phase 1, and as in phase 1, 𝑉"1(𝑥, 𝑡, 𝜏) can 296 
be empirically estimated by examining the mean squared difference of forecasts with lead time 𝜏 297 
over the calibration interval at the same time of day: 298 

𝑉"1(𝑥, 𝑡, 𝜏) ≅ 𝔼(!∈-",$.&.'.(() 12𝐸1(𝑥, 𝑡′, 𝜏) − 𝐸1(𝑥, 𝑡′, 0)4
15. (10) 299 

𝑉>(𝑥, 𝑡) and 𝑉#>(𝑥, 𝑡) can be estimated with the empirical variance and co-variance of 300 
relevant terms involved in computation of the satellite-informed sub-grid difference pattern: 301 

𝑉>(𝑥, 𝑡) ≅ 𝕍(!∈-",&)*+,-..(() 1<𝑆&*6(𝑥, 𝑡′) − 𝐸!,&*6(𝑥, 𝑡′)? 𝜙(𝑥, 𝑡
0)	𝜓(𝑥, 𝑡, 𝑡′)5, (11) 302 

where 𝕍 denotes a variance computation, and:  303 

𝑉#>(𝑥, 𝑡) 	≅ 𝔼3!∈4((3),(!∈-((()F2𝐸!(𝑥
0, 𝑡0) − 𝐸!(𝑥, 𝑡)42𝐷(𝑥0, 𝑡0) − 𝐷(𝑥, 𝑡)4	G. (12) 304 

Note that in this formulation, 𝑋5(𝑥) now denotes the neighboring locations of 𝑥 at the 305 
(finer) spatial resolution of the satellite data, i.e., the adjoining pixel centroids. The final terms 306 
related to bias V$1(𝑥, 𝑡) and representational errors 𝑉%1(𝑥, 𝑡) again cannot be estimated using the 307 
model and satellite information alone and require surface-level information, as will be discussed 308 
later (see Section 2.2.5). 309 
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Comparing 𝑉!(𝑥, 𝑡, 𝜏) with 𝑉1(𝑥, 𝑡, 𝜏), and assuming a zero lead-time such that forecast-310 
related uncertainty can be ignored, we can establish some constraints on the bias and 311 
representational error from phase 1 using phase 2 results. Due to the inclusion of satellite data in 312 
phase 2 compared to phase 1, we might assume that 𝑉1(𝑥, 𝑡, 𝜏) will be less than or equal to 313 
𝑉!(𝑥, 𝑡, 𝜏) generally. Thus: 314 

𝑉$!(𝑥, 𝑡) + 𝑉%!(𝑥, 𝑡) ≥ 𝑉>(𝑥, 𝑡) + 2𝑉#>(𝑥, 𝑡) + V$1(𝑥, 𝑡) + 𝑉%1(𝑥, 𝑡). (13) 315 
That is, uncertainty due to bias and representativity errors in phase 1 should be larger than 316 

the analogous terms from phase 2 plus the variance and co-variance related to the satellite-317 
informed sub-model-grid difference patterns. Note that the inclusion of satellite information is 318 
informing both sub-model-grid variability, which would tend to reduce (though not eliminate) 319 
representational errors captured in 𝑉%!(𝑥, 𝑡), as well as bringing in real-world measurement data, 320 
which would tend to reduce (though not eliminate) model bias as represented in 𝑉$!(𝑥, 𝑡). Using 321 
this relationship, estimates of the phase 1 uncertainty terms can be made based on the relevant 322 
phase 2 uncertainty terms, e.g., using the average of these terms within each model grid cell. 323 

2.2.3 Phase 3: linear correction with reliable surface measurements 324 
Phase 3 uses in-situ measurement data to correct for possible regional systematic errors in 325 

the model-and-satellite-derived estimates of surface air quality from phase 2. As a simple case, a 326 
linear correction is assumed with slope 𝛼 and intercept 𝛽: 327 

𝐸?(𝑥, 𝑡, 𝜏) = 𝛼	𝐸1(𝑥, 𝑡, 𝜏) + 𝛽. (14) 328 
This corresponds directly with equation 10 of Malings et al. (2021). 329 

Coefficients 𝛼 and 𝛽, as well as estimates of their variance 𝑉@ and 𝑉A, co-variance 𝑉@A, and 330 
residual regression variance 𝑉%?, are derived from a linear regression analysis between phase 2 331 
estimates 𝐸1(𝑥, 𝑡) as the independent variable and ground-based air quality measurements 𝐺(𝑥, 𝑡) 332 
as the dependent variable over the calibration time interval 𝑇& and the set of discrete surface 333 
monitoring sites in the region available during the calibration time interval 𝑋&: 334 

𝛼, 𝛽, 𝑉@ , 𝑉A , 𝑉@A , 𝑉%? = 𝕃ℝ(!∈-"((),3!∈4"(3)[𝐺(𝑥
0, 𝑡0)~𝐸1(𝑥0, 𝑡0, 0)], (15) 335 

where 𝕃ℝ+*B;25[𝑣+~𝑣2] denotes a linear regression with independent variable 𝑣2 and 336 
dependent variable 𝑣+, conducted over a domain specified in the subscript of 𝕃ℝ. Since this 337 
regression is being applied for historical data collected during the calibration time interval, the 338 
phase 2 estimate with 𝜏 = 0 is used, and so 𝜏 has been dropped here for notational convenience. 339 
Note that a weighted linear regression can be applied, e.g., using a weight factor related to the 340 
time-of-day as suggested in previous work (Malings et al., 2021, Section 3.5). In principle, other 341 
approaches to regression can also be applied, including for example machine learning techniques 342 
to account for non-linear relationships (e.g., as in Wei et al., 2023). In such a case, appropriate 343 
characterization of the variance of the regression estimates and their covariance with explanatory 344 
inputs would have to be performed. In this work, a linear regression approach is adopted as there 345 
are well known closed-form solutions for computing the variance and covariance of the 346 
parameters. A schematic for this phase is provided in Supplemental Figure S3. 347 

In cases where both RGM and LCS provide in-situ data, a modified approach is 348 
recommended. First, available RGM are used in phase 3 as outlined above. Then, LCS are 349 
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regionally calibrated before incorporating their data in phase 4. Details are provided in 350 
supplemental text S2. 351 

Uncertainty in the phase 3 estimate is based on the phase 2 estimated uncertainty, re-scaled 352 
with regression terms, and with the uncertainties in these regression terms and residual variance 353 
included: 354 

𝑉?(𝑥, 𝑡, 𝜏) = 𝑉"?(𝑥, 𝑡, 𝜏) + 𝛼1[𝑉#(𝑥, 𝑡) + 𝑉>(𝑥, 𝑡) + 2𝑉#>(𝑥, 𝑡)] + 𝑉@𝐸1(𝑥, 𝑡)1 +355 
2𝑉@A𝐸1(𝑥, 𝑡) + 𝑉A + 𝑉%?. (16) 356 

Now that in-situ data have been included, systematic bias due to the misrepresentation of 357 
the surface air quality due to model and satellite information only, as well as representational issues 358 
due to the limited spatial resolutions of the model and satellite data with respect to specific points 359 
represented in the surface data, are considered to be captured in terms related to regression 360 
coefficient variance and residual variance. However, practical limitations on the availability of 361 
surface air quality measurement sites, as well as the tendencies of such sites to be clustered in 362 
high-population-density areas, might mean that there are some residual biases which are not fully 363 
captured in this formulation. In other words, by necessity, the data fusion process will be tailored 364 
towards better representing locations where surface monitors already exist, and the above 365 
formulation for phase 3 uncertainty will tend to be more appropriate in those types of areas, rather 366 
than, e.g., more rural areas which are not covered by surface-based monitors. Furthermore, biases 367 
in the in-situ data will not be accounted for, e.g., the known sensitivity of NO2 monitors to other 368 
species (e.g., Steinbacher et al., 2007). 369 

Comparing the phase 2 and 3 variance estimates, assuming zero lead-time, and assuming 370 
that inclusion of surface information will tend to decrease phase 3 uncertainty with respect to phase 371 
2, we can establish that: 372 

V$1(𝑥, 𝑡) + 𝑉%1(𝑥, 𝑡) ≥ (𝛼1 − 1)[𝑉#(𝑥, 𝑡) + 𝑉>(𝑥, 𝑡) + 2𝑉#>(𝑥, 𝑡)] + 𝑉@𝐸1(𝑥, 𝑡)1 +373 
2𝑉@A𝐸1(𝑥, 𝑡) + 𝑉A + 𝑉%?. (17) 374 

Note that we have now established a “chain” of relationships connecting various bias and 375 
representational error terms, which could not be directly quantified, to terms which can be 376 
empirically estimated based on the data fusion process. This gives us a basis for quantifying these 377 
uncertainties in earlier phases as well; this will be discussed further in Section 2.2.5. 378 

2.2.4 Phase 4: updating with recent, nearby in-situ data 379 
Phase 4 enables the use of recent and nearby surface measurement data to provide updates 380 

to estimates and forecasts from phase 3 via a spatio-temporal kriging approach. This process is 381 
expressed as: 382 

𝐸C(𝑥, 𝑡, 𝜏) = 𝐸?(𝑥, 𝑡, 𝜏) + ∑ 𝐾(𝑥, 𝑥0, 𝑡, 𝑡′)3!∈4(*-+(3),(!∈-+*"*($(() [𝐺(𝑥0, 𝑡′) − 𝐸?(𝑥0, 𝑡′)],383 
 (18) 384 

where 𝑋58;9(𝑥) denotes surface measurement locations arbitrarily “nearby” to 𝑥, 𝑇98&85((𝑡) 385 
denotes times arbitrarily “recent” with respect to 𝑡, and 𝐾(𝑥, 𝑥0, 𝑡, 𝑡′) is the kriging update factor, 386 
encompassing the relationship between concentrations at spatio-temporal coordinates 𝑥, 𝑡 and 387 
𝑥′, 𝑡′. This relationship is a combination of variance and co-variance relationships between the 388 
locations as well as the measurement noise. 𝐾(𝑥, 𝑥0, 𝑡, 𝑡′) is evaluated with the assistance of a 389 
kernel function, used in Gaussian process regression to parameterize these co-variances based on, 390 
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e.g., the difference in space and time between the two sets of coordinates (Rasmussen & Williams, 391 
2006). Recent work has proposed the use of Gaussian process regression for interpolating air 392 
quality data in space and/or time based on sparse measurements, and have proposed using square 393 
exponential, Matérn, and periodic kernel functions for this purpose for different pollutants of 394 
interest (Jang et al., 2020; Malings et al., 2021; Wang et al., 2021). The approach used here to 395 
determine appropriate kernel functions and parameters is described in (Malings et al., 2021, section 396 
3.7). Equation 18 combines equations 11 and 14 of Malings et al. (2021), using a more generic 397 
notation of the kernel. A schematic for this phase is provided in Supplemental Figure S4. 398 

Spatio-temporal kriging also quantifies the resulting uncertainty reduction: 399 

𝑉C(𝑥, 𝑡, 𝜏) = 𝑉?(𝑥, 𝑡, 𝜏) − ∑ 𝐾(𝑥, 𝑥0, 𝑡, 𝑡′)3!∈4(*-+(3),(!∈-+*"*($(() cov[𝐸?(𝑥′, 𝑡′), 𝐸?(𝑥, 𝑡)],400 
 (19) 401 

where cov[𝐸?(𝑥′, 𝑡′), 𝐸?(𝑥, 𝑡)] denotes the covariance between surface concentrations of the 402 
pollutant of interest between spatio-temporal coordinates 𝑥, 𝑡 and 𝑥′, 𝑡′, which is again evaluated 403 
using the kernel function. 404 

For practical purposes, appropriate definitions for 𝑋58;9(𝑥) and 𝑇98&85((𝑡) will have to be 405 
chosen to balance accuracy with the computational intensiveness of considering many 406 
measurements in this updating, which is a typical limitation of Gaussian process regression. In this 407 
paper, we use all surface measurement locations in our application region but use only the most 408 
recent measurement from each location. 409 

2.2.5 Quantifying uncertainties in phases 1 and 2 410 
Following phases 1 and 2 of the data fusion approach outlined above, there remain several 411 

terms related to potential bias and representativity errors which are not quantifiable given the 412 
inputs available at these phases. However, following phase 3, the inclusion of ground-based 413 
monitor data allowed the full quantification of uncertainty as expressed in equation (16). Using 414 
this fact, alongside the inequality relationships presented in equations (13) and (17), we conducted 415 
an empirical analysis comparing the quantified uncertainties at different phases. Based on this 416 
analysis, we propose the following parametric estimates for the unquantified portions of the 417 
uncertainties in phases 1 and 2: 418 

𝑉$!(𝑥, 𝑡) + 𝑉%!(𝑥, 𝑡) ≅ 𝜂!1(𝑡	mod	24h)	𝔼(!∈-"(()	𝑉#(𝑥, 𝑡′), (20) 419 

V$1(𝑥, 𝑡) + 𝑉%1(𝑥, 𝑡) ≅ 𝜂11(𝑡	mod	24h)	𝔼(!∈-"(()[𝑉#(𝑥, 𝑡′) + 𝑉>(𝑥, 𝑡′) + 2𝑉#>(𝑥, 𝑡′)].420 
 (21) 421 
In these estimates, the unquantified portions of the uncertainty are related to the quantified 422 

performance via empirically determined factors 𝜂! for phase 1 and 𝜂1 for phase 2. These factors 423 
are assumed to vary as a function of time-of-day, based on observations for how relationships 424 
between different portions of the quantified uncertainty varied over the calibration period 425 
investigated here. Empirically determined values of 𝜂! and 𝜂1 for San Francisco are presented 426 
Supplemental Figure S5; values for New York City are presented in Supplemental Figure S6. 427 

This proposed approach has important limitations. Most notably, it relies on proceeding to 428 
phase 3 of the data fusion approach. In regions without ground-based monitoring, or where only a 429 
small number of ground-based monitors are available, the results from phase 3 of the data fusion 430 
approach will be unavailable or highly unreliable. Empirically determined values of 𝜂! and 𝜂1 431 
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from another region might be used, but there is no reason to expect these to generalize well. Thus, 432 
in the absence of surface data, full uncertainty quantification in phase 1 or 2 of the data fusion 433 
approach becomes unreliable. 434 

2.3 Confidence interval determination 435 
Following the approaches for data fusion with uncertainty quantification presented in the 436 

previous section, for a location of interest 𝑥 and time of interest 𝑡, with forecast lead time 𝜏, and 437 
for data fusion phase 𝑝, a data fusion “best estimate” for the quantity of interest 𝐸:(𝑥, 𝑡, 𝜏) will be 438 
available, along with an uncertainty estimate for this quantity, 𝑉:(𝑥, 𝑡, 𝜏). To make practical use of 439 
these outputs, in this work, we use them to define confidence intervals (CI) for our estimates or 440 
forecasts. To do this, a probabilistic distribution must be assumed for the quantity of interest. In 441 
this work, we assume a lognormal distribution, which is a typical assumption for many non-442 
negative quantities relevant to air quality. This distribution is parameterized by the mean 𝜇 and 443 
standard deviation 𝜎 of the associated normal distribution. These are calculated from the outputs 444 
of the data fusion process as follows: 445 

𝜇:(𝑥, 𝑡, 𝜏) = log

⎣
⎢
⎢
⎢
⎡

D,(3,(,E)

F!G
0,(2,$,3)
5,(2,$,3)6⎦

⎥
⎥
⎥
⎤
, (22) 446 

𝜎:(𝑥, 𝑡, 𝜏) = 	flog g1 + H,(3,(,E)

D,(3,(,E)6
h. (23) 447 

The quantity of interest 𝐹:(𝑥, 𝑡, 𝜏) is then a lognormally distributed random variable: 448 

𝐹:(𝑥, 𝑡, 𝜏)	~	LN <𝜇:(𝑥, 𝑡, 𝜏), 𝜎:(𝑥, 𝑡, 𝜏)?. (24) 449 

where LN(𝜇, 𝜎) denotes a lognormal distribution with mean 𝜇 and standard deviation 𝜎 for the 450 
associated normal distribution. This distribution can be used to determine a CI for the quantity of 451 
interest. For example, the 75 % confidence range is defined with a lower bound, representing the 452 
12.5th percentile of the lognormal distribution, and an upper bound, representing the 87.5th 453 
percentile of the lognormal distribution.  454 

The lognormal distribution assumption is of course an approximation of the true 455 
distribution of the quantity of interest. Therefore, the CI determined as described above would not 456 
necessarily correspond to the actual CI for the quantity of interest, even if the mean and variance 457 
were known exactly. However, some assumption about the distribution of the quantity of interest 458 
is necessary, as its true distribution will not be known a priori. 459 

3 Results 460 
In this section, we investigate the performance of the proposed data fusion framework 461 

described above through testing with actual data. In all cases, a leave-one-site-out cross-validation 462 
approach is used. For the given domain of interest, data from all but one of the active ground 463 
monitoring sites are considered as inputs to the data fusion algorithm. Concentrations are estimated 464 
or forecast via the data fusion approach for the location of the single held-out site. All sites are 465 
cycled through in this manner, resulting in estimates and forecasts of concentrations at each 466 
monitoring site using data from all other sites. This allows for comparisons to be made between 467 
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actual concentration measurements at each site and the estimates or forecasts from the data fusion 468 
using all information except for any measurements at the site in question. This allows for 469 
evaluating how the method would perform at an arbitrary location without in-situ data. A 14-day 470 
moving calibration time window is used across all phases, i.e., for a given time of interest 𝑡 and 471 
forecast lead time 𝜏, the calibration interval 𝑇& ranges from 𝑡 − 𝜏 − 14	days to 𝑡 − 𝜏. This ensures 472 
that only input data available at or before a given time are used, with lead time measured from the 473 
time of the most recently available data. However, data latency effects are not considered, e.g., 474 
satellite data are assumed to be available as soon as the satellite passes overhead. Data latency 475 
effects can be estimated by inflating the lead time, e.g., performance of a 1-day forecast using 476 
inputs with a 1-day data latency is assumed to be similar to a 2-day forecast.  477 

For illustrative purposes, an example of time series output from the data fusion approach 478 
is presented in Figure 1. Outputs from phase 4 of the data fusion process, the colored line, including 479 
a 50 % CI, the colored area, are compared to actual measurements from the RGM at this location, 480 
the black line. In the figure, local midnight of September 17th is considered to be “the present” 481 
(marked by grey dotted vertical line). Before this time, estimates are shown considering zero lead 482 
time, i.e., GEOS-CF historical outputs are used together with satellite and RGM data available up 483 
to and including the indicated time. After midnight of September 17th, forecasts are shown with 484 
increasing lead time, i.e., the latest GEOS-CF forecast initialized 12 UTC the previous day is used, 485 
together with satellite and RGM data collected prior to September 17th. For the historical estimates, 486 
availability of in-situ measurements at other RGM sites has allowed short-term spikes to be better 487 
represented, with the CI likewise being wider to capture the variability. For the forecasts, such 488 
spikes are not specifically captured, but the CI tends to be wider throughout the timeseries, 489 
accounting for the potential for such spikes to occur. In this example, the estimated CI tend to be 490 
underconfident: 75 % of actual measurements fell within the 50 % CI depicted. An analysis of the 491 
accuracy and precision of the forecasts (not considering their confidence estimates) is presented in 492 
Supplemental Figure S7. 493 
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 494 
Figure 1. Representative example of probabilistic estimates and forecasts for hourly surface-495 
level NO2 concentrations at the Redwood City monitor site (AQS ID 06-081-1001) in San 496 
Francisco, between September 12 and 22, 2019 local time. The black line indicates the 497 
reported concentrations from the regulatory monitor, i.e., the true concentration. The 498 
colored line indicates the mean estimated concentration from phase 4 of the data fusion 499 
process, 𝑬𝟒(𝒙, 𝒕).  The colored shaded areas denote the 50 % CI for the estimates. Estimates 500 
are presented with zero lead time up to midnight on September 17th, denoted with a vertical 501 
dotted line. Beyond this, forecasts with an increasing lead time are presented.  502 

3.1 Assessment of confidence interval coverage for different phases of data fusion  503 
To investigate the accuracy of the assessed uncertainties in the data fusion, the fraction of 504 

actual measurements falling within the estimated 75 % CI across different phases of the data fusion 505 
approach is presented in Figure 2. This analysis considers all NO2 monitor sites operating during 506 
September 2019 in the San Francisco study region, a total of 25 sites. The fraction of measurements 507 
falling within the 75 % CI is calculated for each site and considering the estimates for each phase 508 
of the data fusion process. Total uncertainties for phases 1 and 2 are estimated as outlined in section 509 
2.2.5. Horizontal colored solid and dotted lines indicate the median, 25th percentile, and 75th 510 
percentile values of these fractions across all sites for each phase. Furthermore, sites are divided 511 
into types based on their assumed scale of spatial representativity, which is assessed for each 512 
monitoring site by US EPA. The five site types are microscale (0-0.1 km; 5 sites), middle (0.1-0.5 513 
km; 3 sites), neighborhood (0.5-4 km; 13 sites), urban (4-50 km; 3 sites) and regional (50+ km; 1 514 
site), as defined in 40 CFR Part 58. By investigating the capacity of the data fusion system to 515 
capture uncertainties at different spatial scales in this way, its benefits and limitations can be better 516 
understood. 517 
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 518 
Figure 2. Assessment of the fraction of actual measurements falling within the estimated 75 519 
% CI for different phases of the data fusion process, with phases represented by different 520 
colors. The analysis represents data from 25 active NO2 ground monitoring sites in the San 521 
Francisco study region for September 2019. A horizontal dotted line across the figure 522 
indicates the goal, i.e., 75 % of measurements falling within the 75 % CI. For each ground 523 
monitor site, the fraction of measurements at that site falling within the 75 % CI is calculated. 524 
For each phase, a solid horizonal line in the corresponding color indicates the median of these 525 
fractions across sites, and two horizontal dotted colored lines indicate the 25th percentile and 526 
75th percentile of these fractions across sites. Furthermore, monitoring sites are divided into 527 
different site types. The spread in fraction of measurements falling within the 75 % CI for 528 
each site type is indicated with a box-and-whisker plot. In each box-and-whisker plot, the 529 
horizontal line inside the box denotes the median, the box denotes the 25th-to-75th-percentile 530 
range, and the whiskers denote the full range. 531 

Overall, for all phases of the data fusion process, the estimated 75 % CI captures roughly 532 
75 % of measured data. Performance is most consistent for phases 1 and 3, which have the smallest 533 
inter-quartile spreads in fraction of measurements falling within the 75 % CI. Focusing on phase 534 
1, where only model outputs are considered, performance is consistent across most site types. 535 
There is a slight bias towards underconfidence, i.e., more measurements falling within the 75 % 536 
CI than expected. For microscale sites, however, estimates are systematically overconfident, with 537 
fewer measurements falling within the 75 % CI than expected. Considering the native spatial 538 
resolution of the model, better representation of uncertainties at urban and regional scales is to be 539 
expected. There is a lack of information at this stage to make informed assessments of confidence 540 
at finer spatial scales. This manifests in the results with a slightly larger spread in performance for 541 
middle scale sites and the overconfidence noted for microscale sites. 542 
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In phase 2, this is exacerbated, with increased overconfidence for estimates of microscale 543 
sites. Again, this can be explained by considering that, at phase 2, satellite data from TROPOMI 544 
with a nominal spatial resolution on the order of 5 km has been incorporated. This would be 545 
expected to improve assessments at neighborhood sites. This is reflected in the results with a slight 546 
decrease in the underconfidence of estimates for sites at this scale. However, there continues to be 547 
a lack of relevant information at finer spatial scales, and so while uncertainty estimates seem to 548 
have been improved for most scales, they have substantially degraded for microscale sites. 549 

In phase 3, with the incorporation of ground-based data, uncertainties at microscale sites 550 
are now better represented overall, although one microscale site (denoted with the lower whisker) 551 
continues to be quite overconfidently estimated. However, middle scale sites are now being 552 
represented with systematic underconfidence. This might be a consequence of the relative numbers 553 
of sites in each type. There are 5 microscale and 3 middle scale sites in the study domain. 554 
Furthermore, because of the cross-validation approach, data from the site being evaluated are not 555 
included, underrepresenting that type. Thus, the approach of phase 3 would tend to better represent 556 
the more numerous site type. This could be accounted for by assigning lesser weights to certain 557 
types of sites when conducting the linear regression in phase 3. However, because one would not 558 
know a-priori the characteristics of the site at which concentrations are to be estimated, weighting 559 
different types of sites differently might not be an appropriate approach. Uncertainty estimates for 560 
neighborhood, urban, and regional sites appear reasonable, if slightly underconfident overall.  561 

In phase 4, while uncertainty estimates seem to be most accurate in the median, the spread 562 
in performance has increased. Microscale sites are again exhibiting systematic overconfidence, 563 
along with urban scale sites, while middle scale and regional sites are underconfident. With only a 564 
single regional site, however, that latter result is not necessarily robust. This varied performance 565 
might be understood by considering that, due to the heterogeneity of urban areas, monitoring sites 566 
of different types will tend to be interspersed with one another. For a given site, the closest site 567 
which will have the greatest influence in the kriging approach of phase 4 is likely to be of a 568 
different type than the site being estimated for in the cross-validation. Neighborhood sites are least 569 
susceptible to this effect since, as the most numerous site type in the study area, the closest RGM 570 
to a neighborhood site is often another neighborhood scale site. The microscale sites, on the other 571 
hand, are closest to either neighborhood or urban scale sites, and the neighborhood or urban scale 572 
sites likewise are often closest to microscale sites. A kernel function for the kriging approach not 573 
based solely on distance might alleviate this difficulty, e.g., by defining similarities based on 574 
similar land use and land cover factors (e.g., Gilpin et al., 2023). Such an approach would require 575 
additional input information and is left as a subject for future improvements. 576 

Across all phases, the best and most consistent results were observed for neighborhood 577 
scale sites. This is probably due in part to their relative abundance, but also to the fact that their 578 
representative scale (0.5-4 km) is of the same order as the satellite input data, which provides the 579 
most relevant information about spatial heterogeneity of pollutant concentrations. Overall, this is 580 
consistent with what might be expected, given the way in which the data fusion and associated 581 
uncertainty quantification are being conducted. Results were also similar for different CI (see 582 
Supplemental Figure S8). 583 

3.2 Assessment of confidence interval coverage for different forecast lead times 584 
Figure 3 presents an analysis of the fraction of measurements falling within the 75 % CI of 585 

the uncertainty estimate as a function of the forecasting lead time. Several discrete lead times are 586 
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considered, and results for zero lead time are also presented for comparison; these were previously 587 
presented in Figure 2. 588 

 589 
Figure 3. Assessment of the fraction of actual measurements falling within the estimated 75 590 
% CI for different phases of the data fusion process, with phases represented by different 591 
colors, as a function of forecasting lead time, in hours. The analysis represents data from 25 592 
active NO2 ground monitoring sites in the San Francisco study region for September 2019. A 593 
horizontal dotted line across the figure indicates the goal, i.e., 75 % of measurements falling 594 
within the 75 % CI. For each ground monitor site, the fraction of measurements at that site 595 
falling within the 75 % CI is calculated. The box-and-whisker plots denote the ranges of these 596 
fractions across sites, with the horizontal line in the box denoting the median, the box 597 
denoting the 25th-to-75th-percentile range, and the whiskers denoting the full range. 598 

Overall, there is little variation in the CI coverage as lead time increases, indicating that 599 
the uncertainty quantification approach is applicable for forecasts as well as historical estimates. 600 
For phase 3, there appears to be a tendency towards underconfidence at shorter lead times. For 601 
phase 4, the spread in coverage decreases as the forecasting lead time increases. As noted 602 
previously, the kriging approach of phase 4 with a distance-based kernel tends to induce under- or 603 
overconfidence at nearby sites. As the forecasting lead time increases, the influence of the most 604 
recent measurement data decreases, and the uncertainty quantification resembles that of phase 3. 605 
While the incorporation of near-real-time data in phase 4 has notable benefits in terms of near-606 
term forecast accuracy, as noted in previous work (Malings et al., 2021), these results indicate that 607 
there is also a trade-off in terms of slightly less realistic uncertainty estimates in the phase 4 near-608 
term forecasts compared to the other phases and to longer lead times.  609 
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3.3 Assessment of confidence interval coverage across different times of year 610 
As an additional assessment, the methodology was applied across different months. Results 611 

for CI coverage at zero forecast lead time in March 2019, June 2019, September 2019 (as presented 612 
previously), and December 2019 are shown in Figure 4. There is some variability in performance 613 
for different phases in different months. For example, in December 2019, phases 1, 3, and 4 show 614 
a tendency for underconfidence in their estimates, although this is not apparent in phase 2. 615 
Conversely, phase 2 exhibits overconfidence in June 2019, while this is not apparent for other 616 
phases. This might indicate monthly or seasonally varying biases in the input data sources which 617 
are not accounted for in the current method.  618 

 619 
Figure 4. Fractions of measurements falling within the estimated 75 % CI for different 620 
phases of the data fusion process, with phases represented by different colors, presented for 621 
different application months. Box-and-whisker plots denote ranges of these fractions across 622 
active NO2 monitor sites in San Francisco during that month, with the horizontal line in the 623 
box denoting the median, the box denoting the 25th-to-75th-percentile range, and the whiskers 624 
denoting the full range. The horizontal dotted line across the figure indicates the goal, i.e., 75 625 
% of measurements falling within the 75 % CI. 626 

A similar assessment was conducted for the region of New York City, as discussed in the 627 
supplemental materials. Results for CI coverage at zero forecast lead time in March 2019, June 628 
2019, September 2019, and December 2019 are shown in Supplemental Figure S9. Similar 629 
variability in performance for different phases in different months is observed as was noted above. 630 
Underconfidence in December 2019 seems to be more extreme, especially in phase 1, than in the 631 
case of San Francisco. Overconfidence in phase 2 also appears to be more severe. Again, monthly 632 
or seasonal differences in relevant parameters, especially the factors 𝜂! and 𝜂1 calculated for the 633 
domain and kriging spatial and temporal scales associated with phase 4, might be influencing this. 634 
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The fact that month-to-month differences appear to be greater in New York City, where seasonal 635 
differences in prevailing meteorological conditions are relatively greater than in San Francisco, 636 
where such changes are relatively smaller, seems to corroborate this hypothesis. Thus, future 637 
development should focus on better capturing such seasonal changes through dynamically 638 
recalculating relevant parameters as part of the calibration process. 639 

4 Conclusions 640 
Overall, the proposed framework to estimate uncertainties and CI for concentration 641 

estimates from data fusion produced reasonable results in most cases, with most CI coverage being 642 
within about 10 percentage points of the theoretical value. There were also few instances of 643 
extreme overconfidence (few measurements falling within the prescribed CI) or extreme 644 
underconfidence (almost all measurements falling within the prescribed CI) observed in the results 645 
presented here. These findings are encouraging given the various assumptions made in defining 646 
the uncertainty quantification framework, including the assumption of lognormally distributed 647 
concentrations.  648 

The uncertainty quantification was found to be least accurate overall for microscale sites, 649 
which are most impacted by hyperlocal sources. In the San Francisco case study, these sites were 650 
adjacent to highways, which are most heavily impacted by NO2 pollution. This finding is useful to 651 
convey to any user of this system, i.e., that results may not be reliable within about 100 meters of 652 
a major source like a highway or other intense combustion activity. Similar limitations are likely, 653 
should the method be applied to other constituents measured near their respective sources. 654 

It is also important to note that CI assessments are not being provided for independent data, 655 
but rather there is significant autocorrelation in the data. For example, while a measurement might 656 
have a 50 % chance of falling within a 50 % CI a-priori, if it is known that a recent measurement 657 
fell outside this CI, it becomes much less likely that a new measurement will fall within the CI.  658 
This effect can be noted on September 15th in Figure 1, when multiple measurements in sequence 659 
were observed outside the 50 % CI. 660 

Several areas of theoretical and practical improvement are noted for future work. As 661 
suggested in Section 2.2.1, use of an ensemble of models rather than a single model in phase 1 662 
would allow for estimating uncertainties at that phase based on variability across the ensemble. 663 
For incorporating satellite data in phase 2, multiple sources of satellite data might be considered, 664 
offering coverage at different times of day. Geostationary instruments like the recently launched 665 
TEMPO might be particularly useful in establishing different values of 𝐷(𝑥, 𝑡) corresponding to 666 
different times of day. Better definitions for the calibration dataset might also be explored, in 667 
contrast to a simple moving time window as presented in Section 2.2.2. For example, forecasted 668 
conditions might be matched to similar past conditions for which satellite data were available, in 669 
an attempt to identify past situations which approximately match forecasted future conditions in 670 
order to define a more suitable calibration dataset. There is also the possibility to include ancillary 671 
datasets, such as land use information, as additional co-variates to explain local variability. These 672 
might be incorporated using more sophisticated regression techniques, such as machine learning 673 
approaches, in contrast to the linear techniques presented for phase 3 in Section 2.2.3. While it 674 
would be necessary to develop customized uncertainty quantification schemes for these 675 
techniques, they might be better suited to capturing non-linear relationships in the data. Finally, 676 
the limitation of ground data availability and the resulting tendency of the approach to be biased 677 
towards such areas, as mentioned in Section 2.2.3, might be addressed in a more systematic way, 678 
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e.g., via resampling or application of different weightings to data from different types of 679 
monitoring sites in order to create a more unbiased calibration dataset. 680 

Nevertheless, the framework established here presents a reasonable prior CI for the 681 
estimates and forecasts of the proposed data fusion system, and this fact supports effective and 682 
appropriate interpretation of its output by users. For example, these uncertainty estimates might be 683 
applied with respect to a given regulatory pollutant threshold to estimate the probability of 684 
exceeding that threshold. Such information could support air quality management decision-685 
making. In an ongoing project supported by the NASA Health and Air Quality Applied Sciences 686 
Program, the authors are implementing the data fusion and uncertainty quantification scheme 687 
presented here in an online application via the Google Earth Engine platform. It is hoped that this 688 
application will present a useful tool for local air quality managers to visualize sub-city-scale 689 
atmospheric composition and variability using a combination of model, satellite, and in-situ data. 690 
This project is being conducted in collaboration with local environmental managers in the USA, 691 
Brazil, and Senegal. An example prototype for this tool is presented in Figure 5. As part of this 692 
project, the framework will also be extended to other relevant pollutants, primarily PM2.5 and O3. 693 

 694 
Figure 5. Screenshot of an application currently under development which will implement 695 
the data fusion framework presented here, including uncertainty quantification, via the 696 
Google Earth Engine platform. This application will enable air quality managers to access 697 
and visualize estimates and forecasts of relevant air quality parameters such as NO2, O3, 698 
PM2.5, along with associated expressions of confidence. Example outputs are presented for 699 
the city of Rio de Janeiro, Brazil, one of the partners for this project. 700 
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Text S1. Details of the supplemental New York City case study example 944 
For the supplemental study area of interest is the region surrounding New York City, New 945 

York, USA (defined as between 40°N and 42°N and between 73°W and 75°W). Data sources 946 
were the same as indicated in the paper for the San Francisco study area. Data from calendar 947 
year 2019 were included as potential inputs for calibration purposes. 948 

Text S2. Handling less reliable in-situ data from low-cost monitors 949 
In the case of data from LCS, there are typically concerns associated with using the raw 950 

output data from these sensors. It is preferred that these data be calibrated to nearby RGM, with 951 
these calibrations usually being regionally specific, i.e., a single calibration approach is typically 952 
unsuitable beyond the region where it was developed (Giordano et al., 2021; McFarlane, Raheja, 953 
et al., 2021). Wherever possible, such regionally specific calibrations should be applied to LCS 954 
data before they are considered in this data fusion approach. However, due to the relative lack 955 
of RGM for conducting such calibration (a major motivation for data fusion approaches in the 956 
first place), such a local calibration may be lacking. In that case, the data fusion approach itself 957 
could be used to provide necessary data to conduct a crude regional calibration. 958 

To address data from LCS with lower reliability and potentially large biases, we propose to 959 
apply a linear calibration approach, where data collected by LCS, 𝐆!"#(𝑥, 𝑡), provide the 960 
independent variable. The phase 3 estimates, 𝐸$(𝑥, 𝑡), which include any RGM information in the 961 
area but not LCS information, provide the dependent variable. In regions lacking any RGM, the 962 
phase 2 estimate 𝐸%(𝑥, 𝑡) may be used instead. As a vector quantity, 𝐆!"#(𝑥, 𝑡) may include 963 
important ancillary data such as temperature and humidity measurements, which are often 964 
important in calibrating LCS, together with measurements of the target pollutant. Regression is 965 
conducted considering a time interval 𝑇& and the set of discrete surface monitoring sites with 966 
LCS in the region 𝑋!"#: 967 

𝛇, 𝜉, 𝐕𝛇, 𝑉( , 𝐕𝛇𝛏, 𝑉*,!"# = 𝕃ℝ,!∈."(,),1!∈2#$%[𝐸$(𝑥
3, 𝑡3)~𝐆!"#(𝑥3, 𝑡3)]. (S1) 968 

The linear regression is then applied to the raw LCS data: 969 

𝐺!"#,&456784,9:(𝑥, 𝑡) = 𝛇	 ∙ 	𝐆!"#(𝑥, 𝑡) + ξ, (S2) 970 

where ∙ denotes a dot product. The calibrated LCS data are then used in phase 4 to provide 971 
information for local updating of the estimates in their vicinities. In doing so, the relatively 972 
higher measurement uncertainties of these LCS should be considered when evaluating 973 
𝐾(𝑥, 𝑥3, 𝑡, 𝑡′). These uncertainties can be quantified using the regression residual variance 𝑉*,!"#. 974 
Note that since this calibration approach seeks to match, on a regional basis and for an 975 
extended calibration period, the LCS data to the phase 3 data fusion estimates, including these 976 
calibrated data back into the phase 3 estimation would be redundant. Once calibrated, however, 977 
individual LCS can provide valuable local and near-real-time information, and so including these 978 
data in phase 4 is potentially beneficial. 979 

This approach is most suited to networks of LCS containing multiple devices with high 980 
inter-sensor precision and where the network is broadly distributed at a representative set of 981 
locations over the region of interest. In situations where inter-sensor precision is low, few LCS 982 
and no RGM are available, and/or where LCS deployments over-represent specific environments, 983 
especially near-source environments, this approach is likely to perform poorly. 984 
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 985 

Figure S1. Diagram of phase 1 of the data fusion process. Blue grids denote model grids in 986 
space, with different layers denoting different timesteps. Shaded grids indicate the 987 
neighborhood of the grid cell corresponding to location 𝒙 and time 𝒕, used for estimation 988 
of model variability. 989 

 990 

 991 

Figure S2. Diagram of phase 2 of the data fusion process. Orange grids denote satellite 992 
remote sensing data, with light blue grids corresponding to the analogous modeled column 993 
quantity.  994 
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 995 

Figure S3. Diagram of phase 3 of the data fusion process. Purple grids correspond to the 996 
phase 2 estimates. Green points indicate ground measurements at monitor sites 𝑿𝒄(𝒙) 997 
collected during calibration period 𝑻𝒄(𝒕). A conceptual illustration of the linear regression 998 
process is provided on the right.  999 

 1000 

 1001 

Figure S4. Diagram of phase 4 of the data fusion process. The nearby region used for this 1002 
phase, 𝑿𝒏𝒆𝒂𝒓(𝒙), is denoted with a grey ring. Recent times 𝑻𝒓𝒆𝒄𝒆𝒏𝒕(𝒕) are considered to be the 1003 
last timestep in the calibration period. 1004 
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 1005 

Figure S5. Empirically determined values for 𝜼𝟏 and 𝜼𝟐 used for San Francisco in this paper, 1006 
as a function of hour of the day (presented in local time).  1007 
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 1008 

Figure S6. Empirically determined values for 𝜼𝟏 and 𝜼𝟐 used for New York City in this paper, 1009 
as a function of hour of the day (presented in local time). 1010 

 1011 

Figure S7. Summary performance metrics for the data fusion approach, evaluated for the 1012 
San Francisco study region in September 2019 (same results as presented in Figure 2). Plots 1013 
depict the Pearson correlation (a) and root mean square error (b) between the estimates of 1014 
the various data fusion phases (denoted by colors) as a function of the forecast lead time 1015 
on the horizontal axis (note that the horizontal axis is not linearly scaled). The plotted values 1016 
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depict the median value of the performance metrics assessed across the active monitor sites 1017 
in the study region.  1018 

 1019 

Figure S8. Assessment of CI coverage for different CI. The horizontal axis reports the 1020 
nominal coverage of the CI, and the vertical axis reports the actual fraction of 1021 
measurements falling within that CI. The assessment was conducted for zero lead time 1022 
estimates in the San Francisco study region for September 2019 (same results as presented 1023 
in Figure 2). Coverage is assessed across all data simultaneously, i.e., the fraction of hourly 1024 
measurements falling within the CI across all sites and all hours in the month is presented. 1025 
Different colored lines represent different phases of the data fusion. The black dotted lines 1026 
denote a one-to-one relationship (the ideal result), and grey dotted lines indicate results 1027 
within 5 percentage points of this ideal. 1028 
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 1029 

Figure S9. Fractions of measurements falling within the estimated 75 % CI for different 1030 
phases of the data fusion process, with phases represented by different colors, presented 1031 
for different application months. Box-and-whisker plots denote ranges of these fractions 1032 
across active NO2 monitor sites in New York City during that month, with the horizontal line 1033 
in the box denoting the median, the box denoting the 25th-to-75th-percentile range, and the 1034 
whiskers denoting the full range. The horizontal dotted line across the figure indicates the 1035 
goal, i.e., 75 % of measurements falling within the 75 % CI. 1036 


