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Abstract

Drought intensity is commonly characterized using meteorologicly-based metrics that struggle to provide insight into water

deficits within deeper hydrologic systems. In contrast, Global Positioning System (GPS) displacements are sensitive to both

local and regional hydrologic-storage fluctuations. While a few studies have leveraged this sensitivity to produce geodetic

drought indices, hydrologic drought characterization using GPS is not commonly accounted for in drought assessment and

management. To motivate this application, we produce a new geodetic drought index (GDI) and quantify its ability to

characterize hydrologic drought conditions in key surface and sub-surface hydrologic reservoirs across California. In northern

California, the GDI exhibits a strong regional association with reservoir storage at the 1-month time scale (correlation coefficient:

0.83) and groundwater levels at the 3-month time scale (correlation coefficient: 0.87), along with moderate associations with

stream discharge at the daily (instantaneous) time scale (correlation coefficient: 0.50). Groundwater in southern California is

best characterized with a 12-month GDI (correlation coefficient: 0.77), and reservoir storage is optimized with the 3-month

GDI (correlation coefficient: 0.72). Differences between northern and southern California reveal that the GDI is sensitive to

unique aquifer and drainage basin characteristics. In addition to capturing long-term hydrologic trends, rapid changes in the

GDI initiate during clusters of large atmospheric river events that closely mirror fluctuations in traditional hydrologic and

meteorological observations. We show that GPS-based hydrologic drought indices provide a significant opportunity to improve

drought assessment, in California and beyond, by improving our understanding of the hydrologic cycle.
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Key Points:

1. Current drought assessment methods rely primarily on meteorologic drought indices that do 

not characterize total water storage.

2. The geodetic drought index quantifies hydrologic drought and is especially sensitive to 

groundwater and reservoir storage.

3. Drought metrics based on geodetic data improve characterization of total water storage, 

providing unique insight for drought management.
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ABSTRACT

Drought intensity is commonly characterized using meteorologicly-based metrics that struggle to 

provide insight into water deficits within deeper hydrologic systems. In contrast, Global Positioning 

System (GPS) displacements are sensitive to both local and regional hydrologic-storage fluctuations. 

While a few studies have leveraged this sensitivity to produce geodetic drought indices, hydrologic 

drought characterization using GPS is not commonly accounted for in drought assessment and 

management. To motivate this application, we produce a new geodetic drought index (GDI) and 

quantify its ability to characterize hydrologic drought conditions in key surface and sub-surface 

hydrologic reservoirs across California. In northern California, the GDI exhibits a strong regional 

association with reservoir storage at the 1-month time scale (correlation coefficient: 0.83) and 

groundwater levels at the 3-month time scale (correlation coefficient: 0.87), along with moderate 

associations with stream discharge at the daily (instantaneous) time scale (correlation coefficient: 0.50).

Groundwater in southern California is best characterized with a 12-month GDI (correlation coefficient: 

0.77), and reservoir storage is optimized with the 3-month GDI (correlation coefficient: 0.72). 

Differences between northern and southern California reveal that the GDI is sensitive to unique aquifer 

and drainage basin characteristics. In addition to capturing long-term hydrologic trends, rapid changes 

in the GDI initiate during clusters of large atmospheric river events that closely mirror fluctuations in 

traditional hydrologic and meteorological observations. We show that GPS-based hydrologic drought 

indices provide a significant opportunity to improve drought assessment, in California and beyond, by 

improving our understanding of the hydrologic cycle.  

PLAIN LANGUAGE SUMMARY 

Although quantifying the total volume of water loss is of critical importance during periods of drought, 

drought intensity is often characterized using meteorologic observations, such as precipitation, rather 

than using more holistic hydrologic observations, such as reservoir levels and groundwater. While 

precipitation is a good measure of the amount of water entering a region, precipitation models struggle 

to determine the amount of water retained in a watershed or the amount lost due to runoff and 

evapotranspiration. An important distinction when determining appropriate approaches for drought 

management. We address this need by producing a hydrologically based drought index that captures 

changes in both surface and subsurface hydrologic reservoirs using surface-loading geodesy, which 

quantifies changes in water volume based on how the shape of the Earth changes under the weight of 
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the water. In this study, we use three-dimensional Global Positioning System data to develop a geodetic

drought index (GDI). Comparison with independent hydrologic observations indicates strong regional 

and temporal correlations with reservoir storage, groundwater fluctuations, and stream discharge 

observations, suggesting the GDI can effectively characterize variations in total hydrologic storage. 

The GDI provides an opportunity to improve hydrologic models for drought management and to 

advance our understanding of the water cycle. 
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1 INTRODUCTION

Groundwater is a critical resource for sustaining natural and human ecosystems, and sufficient 

reserves are necessary to endure periods of sustained drought (Famiglietti, 2014; Rodell et al., 2018). 

This reality has become particularly evident in recent years following the intense droughts within 

California (Argus et al., 2017; He et al., 2017; Liu et al., 2022; Prein et al., 2016; Williams et al., 2022; 

Xiao et al., 2017). The persistent droughts in this region have threatened drinking water supplies and 

influenced agricultural production, resulting in increased local and regional economic burdens 

(Medellín-Azuara et al., 2022; Mishra & Singh, 2010). This has highlighted the importance of 

improving water resource management techniques and advancing our understanding of the current state

of terrestrial water storage (TWS) (Wilhite et al., 2007). While many metrics exist to quantify the 

intensity of drought (e.g. the U.S. Drought Monitor [USDM; Svoboda et al., (2002)], the Palmer 

Drought Severity Index [PDSI; Palmer (1965)], and the Standardized Precipitation Evapotranspiration 

Index [SPEI; Vicente-Serrano et al., (2010)], etc.), the drought indices that are primarily used to 

influence drought assessment and management decisions are driven by meteorological data and thus 

are particularly indicative of meteorological drought conditions. Hence, these metrics provide useful 

insight into meteorologic moisture input over time, but do not characterize TWS retention for a given 

region.

To understand how anomalies in TWS vary, and thus to assess drought conditions associated 

with the entire hydrological system, a hydrologically based drought index with input data sensitive to 

all surface and subsurface moisture is necessary. Toward this goal, hydrologic drought indices have 

been developed using Gravity Recovery and Climate Experiment (GRACE) observations [i.e., the 

GRACE Data Assimilation System (Houborg et al., 2012; Li et al., 2019), the GRACE Drought 

Severity Index (Zhao et al., 2017), and the GRACE Groundwater Drought Index (Thomas et al., 

2017)]. While an intriguing application of geodetic observations, these indices are most applicable to 

large regional/continental scale drought characterization given the spatio-temporal resolution of the 

original input GRACE data (i.e., monthly at ~300 km). 

Alternatively, Chew & Small (2014) introduced a successful small-scale example of a novel 

approach to characterizing TWS anomalies at both local and regional scales, with high temporal 

resolution. Here, the authors leverage the relationship between the elastic response of the solid Earth 

and vertical Global Positioning System (GPS) displacements (White et al., 2022), to produce a GPS 

based drought metric. The fundamental conceptional model driving this metric, and hydrogeodesy in 
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general, is as follows: during dry periods, water leaves the system and unloads the surface of the Earth 

causing the ground elevation to rise. Conversely, when water enters the system, the surface is loaded, 

and the Earth’s surface subsides. In addition, the ground moves horizontally towards a source of 

loading and away from a region of unloading. GPS data are particularly sensitive to these 

displacements and have been used to both localize and quantify hydrologic load variation across a wide

range of spatio-temporal scales (Amos et al., 2014; Argus et al., 2014, 2017; Borsa et al., 2014; Fu et 

al., 2013, 2015; Knappe et al., 2019; Larochelle et al., 2022; Overacker et al., 2022; White et al., 2022; 

Young et al., 2021). The motions observed by GPS represent the combined response to the entire water 

column of both local/regional spatial trends and short-/long-term temporal trends. Thus, the geodetic 

observations of surface loading provide an opportunity to isolate signals associated with specific 

hydrologic changes that exhibit trends at different temporal scales [e.g., reservoir storage varies at 

shorter drainage-basin time scales than groundwater, which varies based on a combination of aquifer 

characteristics (Skøien et al., 2003) and anthropogenic effects (Laveti et al., 2021; Wu et al., 2020)]. 

Since Chew & Small (2014), several studies have built upon their methods to assess drought 

characteristics by developing Geodetic Drought Indices (GDIs) [also termed GNSS-based Drought 

Indices, referring generally to any Global Navigation Satellite System (GNSS)] driven by vertical GPS 

displacements (Ferreira et al., 2018; Jiang et al., 2022b), or hydrologic loading estimates calculated 

from vertical GPS displacements (Jiang et al., 2022a; Tang et al., 2023). Although these studies 

advance the methods of Chew & Small (2014) with differing approaches over different spatio-temporal

scales (see Table 1), each successfully characterize hydrologic drought within their respective regions 

using combinations of GRACE, hydrologic models, and meteorologic drought indices as validation. 

Lending support to the strength of the fundamental core of the methodology to assess hydrologic 

drought variation through the use of GPS displacement time series. 

While useful, these studies do not directly compare geodetic observations with more holistic 

hydrologic observations such as groundwater levels or reservoir storage observations. This distinction 

is critical to evaluate the sensitivity of geodetic observations to different hydrologic reservoirs and 

assessing the strength of hydrologic drought characterization, particularly from the standpoint of active 

drought management where GDIs have yet to gain traction. 

 By deriving hydrologic loading estimates from the vertical GPS displacement fields, Jiang et al.

(2022a) provide a more robust characterization of hydrologic drought by leveraging the response of the

entire GPS network (White et al., 2022), as opposed to solely relying on individual station 
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displacements, from which it is difficult to disentangle local and regional signals. For example, the 

motion of a station may be influenced by an increase in discharge at a nearby river, as well as by the 

loading of a lake in a neighboring valley. In combination with nearby stations, the magnitude and 

distribution of these loads can be estimated. When inverting for loads using the entire GPS network, we

identify the spatial distribution of TWS that best explains the combined regional response of all stations

in the network to hydrologic loading across both local and regional scales. Tang et al. (2023) further 

advance the methodology by deriving their index comparably to the SPEI, thus producing a multi-scale 

hydrologic drought index which leverages the sensitivity of the GPS displacements to the different 

temporal scales of hydrologic variation. In addition, this allows comparability of regional trends 

regardless of spatial gradients in the magnitude of TWS estimates, facilitating comparison of drought 

characteristics across various climates where TWS magnitude can vary substantially. Thus, modeling 

the GDI after the well-established SPEI represents a significant advancement, which we intend to 

expand upon in this study.  

Both Jiang et al. (2022a) and Tang et al. (2023) adopted a Slepian Basis Function approach to 

calculate hydrologic loading estimates rather than the more traditional spherical harmonics method. 

This choice is driven by the need to address the sparse spatial resolution of the GPS network in Brazil, 

and the resolution of the functions approximately matched the spatial resolution of GRACE (Jiang et al.

2022). For regions where the GPS network is relatively dense, such as California, higher spatial 

resolutions are required in the modeling to recover localized hydrologic variation.

In this study, our goal is to further advance the methodologies of Tang et al. (2023) to produce a

new multi-scale geodetic drought index forced by hydrologic loading estimates. The loading estimates 

are derived using the LoadDef software suite (Martens et al., 2019). For our analysis, we experiment 

with including horizontal GPS components to assess whether we obtain improved load localization 

using three-dimensional displacements (rather than vertical only), an aspect which has not been 

explored in previous GDI studies. Following Tang et al. (2023), we derive our index comparably to the 

SPEI (Vicente-Serrano et al., 2010); however, we expand the input distribution such that the GDI is 

insensitive to the chosen characterization distribution [i.e., log-logistic, as applied by Vicente-Serrano 

et al. (2010), or the normal distribution, applied by Tang et al. (2023)]. We apply the new GDI to a case

study within California, and directly assess the capabilities of the GDI by comparing different time 

scales of the GDI with daily observations of groundwater levels, reservoir storage, stream discharge, 

and soil moisture anomalies; a novel approach to assess the utility of the GDI to capture different 
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components of hydrologic drought. This approach provides an opportunity to better understand TWS 

fluctuations within specific hydrologic reservoirs and drainage basins, including with respect to 

groundwater and reservoir storage. Furthermore, the results showcase the tremendous opportunities for 

GPS-based GDIs to improve hydrologic models and drought management at local and regional scales.
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Table 1: Comparison of the methods presented in this study with prior developments and investigations of geodetically 

informed drought indices. Validation model acronyms: GRACE:Gravity Recovery and Climate Experiment (including 

indexed versions), NLDAS: North American Land Data Assimilation System, scPDSI: Self-calibrating Palmer Drought 

Severity Index, STI: Standardized Temperature Index, SPI; Standardized Precipitation Index, SPEI: Standardized 

Precipitation Evapotranspiration Index, and the USDM: United States Drought Monitor.

Study Region GPS 

Stations

GPS 

Components

GPS 

Application

Load 

Calculation 

Method

Estimation Strategy

Chew & 

Small (2014)

Midwestern U.S. 15 Vertical Displacement ~ Displacement anomaly 

time series stacking

Ferreira et al.,

(2018)

Brazil 39 Vertical Displacement ~ Displacement anomaly 

time series stacking

Jiang et al, 

(2022a)

Brazil 104 Vertical Hydrologic 

Loading

Slepian 

Basis 

Functions

Least squares with 

second order Tikhonov 

regularization

Jiang et al., 

(2022b)

Continental U.S. 1900 Vertical Imaged 

Displacement

~ Spatial Filtering

Tang et al., 

(2023)

Brazil 104 Vertical Hydrologic 

Loading

Slepian 

Basis 

Functions

Least squares

This Study Southwestern 

US/California

1158 3-Dimensional Hydrologic 

Loading

LoadDef Iteratively Reweighted 

Least Squares with 

zeroth and second order 

Tikhonov regularization

Study Time Scale Spatial 

Resolution

Temporal 

resolution

Initial GPS 

Data Filtering

Earth 

Model

Model Validation

Chew & 

Small (2014)

Uni-scale GPS 

Network

Daily  GPS Low pass ~ GRACE, Precipitation, 

USDM

Ferreira et al.,

(2018)

Uni-scale GPS 

Network

Monthly GPS Monthly 

normal 

removed

~ GRACE 
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167

168

169

170

171
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Jiang et al, 

(2022a)

Uni-scale Not 

provided?

Monthly GPS 7 day 

median 

window

Not provided GRACE 

Jiang et al., 

(2022b)

Uni-scale 0.25° Monthly GPS PCA ~ GRACE, NLDAS, 

USDM, scPDSI

Tang et al., 

(2023)

Multi-scale SPEI

(normal 

distribution)

1° Daily None Average 

Earth 

Density

GRACE, STI, SPI, SPEI

This Study Multi-scale 

SPEI (three- 

parameter log-

logistic 

distribution)

0.25° Daily None PREM Groundwater wells, 

reservoir storage, 

reservoir height, stream 

discharge, soil moisture,

SPEI, USDM

2 METHODS

2.1 HYDROLOGIC LOAD ESTIMATION

To relate observed GPS displacements to hydrologic loading we use the LoadDef software suite

(Martens et al., 2019), which uses spherical harmonics to evaluate loading displacements on a self-

gravitating sphere. Here we use the Preliminary Reference Earth Model (PREM) (Dziewonski & 

Anderson, 1981) to define the material properties of Earth’s interior. This approach accounts for finer-

scale and more realistic features compared to Tang et al. (2023), where the model relied solely on the 

average Earth density, rather than a stratified structure (Table 1). The bounds of the model are 

constrained to a latitude range of 30º – 44º N and a longitude range of -125º – -104º E (Figure S1). We 

opt for the wider longitude range such that loading exterior to our primary study area of California is 

well accounted for. North of 44º, the effects of slow slip events along the Cascadia subduction zone 

become more prevalent so we do not extend the study area further northward. 

To address far-field loading outside of the model region, we forward model surface 

displacements based on the GRACE mascon solutions within three degrees of the edge of our expanded

study area (Wiese et al., 2023), and remove them from our time series. Loading effects beyond three 

degrees are negligible for the purposes of our study. Changes in water volume and their spatial 

distribution are calculated on a regular grid at 0.25º resolution and the forward-model calculation is 

evaluated at 0.01º resolution using a common geographic mesh. To avoid sharp changes in water 
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storage across neighboring grid cells, the solution is regularized with a combination of zeroth and 

second-order Tikhonov regularization [Aster & Thurber (2013); Equation 1]. 

Equation 1:        

Here G is the design matrix, m is the model vector, d is the GPS observation data vector, I is the 

identity matrix, L is the 2-D discrete Laplacian regularization matrix, and  and  are 

hyperparameters used to optimize the solution. 

Loading studies often filter the input GPS time series to weekly or monthly time scales, and/or 

adopt strict data-cleaning regimens, to account for scatter in the GPS data (Argus et al., 2017; Chew & 

Small, 2014; Fu et al., 2013, 2015; Jiang et al., 2022; White et al., 2022). For our study, we do not want

to inadvertently introduce bias into the solution by smoothing the input time series or applying data 

cuts based on uncertainty thresholds as this can omit important signals during rapid load variation [e.g. 

following atmospheric river (AR) events (Rutz & Steenburgh, 2012) and flash droughts (Ahmad et al., 

2022; Otkin et al., 2018)]. Thus, we adopt the iteratively reweighted least squares (IRLS) approach 

within the load inversion, which mitigates the influence of outliers by reweighting the solution for each

epoch based on the model residuals (Aster & Thurber, 2013). The solution is allowed to iterate until the

model and residual vectors converge to a tolerance value of τ < 0.005, following Equation 2. For the 

first iteration, we perform a standard weighted least-squares inversion. To prevent over-fitting and 

ensure convergence, residuals are fixed to a value of 0.01 mm when they fall below this cutoff. 

Equation 2:    

 

The hyperparameters  and  are optimized for the solution that best minimizes the norm of the 

residuals (||d-Gm||2), the solution semi-norm (||Lm||2), and the zeroth order norm (||Im||2) concurrently. 

These are identified from a suite of 113 days, spread evenly across the study period, for which  and

 are tested over a range of values. The values  =  = 1.5 most frequently optimize the solution and

are used to produce the full suite of load solutions. 

2.2 GEODETIC DROUGHT INDEX CALCULATION
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 We develop the GDI following Vicente-Serrano et al. (2010) and Tang et al. (2023), such that 

the GDI mimics the derivation of the SPEI, and utilize the log-logistic distribution (further details 

below). While we apply hydrologic load estimates derived from GPS displacements as the input for this

GDI (Figure 1a-d), we note that alternate geodetic drought indices could be derived using other types 

of geodetic observations, such as InSAR, gravity, strain, or a combination thereof. Therefore, the GDI 

is a generalizable drought index framework. 

A key benefit of the SPEI is that it is a multi-scale index, allowing the identification of droughts

which occur across different time scales. For example, flash droughts (Otkin et al., 2018), which may 

develop over the period of a few weeks, and persistent droughts (>18 months), may not be observed or 

fully quantified in a uni-scale drought index framework. However, by adopting a multi-scale approach 

these signals can be better identified (Vicente-Serrano et al., 2010). Similarly, in the case of this GPS-

based GDI, hydrologic drought signals are expected to develop at time scales that are both 

characteristic to the drought, as well as the source of the load variation (i.e., groundwater versus surface

water and their respective drainage basin/aquifer characteristics). Thus, to test a range of time scales, 

the TWS time series are summarized with a retrospective rolling average window of D (daily with no 

averaging), 1, 3, 6, 12, 18, 24, 36, and 48-months width (where one month equals 30.44 days). 

From these time-scale averaged time series, representative compilation window load 

distributions are identified for each epoch. The compilation window distributions include all dates that 

range ±15 days from the epoch in question per year. This allows a characterization of the estimated 

loads for each day relative to all past/future loads near that day, in order to bolster the sample size and 

provide more robust parametric estimates [similar to Ford et al., (2016)]; this is a key difference 

between our GDI derivation and that presented by Tang et al. (2023). Figure 1d illustrates the 

representative distribution for 01 December of each year at the grid cell co-located with GPS station 

P349 for the daily TWS solution. Here all epochs between between 16 November and 16 December of 

each year (red dots), are compiled to form the distribution presented in Figure 1e.  

This approach allows inter-annual variability in the phase and amplitude of the signal to be 

retained (which is largely driven by variation in the hydrologic cycle), while removing the primary 

annual and semi-annual signals. Solutions converge for compilation windows >±5 days, and show a 

minor increase in scatter of the GDI time series for windows of ±3-4 days (below which instability 

becomes more prevalent). To ensure robust characterization of drought characteristics, we opt for an 

extended ±15-day compilation window. While Tang et al. (2023) found the log-logistic distribution to 
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be unstable and opted for a normal distribution, we find that, by using the extended compiled 

distribution, the solutions are stable with negligible differences compared to the use of a normal 

distribution. Thus, to remain aligned with the SPEI solution, we retain the three-parameter log-logistic 

distribution to characterize the anomalies. Probability weighted moments for the log-logistic 

distribution are calculated following Singh et al., (1993) and Vicente-Serrano et al., (2010). The 

individual moments are calculated following Equation 3.  

Equation 3:   

These are then used to calculate the L-moments for shape ( ), scale ( ), and location ( ) of the three-

parameter log-logistic distribution (Equations 4 – 6). 

Equation 4:   

Equation 5: 

Equation 6: 

where  is the gamma function of . 

The probability density function (PDF) and the cumulative distribution function (CDF) are then 

calculated following Equations 7 and 8, respectively. 

Equation 7:     

Equation 8: 

The inverse Gaussian function is used to transform the CDF from estimates of the parametric 

sample quantiles to standard normal index values that represent the magnitude of the standardized 

anomaly. Here, positive/negative values represent greater/lower than normal hydrologic storage. Thus, 
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an index value of -1 indicates that the estimated load is approximately one standard deviation dryer 

than the expected average load on that epoch. Drought intensity is classified following Table 2 

(Svoboda et al., 2002). Figure 1e provides an example of the fit of the log-logistic distribution to the 

compiled distribution of loads for 01 December of each year (Figure 1d). The GDI for 01 December 

2013, is -0.24, which is within normal water-storage levels. By 01 December 2015, however, the GDI 

reduces to -1.50, indicating severe hydrologic drought. Following California’s significant precipitation 

years of 2016 and 2017, the GDI increases to 1.97 on 01 December 2017, indicating storage has 

recharged to extremely high hydrologic storage levels at this location.

Table 2: U.S. Drought Monitor SPEI categories of Svoboda et al. (2002), and our expanded GDI drought categories.

Category USDM SPEI GDI Anomaly

W4 ~ Exceptionally High Hydrologic Storage >2

W3 ~ Extremely High Hydrologic Storage 1.6 to 2

W2 ~ Especially High Hydrologic Storage 1.3 to 1.59

W1  ~ Moderately High Hydrologic Storage 0.8 to 1.29

W0  ~ Abnormally Wet 0.5 to 0.79

None Normal Normal -0.49 to 0.49

D0 Abnormally Dry Abnormally Dry -0.5 to -0.79

D1 Moderate Meteorologic Drought Moderate Hydrologic Drought -0.8 to -1.29

D2 Severe Meteorologic Drought Severe Hydrologic Drought -1.3 to -1.59

D3 Extreme Meteorologic Drought Extreme Hydrologic Drought -1.6 to -2

D4 Exceptional Meteorologic Drought Exceptional Hydrologic Drought < -2
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Figure 1: Example GDI calculation. Corrected and detrended (a) east, (b) north, and (c) vertical displacements for

GPS station P349, which is located near the southern shoreline of Lake Shasta.  Note the difference in scales

between the horizontal and vertical components. (d) Daily load estimates for the grid cell co-located with GPS

station P349 (grey dots). The blue dot and vertical line identify 01 December 2013, while the green and purple

dots/vertical lines identify 01 December 2015 and 2017, respectively. The red dots highlight the epochs ± 15 days

from these dates,  which are used to compile the distribution of  terrestrial  water  storage (TWS) estimates for

characterizing the GDI on these dates. (e) Histogram of TWS estimates for 01 December ± 15 days overlain with
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the shape  of  the  log-logistic  PDF (black  line)  for  these  data.  The dashed  black  line  shows the  GDI for  this

distribution and the colored dots/vertical lines reflect the epochs noted in panel d.

3 DATA

3.1 GPS OBSERVATIONS

We use GPS data and a catalog of time series steps from the Nevada Geodetic Laboratory 

(NGL; Blewitt et al., 2018). Time series are produced using the GipsyX software in the IGS14 

reference frame (Altamimi et al., 2016; Bertiger et al., 2020). Initially, 2509 GPS stations are available 

within our study area. We discard stations with less than eight years of data between 01 January 2008 

and 31 March 2023. This threshold is chosen to prevent stations with short data records, which may not

have enough observations to distinguish drier/wetter periods, from biasing the solution. Stations that 

exhibit poro-elastic deformation or transient motions associated with volcanic centers are omitted 

(Argus et al., 2014; Kang & Knight, 2023; White et al., 2022), leaving 1160 stations for our analysis 

(Figures 2 & S1). The minimum number of concurrent observations is 795 stations on 02 February 

2008, and the maximum of 1131 stations occurs on 09 April 2015, with an average of 1027 stations 

across the study period. 

The steps catalog for each station represents a combination of both mechanical/equipment 

changes and possible earthquake-related offsets. Many of these steps do not impart a noticeable offset, 

and some stations have offsets that are not indicated in the list; thus, we manually inspect the time 

series for each station to ensure steps are appropriately accounted for, and the catalog is modified 

accordingly on a component-by-component basis. Periods of problem data due to known sources [e.g., 

early postseismic deformation (< 1 year) and multipath] and unknown sources (e.g., spurious periods of

elevated scatter) are manually identified and removed. Long-term postseismic deformation 

significantly affects the horizontal components of the GPS stations in this region, and we correct the 

time series using the postseismic model of Young et al. (2023). Each station is then corrected for non-

tidal atmospheric and oceanic pressure loading using the GFZ-Potsdam gridded solutions (Dill & 

Dobslaw, 2013). Offsets from the updated step catalog are then calculated and corrected, after which 

the linear velocity trend is removed. Annual and semi-annual signals are retained in the time series and 

accounted for during the GDI calculation. 
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Figure 2: Regional map showing the distribution of GPS and hydrologic stations in and around California. The full study 

area is shown in the inset and Figure S1. Accepted GPS stations are shown as red circles while those omitted are presented 

as black dots. Reservoir storage locations, with volume data, are shown as light blue squares and lake/reservoir water 

surface height gauges, with only elevation data, are yellow diamonds. Groundwater wells are presented as orange triangles. 

Stream discharge gauges are shown as blue diamonds and soil moisture stations are identified as dark blue triangles. The 

Northern and Southern California sub-region boundaries (thick black lines with grey shading) are a combination of level 4 

hydrologic unit code regions (Jones et al., 2022). Remaining California sub-region boundaries are shown with thick grey 
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lines and tan shading. Thin blue lines show river locations. California’s Central Valley is highlighted with light blue 

shading. The location of GPS station P349, near Lake Shasta in northern California, is indicated with a black line from its 

label. Inset shows an expanded view of the full study area. The load calculation region is shown with grey shading and 

overlain with the included GPS station locations as grey dots. The region used to calculate far-field loading with GRACE is 

shaded in blue. No data is used from the tan region. 

3.2 HYDROLOGIC OBSERVATIONS

Data for reservoir storage, reservoir/lake surface height, groundwater well height (level), and 

stream discharge are obtained from the National Water Information System (NWIS) (U.S. Geological 

Survey, 2016). Additional reservoir storage data is obtained from CDEC (California Data Exchange 

Center, 2023), and continuous and periodic groundwater well data from the California Department of 

Water Resources Water Data Library and the California Natural Resources Agency (California Natural 

Resources Agency, 2023a, 2023b; Water Data Library, 2023a, 2023b). For each of these data sets, 

station time series are inspected, and problem stations are removed (i.e., those that show clear 

indications of sensor or monumentation issues). To be considered, stations must meet the same 

temporal requirements as the GPS data. Hydrologic data outside of California is sparse (Figure S1), 

thus we limit our analysis to those hydrologic stations located within California (Figure 2). 

Reservoir storage stations are limited to those that retain median storage volumes greater than 

0.02 km3. For reservoirs that experience periods of no water storage, these periods are omitted. Finally, 

many reservoirs are actively managed and therefore exhibit limited volume variation (i.e., their annual 

signal is nearly constant in both phase and amplitude); thus, they do not reflect regional hydrologic 

variation trends and are omitted. Following these constraints, we consider 72 reservoirs in our analysis. 

The NWIS additionally provides surface height data for a combination of 20 reservoirs and lakes 

within the region. Although these data do not account for the complexity of the local geography, 

globally many lakes and reservoirs do not contain adequate data to constrain volume estimates. Thus, it

is useful to compare the GDI to both reservoir storage and reservoir/lake height observations to 

understand and interpret the GDI at these locations. 

We restrict the groundwater well data to stations identified by the NWIS to be within either 

unconfined or semi-confined aquifers. The CNRA and WDL groundwater data do not indicate aquifer 

type, but they are located near NWIS groundwater stations and within the Central Valley, therefore, we 

include them. Groundwater well data that exhibit an active pumping signal or do not contain annual 
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signals in their time series (Houborg et al., 2012), are removed, leaving 193 groundwater well stations 

within California. 

Stream discharge time series are generally well behaved (i.e., they exhibit few periods of 

spurious outliers or steps in their time series); however, many stations are placed on minor streams or 

exhibit infrequent flow. To ensure stations are most reflective of drainage-basin dynamics throughout 

the year, stations are limited to those whose median discharge across the study period is greater than 5 

m3 s-1, which leaves 70 gauges for our analysis. Soil moisture data was accessed from publicly 

available data sources including the Soil Climate Analysis Network (SCAN), Snow Telemetry 

(SNOTEL) and the U.S. Climate Reference Network (USCRN). Of these data, eleven soil moisture 

stations are available within California. 

To directly compare and quantify the relationship between the GDI and hydrologic 

observations, each hydrologic data set is passed through the same processing workflow as the GPS 

data, except that only the daily (rather than time-integrated) solutions calculated and a gamma 

distribution was used for the soil moisture data (see Supplemental Text S1 for more details). This 

facilitates the identification of optimal time frames for the GDI that best represent specific hydrologic 

processes.

3.3 ATMOSPHERIC RIVERS

Atmospheric Rivers (ARs) are concentrated bands of water vapor that produce significant 

rainfall over a series of days, rapidly altering the mass distribution of the impacted region (Rutz et al., 

2014; Rutz & Steenburgh, 2012). These events are a key driver of hydrologic storage fluctuation; thus, 

we expect to observe an association between drought severity and the frequency of AR activity, 

reflected in both the hydrologic observations as well as in the GDI. To explore this, we obtain a gridded

AR catalog from the Center for Western Weather and Water Extremes (Rutz et al., 2014, 2019). For 

both the northern and southern California regions (Figure 2), we identify the peak integrated water 

vapor transport on each epoch to produce subcatalogs of peak AR activity, which we then compare with

hydrologic anomalies and the GDI. The largest influence on drought severity is expected to occur 

during the most significant AR events; thus, we limit the subcatalogs to the highest intensity ARs (3+).
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4.1 CHARACTERIZATION OF LAKE SHASTA STORAGE

Lake Shasta is the largest man-made reservoir in California and its storage exhibits strong 

annual signals (Figure 3a). GPS station P349 lies only 2 km south of the reservoir and exhibits a strong 

annual signal in its vertical component (Figure 1c). The correlation coefficient between the vertical 

displacements and the water storage in the reservoir is -0.67, highlighting the inverse relationship 

between hydrologic loading and surface displacement. Considering the strength of the correlation, the 

GDI is expected to strongly reflect load variation within the reservoir. Figure 3b shows a comparison 

between the 1-month GDI (i.e., the TWS time series is smoothed with a 1-month retrospective rolling 

average window prior to GDI calculation) for the grid cell co-located with P349 and the daily reservoir 

storage index for Lake Shasta. The correlation coefficient between these two indices is strong, at 0.85, 

indicating the GDI is representative of the load variation across the entire study period within the 

reservoir and performs better than a direct comparison between the GPS displacements and the 

reservoir storage. When comparing the reservoir storage to the daily indexed GDI, the correlation 

coefficient is 0.77. This shows that both the use of the load solution, due to leveraging the entire GPS 

network, and smoothing to the 1 month time scale, improve the solution. At the longer time scales of 

3-, 6- and 12-months the correlation coefficients decline to 0.83, 0.77, and 0.64, revealing the 1-month 

GDI solution as the optimal time scale.

On shorter time scales, rapid increases in reservoir volume are driven by precipitation, with the 

largest changes occurring during AR events (Rutz et al., 2014). Sharp increases to wetter (positive) 

GDI anomalies align well with the occurrence of category 3+ AR events within California (gray 

vertical lines). This indicates the GDI is sensitive not only to long-term trends of loading at and near 

Lake Shasta, but also to reservoir volume variations driven by strong precipitation events. This is 

particularly evident in the Decembers of 2012 and 2014 – 2016, during which clusters of AR events are

directly followed by sharp GDI increases toward wetter conditions.
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Figure 3: Comparison of the GDI with Lake Shasta reservoir storage. (a) Observed daily reservoir storage values

for  Lake Shasta.  (b)  Comparison of the 1-month GDI with the daily reservoir  storage index for  Lake Shasta

(correlation coefficient: 0.85). Background vertical grey bars represent category 3+ atmospheric river (AR) events

that impacted northern California. 

4.2 REGIONAL CORRELATIONS

To understand how different time scales of the GDI relate to variation within specific 

hydrologic reservoirs, and to gain insight into their respective regional dynamics for use with future 

drought management, we consider three cases. In the first, a “co-located” case, we compare the unique 

GDI grid cells that contain hydrologic stations with each daily indexed hydrologic anomaly data set 

(i.e., only the grid cells containing groundwater stations are compared with the groundwater anomalies,

Figure 2). For each data set, the time series are stacked and the median anomaly is calculated for each 

epoch and compiled to produce a median anomaly time series. The correlation coefficient is then 

calculated between the different time scales of the GDI and the hydrologic data. For both the “Northern

California” and “Southern California” cases, we limit both the GDI and the hydrologic observations to 

those data within their respective watershed boundaries (Figure 2). Results, presented in Figure 4 and 
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Table 3, are limited to data sets that contain at least five concurrent observations for most of the time 

period.

In the local case, optimal GDI time scales for groundwater wells, reservoir storage, reservoir 

height, and stream discharge are found at the 3-, 1-, 3-, and 1-month time scales, respectively, with 

correlation coefficients of 0.88, 0.81, 0.69, and 0.47 (Figure 4a). Soil moisture shows no clear 

relationship with any GDI time scale. For the groundwater wells, reservoirs, and stream discharge data 

sets, correlation coefficients decline rapidly away from the optimal GDI time scale. When the 

hydrologic observations are separated into the northern and southern regions of California, the 

groundwater wells exhibit significantly different optimal time scales. In northern California, the 

groundwater wells (which are primarily located within the northern Central Valley, Figure 2) exhibit the

strongest correlations at the 1- and 3- month GDI time scales (Figure 4b). Conversely, in southern 

California, the groundwater wells (which are located within California Coastal Basin aquifers) exhibit 

the strongest correlation of 0.77 at the 12-month GDI time scale (Figure 4c). Correlation coefficients 

for both reservoir storage and reservoir height are higher in northern California and peak at the 1-month

GDI time scale, at 0.83 and 0.63 respectively. In southern California, reservoir storage and reservoir 

height correlations with the GDI peak later (at the 3-month time scale) with correlation coefficients of 

0.72 and 0.56, respectively. We estimate that the two-sigma uncertainty in each of the correlation 

coefficients is approximately ± 0.03, based on a distribution of 10,000,000 correlation coefficients 

calculated between the hydrologic observations and randomized GDI time series. 

Data limitations prevent comparison of stream discharge and soil moisture between the three 

regional case studies, but we note that stream discharge improves slightly at the daily GDI time scale in

northern California compared to the co-located case. The case-study results reveal two clear findings. 

First, the GDI strongly characterizes hydrologic observations across California. Second, the GDI 

reflects unique aquifer and drainage basin characteristics between the northern and southern California 

regions.
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Figure 4: Correlation coefficients between (i) time series of the median GDI for each time scale and (ii) time

series of median daily indexed reservoir storage, groundwater wells, reservoir height, stream discharge, and soil

moisture anomalies for the (a) co-located, (b) Northern California, and (c) Southern California cases. Values are

summarized in Table 3. Two sigma uncertainties are ± 0.03 for all data points. Note that the x-axes are non-linear

and given in units of months (i.e., 30.44 days, except for “D,” which stands for “daily”).

Table 3:  Correlation coefficients between the median GDI at  various time scales and the daily indexed reservoir

storage, groundwater wells, reservoir height, stream discharge, and soil moisture anomalies for the local, northern

California, and southern California cases. Values are plotted in Figure 4. Two sigma uncertainties are ± 0.03. *Note

that time scales are given in months with the exception of “D”, which stands for “daily”. Bold values indicate optimal

GDI time scales for each hydrologic data set. 

GDI Time Scale D* 1 3 6 12 18 24 36 48
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(Months)

Hydrologic

Observations

Co-Located Available

Stations 

Groundwater

Wells

0.73 0.85 0.88 0.85 0.80 0.71 0.60 0.32 −0.01 193

Reservoir Storage 0.76 0.81 0.80 0.74 0.62 0.48 0.33 −0.01 −0.30 72

Reservoir Height 0.54 0.66 0.69 0.68 0.62 0.56 0.48 0.30 0.04 20

Stream Discharge 0.47 0.47 0.43 0.37 0.31 0.23 0.12 −0.06 −0.18 70

Soil Moisture 0.01 −0.03 −0.03 −0.04 −0.08 −0.12 −0.10 -0.04 −0.03 11

Northern California

Groundwater

Wells

0.76 0.86 0.87 0.82 0.76 0.68 0.58 0.31 0.00 155

Reservoir Storage 0.74 0.83 0.81 0.73 0.62 0.50 0.36 0.04 −0.24 58

Reservoir Height 0.59 0.63 0.59 0.55 0.50 0.40 0.27 −0.02 −0.25 9

Stream Discharge 0.50 0.47 0.42 0.33 0.24 0.14 0.04 −0.17 −0.30 62

Soil Moisture ~ ~ ~ ~ ~ ~ ~ ~ ~ 6

Southern California

Groundwater

Wells

0.45 0.57 0.66 0.73 0.77 0.74 0.67 0.54 0.37 29

Reservoir Storage 0.51 0.67 0.72 0.70 0.63 0.52 0.37 0.08 −0.20 13

Reservoir Height 0.40 0.52 0.56 0.54 0.48 0.39 0.29 0.11 −0.08 9

Stream Discharge ~ ~ ~ ~ ~ ~ ~ ~ ~ 0

Soil Moisture ~ ~ ~ ~ ~ ~ ~ ~ ~ 2
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Time series of the 3-month, 1-month, and daily GDI for northern California are plotted in 

Figure 5, and overlain with the daily indexed groundwater wells, reservoir storage and stream discharge

anomaly time series. Shaded regions reflect the inter-quartile range (IQR) for each data set. Figure 6 

shows a similar comparison for southern California except that it shows the 12-month and 3-month 

GDI in comparison with the daily indexed groundwater wells and reservoir storage anomalies. 

Similarly, Figure S2 shows the optimal GDI for the co-located case. 

 Long-term trends of the GDI closely follow the hydrologic observations, with consistent 

overlap of the IQRs for most of the study period in both northern and southern California. In northern 

California, clusters of AR events (gray vertical lines) coincide with rapid increases in indices associated

with the hydrological data. Concurrently, sharp increases in the GDI often initiate during AR sequences

and closely follow the trends of the hydrologic observations, with a lag that ranges between a few 

weeks to several months. This is particularly evident between November 2015 and January 2017, 

during which two large clusters of ARs coincide with large increases in the GDI, from extreme 

hydrologic drought in November 2015 to extremely high hydrologic storage by February 2017. 

Although fewer category 3+ ARs occur within the southern California region, we see a similar 

relationship when comparing the 3-month GDI with reservoir storage. The association diminishes, 

however, when comparing the daily groundwater index with the 12-month GDI. Nevertheless, a 

comparison of groundwater wells between northern and southern California shows clearly that 

groundwater fluctuations in southern California tend to evolve more slowly than groundwater 

fluctuations in northern California. 

Some discrepancies are expected between the time series of hydrologic observations and the 

GDI (Figures 5, 6 and S2), because the GDI is driven by the response of the GPS observations across 

the entire region, while the hydrologic observations are point observations that are limited in both 

station quantity and spatial distribution. Larger deviations are observed in southern California, where 

far fewer hydrologic observations are available. Thus, due to the significant quantity of GPS stations in 

the region, compared to the quantity and distribution of hydrologic observations, the GDI results 

provide more significant insight into the regional hydrologic trends than can be observed with the 

current network of hydrologic stations.  
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Figure 5: Time series comparison of GDI time scales and daily indexed hydrologic anomalies within northern

California (Figure 2). (a) Comparison between the daily groundwater wells anomaly and the optimal 3-month

GDI. The blue and red lines indicate the median index value, for each epoch, of the daily groundwater wells index

and the 3-month GDI respectively (Figure 4). The light blue and orange shaded regions indicate the inter-quartile

range for each index. (b) The same as panel a except comparing the daily reservoir storage anomaly with the

optimal 1-month GDI. (c) The same as panel a except comparing the daily stream discharge anomaly with the

optimal daily GDI. Grey vertical bars indicate category 3+ atmospheric river (AR) events in northern California. 
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Figure 6: Time series comparison of GDI time scales and daily indexed hydrologic anomalies within southern

California (Figure 1). (a) Comparison between the daily groundwater wells anomaly and the optimal 12-month

GDI (Figure 4). (b) The same as panel a except comparing the daily reservoir storage anomaly with the optimal 3-

month GDI. Key as described in Figure 5 with the exception that atmospheric river (AR) events are limited to

southern California. 
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5 DISCUSSION

5.1 IMPROVING TWS MONITORING

The methods presented in this study leverage the sensitivities of hydrogeodesy and combine 

them with rigorously tested drought characterization techniques, to provide insight into regional TWS 

variation and comprehensive hydrological drought anomalies. Direct quantification of regional water 

storage, in both surface and subsurface reservoirs, has been difficult to perform in the past due to sparse

spatial distributions of hydrologic data sets (Figure S1), the point-measurement nature of traditional 

hydrological observations, and the difficulty of observing groundwater. Furthermore, variations in 

groundwater well observations are strongly affected by aquifer dynamics (e.g. spatial heterogeneity), 

making comparisons difficult to quantify, even between neighboring wells. Hence, drought monitoring 

has historically relied heavily on meteorologic observations to assess drought intensity (along with 

streamflow observations, etc) to influence decisions regarding resource allocation, rather than 

incorporating or relying on direct hydrologic observations or TWS estimates (Svoboda et al., 2002; 

Svoboda & Fuchs, 2016).   

While meteorological data provide important insight into the amount of water entering a 

watershed, meteorologic-based drought indices lack the ability to characterize anomalies in TWS, 

including groundwater storage. Geodesy allows scientists and drought assessment practitioners to 

characterize storage changes not only at the surface, but also in deep subsurface reservoirs, which 

provide critical water resources to communities and account for a large proportion of TWS. While 

alternative methods and data sets, such as GRACE-based drought indices, have been developed to 

address this problem, their ability to resolve TWS anomalies at fine spatial scales is limited. 

Furthermore, GRACE-based metrics are divorced from on-the-ground observation networks, which can

expand and improve over time in station density and spatial extent. 

In addition, intensities of meteorologic and hydrologic drought are rarely equivalent with 

variation in hydrologic drought lagging meteorologic drought due to runoff, evapotranspiration, and the

time scales of drainage basin dynamics and aquifer recharge (Barker et al., 2016; Entekhabi et al., 

1992; Lin et al., 2023; Werth et al., 2023). In other words, the unique behaviors and geographic 

contexts of each watershed affect TWS and hydrological drought, but do not impact meteorological 

assessments of drought. Furthermore, evaluating differences between hydrological and meteorological 

drought can be important for water-resource management, since improving the understanding of how 

TWS varies both spatially and over time can improve relevance and accuracy of drought-management 
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decisions, resulting in better resource sustainability through periods of prolonged drought. Continued 

expansion of GPS networks, particularly in sparsely monumented regions, and maintaining the 

operation of long running GPS stations will further improve TWS characterization.

5.2 GDI TIME SCALES AND HYDROLOGIC OBSERVATIONS

The vertical and horizontal displacements of Earth’s surface observed by GPS represent the 

confluence of all sources of loading over short and long periods (and local to global scales). Thus, by 

adjusting the time scales over which we compute the GDI, the GPS-inferred estimates of TWS are 

summarized to emphasize various components of the total deformation signal. The time scales of 

hydrologic loading and unloading vary depending on the reservoir (e.g., groundwater versus stream 

discharge); thus, applying the GDI at different time scales provides insight into the behavior of 

different hydrological systems (Skøien et al., 2003). 

As shown in Figure 4, we observe the strongest correlations between the GDI and stream 

discharge, at the daily to 1-month time scale, for which stream discharge fluctuates predominantly at 

weekly to monthly time scales. Reservoirs, that are fed from broader drainage basins exhibit longer 

characteristic time scales of one to three months. Intriguingly, we find different responses to 

groundwater well observations when distinguishing northern and southern California, with northern 

California exhibiting optimal correlations at the 1- to 3-month time scale, and southern California at the

12-month time scale. The peak correlation between GDI and groundwater at the longer (several month)

time scales is not surprising considering that the shallow subsurface acts as a low pass filter of 

meteorological inputs, attenuating and dampening the comparatively high frequency forgings observed 

at the soil surface. Furthermore, spatial differences (e.g. north versus south here) may be representative 

of variations in groundwater aquifer characteristics including material properties and anthropogenic 

effects. Thus, time scales of 1- to 3- months in northern California (primarily driven by northern 

Central Valley wells) are likely to reflect a combination of agricultural pumping and recharge driven by

precipitation and snowpack in the Sierra Nevada mountains (Werth et al., 2023). Moreover, the longer 

12-month time scale in southern California (driven by Coastal Basin aquifer wells) are likely to reflect 

a greater dependence on natural aquifer recharge dynamics rather than agricultural effects. 

 Notably, excluding soil moisture, the optimal GDI time scales are sharply defined, with the 

correlation coefficients declining rapidly away from their peak. The strong associations suggest that, 

within northern California, the daily, 1-month, and 3-month GDIs are strong predictors of stream 
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discharge, reservoir storage/height, and groundwater wells, respectively. Similarly, the 3-month and 12-

month GDIs are strong predictors of reservoir storage/height and groundwater wells in southern 

California. 

As exemplified by the differences between northern and southern California, optimal GDI time 

scales are specific to each study region. The behaviors of hydrological systems vary depending on a 

variety of factors, including geological setting, regional ecology, and regional climate. Lorenzo-Lacruz 

et al. (2010), for example, found that the relationships of SPEI and SPI to hydrologic observations in 

Spain varied significantly across regions due to characteristics of individual drainage basins and the 

efficiency of groundwater flow through bedrock. Future work should consider mapping these 

differences in optimal timescales for groundwater to aide in operational assessments using the GDI.  

The lack of a relationship between soil moisture and the GDI is not particularly surprising when

considering its comparatively small hydrologic scale, which is often relatively thin (soils typically 

represent depths of meters while deeper groundwater aquifers can exceed 100s of meters). In addition, 

the dependence of the soil moisture data on the properties of both the soil layers and the topography 

suggests that significantly more soil moisture stations would be required to associate regional trends 

observed by the GDI with soil moisture observations. 

5.3 LIMITATIONS OF A GPS-BASED GDI

A limitation of the GDI is the dependence on long-running, continuously operating GPS 

stations. For the study presented here, we have access to a large network of continuous GPS stations in 

the western United States for a period of nearly two decades. The density of stations and the long data 

records enable a robust analysis of several wet and dry cycles, which is not yet possible in many 

regions of the world. Dense networks operating over long periods enhances the ability of the GDI to 

recover more localized signals and mitigates bias in the solution. 

Relatively long data records are important for calibrating the drought anomalies. Consider, for 

example, a network of GPS stations that is installed at the beginning of a drought period but 

discontinued at the end of the drought. The reference level of dryness for the region would be in the 

middle of the drought, which would bias the GDI to characterize the early period as relatively wet, 

despite the period being relatively dry in the context of longer observational periods, which are readily 

available for meteorologically based drought indices. Therefore, the period of record represented by 

any given network is an important consideration when conducting drought assessments. The GPS 
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constellation, however, will continue to operate for the foreseeable future, continuously increasing the 

length of data records. Thus, with time, and with the expansion of other GNSS worldwide, the 

limitation of short data records for the GDI will be reduced, but the effects of climate change may need 

to be considered in drought characterization in the future (Hoylman et al., 2022). 

Short data records can also pose challenges for compiling distributions of wet and dry 

anomalies, upon which the GDI is based. We address this challenge by characterizing each epoch 

relative to a compiled distribution of nearby epochs rather than limiting the distribution to include only 

individual dates. By using an expanded window of ±15 days, we bolster the distribution significantly, 

to provide more robust (and stable) drought characterization. Thus, we can address the current 

limitation of short data records, and reduce the expanded windows over time as GPS time series extend.

5.4 THE INCLUSION OF HORIZONTAL COMPONENTS IN THE GPS INVERSION FOR TWS

In this study, we explore the impact of horizontal GPS components on TWS estimates and the 

GDI, with the goal of improving hydrologic load localization. Figure S3 provides a comparison of 

estimated TWS on 01 January 2023 for both the three-dimensional and vertical-only solutions. We 

select this date because it immediately follows three large AR events (category 3+) that generated large 

loading signals in the GPS. Comparison between the difference in these solutions with the cumulative 

precipitation over the four previous days, reveals higher load estimates downstream from the peak 

cumulative precipitation. While we observe short-term improved load localization during extreme 

precipitation events, we find that differences between a vertical-only solution and a three-dimensional 

solution are relatively small when considering the full study period. Moreover, the overall conclusions 

of this study are identical whether we include horizontal GPS components or not. We interpret the 

relative insignificance of the horizontal components to be due to the relative strength of the vertical 

signal, as well as the relative (i.e., anomaly) nature of the GDI. Except for extreme precipitation events 

(Figure S3), we find that including the horizontal components shifts loads slightly between neighboring

grid cells, but the small spatial shifts become mostly irrelevant in the GDI framework due to 

normalization. Thus, for simplicity and due to negligible benefits, we conclude that it is reasonable to 

omit horizontal components from a GDI analysis at current GPS observational precision. The relative 

importance of horizontal components, however, should be reevaluated in the future, since 

improvements in technology and the inclusion of multiple satellite networks in GNSS positioning could

enhance the benefits of including horizontals in due course. 
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6 CONCLUSIONS

In this study, we present new insights into geodetic drought indices (GDI), including advances 

in the computation of the GDI, an assessment of optimal GDI time scales that correlate strongly with 

key components of hydrological systems in California, and an evaluation of GDI response to heavy 

precipitation associated with atmospheric rivers. We build upon the methods of Chew & Small (2014), 

Tang et al. (2023), and others to derive the multi-scale GPS-based GDI and we evaluate its ability to 

characterize specific hydrologic reservoirs and fluxes that are of interest to water-resource managers. 

Comparison between northern and southern California reveals that the GDI identifies different 

optimal time scales to accurately characterize groundwater dynamics within each region, providing 

insight into the physical processes that drive hydrologic variation. In northern California, the GDI 

effectively characterizes groundwater wells, reservoir storage, reservoir height, and stream discharge at 

the 3-month, 1-month, 1-month, and daily time scales, respectively, with correlation coefficients of 

0.87, 0.83, 0.63, and 0.50. In southern California, groundwater wells, reservoir storage, and reservoir 

height are best represented by longer GDI time scales of 12-, 3- and 3-months, respectively, with 

correlation coefficients of 0.77, 0.72, and 0.56. Correlation coefficients between the GDI and 

fluctuations in the hydrological systems peak strongly at single time scales and taper off rapidly at both

shorter and longer time scales. We therefore infer that the GDI, tailored to a specific region and time 

scale, can be a strong predictor of variations in lakes and reservoirs, stream discharge, and groundwater.

We find, however, no clear association between the GDI and soil-moisture changes at any time scale 

indicating the GDI is most sensitive to TWS (of which groundwater is a comparatively large 

component). 

Moreover, we find that heavy precipitation events associated with atmospheric rivers affect both

the hydrologic observations and the GDI at short periods. Thus, we demonstrate that the GDI is 

sensitive to both short- and long-term variations in TWS, characteristics of specific hydrologic basins, 

and specific hydrologic reservoirs (e.g., groundwater and reservoir storage). 

Despite growing interest in, and advances in the development of GDIs, over the past decade 

(Chew & Small, 2014; Ferreira et al., 2018; Jiang et al., 2022a; Jiang et al., 2022b; Tang et al., 2023), 

GDIs are not currently incorporated in active drought management. We strongly advocate for the 

integration of GDIs into routine drought monitoring and assessment. The methods that we present here 

to compute the GPS-based GDI are readily scalable to other geodetic networks and regions worldwide. 
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The use of GDIs can provide water-resource managers with regular (e.g., daily) insights into 

hydrological drought conditions not only regionally but also with respect to individual drainage basins, 

and specific hydrologic reservoirs. Importantly, the GDI presents opportunities for monitoring 

groundwater anomalies, which has historically been an underrepresented indicator of long-term drought

dynamics. Future work should advance this framework into an operational context to aid in more 

holistic drought assessments.
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1 SUPPLEMENTAL FIGURES

Figure S1: Expanded regional map showing the distribution of GPS and hydrologic stations considered in this study. 
Included GPS stations are shown as red circles while those omitted are presented as black dots. Reservoir storage locations 
are shown as light blue squares and lake/reservoir water surface height gauges are yellow diamonds. Groundwater wells are 
presented as orange triangles. Stream discharge gauges are shown as blue diamonds and soil moisture stations are identified 
as dark blue triangles. Labeled level two hydrologic unit code (HUC2) boundaries are shown as thick black lines (Jones et 
al., 2022). Blue lines show the location of rivers. The boundary for California’s Central Valley is shown as a thin dashed 
black line. The location of GPS station P349, near Lake Shasta in northern California, is indicated with a black line from its 
label. 
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Figure S2: Comparison of co-located GDI time scales and daily indexed hydrologic anomalies (Figure 
2). (a) Comparison between the daily groundwater wells anomaly and the optimal 3-month GDI 
(Figure 4). The blue and red lines indicate the median index value, for each epoch, of the daily 
groundwater wells index and the 3-month GDI respectively. The light blue and orange shaded regions 
indicate the inter-quartile range for each index. (b) The same as panel a except comparing the daily 
reservoir storage anomaly with the optimal 1-month GDI. (c) The same as panel a except comparing 
the daily stream discharge anomaly with the optimal 1-month GDI. Grey vertical bars indicate category
3+ atmospheric river (AR) events in northern and southern California. 
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Figure S3: Comparison of 3-dimensional (3D) and vertical only load solutions. Hydrologic load 
estimates for the (a) 3D load and (b) vertical only load solution on 01 January 2023. Loads are 
presented relative to the full study period of 2008 to 2023. (c) Difference between the two load 
solutions (3D - vertical) presented in panels a and b. (d) Cumulative precipitation between 27 
December 2022 and 01 January 2023. Black dots in panels a – c indicate GPS station locations used in 
the inversion. Black and grey lines denote hydrologic unit code level 4 boundaries for California and 
the Great Basin respectively. Between 27 December 2022 and 01 January 2023, northern California 
experienced three days of category 3+ atmospheric rivers. Blue lines represent the locations of rivers. 
Note that the highest cumulative precipitation occurs in the two hydrologic units which experience the 
largest increase in load for the 3D solution (localized toward to base of the drainage basin). 
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2 SUPPLEMENTAL TEXT

Text S1:

We analyzed a comprehensive database of daily soil moisture time-series sourced from federal and 
state networks, including SNOwpack TELemetry (SNOTEL), Soil Climate Analysis Network (SCAN), 
the U.S. Climate Reference Network (USCRN), and the Montana Mesonet. Our assessment 
encompassed 1,810 soil moisture time-series from 641 locations, wi1.1th volumetric soil moisture 
measurements at depths ranging from 2 to 40 inches below the ground surface. The time periods 
considered varied by site and extended from October 12, 1996, to December 19, 2022. To ensure data 
reliability, we filtered out periods when soil temperatures were below 1.1°C (34°F), indicating frozen 
soil. For this analysis we used soil moisture data recorded at the 20in depth. 

We standardized each soil moisture time-series using a parametric approach, addressing non-Gaussian 
distributions within each site-specific time-series. Instead of relying solely on a single day (e.g., June 
1st) to define the distribution for each year, we adopted a more robust method. Specifically, we 
employed a 31-day centered moving-window technique, which required a minimum of 6 years of data 
(equivalent to 6 years x 31 days, resulting in a minimum of 186 observations) to create samples for the 
site of interest. This approach aligns with the work of Ford et al. (2016), who utilized 31-day samples 
per year to estimate percentiles, concluding that 6 years of data is generally adequate for establishing 
stable and reliable percentiles for soil moisture. Essentially, our approach capitalizes on the natural 
cyclic and seasonal variations in soil moisture time-series, enhancing the probability distribution 
associated with any given day and location (e.g., conditions on May 31st offering insights into, and 
probabilistic information about, June 1st).

Subsequently, we applied a Gamma distribution to each specific day/location/depth sample, utilizing 
the L-moments of the data for estimating the corresponding probability distribution. We chose the 
Gamma distribution due to its capacity to accommodate non-Gaussian data that is constrained to a 
minimum of zero, aligning with the typical characteristics of soil moisture datasets. Employing these 
parametrically derived probability distributions, we computed the associated cumulative distribution 
function (CDF) for the observations. These CDF values were then subjected to evaluation within an 
inverse Gaussian function characterized by a mean of zero and a standard deviation of one, resulting in 
the ultimate anomaly value. This "normalization" procedure centers CDF values around 0.5, anchoring 
them to an anomaly value of zero.
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