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Abstract: 11 

Machine learning (ML) is increasingly considered the solution to environmental problems where only 12 
limited or no physico-chemical process understanding is available. But when there is a need to provide 13 
support for high-stake decisions, where the ability to explain possible solutions is key to their acceptability 14 
and legitimacy, ML can come short. Here, we develop a method, rooted in formal sensitivity analysis (SA), 15 
that can detect the primary controls on the outputs of ML models. Unlike many common methods for 16 
explainable artificial intelligence (XAI), this method can account for complex multi-variate distributional 17 
properties of the input-output data, commonly observed with environmental systems. We apply this 18 
approach to a suite of ML models that are developed to predict various water quality variables in a pilot-19 
scale experimental pit lake.  20 

A critical finding is that subtle alterations in the design of an ML model (such as variations in random seed 21 
for initialization, functional class, hyperparameters, or data splitting) can lead to entirely different 22 
representational interpretations of the dependence of the outputs on explanatory inputs. Further, models 23 
based on different ML families (decision trees, connectionists, or kernels) seem to focus on different 24 
aspects of the information provided by data, although displaying similar levels of predictive power. 25 
Overall, this underscores the importance of employing ensembles of ML models when explanatory power 26 
is sought. Not doing so may compromise the ability of the analysis to deliver robust and reliable 27 
predictions, especially when generalizing to conditions beyond the training data. 28 

Key Points: 29 

• We extend the sensitivity analysis (SA) paradigm to handle complex multivariate distributions 30 
encountered in machine learning (ML). 31 

• We apply our new SA-based method to explain the controls of various ML models developed for 32 
water quality predictions. 33 

• We show different how ML models may rely on entirely different predictors and data signals 34 
despite exhibiting comparable predictive power. 35 

1. Introduction 36 

Machine learning (ML) is increasingly used in various domains, and success stories abound for problems 37 
that do not carry significant risks of negative consequences. However, when erroneous predictions can 38 
have major adverse implications for societal and environmental well-being, ML often faces acceptability 39 
and legitimacy challenges (Lipton, 2017; Lakkaraju et al., 2019; Read et al., 2019; Rudin, 2019; Samek et 40 
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al., 2019; Coyle and Weller, 2020; Lakkaraju et al., 2020; Roscher et al., 2020; Slack et al., 2021; Slack et 41 
al., 2023). In such cases, a prime concern is often the difficulty in explaining the reasoning behind an ML 42 
model’s predictions, which often leads decision makers to favor process-based models (PBMs) that rely 43 
on representations that encode a physico-chemical understanding of the underlying system (Hipsey et al., 44 
2015; Fatichi et al., 2016; Read et al., 2019; Razavi, 2021; Razavi et al., 2022). However, for many 45 
emerging, site-specific environmental problems, such PBMs are not yet readily available. 46 

In recent years, there has been a growing emphasis on the need for explainable artificial intelligence (XAI) 47 
methods. Various approaches to this have been developed, including Partial Dependence Plots (PDP; 48 
Friedman, 1991), Permutation Feature Importance (PFI; Strobl et al., 2008), Local Interpretable Model-49 
agnostic Explanations (LIME; Ribeiro et al., 2016), and SHapley Additive exPlanations (SHAP; Lundberg and 50 
Lee, 2017). These methods are designed to elucidate the specific contributions by which individual feature 51 
instances lead to particular outputs (i.e., local interpretation), or to uncover how features collectively 52 
influence model outputs across all instances (i.e., global interpretation).  53 

While significant strides have recently been made in XAI, they continue to suffer from limitations. For 54 
instance, the widely-used SHAP technique, which is based on game theory, is (1) limited in its scalability 55 
to large, high-dimensional datasets due to computational constraints (Molnar, 2020; Molnar, 2022; Stein 56 
et al., 2022), (2) unable to capture interactions (especially higher-order ones) between features, which 57 
may limit its ability to provide comprehensive explanations (Kumar et al., 2020; Puy et al., 2022), and 58 
further may (3) assign excessive importance to improbable instances, potentially leading to unreliable 59 
outcomes (Molnar, 2022; Rudin et al., 2022). Various strategies to tackle these limitations have had 60 
varying degrees of success (Owen, 2014; Strumbelj and Kononenko, 2014; Mase et al., 2019; Do and Razavi 61 
et al., 2020; Frye et al., 2020; Janzing et al., 2020; Lundberg et al., 2020; Sheikholeslami et al., 2021; Aas 62 
et al., 2021; Liu et al., 2024). 63 

More recently, sensitivity analysis (SA) has emerged as an alternative approach to XAI (Razavi et al., 2021; 64 
Scholbeck et al., 2023). SA is a relatively young discipline that aims to study how the outputs of a model 65 
are related to, and are influenced by, its inputs and/or controlling factors (Saltelli et al., 2021). The 66 
application of SA to ML models has gained traction in recent years, as evidenced by studies such as those 67 
by Tunkiel et al. (2020), Paleari et al. (2021), Fel et al. (2021), Kuhnt and Kalka (2022), Ojha et al. (2022), 68 
and Stein et al. (2022). Unlike conventional XAI methods like SHAP, which focus primarily on individual 69 
data instances to evaluate feature importance, SA takes a broader approach by seeking to characterize 70 
the entire ‘response surface’ of a model – the hyperplane that maps the input variables onto the output 71 
of interest. Consequently, the computational demand of SA can be independent of the dataset size used 72 
for model training/calibration. 73 

Various SA methods have been developed across different application disciplines. Broadly categorized in 74 
Razavi et al. (2021), these methods fall under four main approaches: derivative-based (Morris, 1991; 75 
Campolongo et al., 2007; Sobol’ and Kucherenko, 2009; Lamboni et al., 2013; Rakovec et al., 2014; 76 
Kucherenko and Iooss, 2016; Kucherenko and Song, 2016), distribution-based (Sobol’, 1993; Owen, 1994; 77 
Homma and Saltelli, 1996; Saltelli et al., 2008; Kucherenko and Song, 2016; Puy et al., 2021), variogram-78 
based (Razavi and Gupta, 2016b; Sheikholeslami and Razavi, 2020; Becker, 2020; Alipour et al., 2022), and 79 
regression-based (Kleijnen, 1995; Kambhatla and Leen, 1997; Tonkin and Doherty, 2005; Shin et al., 2013). 80 
These approaches offer different definitions of sensitivity, vary in computational demand, and exhibit 81 
varying degrees of scalability to the input space dimension (Razavi and Gupta, 2015). While methods 82 
under any of these approaches can, in theory, be applied to characterize the importance of inputs in an 83 
ML model, a significant challenge arises when dealing with correlated inputs following complex multi-84 
variable distributions. This issue is prevalent across the majority, if not all, SA methods and poses a 85 
considerable hurdle in using SA for explainable ML. 86 



3 

Here, we introduce an SA-based method specifically tailored for XAI. We accomplish this by extending the 87 
Variogram Analysis of Response Surface (VARS) framework (Razavi and Gupta, 2016b) to accommodate 88 
input-output datasets characterized by complex, multi-variable distributions commonly encountered in 89 
ML applications. VARS is a variogram-based method known for its high computational efficiency, even in 90 
high-dimensional problems (Becker, 2020). It stands out as the only method that considers crucial 91 
information regarding the structure of the response surface and perturbation scale (Haghnegahdar and 92 
Razavi, 2017). Consequently, our new SA method is well equipped to address the three challenges 93 
commonly encountered in XAI, as outlined above. It achieves this by being independent of the available 94 
data size, adept at handling correlated inputs with any complex marginal distributions, and capable of 95 
directly operating on the response surface, thereby ensuring robustness against improbable areas of input 96 
space.  97 

We test this approach across a suite of ML models based on decision trees, connectionism, and kernels, 98 
as a possible solution to investigate the processes in a pilot pit lake in the Athabasca Oil Sands region of 99 
Western Canada. This pilot lake contains fluid tailings treated using the permanent aquatic storage 100 
structure process, capped with a blend of oil sands process-affected water and runoff water from the 101 
surrounding landscape. We show how the new SA approach illuminates the key controls of different ML 102 
models in this environmental system. We show, in particular, that while different ML models may 103 
demonstrate similar predictive power, they may do so based on fundamentally different signals and 104 
patterns extracted from the data. We also show that ML models based on the connectionism paradigm 105 
(including deep learning) may not necessarily be robust to randomness in their initialization, so that 106 
multiple replicates of the same model trained to the same data might utilize different underlying 107 
relationships to predict the output. We discuss how the understanding of hidden differences across 108 
different ML models is critical to enabling learning about physico-chemical processes in the systems under 109 
investigation, and to ensure that any decision made on this basis is supported by well-justified 110 
explanations.  111 

2. The Sensitivity Analysis (SA) Method 112 

We introduce a general approach, grounded in sensitivity analysis (SA), to illuminating the workings of 113 
any model, even a black box, by assessing the extent to which different inputs influence its outputs. This 114 
SA-based approach is especially applicable to the problem of “explainability” in artificial intelligence (AI), 115 
because it addresses three common challenges encountered in machine learning (ML) applications, as 116 
detailed in Section 1. In the rest of this section, we present an overview of the underlying VARS-based 117 
framework, highlighting its computational efficiency even for models with high-dimensional input spaces. 118 
Subsequently, we demonstrate how we extend this framework to handle models with correlated inputs 119 
characterized by complex marginal distributions. 120 

2.1. Variogram Analysis of Response Surfaces (VARS) 121 

The VARS framework, originally developed by Razavi and Gupta (2016a and b), aims to characterize the 122 
entire ‘response surface’ of a model by integrating the directional variograms of a model output over the 123 
entire input space and across the full range of ‘perturbation scales’, h, as follows: 124 

𝛾(ℎ) =
1

2
𝑉[𝑍(𝜽 + ℎ) − 𝑍(𝜽)]                                          (1) 125 

𝛤(𝐻) =
1

2
∫ 𝑉[𝑍(𝜽 + ℎ) − 𝑍(𝜽)]𝑑ℎ

𝐻

0
                           (2) 126 

where 𝛾(. ) and 𝛤(. ) are directional variogram and integrated variogram functions, respectively, 𝜽 =127 
{𝜃𝑖 for 𝑖 = 1, … , 𝑛}  and Z represent a point in the input space and its respective model output, n is the 128 
total number of inputs, V[ ] denotes the variance operator, and H is the range of perturbation scales of 129 
interest.  130 



4 

Figure 1 provides an illustrative graphical representation of directional variograms and their integrated 131 
versions. Directional variograms characterize the variance of change in the response surface (𝑍(𝜃 + ℎ) −132 
𝑍(𝜃)) as a function of perturbation scale (h). For small values of h, this variance of change resembles 133 
information akin to derivative-based SA for different inputs, while for larger values, variograms offer 134 
insights into the variance contribution of each input, akin to variance-based SA. Thus, VARS serves as a 135 
unifying theory bridging derivative-based and variance-based SA, while offering a spectrum of information 136 
on the response surface structure for all other values of h. When H is 50 percent of the input range, the 137 
respective integrated variogram (IVARS-50) is called the ‘total-variogram effect’. This measure of input 138 
importance encapsulates sensitivity information across the full spectrum of perturbation scales; see 139 
Razavi and Gupta (2016a) and Haghnegahdar and Razavi (2017) for further details. 140 

 141 

 142 

Figure 1. Illustrative example of (a) directional variograms and (b) integrated variograms for a 143 
hypothetical model with only two inputs. This example is adopted from Example 1a of Razavi and 144 
Gupta (2016a), where the range of inputs (𝜃) is two, resulting in a range of perturbation scales (ℎ) 145 
of one, which is half of the input range.  146 

 147 

Various studies have been shown VARS to be highly efficient and statistically robust (e.g., Razavi and 148 
Gupta, 2016b; Alipour et al., 2022; Becker, 2020). This efficiency is partly attributed to the estimation 149 
method used to calculate directional variograms, which relies on pairs of sample points rather than 150 
individual sample points (Razavi and Gupta, 2016a & b), thereby exploiting the fact that the number of 151 
pairs grows geometrically with an increase in the number of samples. As a result, VARS has been proven 152 
capable of effectively accommodating high-dimensional problems (Sheikholeslami et al., 2019). In the 153 
following sub-section, we expand upon this framework to adapt it for use in the context of XAI. 154 

2.2. VARS with complex input distributions 155 

A vast majority of SA methods and their applications in the literature operate under the assumption that 156 
model inputs are independent and uniformly distributed (Do and Razavi, 2020). This simplifying 157 
assumption is often made for the sake of computational convenience, as (1) accurately characterizing the 158 
multivariate distribution of inputs can be challenging or impractical in many cases, and (2) even if such 159 
distributions exist, incorporating them into the analysis may introduce computational complexity or 160 
feasibility issues. To address these limitations, Do and Razavi (2020) developed Generalized VARS (G-161 
VARS), one of the first SA methods capable of accommodating correlated inputs. 162 

G-VARS involves novel sampling and estimation strategies that map the original input space onto a 163 
standard normal space, while accounting for pair-wise correlations between inputs using the Nataf 164 
Isoprobabilistic Transformation. However, G-VARS is constrained to handling simple, theoretical 165 
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multivariate distributions such as normal and triangular distributions. While these distributions can be 166 
quite effective in characterizing various variables in modeling exercises, such as the parameters of a 167 
hydrologic model as demonstrated by Do and Razavi (2020), they may offer limited assistance in 168 
characterizing highly complex datasets typical of ML inputs. 169 

Figure 2 shows an illustrative three-variable example of datasets commonly encountered in practice. The 170 
marginal distributions of real-world variables (e.g., Figure 2a) may be quite complex, exhibiting features 171 
such as multiple modes, discontinuities, and long or heavy tails, while potentially being correlated with 172 
one another (e.g., Figures 2b-c). Approximating such complex multivariate distributions with classic 173 
theoretical distributions can often prove infeasible or impractical. Here, we developed a mathematical 174 
construct, called G-VARS2, that adopts an empirical approach to represent the marginal distributional 175 
properties of the data, as detailed below. 176 

 177 

Figure 2. Example datasets used as inputs in machine learning. (a) Marginal cumulative 178 
distribution functions (CDFs). (b-d) Scatter plots and Pearson correlation coefficients (Corr) of 179 
pairs of inputs. WL, Press, and WS stand for water level, water pressure at the sediment-water 180 
interface, and wind speed, respectively. The data shown are from the case study described in the 181 
next section. 182 
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 183 

Suppose a model receives a set of 𝑛 inputs, 𝜽 = {𝜃𝑖 for 𝑖 = 1, … , 𝑛}, that follow a multivariate 184 
distribution, 𝑝(𝜽), and produces an output, 𝑍(𝜽). Let 𝜽𝑖

~ denote the set of all inputs except 𝜃𝑖, and 𝜃𝑖
′ 185 

denote 𝜃𝑖 + ℎ𝑖, where ℎ𝑖 is a perturbation to 𝜃𝑖. Now, Equation (1) can be rewritten as: 186 

𝛾(ℎ) =
1

2
𝑉[𝑍(𝜃𝑖

′ ∣𝜽𝑖
~ , 𝜽𝑖

~) − 𝑍(𝜃𝑖 ∣𝜽𝑖
~ , 𝜽𝑖

~)]     (3) 187 

where 𝜽𝑖
~ follows 𝑝(𝜽𝑖

~), which is the marginal distribution derived from 𝑝(𝜽), and where 𝜃𝑖
′ ∣𝜽𝑖

~  and 188 

𝜃𝑖 ∣𝜽𝑖
~  follow the conditional distributions when the inputs 𝜽𝑖

~ are set at specific values. Following the 189 

proof in Razavi and Gupta (2016a & b), the above equation can be numerically approximated by sampling 190 
pairs of points from the model input-output space: 191 

𝛾(ℎ𝑖) =
1

2𝑁ℎ
∑ [𝑍(𝜃𝑖

′ ∣𝜽𝑖
~ , 𝜽𝑖

~) − 𝑍(𝜃𝑖 ∣𝜽𝑖
~ , 𝜽𝑖

~)]
2𝑁ℎ

1      (4) 192 

where 𝑁ℎ is the number of pairs of samples, spaced ℎ𝑖 apart, in the direction of 𝜃𝑖.  193 

Here, we adjust the sampling method of Do and Razavi (2020) to accommodate any ‘custom’ marginal 194 
distribution of 𝑝(𝜽) that may exist in real-world data. The new method utilizes any available sample of 195 
data for individual inputs to construct their empirical distributions, by calculating the frequencies of 196 
different values or ranges of values from the data sample. Empirical distributions provide a data-driven 197 
summary of the observed data’s distributional properties when the underlying theoretical distribution is 198 
unknown, or is difficult to model accurately. 199 

The new method processes a data sample for each input 𝜃𝑖 to derive its cumulative distribution function 200 
(CDF) through the Weibull empirical approach, by sorting data entries in ascending order and assigning 201 
each entry a probability of non-exceedance. Subsequently, the actual CDF of input 𝜃𝑖, denoted as 𝐹𝜃𝑖

, is 202 

estimated by linearly interpolating the points on the respective empirical CDF. The lower and upper 203 
bounds of a custom-distributed input are assumed to be the minimum and maximum values of the 204 

corresponding sample. Next, the inverse of 𝐹𝜃𝑖
 for all inputs (𝐹𝜃𝑖

−1) is incorporated into the G-VARS 205 

framework through the following equation: 206 

𝜃𝑖 = 𝐹𝜃𝑖

−1[𝜙(𝑋𝑖)]        (5) 207 

facilitating the transformation of samples between a standard normal space 𝑿 = {𝑋𝑖 for 𝑖 = 1, … , 𝑛} and 208 
the original input space 𝜽, where 𝜙(. ) denotes the theoretical CDF of a standard normal distribution. The 209 
software developed for G-VARS2 is accessible on GitHub at the following link: https://github.com/vars-210 
tool/vars-tool.  211 

3. Data used in ML: Pilot Scale Pit Lake 212 

In the Athabasca Oil Sands (AOS) region of Western Canada, the accumulation of fluid tailings (FT) and Oil 213 
Sands Process affected Water (OSPW) in tailing ponds has reached a concerning level that has attracted 214 
global attention (Gosselin et al., 2010; AEP, 2015; McNeill, 2017). Despite decades of research on several 215 
experimental reclamation techniques for fluid tailings management in the oil sand regions (COSIA, 2012), 216 
there is still a need for an advanced pit lake technology under water capped fined deposit to handle the 217 
substantial amount of FT (Cossey et al., 2021). To address this, one company in the AOS industries has 218 
developed a pilot-scale experimental pit lake called Lake Miwasin as a prototypic precursor to large end 219 
pit lakes.  220 

Extensive measurements of water quantity and quality variables have been ongoing since the construction 221 
of the lake to evaluate the performance of the system over time and its effectiveness in reclaiming 222 
significant quantities of treated tailings materials stored onsite at the AOS. Our group has been using 223 
wireless sensor technology to monitor water quality parameters at a high measurement frequency, to 224 
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gain a deeper understanding of the system’s functioning, and to help guide further development and use 225 
of pit lake strategies to mitigate the negative impacts of fluid waste on the environment.  226 

Located on the east side of the Athabasca River (56º 53’ 14” N and 111º 23’ 7” W), Alberta, Canada, Lake 227 
Miwasin is an engineered water body constructed using oil sand by-products as bottom substrate (TFT) 228 
and overlying water (OSPW). The lake measures 70 m in width, 165 m in length and reaches a maximum 229 
water depth of around 4.5 m. A littoral zone in the lake, comprising approximately 20% of the water 230 
surface area, is present along the eastern periphery. This zone features a 0.2-5% slope that extends into 231 
the surrounding upland, where limnetic zone has deep depth with substantial bottom substrate.  232 

The wireless sensor network (WSN) was employed in both littoral and limnetic zones of the lake to monitor 233 
(hourly) and relay information on key water quality parameters. The Lake Miwasin WSN utilized the 234 
LibeliumTM smart water extreme and smart water ion models for monitoring. The sensor probes were 235 
calibrated with standard solutions from Libelium (Libelium, 2020). Data was transmitted directly from the 236 
sensor device to cloud storage through the ThingSpeakTM Cloud service and mobile devices using the local 237 
4G network (via mobile SIM card). The sensor units, housed in custom acrylic boxes (30 × 25 × 25 cm) for 238 
protection against field conditions, were affixed to high-density Styrofoam platforms (60 × 60 × 5 cm for 239 
each sensor unit) using cinderblock anchors (Figure 3). Figure 3a illustrates one-time introduction of 240 
TFT and OSPW stemming from the oil sands mining and extraction processes, Figure 3b shows 241 
contemporary methods employed for treatment and reclamation of fluid tailings within AOS region, 242 
and Figure 3c shows WSN technology was deployed in Lake Miwasin to monitor the water quality 243 
conditions of the lake as the lake system ages. 244 

Before deployment at Lake Miwasin, a similar WSN methodology was tested in Canadian lakes to 245 
delineate effluent exposure downstream of a Uranium Mill region (Cupe‐Flores et al., 2022) and to 246 
estimate selenium (Se) exposure using a site-specific threshold value (Peixoto Mendes et al., 2023). In 247 
Lake Miwasin, deployment spanned from September 18th to October 10th in 2020; and from June 21st to 248 
October 16th in 2021. Coinciding with visits to the lake for probe maintenance, we collected water samples 249 
at each station, twice in 2020 and six times in 2021. For validation of sensor reading, samples were 250 
collected manually in two replicates for each monitoring depth approximately 5 to 10 m apart from probes 251 
using a Wildco® 2.2‐L acrylic Van Dorn horizontal beta water sampler (Wildlife Supply, USA).  252 

Prior to sampling, the sampler was thoroughly rinsed with lake surface water to avoid cross‐contamination 253 
between different station zones. The water sample was placed into pre-acid‐washed ~250 mL and 30‐ml 254 
high‐density polyethylene NalgeneTM bottles (prewashed with 10% nitric acid and rinsed with distilled 255 
water). Subsequently, the 30mL bottle samples were filtered through a 0.45‐μm polyether sulfone 256 
membrane into two sets of 10mL high‐density polyethylene NalgeneTM bottles using 5‐ml syringes. Then 257 
samples were refrigerated and transported in an ice‐packed cooler to the University of Saskatchewan 258 
Toxicology Centre (Saskatoon, SK, Canada) and kept at 4°C until laboratory analysis. A Thermo Scientific™ 259 
Orion Star™ A329 portable multiparameter meter (Thermo Fisher Scientific, USA) was used to measure in 260 
situ parameters (pH, EC, temperature, and DO) at a pre-defined monitoring depth. Similarly, the turbidity 261 
was measured with a calibrated bench top turbidity meter (LaMotte®, 2020 meter). Field blanks 262 
containing distilled water were included during sampling for quality control. Water quality parameters 263 
measured by the sensor probes by our research team at University of Saskatchewan. 264 

Additional climatological parameters included in this study were collected by Suncor Energy Inc. from the 265 
meteorological station installed at the lake. In the context of studying this lake system, the focus was on 266 
predicting key water quality parameters through the application of kernel-based, connectionist models, 267 
and ensemble tree-based ML techniques. 268 

 269 
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 270 

Figure 3. Graphical description of elements used for characterizing key water quality parameters 271 
in Lake Miwasin. 272 

 273 

4. Design of Experiments 274 

We evaluated the proposed SA method (G-VARS2) across various ML models, encompassing tree-based, 275 
connectionist, and kernel-based models. Our objective was to gauge the robustness and consistency of 276 
these models and to glean insights into controlling variables in the prediction process. This experiment 277 
allowed us to not only develop accurate predictive ML models but also to provide transparent and 278 
interpretable explanations regarding the inputs driving the predictions made by these models (Figure 4). 279 
Similar to G-VARS, the user of G-VARS2 must set the following two algorithm parameters for sampling and 280 
estimation: the number of star centers and the number of cross-sectional points. For this study, we 281 
selected 100 and 10 for the former and latter, respectively. The selection of these numbers was informed 282 
by our prior experience, and they have consistently shown robustness and stability in our initial 283 
evaluations. 284 

The tree-based ML models we used here include classic decision trees (DT), bagging-based random forest 285 
(RF; Breiman, 2001), and boosting models including adaptive boosting (AdaBoost; Freund and Schapire, 286 
1997), gradient boosting (GBoost; Friedman, 2001), extreme gradient boosting (XgBoost; Chen and 287 
Guestri, 2016), and light gradient boosting (LgBoost; Ke et al., 2017). Further, we used two artificial neural 288 
networks (ANNs), one with a shallow, single hidden layer (ANN-S) and another with a deeper architecture 289 
(ANN-D), and two support vector regression (SVR) models, one with default (DSVR) and another with 290 
tuned parameterization (TSVR) (Table S1). We also used multiple linear regression (LR) to provide a 291 
minimalist performance as a benchmark for model comparison.  292 

We chose to assess the above ML models (Figure 4b) because they have been used widely in the realm of 293 
surface water quality modeling (Palani et al., 2008; Ahmed, 2014; Najah et al., 2014; Ahmed et al., 2019a; 294 
Ahmed et al., 2019b; Abobakr Yahya et al., 2019; Banerjee et al., 2019; Sinshaw et al. 2019; Zou et al., 295 
2019; Barzegar et al., 2020; Yim et al., 2020; Khullar and Singh, 2021; Yamamoto et al., 2021; Zhang et al., 296 
2021; Zhou and Zhang, 2023). Moreover, there is a growing literature on the application of advanced 297 
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bagging-boosting ensemble models based on DT in environmental sciences. These applications include 298 
estimating crop yields (Liakos et al., 2018), assessing energy performance (Wang et al., 2018), predicting 299 
water demand (Wang et al., 2014), estimating air particulate levels (Brokampet et al., 2018), quantifying 300 
climate and catchment control on hydrological drought (Konapala and Mishra, 2019), creating 301 
susceptibility maps for gully erosion (Rahmati et al., 2017; Garosi et al., 2019), mapping groundwater yield 302 
(Sameen et al., 2019; Jeihouni et al., 2020; Mosavi et al., 2021), predicting solar and wind energy (Torres-303 
Barrán et al. 2019), forecasting water usage and rainfall (Kim et al., 2020). Although bagging-boosting 304 
models hold significant promise, their utilization in surface water quality research remains relatively 305 
limited (Chen et al., 2020). Examples include predicting biological oxygen demand, chemical oxygen 306 
demand (Khullar and Singh, 2021), turbidity (Zhang et al., 2021), Chlorophyll-a (Savoy and Harvey, 2023) 307 
and other water quality parameters such as permanganate index (CODMn), total phosphorus (TP), and total 308 
nitrogen (TN) (Wang et al., 2021), dissolved oxygen (DO), and ammonia (NH3-N) (Chen et al., 2020). 309 

In our analyses, we further accounted for the impact of data-splitting for training and testing of the 310 
different ML models as well as randomization in initializing the ML models. This is a very important, but 311 
often neglected step in model development, as described in Maier et al. (2023). To do so, we developed 312 
30 replicates of every ML model (Figure 4c), each with a different random seed number for data-splitting 313 
and model initialization (Table S1). The detailed default and tuned hyperparameter values for all the ML 314 
models are presented in Table S2. We employed a standard approach to partition the datasets into two 315 
subsets for each ML model: 70% for the training dataset and 30% for the testing dataset. During the 316 
development phase, the training dataset was utilized as the foundation for constructing models, while the 317 
testing dataset served the critical role of evaluation by enabling performance comparisons among the 318 
developed models. The normalization and minimum-maximum scaling of all input and output variables 319 
were performed using the scikit-learn pre-processing library in Python (Pedregosa et al. 2011). 320 

 321 

 322 

Figure 4. An illustration of the workflow, spanning from sampling to machine learning (ML) 323 
modeling, and subsequently to sensitivity analysis (SA). LR: Linear Regression; ANN-S: Simple 324 

Artificial Neural Network; ANN-D: Deep Artificial Neural Network; DSVR: Default Support Vector 325 
Regression; TSVR: Tunned Support Vector Regression; DT: Decision Tree; RF: Random Forest; 326 

AdaBoost: Adaptive Boosting; GBoost: Gradient Boosting; XgBoost: Extreme Gradient Boosting; 327 
LgBoost: Light Gradient Boosting. 328 
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 329 

To gauge the accuracy of our ML-based water quality prediction models, we utilized two performance 330 
metrics: the coefficient of determination (R2) and the root mean squared error (RMSE) as follows: 331 

 𝑅2 = (
∑ [(𝑂𝑖−�̅�)(𝑃𝑖−�̅�)]𝑛

𝑖=1

√[(∑ (𝑂𝑖−�̅�)2𝑛
𝑖=1 )(∑ (𝑃𝑖−�̅�)2𝑛

𝑖=1 )]

)

2

                                                             (6) 332 

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑂𝑖 − 𝑃𝑖)2𝑛

𝑖=1                                                                                                         (7) 333 

where 𝑂𝑖 and 𝑃𝑖 are the observed and predicted values, respectively, �̅� and �̅� are the mean of the 334 
observed and predicted values, respectively, and n is the number of data points. 335 

Water quality monitoring in Lake Miwasin at the SWI involves collecting, measuring, and analysing water 336 
samples to understand their chemical and biological attributes (Sinshaw et al. 2019). We used the 337 
following sensor measured water quality variables: dissolved oxygen concentration (DO), pH, water 338 
temperature (WT), conductivity (EC), chlorophyll-a (Chl-a), turbidity (Turb), ammonium (NH4

+).We also 339 
used meteorological variables, including water level (WL), wind speed (WS), solar radiation (Rad), water 340 
pressure (Press), air temperature (AT), rainfall (Rf), relative humidity (RH). Using these variables, we 341 
constructed ML-based models to predict four key water quality variables—NH4

+, Chl-a, DO, and pH—342 
utilizing all other variables as predictors (see summary statistics in Table S3). The selected target variables 343 
are pivotal for lake monitoring, as they play a fundamental role in assessing the health of aquatic 344 
ecosystems, influencing the growth and respiratory capabilities of aquatic life (Wetzel, 2001; Sánchez et 345 
al., 2006; Pena et al., 2010; Risacher et al., 2018; Barzegar et al., 2020). Moreover, these variables provide 346 
decision-makers with vital data to address environmental challenges in a sustainable manner (Wu and Liu 347 
2012; Wu and Chen, 2013). 348 

5. Results and Discussion 349 

This section presents the outcomes of the designed experiments aimed at evaluating and explaining the 350 
performance of various ML models using the developed SA method. We structure the results and 351 
discussion around four key questions: (1) What is the predictive efficacy of different ML models? (2) Which 352 
physico-chemical variables influence the predictions of ML models? (3) How robust and consistent is the 353 
explanatory power of different ML models? (4) What novel insights do the ML models offer into the 354 
underlying physico-chemical processes? 355 

5.1. What is the predictive power of different ML models? 356 

Figure 5 illustrates the predictive performance of various ML models across different target variables 357 
during both the training and testing phases. Generally, these models demonstrated robust predictive 358 
capabilities for pH, ranking second in performance for dissolved oxygen (DO), while exhibiting relatively 359 
lower accuracy for predicting NH4

+ and chlorophyll-a (Chl-a) levels. Notably, all ML models achieved 360 
satisfactory performance for pH (with R2 > 0.93 for linear regression (LR) and > 0.98 for other ML models) 361 
and DO (R2 > 0.86 for LR and > 0.9 for others). The LR model could only provide satisfactory performance 362 
in the case of pH and DO prediction, suggesting that predicting NH4

+ and Chl-a concentrations in the lake 363 
rely predominantly on non-linear relationships, surpassing the capabilities of the LR model.  364 

 365 
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366 

367 

368 

 369 

Figure 5. Performance of different ML models in training and testing across 30 replicates, each with a 370 
different random seed, according to the coefficient of determination (R2) and root mean squared 371 
errors (RMSE). LgB: Light Gradient Boosting; XgB: Extreme Gradient Boosting; GB: Gradient Boosting; 372 
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AdaB: Adaptive Boosting; DT: Decision Tree; DSVR: Default Support Vector Regression; TSVR: Tunned 373 
Support Vector Regression; L: Linear Regression; ANN-S: Simple Artificial Neural Network; ANN-D: 374 
Deep Artificial Neural Network. 375 

 376 

The results show that tree-based ML models outperformed the connectionist and kernel-based ML and 377 
basic decision tree (DT) models. Throughout training, all tree-based models achieved R2 scores remarkably 378 
close to one. However, their performance declined notably on testing datasets (considerable reduction in 379 
performance), particularly in NH4

+ and Chl-a predictions. Importantly, all tree-based models with default 380 
hyperparameter settings demonstrated acceptable performance, alleviating the need for extensive 381 
hyperparameter tuning. This underscores the efficacy of these models in providing accurate predictions 382 
for lake variables, albeit with some limitations in predicting certain parameters under testing conditions. 383 

The variations observed in model performance depicted in Figure 5 across diverse seed numbers primarily 384 
stem from the intrinsic randomness inherent in the model training processes, functional classes, and data 385 
splitting. This susceptibility to initial conditions is a common trait among the ML models employed in this 386 
study. For instance, the connectionist models such as ANN-S and ANN-D are influenced by variation in the 387 
initial weights associated with different seeds, while variations in kernel-based SVR arise due to different 388 
support vectors chosen in each model replicate. The basic DT model exhibits large variability in testing 389 
due to the diverse tree structures resulting for different data splits. However, the ensemble tree-based 390 
models such as bagging and boosting models were able to reduce those variations by building multiple 391 
DTs and aggregating their predictions. 392 

Another notable observation is the large reduction in model performance from training to testing for 393 
certain models, particularly DT, AdaBoost, and XgBoost, underscoring the importance of thorough testing 394 
and evaluation on datasets not utilized in training. More broadly, comprehending and addressing 395 
potential variations in model performance resulting from various factors is crucial for recognizing the 396 
uncertainty associated with the outcomes of ML models. The findings from the application of the 397 
proposed SA-based method can provide further insights into this issue, as detailed in the subsequent 398 
sections. 399 

5.2. What physico-chemical variables control the predictions of ML models?  400 

Most of the ML models showed success in mapping the inputs to the outputs in the pit lake, albeit to 401 
varying degrees. In addition to providing predictive ability, these input-output mappings can potentially 402 
offer a wealth of information on how the underlying physico-chemical processes work. However, such 403 
mappings are typically comprised of very complex relationships that are hard to understand and explain. 404 
Accordingly, use of SA to interrogate the ML models helps in characterizing the importance of the different 405 
inputs on the functioning of the models to produce the output. Note that the SA method was run on each 406 
of the 30 replicates of every ML model for each target output.  407 

In Figure 6, star plots are to illustrate the overall importance (average over 30 replicates) of the inputs 408 
into each of the ML models. The further a spoke extends outwards within the circle, the more influential 409 
the respective input is in predicting the output. Accordingly, Rad and RH were identified as the most 410 
influential inputs to the connectionist and kernel-based models for the predictions of NH4

+ and Chl-a, 411 
respectively. In contrast, for the tree-based models, DO and pH respectively turned out to be the most 412 
influential inputs for prediction of NH4

+ and Chl-a. For prediction of DO and pH, the connectionist and 413 
kernel-based models were more sensitive to Rad, AT, and RH. The tree-based models, however, were 414 
more sensitive to NH4

+, pH and Chl-a for the prediction of DO and to WL, WT and NH4
+ for the prediction 415 

of pH.  416 

 417 
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Figure 6. Input importance of different ML models (connectionist and tree-based) characterized 418 
through the proposed sensitivity analysis that is based on Integrated Variogram Across a Range of 419 
Scales (IVARS-50). Shown for each ML model is the median of input rankings across the 30 replicates. 420 
Rank 1 indicates the most influential input, rank 2 the second most influential input and so on.  421 
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Furthermore, the importance of some inputs turned out to be quite different in the case of different ML 423 
models. For example, EC was identified to be the most important input by DSVR to predict NH4

+, 3rd most 424 
important by ANN-S, and the 7th most important by TSVR. Moreover, the rankings based on the linear 425 
regression model were largely inconsistent with those based on other models, suggesting the existence 426 
of strong non-linearity in the problems at hand. Overall, such considerable differences in input variable 427 
importance indicate that, while different ML models may show comparable performance in terms of 428 
predictive power, they may do so by relying on entirely different signals embedded in the training data 429 
(Figures S1-S4). 430 

We should note that prior to doing any modeling we observed from histogram plots and correlations that 431 
water quality parameters such as conductivity (EC), Total Dissolved Solids (TDS), and Salinity have very 432 
similar data distributions and are highly correlated (~0.99). A similar pattern was observed for DO and 433 
Saturated oxygen concentration. If not addressed, this high level of correlation can lead to what is known 434 
as "substitution effects," where different variables can essentially serve as substitutes for each other in 435 
explaining the outcome. To tackle the problem of collinearity in the input dataset, we selected only EC 436 
and DO to use as inputs and discarded the parameters that were highly correlated to them, finally 437 
retaining only a few of the parameters (pH, Press and WL) that had a moderately high correlation of ~0.90. 438 
This choice to retain EC and DO is based on existing theory in the AOS region. It is worth noting that the 439 
discarded parameters were computed empirically by the WSN system.  440 

Note, however, that the novel reclamation technique being used in Lake Miwasin ages over time, causing 441 
the lake to differ from its natural state in various ways, so we cannot solely rely on existing scientific 442 
evidence. Moreover, our ML models, particularly RF and all Boosting models inherently address 443 
substitution effects through regularization and ensemble techniques. Further, the various ML models 444 
differ in their choice of explanatory variables, which is relevant to understanding these substitution 445 
effects. Certain ML strategies are more susceptible to this issue while others are not when selecting 446 
explanatory variables.  447 

5.3. How robust is the explanatory power of different ML models?  448 

By robustness, we refer here to low sensitivity of the ML results to the random seed chosen for the 449 
randomization of their initial weights and for the splitting of available data to training and testing subsets. 450 
Overall, the results of a more robust model are expected to be more reliable, particularly in the cases 451 
where available data are limited. Here, we assessed model robustness by checking the dispersion of SA 452 
results across 30 replicates. The more dispersed the input importance is across replicates, the less robust 453 
is the model. Figure 7 shows the distribution of input ranks as perceived by different ML models across 454 
the 30 replicates in predicting DO. Overall, the ANN-based models demonstrated the lowest robustness, 455 
frequently relying upon different inputs as their primary controls for driving an output. 456 

For example, ANNs showed a wide range of sensitivity to WT, Turb, and Chl when predicting DO, almost 457 
as if the model may randomly pick up different predictive signals in the data each time it is set up. The 458 
level of robustness demonstrated by ANN-D may be deemed comparable to that of ANN-S, although they 459 
showed different predictive power in the previous sub-section. On the other hand, some ML models 460 
showed high robustness, consistently identifying the same/similar inputs as their primary drivers for 461 
prediction. For example, the variants of gradient boosting, such as GBoost, XgBoost and LgBoost models, 462 
show comparatively less dispersion in behaviour over the 30 replicates, indicating more consistency in 463 
their results. 464 

 465 
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 466 

Figure 7. Box plots showing the dispersity (range and distribution) of input importance for DO across 467 
the 30 replicates; Rank 1 indicates the most influential the respective input. 468 

 469 
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In general, the boosting models yielded very similar sets of “most influential” inputs but with slightly 470 
different orders in their ranking. AdaBoost was an exception, showing large variability in rankings, due to 471 
its random weight initialization process for model training. An interesting observation was the behaviour 472 
of support vector regression with default hyperparameters (DSVR) versus that with hyper-parameter 473 
tuning (TSVR). The former showed no variability in input rankings, while the latter showed some level of 474 
variability due to hyperparameter tuning separately for each of the 30 replicates. This indicates that the 475 
robustness of an ML model may be partly a manifestation of its inherent mechanisms in fitting data, and 476 
partly of the way the user sets them up. Figure S3 in supplementary materials shows similar results for 477 
ML models predicting the other target variables. 478 

5.4. What new insights do the ML models provide into the underlying physico-chemical processes?  479 

The SA-based explanation approach assessed the extent to which one variable can be impacted by other 480 
variables, with the strength of these influences reflecting the underlying physical processes in Lake 481 
Miwasin. Here, we compare the ML results for predicting NH4

+, Chl-a, DO and pH with established scientific 482 
evidence from the oil sands region, primarily drawn from literature reviews and our research background. 483 
By answering this research question, our objective was to highlight the explanations provided by ML 484 
models that align with conventional wisdom and those that do not. Of course, it is always possible that 485 
some new explanations may be discovered that identify relationships we are either unaware of or that 486 
are not recognized by existing theories. This exploration may yield two possible scenarios, one where the 487 
ML model may be providing the right answer for wrong reason and another where it challenges the 488 
validity of existing theory. 489 

From the SA results, we see that NH4
+ concentrations at the sediment water interface in the lake are 490 

influenced by parameters like EC, WT, AT, DO, turbidity, and Press (as seen in Figure 5). The water content 491 
present in parent untreated fluid tailings contains high concentrations of dissolved constituents, including 492 
Na, Cl, organics, and NH3 (Dompierre et al., 2016). These dissolved constituents are released from tailings 493 
due to the upward movement of water associated with tailings densification (Dompierre and Barbour 494 
2016), providing a mechanistic explanation for the associations between EC and NH3 (detectable NH4

+). 495 
AT affects WT, which in turn influences the rate of microbial respiration, with elevated WT promoting 496 
biological oxygen demand and production of NH3 (Stumm and Morgan, 2012). Warmer temperatures and 497 
declining DO can also increase sediment bioturbation rate by chironomid (invertebrate) larvae (Roskosch 498 
et al., 2012), further promoting bio-irrigation-mediated benthic fluxes of salt, NH3, and other dissolved 499 
constituents.  500 

Further, there is an interplay between NH4
+ and DO, as NH4

+ could be an oxygen consuming constituent in 501 
oil sands end pit lakes (Risacher et al. 2018). The DO parameter was well captured by the tree-based 502 
model, while the connectionist ML models were unable to identify DO as an important parameter for 503 
NH4

+. Moreover, the interplay between overland water flow and bioturbation enhances metal flux from 504 
low permeability sediment beds (Amato et al., 2016; Xie et al., 2018). In particular, it is possible that this 505 
bioturbation process can partly destabilise the sediment bed in Lake Miwasin and cause a temporary 506 
remobilisation of suspended particles and particulate organic matter that can yield to overall fluctuation 507 
in turbidity levels. Fluid tailings is a source of particulate organic matter (Sasar et al., 2022) and may 508 
increase turbidity values during periods of water column stratification. Overall, the influential input 509 
parameters (EC, WT, AT, DO, Turb) are very well captured by tree-based models in our SA for prediction 510 
of NH4

+.   511 

The SA indicates that Chl-a prediction using ML models are mostly influenced by WT, EC, Rad (light), pH, 512 
NH4

+. Evidence showed that Chl-a could be an indicator of (a) photosynthesis (affected by DO, solar 513 
radiation, and temperature; Shammas et al., 2009; Wallace et al., 2016); (b) nutrient status (affected by 514 
pH since algae grow better at higher pH values by taking up more nutrients and CO2 under alkaline 515 
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conditions; Veeresh et al., 2010; Wallace et al., 2016), and (c) the growth and distribution of 516 
phytoplankton species composition (affected by solar light, DO and WT; Harrison et al., 2018; Bouffard et 517 
al., 2018, Liu and Georgakakos, 2021) in the lake. Without any ambiguity, our SA method captured most 518 
of the important sensitive parameters for Chl-a prediction using the tree-based models, but it failed to 519 
identify DO as an important input. 520 

For prediction of DO, the suggested variables EC, WT, NH4
+, and pH are frequently signaled by different 521 

models in the SA. Similarly, the prediction of pH can be influenced by WL, WT, NH4
+, and DO (Figure 6). 522 

Most of these parameters are indirectly or directly involved in different processes occurring within the 523 
lake, such as release of pore water from TFT and fluctuation of DO due to the release of oxygen consuming 524 
constituents (e.g., NH4

+) (Dompierre and Barbour, 2016; Risacher et al. 2018). Based on our SA, the tree-525 
based models identified most of these as sensitive parameters for prediction of DO and pH whereas the 526 
connectionist ML models did not (Figure 6).  527 

6. Conclusions  528 

This study developed a new approach to XAI through the lens of SA. This approach has the conceptual 529 
strength that it characterizes the entire response surface of an ML model – whereas other methods 530 
typically look only at the model response in the region of the available input-output data points. This 531 
approach was used to investigate the primary controls on the physico-chemical processes of a major 532 
environmental problem, as determined by a suite of connectionist, kernel-based, and tree-based ML 533 
models. The analyses enabled efficient detection of important explanatory variables, thereby guiding 534 
long-term monitoring programs with reduced data collection cost. 535 

Notably, although most of the ML models showed similar levels of predictive power, they tended to base 536 
their predictions on different explanatory variables (inputs). In particular, the connectionist ML models 537 
such as neural networks showed a large degree of variability in how their outputs depended on the various 538 
inputs. Different replicates of the same connectionist model were often primarily driven by different 539 
inputs, suggesting that the model may pick up different signals in the data to provide similar levels of 540 
predictability. Interestingly, the important inputs of the tree-based ML models were more consistent with 541 
each other, while tending to be somewhat different from those of the connectionist and kernel-based 542 
models.  543 

Overall, our analysis reveals an important issue that is arguably a critical takeaway message of this paper. 544 
Subtle alterations in the design of ML models (such as variations in the random seed used for initialization, 545 
functional classes, hyperparameters, or data splitting) can lead to entirely different representational 546 
interpretations of the dependence of the outputs on explanatory variables (inputs). This strongly 547 
reinforces the importance of utilizing ensembles of ML models when explanatory power is a desirable 548 
outcome (see also De La Fuente et al., 2023). Such ensembles could be generated via multiple replicates 549 
of the same model, or by employing diverse types of ML models, or some combination of both. Failure to 550 
do so could mean that the analysis cannot be relied upon to guarantee the delivery of robust and reliable 551 
predictions, particularly when using the developed models to generalize to conditions beyond the 552 
region(s) of the data used for model training. 553 
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