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Abstract

Hydroclimate and terrestrial hydrology greatly influence the local community, ecosystem, and economy in Alaska and Yukon

River Basin. A high-resolution re-simulation of the historical climate in Alaska can provide an important benchmark for climate

change studies. In this study, we utilized the Regional Arctic Systems Model (RASM) and conducted coupled land-atmosphere

modeling for Alaska and Yukon River Basin at 4-km grid spacing. In RASM, the land model was replaced with the Community

Terrestrial Systems Model (CTSM) given its comprehensive process representations for cold regions. The microphysics schemes

in the Weather Research and Forecast (WRF) atmospheric model were manually tuned for optimal model performance. This

study aims to maintain good model performance for both hydroclimate and terrestrial hydrology, especially streamflow, which

was rarely a priority in coupled models. Therefore, we implemented a strategy of iterative testing and re-optimization of CTSM.

A multi-decadal climate dataset (1990-2021) was generated using RASM with optimized land parameters and manually tuned

WRF microphysics. When evaluated against multiple observational datasets, this dataset well captures the climate statistics

and spatial distributions for five key weather variables and hydrologic fluxes, including precipitation, air temperature, snow

fraction, evaporation-to-precipitation ratios, and streamflow. The simulated precipitation shows wet bias during the spring

season and simulated air temperatures exhibit dampened seasonality with warm biases in winter and cold biases in summer.

We used transfer entropy to investigate the discrepancy in connectivity of hydrologic fluxes between the offline CTSM and

coupled models, which contributed to their discrepancy in streamflow simulations.
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Key points: 19 

● Iterative testing was implemented to improve both hydroclimate and terrestrial hydrology 20 

simulations in coupled land-atmosphere models 21 

● We generated a high-fidelity 4 km climate dataset (1990-2021) for Alaska and Yukon 22 

and evaluated it against multiple observational dataset 23 

● Discrepancies in streamflow simulations between the offline land model and the coupled 24 

models were diagnosed using information theory 25 

  26 



Abstract: 27 

Hydroclimate and terrestrial hydrology greatly influence the local community, ecosystem, and 28 

economy in Alaska and Yukon River Basin. A high-resolution re-simulation of the historical 29 

climate in Alaska can provide an important benchmark for climate change studies. In this study, 30 

we utilized the Regional Arctic Systems Model (RASM) and conducted coupled land-31 

atmosphere modeling for Alaska and Yukon River Basin at 4-km grid spacing. In RASM, the 32 

land model was replaced with the Community Terrestrial Systems Model (CTSM) given its 33 

comprehensive process representations for cold regions. The microphysics schemes in the 34 

Weather Research and Forecast (WRF) atmospheric model were manually tuned for optimal 35 

model performance. This study aims to maintain good model performance for both hydroclimate 36 

and terrestrial hydrology, especially streamflow, which was rarely a priority in coupled models. 37 

Therefore, we implemented a strategy of iterative testing and re-optimization of CTSM. A multi-38 

decadal climate dataset (1990-2021) was generated using RASM with optimized land parameters 39 

and manually tuned WRF microphysics. When evaluated against multiple observational datasets, 40 

this dataset well captures the climate statistics and spatial distributions for five key weather 41 

variables and hydrologic fluxes, including precipitation, air temperature, snow fraction, 42 

evaporation-to-precipitation ratios, and streamflow. The simulated precipitation shows wet bias 43 

during the spring season and simulated air temperatures exhibit dampened seasonality with warm 44 

biases in winter and cold biases in summer. We used transfer entropy to investigate the 45 

discrepancy in connectivity of hydrologic fluxes between the offline CTSM and coupled models, 46 

which contributed to their discrepancy in streamflow simulations. 47 

 48 

Plain Language Summary: 49 

Hydrologic fluxes in the land-atmosphere interface, such as precipitation and streamflow, affect 50 

the local community, ecosystem, and economy in Alaska and Yukon River Basin. Therefore, we 51 

need a fine-grain historical dataset as a benchmark for climate change studies. We used a 52 

computer model, including an atmospheric and a land module, to generate a multi-decadal 53 

dataset for climate (1990-2021) at 4-km grid spacing. Before generating the dataset, we 54 

customized the computer model for Alaska and Yukon River Basin. We specifically 55 

implemented an iterative testing and re-modification strategy to make sure that our modification 56 

to either land or atmospheric modules would not worsen the overall model performance. To 57 

evaluate the dataset, in-situ measurements and satellite observations were used to evaluate five 58 

key weather variables and hydrologic fluxes, including precipitation, air temperature, snow 59 

fraction, evaporation-to-precipitation ratios, and streamflow. This dataset captures the quantity 60 

and seasonal variability of these variables very well, with slightly wet biases in spring, warm 61 

biases in winter and cold biases in summer. In addition, we used a statistical method, called 62 

transfer entropy, to study how the modification to the land module affects the modeled water 63 

cycles. 64 

  65 



1 Introduction 66 

The climate of Alaska, like much of the Arctic, is undergoing rapid change. Mean annual and 67 

seasonal air temperatures are increasing statewide with the largest warming signal detected in 68 

winter (Bieniek et al., 2014; Stafford et al., 2000). In response to warming, we have observed a 69 

large increase in the extent of permafrost degradation (Jorgenson et al., 2006; Lawrence & 70 

Slater, 2005; Osterkamp & Romanovsky, 1999; Saito et al., 2020), a shifted annual snow cycle 71 

and earlier snowmelt (Cox et al., 2017; Musselman et al., 2021; Stone et al., 2002), as well as 72 

increasing cold season discharge in Alaskan rivers (Blaskey et al., 2023; Gudmundsson et al., 73 

2019). These hydroclimatic changes are deteriorating the quality of river ice roads and 74 

corresponding transportation safety, affecting terrestrial and aquatic ecosystems, and 75 

disproportionately increasing threats to Indigenous Alaskans, especially those who practice 76 

subsistence living (Knoll et al., 2019; McNeeley & Shulski, 2011). In Alaska the changes in 77 

magnitude and seasonality of precipitation exhibit larger uncertainties compared to temperature 78 

signals, with only the northern slope exhibiting a statistically significant increasing precipitation 79 

trend (Bieniek et al., 2014; White et al., 2021). An accurate accounting of the recent past along 80 

with improved process understanding can lay the foundation for improved resilience to extreme 81 

events and future climate change. 82 

 83 

One frequently used tool to improve our process understanding and representation of regional 84 

climate are Regional Climate Models (RCMs). RCMs are widely used to reproduce historical 85 

weather and enable investigation of processes, potential changes, and subsequent impacts. 86 

Efforts such as CORDEX, NA-CORDEX, and Arctic CORDEX (Akperov et al., 2019; Gutowski 87 

Jr. et al., 2016; Mearns et al., 2017), have advanced our understanding of regional climate 88 

(Bukovsky et al., 2015; Cassano et al., 2017; Schär et al., 1996). Further, high-resolution RCMs 89 

at convection permitting, or complex orography resolving resolutions (e.g., grid spacings around 90 

or less than 5-10 km) have demonstrated many strengths in representing regional processes such 91 

as mesoscale convection systems (MCSs), seasonal snow cover and snow-albedo feedback, and 92 

the large-scale regional climate. This has been shown across domains such as the United States 93 

(Monaghan et al., 2018; Newman et al., 2021; Rasmussen et al., 2023; Xue et al., 2020); Canada 94 

(Li et al., 2019); and Europe (Berg et al., 2013). 95 

 96 

RCMs without correction or tuning based on observations may lead to large biases that are 97 

critical to improve model simulation fidelity (e.g., Maraun, 2012). Tuning of RCMs has 98 

primarily centered around key atmospheric variables such as air temperature and precipitation 99 

(Bellprat et al., 2016; Wei et al., 2002). Specifically, parameterizations of cloud microphysics 100 

have frequently been the focal point (Bellprat et al., 2016; Couvreux et al., 2021; Wei et al., 101 

2002) because of their strong impact on the surface energy and water budgets. Terrestrial 102 

hydrology and especially streamflow have been largely overlooked during RCM tuning. High-103 

resolution RCMs are often used as weather models where the land model serves as a simpler 104 

lower boundary condition for short simulations. The development teams of RCMs are often led 105 

by atmosphere and ocean scientists that may lack hydrological expertise, thus prioritizing other 106 

critical issues such as cloud and precipitation biases. Particularly as RCMs are increasingly used 107 

to assess terrestrial ecosystems and water resources (Tapiador et al., 2020), we need to address 108 

the unique challenges related to land model and hydrology optimization in RCMs. 109 

 110 



Optimizing component models in RCMs or coupled simulations is a multi-faceted challenge, 111 

particularly for hydroclimate and terrestrial hydrology. First, direct formal optimization such as 112 

algorithmic parameter sampling of coupled RCMs that includes multiple component models, is 113 

prohibitively expensive. Work-around efforts include using a statistical approximation of the 114 

climate model, using low spatial resolution, and limiting the number of parameters for 115 

optimization (e.g., Bellprat et al., 2012, 2016). While land models are comparatively less costly 116 

to optimize, the optimal parameters are strictly only applicable to the selected meteorological 117 

forcings. The terrestrial hydrology in the coupled simulation could degrade if the simulated 118 

meteorology in the RCM drifts significantly from the optimization climate. Standalone land 119 

model optimization fails to incorporate land-atmosphere interactions and the optimized land 120 

parameters may negatively impact the performance of the coupled RCM (Papadimitriou et al., 121 

2017). Even after tuning, RCMs contain biases and errors that must be evaluated and clearly 122 

documented to provide sufficient contexts for all users to assess the adequacy of any particular 123 

simulation for their application. 124 

 125 

The objective of this study is to maximize hydroclimate and terrestrial hydrology simulation 126 

performance in a land-atmosphere coupled RCM simulation for the Alaska and Yukon River 127 

Basin. We used the traditional approach of offline optimization of the land parameters, 128 

specifically for snow and streamflow (Cheng et al., 2023), and incorporated them back into the 129 

coupled modeling framework. Two measures were implemented to mitigate potential 130 

degradation of the coupled model simulation. First, the high-resolution dataset (Monaghan et al., 131 

2018) used to generate meteorological forcing in the offline land optimization, was produced by 132 

the same atmospheric model as used in the RCM. Second, we applied an iterative testing and re-133 

optimization of the land model to ensure satisfactory coupled model performance. Specifically, 134 

in the iterative testing, we evaluated the performance of the offline-optimized land parameters in 135 

the coupled model by running a coupled simulation at a coarser resolution. Eventually, a multi-136 

decadal climate dataset (1990 to 2021) for Alaska and Yukon River Basin was generated at 4 km 137 

grid spacing using the coupled RCM and optimized land model parameters. We examined the 138 

key weather and surface hydrologic variables and explored the differences in streamflow 139 

simulation outcomes between the standalone and coupled simulations. 140 

 141 

In the following text, Section 2 describes the coupled modeling framework, including 142 

optimization of the land model and configurations of the atmospheric model; Section 3 describes 143 

the study domain; Section 4 outlines proposed model evaluations against several observational 144 

datasets, and methods for diagnosing the discrepancies in streamflow simulations between 145 

standalone CTSM and coupled models; Section 5 presents results for the model evaluations and 146 

diagnoses; Sections 6 and 7 are discussions and conclusions respectively. 147 

  148 

  149 



2 Model framework 150 

 151 
Figure 1. Model framework. Dashed arrows denote the fluxes that only exist in fully coupled RASM 152 
simulation but do not exist in this study. 153 
 154 

2.1 Regional Arctic System Model (RASM) 155 

We employed the Regional Arctic System Model (RASM), a limited-area and fully coupled 156 

land-atmosphere-ocean-sea ice and river routing model that uses the Community Earth System 157 

Model (CESM) framework (Cassano et al., 2017). Prescribed sea surface temperature (SST) and 158 

sea ice fraction data from the ECMWF Reanalysis v5 (ERA5, Hersbach et al., 2020) is used for 159 

the sea ice and ocean lower boundary conditions given the emphasis on the land-atmosphere 160 

interaction. In this study, the previously used land component model, Variable Infiltration 161 

Capacity model (VIC, Hamman et al., 2016), was substituted with the Community Terrestrial 162 

Systems Model (CTSM). CTSM incorporates comprehensive land processes representations, 163 

including complex vegetation and canopy modules, a multi-layer snow model, and hydrology 164 

and frozen soil physics (Lawrence et al., 2019). Streamflow was routed offline using mizuRoute 165 

(Mizukami et al., 2016). Our modifications to the default RASM configuration are depicted in 166 

Figure 1, with dashed arrows representing the flux communication unique to the default 167 

configuration and not present in this study. 168 

 169 

2.1.1 Generating a historical multi-decadal climate dataset for Alaska and Yukon River Basin 170 

We generated a multi-decadal climate dataset (1990 to 2021) at 4 km grid spacing for Alaska and 171 

Yukon River Basin by running RASM with the optimized land parameters (Section 2.2) and 172 

manually tested WRF configurations (Section 2.3). The model simulation started from June 1, 173 

1989 and ended on September 30, 2021 with the first model year as spin-up. This is a 174 

tremendous computational undertaking that costs nearly 10 million CPU hours with roughly 300 175 

thousand CPU hours per model year.  176 

 177 



For the land model, a total of 275 variables were saved at 3-hourly, daily, or monthly timesteps. 178 

For the atmospheric model, a total of 265 variables were saved at hourly, 6-hourly, or daily 179 

timesteps. The total data volume is roughly 55 TB. More details about this climate dataset can be 180 

found in the data archive document (Cheng et al., 2024). 181 

 182 

2.2 Offline optimization for Community Terrestrial Systems Model (CTSM) 183 

We conducted an offline optimization for CTSM to increase the fidelity of terrestrial hydrologic 184 

simulations. Given that CTSM is computation-intensive compared to most hydrological models, 185 

we utilized a computationally frugal machine learning technique, i.e., a surrogate modeling-186 

based optimization method (Wang et al., 2014), and selected smaller sub-basins as 187 

representatives for optimization to offset some computational expenses. A regionalization 188 

method was applied to extrapolate the optimized parameters from the representative basins to the 189 

entire domain. The details concerning the optimization are presented in Cheng et al (2023). As 190 

we briefly discussed in Introduction, two measures were implemented to ensure satisfactory 191 

coupled model behavior.  192 

 193 

First measure aims to ensure the simulated climatology in the coupled model will not drift away 194 

from the one used in land model optimization. For our study region, a previous historical 195 

simulation using a similar version of WRF with ERA-Interim forcing data exists (Monaghan et 196 

al., 2018) and we used it as the meteorological forcings in the land model optimization. Even so, 197 

it is also important to acknowledge that Monaghan et al (2018) used a slightly older version of 198 

WRF, ERA-Interim, and the Noah-MP land model, while we used a newer version of WRF, 199 

ERA5, and the CTSM land model.  200 

 201 

Second, we applied an iterative testing and re-optimization strategy. In each iteration, we 202 

examined the performance of coupled simulations with optimized land parameters at a coarser 12 203 

km spatial resolution by comparing them with the hydrologic and energy fluxes in ERA5. When 204 

model performance of coupled simulations was not satisfactory, we diagnosed the reason, made 205 

corresponding modifications to the parameters, and re-optimization. An example iteration is 206 

showcased below. 207 

 208 

In one iteration, medlynintercept, a parameter governing stomatal conductance (Kennedy et al., 209 

2019), approached the upper limit (300,000) in the optimization. The coupled simulations using 210 

this set of optimized parameters show excessive summer evaporation, elevated cloud coverage, 211 

and a domain-wide -4.64°C cold bias in 2-meter summertime (June-August 2013) air 212 

temperature compared to ERA5 (Figure 2). The parameter range for medlynintercept was 213 

originally established by experts for global-scale studies, which may require refinement for 214 

regional applications (Kennedy et al., n.d.). Consequently, our use of the unconstrained 215 

parameter range introduced compensatory errors that may not be apparent during offline 216 

optimization. Correspondingly, by reducing the upper limit for medlynintercept, i.e., 20,000, the 217 

performance of the coupled model showed marked improvement with minimal impact on the 218 

offline model performance. This again highlights the need for iterative testing, technical 219 

knowledge of the models and parameterizations, and clear documentation across those models 220 

and parameterizations (Jakob, 2010). 221 

 222 



 223 
Figure 2: Initial bias of 2-meter summer air temperature (∆T2) in the RASM simulation using offline 224 
optimized CTSM parameters (with large medlynintercept value) compared with ERA5 reanalysis data. 225 
Panel (a) shows the distribution of ∆T2 across all grid cells in the domain and panel (b) shows the spatial 226 
distribution of ∆T2 227 
 228 

2.3 Configuring the Weather Research and Forecasting (WRF) Model 229 

The atmospheric model in RASM is a modified version of the Advanced Research WRF (WRF-230 

ARW, hereafter simply WRF) Model version 3.7.1 (Cassano et al., 2017; Skamarock et al., 231 

2008). The selection of physics options was informed by an earlier high-resolution WRF 232 

simulation for Alaska (Monaghan et al., 2018) as well as RASM pan-arctic simulations (Cassano 233 

et al., 2017). While Monaghan et al (2018) utilized the Noah-MP land model integrated in WRF, 234 

this study employed CTSM as the land model. Therefore, we performed manual testing of 235 

different physics options and summarized the final selection in Table 1. We selected the MYNN 236 

level 2.5 scheme (Janić, 2001) whereas Monaghan employed the Yonsei University (YSU) 237 

scheme (Hong et al., 2006). In addition, we used a newer version of the ECMWF Reanalysis 238 

data, ERA5, as the initial and lateral boundary conditions, SST, and sea ice fraction while 239 

Monaghan et al. (2018) used ERA-Interim.  240 

 241 
Table 1: List of WRF options used in the RASM simulation 242 

WRF version 3.7.1 

Horizontal grid spacing 4 km 

Horizontal grid points 782 longitude (x) grid × 662 latitude (y) grid 

Number of vertical levels /model top 49/30hPa (7 levels in the lowest 1000 m) 

Time step WRF: 20 s 

WRF radiation: 10 min 

RASM coupler: 10 min 

Lateral BCs ERA5 

Longwave radiation RRTMG 

Shortwave radiation RRTMG 

Cloud microphysics Thompson 

Planetary boundary layer MYNN level 2.5 schemes 

Cumulus Off 

243 



3 Domain 244 

 245 
Figure 3. Study domain 246 
 247 

In the coupled WRF-CTSM modeling, the terrestrial domain defined by the black dashed box in 248 

Figure 3 encompasses nearly all the U.S. State of Alaska, the entire Yukon River Basin, part of 249 

Western Canada, and the eastern coastal region of Russia. The marine bodies consist of the Gulf 250 

of Alaska, Bering Sea, Chukchi Sea, and Beaufort Sea. The evaluation domain encompasses all 251 

land grid cells, delineated by light blue boundaries, given our research emphasis on land-252 

atmospheric interactions. This evaluation domain is derived from the probabilistic spatial 253 

meteorological estimates specifically designed for Alaska, developed by Newman et al. (2020), 254 

which also serves as an observational dataset used for evaluation purposes. Consistent with 255 

Cheng (2023), we evaluated the streamflow simulation against observations for 15 major rivers 256 

depicted by solid colored lines. Yukon_S and Yukon_P denote two U.S. Geological Survey 257 

(USGS) gauges along the main stem of the Yukon River, located near Stevens Village and Pilot 258 

Station, respectively.  259 



 260 

4 Model evaluation 261 

We conducted a comprehensive evaluation of the generated climate dataset for hydroclimate and 262 

terrestrial hydrology, including the assessment of five weather variables and hydrologic fluxes 263 

(Section 4.1). The evaluated variables are precipitation, 2-meter air temperature, snowfall 264 

fraction (S/P, representing the ratio of snowfall to precipitation), evaporation precipitation ratio 265 

(E/P), and streamflow. In order to examine the robustness of standalone CTSM optimization 266 

within the coupled model, we compared the simulated streamflow obtained from the coupled 267 

model with that from standalone CTSM optimization. Moreover, to elucidate the disparities 268 

between the two streamflow simulations, we conducted in-depth analyses encompassing: 1) 269 

assessment of the meteorological drivers, 2) investigation of the interdependencies among 270 

hydrologic fluxes using transfer entropy, and 3) exploration of climate sensitivities to 271 

streamflow.  272 

 273 

4.1 Observational Dataset 274 

Table 2: Summary of datasets used for evaluation. 275 
Variable Observation/Reanalysis Dataset Evaluation Period 

Precipitation Probabilistic Spatial Meteorological Estimates 

(PSME, Newman et al 2020) 

1990-2013 

Global Precipitation Climatology Project (GPCP, 

Satellite-derived precipitation data) 

1990-2020 

PNWNAmet (Gridded interpolation from 

observation) 

1990-2012 

2-m air temperature Probabilistic Spatial Meteorological Estimates 

(PSME, Newman et al 2020) 

1990-2013 

Site observation (507 sites) Varying 

Evaporation Precipitation 

Ratio (E/P) 

ERA5 1990-2021 

Snowfall fraction (S/P) ERA5 1990-2021 

Streamflow USGS sites  Varying 

 276 

Three gridded datasets were employed as benchmarks to evaluate precipitation (Table 2). 277 

Probabilistic Spatial Meteorological Estimate (PSME) was generated using the ensemble 278 

Climatologically Aided Interpolation (eCAI) for Alaska and the Yukon Territory (Newman et al., 279 

2020). The eCAI method develops a probabilistic estimate of the climatological fields such as 280 

precipitation and air temperature and then develops daily values using daily anomalies. Note we 281 

use the uncorrected precipitation from the PSME product. The Global Precipitation Climatology 282 

Project (GPCP) provides monthly analysis of global precipitation from an integration of various 283 

satellite data sets (Adler et al., 2003). The PCIC meteorology for Northwest North America 284 

(PNWNAmet) is a gridded dataset generated using the trivariate thin plate spline interpolation 285 

method from observations (Werner et al., 2019). These three datasets were developed using 286 

different approaches and have served as benchmarks for evaluating precipitation simulation in 287 

other studies (Behrangi et al., 2016; Van Tiel et al., 2021). 288 

 289 



Observations from 507 sites across Alaska were utilized for evaluating air temperature 290 

simulations, except for the PSME dataset. E/P and S/P ratios are both compared to the ERA5, 291 

given the limited data availability for evaporation and snowfall.  292 

 293 

Streamflow simulation for the 15 major river basins were evaluated against the gauge 294 

measurement from USGS and the Department of Environment and Natural Resources in Canada. 295 

Nash Sutcliffe Efficiency (NSE) and Kling Gupta Efficiency (KGE) were calculated using daily 296 

streamflow data. It is worth noting that in Alaska, rivers freeze during the cold seasons, and to 297 

ensure a continuous time series, USGS provides streamflow estimates for frozen rivers denoted 298 

with a qualifier of “Ae”. Therefore, we calculate the metrics specifically for free-flowing rivers 299 

during ice-free periods, and refer to them as NSE_w, KGE_w. Additionally, metrics were 300 

calculated for the entire available time series, denoted as NSE_a and KGE_a.  301 

 302 

4.2 Diagnosing discrepancies in streamflow simulations between offline CTSM and the coupled 303 
model 304 

Flow simulations between the offline CTSM optimization and coupled RASM model exhibit 305 

discrepancies. Since the land component of RASM is also CTSM, the discrepancy in streamflow 306 

simulation is likely driven by meteorological conditions. Six variables were analyzed, including 307 

three temperature and energy variables (2m air temperature, incident longwave and shortwave 308 

radiations), and three hydrologic fluxes (precipitation, evaporation, and snowmelt). These six 309 

variables are shown for inter-model comparisons. 310 

 311 

We also investigate how the coupled model affects the response of runoff simulation (R) to 312 

changes in precipitation (P) and air temperature (T). We examined the runoff climate sensitivity 313 

of two modeling systems: CTSM and RASM, along with the widely used ERA5 reanalysis 314 

dataset. ERA5 sensitivity was solely used as a reference rather than a ground truth in this study. 315 

We followed the technique developed in Wood et al (2004). Regionally averaged precipitation 316 

(𝑃̿ ), air temperature (𝑇̿ ), and runoff (𝑅̿ ) were calculated for each hydrologic year in the RASM, 317 

CTSM, and ERA5 datasets. We conducted bootstrapping (n = 1,000 times) to quantify the 318 

uncertainties in runoff responses to climate variables. Each bootstrapping sample generated a 319 

new series of precipitation, air temperature, and runoff by resampling the available hydrological 320 

years with replacement. For each new series, we performed a simple linear regression between 321 

the streamflow and climate variables, with the slope representing the corresponding responses. 322 

The runoff sensitivity to precipitation (𝜃𝑃) is unitless and the unit for runoff sensitivity to air 323 

temperature (𝜃𝑇) is mm day-1 °C-1. Additionally, we calculated the correlation coefficient 324 

between the streamflow and climate variables, denoting as 𝜌𝑃 and 𝜌𝑇, which indicated the 325 

uncertainties in the corresponding responses of precipitation and air temperature, respectively. 326 

 327 

The connectivity between the energy and hydrologic fluxes can change because the coupled 328 

model captures the two-way interactions between the land surface and the atmosphere. To 329 

quantify the transfer of information between these processes across different modeling systems, 330 

we employed an information theoretic measure, i.e., transfer entropy (Bennett et al., 2019; 331 

Schreiber, 2000). Transfer entropy provides a statistical measure of how much uncertainty about 332 

a current process can be reduced by knowledge of the history of another variable (taking the 333 

target process’s history into account). Eight weather and hydrologic variables and flux terms 334 

were analyzed: 2m air temperature, incident longwave and shortwave radiations, runoff, 335 



evapotranspiration, precipitation, snow water equivalent (SWE), and soil moisture (SM). Since 336 

the SWE and SM are state variables, we used daily changes in SWE and SM, denoting as 𝛥𝑆𝑊𝐸 337 

and 𝛥𝑆𝑀 and all other variables are daily averages. Evapotranspiration in CTSM and RASM 338 

were split into soil evaporation and canopy evapotranspiration whereas ERA5 only provides the 339 

total evapotranspiration. ERA5 provides soil moisture for the top four soil layers with a total 340 

depth of 2.89 m whereas CTSM and RASM provide soil moisture for 20 soil layers with a total 341 

depth of 8.03 m. Rather than using soil moisture for entire soil columns, we used the surface soil 342 

moisture (7 centimeters for ERA5 and 9 centimeters for CTSM and RASM) to ensure that the 343 

results between ERA5 with CTSM and RASM were comparable. 344 

 345 

For simplicity, we used a single-variate approach and calculated lag-1 day transfer entropy. It is 346 

important to note that the process connectivity presented in this study is limited by the selected 347 

method. Multivariate process connectivity and the process connectivity at different temporal 348 

scales are not considered due to unreliability of calculating higher-dimensional probability 349 

distributions (Hlaváčková-Schindler et al., 2007). The transfer entropy for each pair of variables 350 

is calculated at a daily time scale using a formulation of lag 1 transfer entropy, with lag 1 351 

representing a single day (Eqn. 1). 352 

 353 

 𝑇̿𝑋→𝑌 = 𝐼(𝑌𝑡; 𝑋𝑡−1|𝑌𝑡−1) Eqn. 1 

 354 

where 𝑇̿𝑋→𝑌 is the transfer entropy from X to Y and the current state of 𝑌𝑡 depends only on the 355 

previous time step (i.e., 𝑋𝑡−1 and 𝑌𝑡−1). 𝐼 denotes the conditional mutual information and the 356 

details concerning calculations can be referred to Bennett et al (2019). To ensure robustness of 357 

the estimated transfer entropy, we conducted bootstrapping (n=50, sample size=5000). We only 358 

report results which are significant at a 99% confidence level according to a shuffled surrogate 359 

test, which compares the transfer entropy of the true time series against the transfer entropy 360 

where the data has been shuffled, removing any temporal correlations (Marschinski & Kantz, 361 

2002). 362 

 363 

We conducted this analysis over the largest river basin, the Yukon River at Pilot Station. The 364 

time series of all grid cells located in its confluence area were averaged to get one representative 365 

time series for this region. 366 

  367 



5 Results 368 

In the following section, RASM denotes the coupled model simulation and CTSM denotes the 369 

offline land-only simulation. 370 

 371 

5.1 Model evaluation against observational datasets 372 

The simulated historical climate means of precipitation and temperature are shown in Figure 4. 373 

The high-resolution RASM captures the orographic impacts and complex ridge-valley patterns 374 

on the spatial distribution of precipitation and air temperatures. Notably, this modeling effort 375 

also exhibits the spatial heterogeneity of precipitation between the windward and leeward sides 376 

of the Aleutian Islands. 377 

 378 

 379 
Figure 4. Simulated mean annual precipitation (a) and air temperature (b) for WY 1990-2021. 380 
 381 
Table 3: Spearman rank-order correlation coefficient between RASM and evaluation datasets and median 382 
relative biases across the entire evaluation domain. 383 

 Spearman Correlation Coefficient Median relative bias across domain 

 Annual Winter Spring Summer Fall Annual Winter Spring Summer Fall 

PNWNAmet 0.86 0.82 0.79 0.77 0.85 14.4% 10.4% 37.2% 8.0% 11.3% 

GPCP 0.74 0.73 0.74 0.56 0.75 16.7% 10.0% 28.8% 20.0% 11.3% 

PSME-mean 0.78 0.72 0.73 0.68 0.79 32.9% 21.2% 69.4% 21.4% 37.9% 

PSME-75prct 0.78 0.72 0.74 0.67 0.79 -2.1% -11.4% 27.4% -11.0% -0.1% 

 384 

5.1.1 The spatial pattern and quantify of precipitation are well simulated 385 

The high-resolution RASM well simulates the spatial distribution and quantity of precipitation in 386 

Alaska and the Yukon region. For annual mean precipitation, the Spearman rank-order 387 

correlation coefficients between RASM and the evaluation datasets are 0.86, 0.74, 0.78 for 388 

PNWNAmet, GPCP, and PSME-mean, respectively. The result is comparable to Monaghan et al 389 

(2018) and the high correlation coefficient indicates well-simulated spatial pattern of 390 

precipitation. Across the entire domain, the median relative biases in mean annual precipitation 391 

are 14.4% and 16.7% as compared to PNWNAmet and GPCP respectively (Table 3). When 392 



compared with the PSME dataset, the RASM simulation falls between the ensemble mean and 393 

the 75 percentile (Table 3). Notably, RASM consistently overestimates precipitation in spring 394 

(March, April, May), the season with the lowest precipitation in Alaska, across all evaluation 395 

datasets (Table 3). Relatively large biases are observed in the southern coastal and mountainous 396 

ranges, where the three observation-based datasets display conflicting biases. Specifically, 397 

PSME and PNWNAmet suggest RASM consistently underestimates precipitation across all 398 

seasons while GPCP consistently indicates overestimation. Furthermore, GPCP shows that 399 

RASM underestimates spring precipitation in the Yukon headwater region and summer (June, 400 

July, August) precipitation in northern coastal region, whereas the PSME and PNWNAmet 401 

indicate the opposite. These inconsistencies highlight the significant uncertainties in precipitation 402 

data for Alaska, which remains a challenge for the scientific community and applications.  403 

 404 

Figure 5d presents the distribution of seasonal biases against the 25th, 50th, 75th percentiles, as 405 

well as the mean of the PSME ensemble. The regional median biases for PSME ensemble means 406 

are 5.17 mm/season, 10.47 mm/season, 12.72 mm/season, 13.79 mm/season for winter 407 

(December, January, February), spring, summer, and fall (September, October, November), 408 

respectively. The regional median biases against the three PSME percentiles are slightly higher 409 

than 0, suggesting that the simulated precipitation has slight wet biases. Among the three 410 

datasets, PNWNAmet exhibits the closest resemblance to our simulated precipitation, with 411 

regional median biases of 2.77 mm/season, 6.81 mm/season, 5.06 mm/season, 4.91 mm/season 412 

for winter, spring, summer, and fall, respectively. Additionally, RASM consistently 413 

overestimates precipitation compared to the GPCP dataset, especially in summer season, with 414 

regional median biases of 2.83 mm/season, 5.76 mm/season, 11.74 mm/season, 4.99 mm/season 415 

for winter, spring, summer, and fall, respectively.  416 

 417 

 418 
Figure 5. Evaluation of precipitation simulation against three datasets, i.e., PSME (Panels a,d), 419 
PNWNAmet (Panels b,e), and GPCP (Panels c,f). Panels a, b, and c show the spatial maps of mean 420 
seasonal bias. Panels d, e, and f show the distribution of seasonal biases across all grid cells with the 421 



evaluation domain, with Panel d showing the seasonal biases against the 25th, 50th, 75th percentiles and 422 
mean of PSME ensemble. Vertical lines in panels d, e, and f denote median values across all grid cells. 423 
Sub-panels i, ii, iii, and iv denote winter, spring, summer, and fall.  424 
 425 

5.1.2 Seasonality of temperature simulation is dampened in RASM 426 

Simulated air temperature exhibits dampened seasonality compared to observations. The coupled 427 

model tends to overestimate winter temperatures while underestimating spring and summer 428 

temperatures. The regional averaged biases for the PSME ensemble means are 429 

1.72°C, -1.74°C, -2.36°C, -0.28°C for winter, spring, summer, and fall, respectively, with the 430 

regional averaged biases against all three PSME percentiles < 0 (Figure 6d). In situ observations 431 

exhibit comparable seasonal biases, with regional averaged biases of 1.99°C, -1.25°C, -0.66°C, 432 

0.59°C for winter, spring, summer, and fall, respectively. 433 

 434 

The biases in air temperatures display seasonal and spatial heterogeneities. The significant warm 435 

biases during winters are predominantly observed in the North Slope, southeast interior Alaska, 436 

and the Yukon headwaters (Figures 6a,i, 6b,i). However, the cold biases during summers are 437 

mostly observed in the north and west coast of Alaska. Additionally, the root mean square errors 438 

(RMSE) were calculated for each observational site with the mean value of 3.81°C. It is 439 

noteworthy that the sites with large RMSEs (Figure 6c) correspond with the sites with large 440 

winter biases (Figure 6b,i), suggesting that the winter warm biases are the primary errors in the 441 

temperature simulations. 442 

 443 
Figure 6. Evaluation of air temperature simulation against PSME (Panels a, d) and onsite observations 444 
(Panels b, c, e, f). Panels a and b show the spatial map of mean seasonal bias. In Panel a, it was evaluated 445 
against PSME ensemble mean. Panels d and e show the distribution of seasonal biases across all grid cells 446 
within the evaluation domain, with Panel d showing the seasonal biases against the 25th, 50th, 75th 447 
percentiles and mean of the PSME ensemble. Panels c and f show the spatial map and distribution of 448 
RMSE across all observational sites, respectively. Sub-panels i, ii, iii, and iv denote winter, spring, 449 
summer, and fall. 450 



 451 

5.1.3 Snowfall fraction (S/P ratio) 452 

The RASM simulation exhibits the spatial patterns of S/P ratios that generally resemble those 453 

observed in ERA5 for each season (Figures 7b and 7c). However, the simulated S/P ratio in 454 

RASM captures more realistic topographic details compared to ERA5 due to its higher spatial 455 

resolution. In addition, the regional averages of seasonal S/P ratios from RASM (ERA5) are 0.94 456 

(0.94), 0.71 (0.64), 0.07 (0.04), and 0.58 (0.54) for winter, spring, summer, and fall, respectively. 457 

The slightly higher S/P ratio in RASM compared to ERA5 likely results from the higher spatial 458 

resolution of RASM, which enables the simulation to account for precipitation falling as 459 

snowfall over high mountainous regions during warm seasons. 460 

 461 

5.1.4 Evaporation precipitation ratio (E/P ratio) 462 

The RASM simulation shows greater variability in E/P ratios compared to ERA5. At the 463 

seasonal level, the regional averaged E/P ratios are similar, with values of -0.02 (0.02), 0.55 464 

(0.58), 0.77 (0.74), and 0.20 (0.20) in RASM (ERA5) for winter, spring, summer, and fall, 465 

respectively. However, there are notable differences in their spatial patterns and distributions, 466 

which can be partially attributed to the discrepancies in spatial resolutions. RASM, with its high-467 

resolution topography, results in more low-elevation grid cells having higher E/P ratios during 468 

the spring and summer seasons compared to ERA5. This rightward shift in the E/P ratio 469 

distribution can be observed in Figures 8a,ii and 8a,iii. However, the E/P ratios in the north and 470 

western coasts of Alaska are lower in RASM than in ERA5, which cannot be explained by the 471 

discrepancies in spatial resolution.  472 

 473 
Figure 7. Evaluation of simulated S/P ratio against ERA5 dataset. Panel a shows the distribution of mean 474 
seasonal S/P ratio across all grid cells within the evaluation domain for RASM (orange) and ERA5 (blue), 475 
respectively. Panels b and c show the map of mean seasonal S/P ratio for RASM and ERA5, respectively.  476 

 477 



 478 
Figure 8. Similar to Figure 6 but for evaporation precipitation ratio (E/P). 479 
 480 

 481 
Figure 9. Evaluation of RASM streamflow simulation (orange) against USGS observations (red) and 482 
streamflow simulation in standalone CTSM optimization (blue) 483 



Table 4: Summary of streamflow performances using Nash-Sutcliffe Efficiency and Kling-Gupta Efficiency.  484 
 NASH SUTCLIFFE EFFICIENCY KLING GUPTA EFFICIENCY NATION NUMBER OF FREE-

FLOWING DAYS PER 

YEAR 
 NSE_a 

Entire period 

NSE_w 

Warm Period 

KGE_a 

All period 

KGE_w 

Warm Period 

 RASM CTSM RASM CTSM RASM CTSM RASM CTSM 

ILIAMNA 0.49 0.32 0.37 0.14 0.74 0.62 0.69 0.51 US 230 

WULIK 0.17 0.25 -0.34 0.23 0.61 0.61 0.43 0.52 US 133 

BEAVER 0.51 0.51 0.51 0.51 0.61 0.71 0.61 0.71 Canada  

KUPARUK 0.13 0.35 -0.31 0.58 0.26 0.44 -0.05 0.68 US 117 

SAGAVANIRKTOK 0.62 0.53 0.21 0.28 0.80 0.75 0.63 0.61 US 118 

MATANUSKA 0.47 0.59 0.30 0.43 0.67 0.72 0.59 0.63 US 216 

TALKEETNA 0.65 0.55 0.24 0.10 0.79 0.75 0.62 0.59 US 174 

KENAI 0.50 0.43 0.30 0.17 0.75 0.62 0.67 0.54 US 242 

STEWARD 0.71 0.64 0.71 0.64 0.81 0.78 0.81 0.78 Canada  

SUSITNA 0.70 0.61 0.18 0.19 0.80 0.79 0.55 0.60 US 162 

COLVILLE 0.00 0.47 -0.49 0.57 0.51 0.73 0.29 0.75 US 132 

TANANA 0.61 0.56 0.14 0.07 0.81 0.70 0.60 0.51 US 159 

KUSKOKWIM 0.22 0.03 0.05 0.09 0.60 0.55 0.53 0.66 US 158 

YUKON_S 0.58 0.50 0.18 0.55 0.65 0.66 0.50 0.72 US 159 

YUKON_P 0.60 0.50 0.03 0.55 0.70 0.72 0.40 0.70 US 134 

MEDIAN VALUE 0.51 0.50 0.18 0.28 0.70 0.71 0.59 0.63   

485 



5.1.5 Streamflow evaluation 486 

RASM provides generally good historical streamflow simulations with median NSE_a and 487 

KGE_a values of 0.51 and 0.70 across 15 major river basins (Table 4, Figure 9). This 488 

performance is comparable to the streamflow simulations achieved through standalone CTSM 489 

optimization, which yielded median NSE_a and KGE_a values of 0.50 and 0.71, respectively. 490 

Across the 15 basins, the NSE_a values all exceed 0 and KGE_a values exceed -0.41, indicating 491 

that RASM improves upon the mean streamflow benchmark (Knoben et al., 2019). Like Cheng 492 

et al (2023), we adopted a benchmark of daily NSE of 0.5 (Moriasi et al., 2015) and 9 out of 15 493 

basins exceed this benchmark, showing comparable performance to the offline CTSM optimized 494 

simulation (Table 4). Notably, RASM shows improvements in streamflow simulations for 10 out 495 

of 15 basins based on NSE_a and 8 out of 15 basins based on KGE_a. The two exceptions are 496 

Yukon_S and Yukon_P, where RASM has KGE_a values of 0.65 and 0.70 respectively, only 497 

slightly lower than the corresponding KGE_a value of 0.66 and 0.72 obtained from CTSM. To 498 

our knowledge, this type of evaluation and performance may be unprecedented compared to 499 

other large regional land-atmosphere coupled RCM simulations. 500 

 501 

Compared to CTSM, the RASM streamflow simulation shows a noticeable decline in 502 

performance during ice-free periods. The median NSE_w and KGE_w values across all 15 river 503 

basins are 0.18, and 0.58, respectively. These values are generally lower than the corresponding 504 

NSE_w and KGE_w values of 0.28 and 0.63 obtained from CTSM. Notably, when compared to 505 

CTSM, RASM exhibits improvements in streamflow simulations during warm seasons for only 5 506 

out of 15 basins based on NSE_w and 6 out of 15 basins based on KGE_w. This highlights the 507 

challenges of translating offline optimization to coupled model problems and supports continued 508 

work towards efficient coupled model optimization and testing.  509 

 510 



5.2 Shifted snowmelt seasonality impacts streamflow regimes for Yukon 511 

 512 



Figure 10. Differences between the meteorology simulated by RASM and the meteorological forcings 513 
used for standalone CTSM optimization. Panel a shows the mean monthly streamflow in RASM (yellow) 514 
and CTSM (blue). In Panels b, c, d, e, f, and g, sub-panels i, ii, iii, and iv show the mean seasonal 515 
discrepancies between RASM meteorology and CTSM meteorological forcings for winter, spring, 516 
summer, and fall, respectively. Sub-panels v show the mean monthly meteorological variables for RASM 517 
and CTSM.  518 
 519 

The overall streamflow quantity was similar in RASM and CTSM, despite RASM having a 520 

slight negative precipitation bias. To examine the impacts of meteorological conditions and 521 

potential biases on streamflow simulations, the largest USGS gaged basin in Alaska, Yukon 522 

River at Pilot Station, was chosen as an exemplar. Both RASM and CTSM show a mean annual 523 

streamflow of 250 thousand cubic feet per second (cfs). However, the precipitation rate used to 524 

force CTSM has a higher regional average value of 540.6 mm/year compared to the simulated 525 

precipitation in RASM, which has a regional average value of 526.0 mm/year. This discrepancy 526 

is particularly evident in July and August. Simultaneously, CTSM simulates higher 527 

evapotranspiration (ET) during warm seasons with a regional average of 289.8 mm/year, higher 528 

than RASM with a regional average ET of 273.5 mm/year. Despite the positive precipitation 529 

bias, the impact of higher ET in CTSM likely compensates for the higher precipitation rate and 530 

contributes to the comparable overall streamflow quantities observed in both models. 531 

 532 

A delayed timing of peak streamflow in RASM is primarily driven by later snowmelt compared 533 

to CTSM. In CTSM, the streamflow simulations peak in May with a higher volume observed in 534 

April and May (Figure 10a) when compared to RASM. However, RASM exhibits a later yet 535 

higher peak streamflow volume compared to CTSM. In cold regions, such as our study area, the 536 

primary sources of runoff are precipitation, snowmelt, and glacier melt. From Figures 10e,v and 537 

10f,v, it is evident that the discrepancies in streamflow regimes between RASM and CTSM are 538 

mainly attributed to an earlier onset of snowmelt in CTSM, with precipitation playing a 539 

relatively insignificant role. Additionally, the timing and intensity of snowmelt are significantly 540 

influenced by shortwave radiation, longwave radiation, and air temperatures. Based on Figures 541 

10b,ii and 10c,ii, the spring air temperature and longwave radiation in RASM simulation are 542 

both lower than those used in CTSM. These differences drive a lower snowmelt in RASM 543 

compared to CTSM, contributing to the delayed peak streamflow timing observed in RASM. 544 

 545 

5.3 Climate sensitivity 546 

RASM and CTSM exhibit comparable runoff sensitivities to precipitation (𝜃𝑃) and these values 547 

are generally higher than those in ERA5 in 14 out of 15 major river basins (Figure 11). The mean 548 

values of 𝜃𝑃 across all basins are 0.70, 0.70, and 0.39 for RASM, CTSM, and ERA5 549 

respectively, indicating that both RASM and CTSM show stronger responses of runoff to 550 

changes in precipitation compared to ERA5. The only exception is the Sagavanirktok River 551 

Basin, where 𝜃𝑃 is 0.91 for CTSM, slightly higher than RASM (0.76) and ERA5 (0.90). The 552 

observed mean value of 𝜃𝑃 across the same 15 basins is 0.74 (Cheng et al., 2023), indicating 553 

RASM and CTSM more realistically capture the climate sensitivity compared to ERA5. The 554 

lower 𝜃𝑃 can be attributed to the underestimated runoff to precipitation ratios (R/P ratio) in 555 

ERA5 compared to RASM and CTSM. For instance, across the entire Yukon River Basin, the 556 

R/P ratios in RASM and CTSM are both 0.47, while it is only 0.31 for ERA5. However, in the 557 



Sagavanirktok River Basin, the R/P ratio in ERA5 is 0.66, higher than RASM (0.61) and CTSM 558 

(0.62). 559 

 560 

Larger uncertainties exist in runoff sensitivities to air temperatures (𝜃𝑇) compared to 𝜃𝑃. In 561 

RASM, CTSM, and ERA5, the median absolute value of the correlation coefficient 𝜌𝑃 across all 562 

basins is 0.86, 0.88, and 0.45, respectively. These values are generally higher than the median 563 

absolute value of 𝜌𝑇, which are 0.28, 0.28, and 0.17, respectively. The higher correlation 564 

coefficient 𝜌𝑃 indicates a more reliable response of runoff to precipitation compared to air 565 

temperatures.  566 

 567 

ERA5 generally exhibits opposite runoff sensitivities to air temperature compared to RASM and 568 

CTSM. In ERA5, 10 basins show negative sensitivity with median values of -0.014 569 

mm·day-1·°C-1, implying higher air temperatures might reduce runoff generation. However, in 570 

RASM and CTSM, only three basins show negative sensitivity, with median values of 0.033 571 

mm·day-1·°C-1 and 0.038 mm·day-1·°C-1, respectively. This means that, for a majority of the 572 

basins in RASM and CTSM, higher air temperatures are associated with increased runoff. A total 573 

of 7 out of 15 basins shows opposite runoff sensitivities between ERA5 and RASM and CTSM. 574 

In Cheng et al. (2023), 𝜃𝑇 were calculated using observed flows from USGS and the median 575 

value of 𝜃𝑇 across the same basins is 0.041 mm·day-1·°C-1, indicating that RASM and CTSM 576 

better capture the runoff sensitivity to air temperature compared to ERA5. 577 

 578 
Figure 11. A climate sensitivity analysis for CTSM, RASM and ERA5, denoted by blue, orange, and 579 
black colors respectively. The x-axis denotes the rate of basin-averaged runoff change with precipitation 580 
change (𝜃𝑃), and the y-axis denotes the rate of basin-averaged runoff change with air temperature change 581 
(𝜃𝑇). In each subplot, the lower left table shows the basin-wide average runoff to precipitation ratio 582 
(R/P, %), and air temperature (T, °C). 583 
 584 



5.4 The connectivity among hydrologic and energy fluxes varies among ERA5, CTSM, and 585 
RASM 586 

 587 

To better understand process interdependencies in the three model configurations we computed 588 

the pairwise process connectivity with the transfer entropy measure as outlined in section 4.2. 589 

The resulting analysis is summarized in Figure 12 as a chord diagram, which shows the 590 

directional reduction in uncertainty for a variable given some knowledge of another. We say that 591 

processes “receive” more information when the transfer entropy is higher, meaning that the 592 

target variable’s uncertainty is reduced if we know the value of the source variable. It is worth 593 

noting that the widths of the chords between diagrams is not directly comparable because the 594 

total information exchange is normalized by the circular visualization.  595 

 596 

In RASM, the three temperature and energy variables, namely air temperature, longwave, and 597 

shortwave radiation, receive more information compared to CTSM and ERA5. Specifically, 598 

these variables receive 9.4%, 4.2%, and 3.0% of the transferred information for all pairs of 599 

selected variables in RASM, CTSM, and ERA5, as shown in Figure 12. The information 600 

transferred from 𝛥𝑆𝑊𝐸 and precipitation to longwave radiation is notably stronger in RASM 601 

compared to CTSM. This can be attributed to RASM's ability to account for land feedback to the 602 

atmosphere, explicitly capturing the influence of hydrologic fluxes on the energy balance. 603 

 604 

Shortwave radiation and canopy evapotranspiration exchange information in RASM, significant 605 

at 99% confidence level, while these two variables exchange little information in CTSM and 606 

ERA5. The impact of shortwave radiation on canopy evapotranspiration is evident, while RASM 607 

dynamically captures the impacts of canopy evapotranspiration and soil moisture on atmospheric 608 

vapor pressure and therefore cloud formation, which consequently affects the shortwave 609 

radiation. This feedback is not seen in ERA5 or CTSM. 610 

 611 

Snowmelt significantly contributes to runoff generation in RASM and CTSM while its 612 

contribution is minimally evident in ERA5. Similarly, precipitation affects runoff in RASM and 613 

CTSM whereas its impact is minimal in ERA5. These findings suggest that the runoff in ERA5 614 

is predominantly influenced by subsurface processes, with precipitation and snowmelt as two 615 

major surface hydrologic fluxes playing a minor role in direct runoff generation. To investigate 616 

this hypothesis, we partition the total runoff to surface runoff and subsurface runoff. The results 617 

show that in ERA5, surface runoff only contributes to 20.8% of the total runoff. In contrast, in 618 

RASM and CTSM, surface runoff accounts for 83.7% and 80.6% of the total runoff, 619 

respectively. This substantial discrepancy in runoff partitioning explains the variation in process 620 

information transfer to runoff generation. 621 

 622 



 623 
Figure 12. Transfer Entropy for ERA5 dataset, CTSM, and RASM. The outer circle is composed of arcs 624 
whose relative lengths correspond to the sum of information received from other sources. The inner 625 
sections are composed of chords, or ribbons, which indicate the direction and magnitude of information 626 
transfer. 627 
  628 



6 Discussion 629 

This study provides a 30-year 4 km historical regional climate simulation and comprehensive 630 

evaluation for Alaska and the Yukon River Basin. This is the first study using CTSM as the land 631 

component in RASM. We evaluated near-surface air temperature and four hydroclimate 632 

variables—precipitation, snowfall fraction, E/P ratio, and streamflow—against multiple 633 

observational datasets, assessing the performance of our RASM configuration for both 634 

hydroclimate and terrestrial hydrology. Specifically, RASM slightly overpredicted mean annual 635 

precipitation with a median relative bias of 14.4% and 16.7% compared to PNWNAmet and 636 

GPCP respectively (Table 3). The high Spearman rank-order correlation coefficients indicate 637 

well-simulated spatial patterns of precipitation (Table 3). Larger biases are observed in the spring 638 

season as well as in specific regions, particularly in the southern coastal mountains, including 639 

Denali, and the northern mountains (Figure 5). The seasonality of air temperature is slightly 640 

dampened in RASM, and the seasonal biases show spatial heterogeneity (Figure 6). 641 

Overestimation of winter air temperature is prominent in the north, southeast interior Alaska, and 642 

the Yukon headwaters while underestimation in summer air temperature is evident in north and 643 

west coasts of Alaska. Compared to ERA5, RASM simulates comparable quantity and 644 

seasonality of snowfall fraction and E/P ratios, and includes complex spatial patterns due to 645 

topography. While streamflow simulation in RASM generally performs well as compared to the 646 

standalone CTSM optimization, discrepancies arise during warm periods because the 647 

meteorology simulated in RASM differs from the meteorological forcing used for CTSM 648 

optimization. Compared to other large regional land-atmosphere coupled regional climate 649 

simulations, the amount of effort focused on surface hydrology simulation and performance 650 

improvement is to our knowledge unprecedented. 651 

 652 

Our results highlight a remaining challenge to maintain the fidelity for both hydroclimate and 653 

terrestrial hydrology simultaneously in regional climate modeling. In previous studies, 654 

optimization of regional climate models successfully improved the simulated representation of 655 

the atmospheric water cycle in the pan-arctic region (Wei et al., 2002) and reduced summer 656 

warm biases in Europe (Bellprat et al., 2016). Comparatively, optimization of the terrestrial 657 

hydrologic cycle, especially runoff, is rare. This study, for the first time, incorporates an 658 

objective optimization of land parameters for streamflow and snow in a multi-decadal regional 659 

climate simulation. We show robust model performance as compared to the standalone land 660 

model. We present two precautionary measures to reduce the chance that our land model 661 

optimization deteriorates the coupled model. Nevertheless, the impacts of land parameters on 662 

land-atmosphere interactions, especially the connectivity among hydrologic and energy fluxes, 663 

remain unclear and are worth further investigation. 664 

 665 

The runoff sensitivity to precipitation (𝜃𝑃) shows a reliable monotonic relationship, indicating 666 

higher precipitation leads to increased runoff. In the Yukon River Basin, both RASM and CTSM 667 

exhibit a similar 𝜃𝑃 value of 0.7 while ERA5 shows a much smaller 𝜃𝑃, which is attributed to an 668 

underestimated runoff in ERA5. Moreover, we found that surface runoff contributes to over 80% 669 

of total runoff in RASM and CTSM, but only accounts for 21% of total runoff in ERA5. The 670 

underestimation of ERA5 runoff in Alaska is likely attributed to an underestimation of surface 671 

runoff. 672 

 673 



The low reliability of climate sensitivity to temperatures may be attributed to the nonlinear 674 

response of runoff generation to temperature changes in cold regions. Runoff generation is 675 

regulated by air temperatures through intricate land processes, including snow accumulation, the 676 

timing and quantity of snowmelt, as well as the partition of precipitation to runoff and 677 

evapotranspiration. With warming, changes in evapotranspiration from soil, canopy, and snow 678 

can offset the influence of increasing precipitation (Newman et al., 2021), leading to larger 679 

uncertainties in runoff generation. 680 

 681 

Finally, the two-way interactions between land and atmosphere in RASM are visualized through 682 

the transfer entropy among hydrologic and surface energy fluxes. The model’s feedback from the 683 

land surface to the atmospheres enables it to capture the impacts of hydrologic fluxes on surface 684 

energy variables, resulting in a higher amount of information received by energy variables in 685 

RASM compared to CTSM or ERA5. Despite the presence of limitations, this analysis serves as 686 

an illustration to demonstrate the different connectivity among pairs of hydrologic and surface 687 

energy variables for RASM, CTSM, and ERA5. It is important to note that we only calculated 688 

lag-1 day transfer entropy over the aggregated Yukon basin, but the connectivity between 689 

variables can be strong at different spatial and temporal scales. Furthermore, we used a simple 690 

single-variate approach, and the multivariate process connectivity is not presented in this study. 691 

Last but not least, the spatial aggregation over a large domain smooths the time series that can 692 

affect the connectivity between variables. For example, in ERA5, shortwave radiation and air 693 

temperatures should theoretically affect ET, but it did not show up in this analysis. Future 694 

research could identify timing differences for process connectivity, explore multivariable 695 

approaches, and investigate more effective sampling methods over a large domain to gain a 696 

deeper and more comprehensive understanding and improve model fidelity.  697 

  698 



7 Conclusion 699 

To provide a high-fidelity hydroclimate and terrestrial hydrology simulation for Alaska, we 700 

leveraged offline land model optimization (Cheng et al., 2023) and iterative testing to improve 701 

RASM simulation. We then conducted a multi-decade simulation (1990-2021) at 4 km grid 702 

spacing using the optimized CTSM, which is novel for large domain regional climate modeling. 703 

Our study marks the first coupling of the CTSM land model into RASM. Evaluated against 704 

multiple observational datasets, this simulation well captures the climate statistics and spatial 705 

distributions of five hydroclimate and terrestrial hydrologic variables, including precipitation, air 706 

temperature, snow fraction, evaporation-to-precipitation ratios, and streamflow. Simulated 707 

precipitation shows major wet bias during the spring season and mostly in northern slopes and 708 

mountainous regions. Simulated air temperatures exhibit compressed seasonality with warm 709 

biases in winter and cold biases in summer. 710 

 711 

Process oriented analyses reveal the drivers of streamflow discrepancies and process 712 

connectivity between offline CTSM and coupled RASM simulations. Compared to CTSM, lower 713 

spring air temperature and longwave radiation simulated by RASM leads to a slower spring 714 

snowmelt, contributing to a delayed timing of peak streamflow in the Yukon River. In both 715 

RASM and CTSM, higher precipitation generally leads to increased runoff while the relationship 716 

between air temperature and runoff exhibits large uncertainty, which can be attributed to the 717 

nonlinear response of runoff generation to temperature changes in cold regions. In addition, by 718 

utilizing information theory, we assessed the feedback from the land surface to the atmosphere in 719 

RASM by finding a higher amount of information received by temperature and energy variables 720 

in RASM compared to CTSM. 721 

  722 



Acknowledgement 723 

The high-resolution climate dataset is archived on the National Science Foundation (NSF) 724 

National Center for Atmospheric Research (NCAR) Research Data Archive (RDA) and can be 725 

accessed through this following DOI, 10.5065/ZPSB-PS82. This project was funded by NSF 726 

Navigating the New Arctic Grant 1928078 and supported by the NSF NCAR, which is a major 727 

facility sponsored by the National Science Foundation under Cooperative Agreement No. 728 

1852977. We would like to acknowledge high-performance computing support from Cheyenne 729 

(https://doi-org.cuucar.idm.oclc.org/10.5065/D6RX99HX) provided by NCAR's Computational 730 

and Information Systems Laboratory, sponsored by the National Science Foundation. We thank 731 

our Indigenous Advisory Council and numerous Tribal and First Nation decision-makers for 732 

providing important insights to help inform the RASM configuration design. Additionally, we 733 

greatly benefited from the following open-source libraries to perform analyses presented in this 734 

study: NumPy (Van Der Walt et al., 2011), pandas (McKinney, 2010), geopandas (Jordahl et al., 735 

2020), xarray (Hoyer & Hamman, 2017), matplotlib (Hunter, 2007), and cartopy (Met Office, 736 

2015). 737 

  738 

https://rda.ucar.edu/datasets/ds614-0/
https://doi-org.cuucar.idm.oclc.org/10.5065/D6RX99HX


Reference 739 

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., 740 

Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., & Nelkin, E. 741 

(2003). The Version-2 Global Precipitation Climatology Project (GPCP) Monthly 742 

Precipitation Analysis (1979–Present). Journal of Hydrometeorology, 4(6), 1147–1167. 743 

https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2 744 

Akperov, M., Rinke, A., Mokhov, I. I., Semenov, V. A., Parfenova, M. R., Matthes, H., 745 

Adakudlu, M., Boberg, F., Christensen, J. H., Dembitskaya, M. A., Dethloff, K., 746 

Fettweis, X., Gutjahr, O., Heinemann, G., Koenigk, T., Koldunov, N. V., Laprise, R., 747 

Mottram, R., Nikiéma, O., … Zhang, W. (2019). Future projections of cyclone activity in 748 

the Arctic for the 21st century from regional climate models (Arctic-CORDEX). Global 749 

and Planetary Change, 182, 103005. https://doi.org/10.1016/j.gloplacha.2019.103005 750 

Behrangi, A., Christensen, M., Richardson, M., Lebsock, M., Stephens, G., Huffman, G. J., 751 

Bolvin, D., Adler, R. F., Gardner, A., Lambrigtsen, B., & Fetzer, E. (2016). Status of 752 

high-latitude precipitation estimates from observations and reanalyses. Journal of 753 

Geophysical Research: Atmospheres, 121(9), 4468–4486. 754 

https://doi.org/10.1002/2015JD024546 755 

Bellprat, O., Kotlarski, S., Lüthi, D., Elía, R. D., Frigon, A., Laprise, R., & Schär, C. (2016). 756 

Objective Calibration of Regional Climate Models: Application over Europe and North 757 

America. Journal of Climate, 29(2), 819–838. https://doi.org/10.1175/JCLI-D-15-0302.1 758 

Bellprat, O., Kotlarski, S., Lüthi, D., & Schär, C. (2012). Objective calibration of regional 759 

climate models. Journal of Geophysical Research: Atmospheres, 117(D23). 760 

https://doi.org/10.1029/2012JD018262 761 



Bennett, A., Nijssen, B., Ou, G., Clark, M., & Nearing, G. (2019). Quantifying Process 762 

Connectivity With Transfer Entropy in Hydrologic Models. Water Resources Research, 763 

55(6), 4613–4629. https://doi.org/10.1029/2018WR024555 764 

Berg, P., Wagner, S., Kunstmann, H., & Schädler, G. (2013). High resolution regional climate 765 

model simulations for Germany: Part I—validation. Climate Dynamics, 40(1), 401–414. 766 

https://doi.org/10.1007/s00382-012-1508-8 767 

Bieniek, P. A., Walsh, J. E., Thoman, R. L., & Bhatt, U. S. (2014). Using Climate Divisions to 768 

Analyze Variations and Trends in Alaska Temperature and Precipitation. Journal of 769 

Climate, 27(8), 2800–2818. https://doi.org/10.1175/JCLI-D-13-00342.1 770 

Blaskey, D., Koch, J. C., Gooseff, M. N., Newman, A. J., Cheng, Y., O’Donnell, J. A., & 771 

Musselman, K. N. (2023). Increasing Alaskan river discharge during the cold season is 772 

driven by recent warming. Environmental Research Letters, 18(2), 024042. 773 

https://doi.org/10.1088/1748-9326/acb661 774 

Bukovsky, M. S., Carrillo, C. M., Gochis, D. J., Hammerling, D. M., McCrary, R. R., & Mearns, 775 

L. O. (2015). Toward Assessing NARCCAP Regional Climate Model Credibility for the 776 

North American Monsoon: Future Climate Simulations. Journal of Climate, 28(17), 777 

6707–6728. https://doi.org/10.1175/JCLI-D-14-00695.1 778 

Cassano, J. J., DuVivier, A., Roberts, A., Hughes, M., Seefeldt, M., Brunke, M., Craig, A., Fisel, 779 

B., Gutowski, W., Hamman, J., Higgins, M., Maslowski, W., Nijssen, B., Osinski, R., & 780 

Zeng, X. (2017). Development of the Regional Arctic System Model (RASM): Near-781 

Surface Atmospheric Climate Sensitivity. Journal of Climate, 30(15), 5729–5753. 782 

https://doi.org/10.1175/JCLI-D-15-0775.1 783 



Cheng, Y., Craig, A., Musselman, K., & Newman, A. (2024). Multi-decadal historical regional 784 

hydroclimate simulation with two mid 21st century Pseudo-Global Warming futures over 785 

Alaska and the Yukon at 4 km resolution [netCDF]. Research Data Archive at the 786 

National Center for Atmospheric Research, Computational and Information Systems 787 

Laboratory. https://doi.org/10.5065/ZPSB-PS82 788 

Cheng, Y., Swenson, S., Hamman, J., Dagon, K., Kennedy, D., Newman, A. J., Lawrence, D., & 789 

Musselman, K. N. (2023). Moving Land Models Toward More Actionable Science: A 790 

Novel Application of the Community Terrestrial Systems Model Across Alaska and the 791 

Yukon River Basin. Water Resources Research, 59(1), e2022WR032204. 792 

https://doi.org/10.1029/2022WR032204 793 

Couvreux, F., Hourdin, F., Williamson, D., Roehrig, R., Volodina, V., Villefranque, N., Rio, C., 794 

Audouin, O., Salter, J., Bazile, E., Brient, F., Favot, F., Honnert, R., Lefebvre, M.-P., 795 

Madeleine, J.-B., Rodier, Q., & Xu, W. (2021). Process-Based Climate Model 796 

Development Harnessing Machine Learning: I. A Calibration Tool for Parameterization 797 

Improvement. Journal of Advances in Modeling Earth Systems, 13(3), e2020MS002217. 798 

https://doi.org/10.1029/2020MS002217 799 

Cox, C. J., Stone, R. S., Douglas, D. C., Stanitski, D. M., Divoky, G. J., Dutton, G. S., Sweeney, 800 

C., George, J. C., & Longenecker, D. U. (2017). Drivers and Environmental Responses to 801 

the Changing Annual Snow Cycle of Northern Alaska. Bulletin of the American 802 

Meteorological Society, 98(12), 2559–2577. https://doi.org/10.1175/BAMS-D-16-0201.1 803 

Gudmundsson, L., Leonard, M., Do, H. X., Westra, S., & Seneviratne, S. I. (2019). Observed 804 

Trends in Global Indicators of Mean and Extreme Streamflow. Geophysical Research 805 

Letters, 46(2), 756–766. https://doi.org/10.1029/2018GL079725 806 



Gutowski Jr., W. J., Giorgi, F., Timbal, B., Frigon, A., Jacob, D., Kang, H.-S., Raghavan, K., 807 

Lee, B., Lennard, C., Nikulin, G., O’Rourke, E., Rixen, M., Solman, S., Stephenson, T., 808 

& Tangang, F. (2016). WCRP COordinated Regional Downscaling EXperiment 809 

(CORDEX): A diagnostic MIP for CMIP6. Geoscientific Model Development, 9(11), 810 

4087–4095. https://doi.org/10.5194/gmd-9-4087-2016 811 

Hamman, J., Nijssen, B., Brunke, M., Cassano, J., Craig, A., DuVivier, A., Hughes, M., 812 

Lettenmaier, D. P., Maslowski, W., Osinski, R., Roberts, A., & Zeng, X. (2016). Land 813 

Surface Climate in the Regional Arctic System Model. Journal of Climate, 29(18), 6543–814 

6562. https://doi.org/10.1175/JCLI-D-15-0415.1 815 

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., 816 

Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., 817 

Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J.-N. (2020). 818 

The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 819 

146(730), 1999–2049. https://doi.org/10.1002/qj.3803 820 

Hlaváčková-Schindler, K., Paluš, M., Vejmelka, M., & Bhattacharya, J. (2007). Causality 821 

detection based on information-theoretic approaches in time series analysis. Physics 822 

Reports, 441(1), 1–46. https://doi.org/10.1016/j.physrep.2006.12.004 823 

Hong, S.-Y., Noh, Y., & Dudhia, J. (2006). A New Vertical Diffusion Package with an Explicit 824 

Treatment of Entrainment Processes. Monthly Weather Review, 134(9), 2318–2341. 825 

https://doi.org/10.1175/MWR3199.1 826 

Hoyer, S., & Hamman, J. J. (2017). xarray: N-D labeled Arrays and Datasets in Python. Journal 827 

of Open Research Software, 5(1). https://doi.org/10.5334/JORS.148 828 



Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science & 829 

Engineering, 9(03), 90–95. https://doi.org/10.1109/MCSE.2007.55 830 

Jakob, C. (2010). Accelerating Progress in Global Atmospheric Model Development through 831 

Improved Parameterizations: Challenges, Opportunities, and Strategies. Bulletin of the 832 

American Meteorological Society, 91(7), 869–876. 833 

https://doi.org/10.1175/2009BAMS2898.1 834 

Janić, Z. I. (2001). Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the 835 

NCEP Meso model (Office Note (National Centers for Environmental Prediction (U.S.)) ; 836 

437). National Centers for Environmental Prediction (U.S.). 837 

https://repository.library.noaa.gov/view/noaa/11409 838 

Jordahl, K., den Bossche, J. V., Fleischmann, M., Wasserman, J., McBride, J., Gerard, J., 839 

Tratner, J., Perry, M., Badaracco, A. G., Farmer, C., Hjelle, G. A., Snow, A. D., Cochran, 840 

M., Gillies, S., Culbertson, L., Bartos, M., Eubank, N., Maxalbert, Bilogur, A., … 841 

Leblanc, F. (2020). geopandas/geopandas: V0.8.1. 842 

https://doi.org/10.5281/ZENODO.3946761 843 

Jorgenson, M. T., Shur, Y. L., & Pullman, E. R. (2006). Abrupt increase in permafrost 844 

degradation in Arctic Alaska. Geophysical Research Letters, 33(2). 845 

https://doi.org/10.1029/2005GL024960 846 

Kennedy, D., Dagon, K., Lawrence, D. M., Fisher, R. A., Sanderson, B. M., Collier, N., 847 

Hoffman, F., Koven, C. D., Kluzek, E., Levis, S., Lu, X., Oleson, K. W., Zarakas, C. M., 848 

Cheng, Y., Foster, A. C., Fowler, M. D., Hawkins, L. R., Kavoo, T., Kumar, S., … 849 

Wood, A. W. (n.d.). The Community Land Model, version 5.1 One-at-a-time Parameter 850 

Perturbation Ensemble. Manuscript in Preparation. 851 



Kennedy, D., Swenson, S., Oleson, K. W., Lawrence, D. M., Fisher, R., Lola da Costa, A. C., & 852 

Gentine, P. (2019). Implementing Plant Hydraulics in the Community Land Model, 853 

Version 5. Journal of Advances in Modeling Earth Systems, 11(2), 485–513. 854 

https://doi.org/10.1029/2018MS001500 855 

Knoben, W. J. M., Freer, J. E., & Woods, R. A. (2019). Technical note: Inherent benchmark or 856 

not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrology and Earth 857 

System Sciences, 23(10), 4323–4331. https://doi.org/10.5194/hess-23-4323-2019 858 

Knoll, L. B., Sharma, S., Denfeld, B. A., Flaim, G., Hori, Y., Magnuson, J. J., Straile, D., & 859 

Weyhenmeyer, G. A. (2019). Consequences of lake and river ice loss on cultural 860 

ecosystem services. Limnology and Oceanography Letters, 4(5), 119–131. 861 

https://doi.org/10.1002/LOL2.10116 862 

Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., 863 

Collier, N., Ghimire, B., van Kampenhout, L., Kennedy, D., Kluzek, E., Lawrence, P. J., 864 

Li, F., Li, H., Lombardozzi, D., Riley, W. J., Sacks, W. J., Shi, M., Vertenstein, M., … 865 

Zeng, X. (2019). The Community Land Model Version 5: Description of New Features, 866 

Benchmarking, and Impact of Forcing Uncertainty. Journal of Advances in Modeling 867 

Earth Systems, 11(12), 4245–4287. https://doi.org/10.1029/2018MS001583 868 

Lawrence, D. M., & Slater, A. G. (2005). A projection of severe near-surface permafrost 869 

degradation during the 21st century. Geophysical Research Letters, 32(24), 1–5. 870 

https://doi.org/10.1029/2005GL025080 871 

Li, Y., Li, Z., Zhang, Z., Chen, L., Kurkute, S., Scaff, L., & Pan, X. (2019). High-resolution 872 

regional climate modeling and projection over western Canada using a weather research 873 



forecasting model with a pseudo-global warming approach. Hydrology and Earth System 874 

Sciences, 23(11), 4635–4659. https://doi.org/10.5194/hess-23-4635-2019 875 

Maraun, D. (2012). Nonstationarities of regional climate model biases in European seasonal 876 

mean temperature and precipitation sums. Geophysical Research Letters, 39(6). 877 

https://doi.org/10.1029/2012GL051210 878 

Marschinski, R., & Kantz, H. (2002). Analysing the information flow between financial time 879 

series. The European Physical Journal B - Condensed Matter and Complex Systems, 880 

30(2), 275–281. https://doi.org/10.1140/epjb/e2002-00379-2 881 

McKinney, W. (2010). Data Structures for Statistical Computing in Python. THE 9th PYTHON 882 

IN SCIENCE CONFERENCE, 56–61. https://doi.org/10.25080/MAJORA-92BF1922-883 

00A 884 

McNeeley, S. M., & Shulski, M. D. (2011). Anatomy of a closing window: Vulnerability to 885 

changing seasonality in Interior Alaska. Global Environmental Change, 21(2), 464–473. 886 

https://doi.org/10.1016/j.gloenvcha.2011.02.003 887 

Mearns, L. O., McGinnis, S., Korytina, D., Arritt, R., Biner, S., Bukovsky, M., Chang, H.-I., 888 

Christensen, O., Herzmann, D., Jiao, Y., Kharin, S., Lazare, M., Nikulin, G., Qian, M., 889 

Scinocca, J., Winger, K., Castro, C., Frigon, A., & Gutowski, W. (2017). The NA-890 

CORDEX dataset (1.0) (1.0) [dataset]. https://doi.org/10.5065/D6SJ1JCH 891 

Met Office. (2015). Cartopy: A cartographic python library with a matplotlib interface. 892 

Mizukami, N., Clark, M. P., Sampson, K., Nijssen, B., Mao, Y., McMillan, H., Viger, R. J., 893 

Markstrom, S. L., Hay, L. E., Woods, R., Arnold, J. R., & Brekke, L. D. (2016). 894 

MizuRoute version 1: A river network routing tool for a continental domain water 895 



resources applications. Geoscientific Model Development, 9(6), 2223–2228. 896 

https://doi.org/10.5194/GMD-9-2223-2016 897 

Monaghan, A. J., Clark, M. P., Barlage, M. P., Newman, A. J., Xue, L., Arnold, J. R., & 898 

Rasmussen, R. M. (2018). High-Resolution Historical Climate Simulations over Alaska. 899 

Journal of Applied Meteorology and Climatology, 57(3), 709–731. 900 

https://doi.org/10.1175/JAMC-D-17-0161.1 901 

Moriasi, D. N., Gitau, M. W., Pai, N., & Daggupati, P. (2015). Hydrologic and Water Quality 902 

Models: Performance Measures and Evaluation Criteria. Transactions of the ASABE, 903 

58(6), 1763–1785. https://doi.org/10.13031/TRANS.58.10715 904 

Musselman, K. N., Addor, N., Vano, J. A., & Molotch, N. P. (2021). Winter melt trends portend 905 

widespread declines in snow water resources. Nature Climate Change, 11(5), Article 5. 906 

https://doi.org/10.1038/s41558-021-01014-9 907 

Newman, A. J., Clark, M. P., Wood, A. W., & Arnold, J. R. (2020). Probabilistic Spatial 908 

Meteorological Estimates for Alaska and the Yukon. Journal of Geophysical Research: 909 

Atmospheres, 125(22), e2020JD032696. https://doi.org/10.1029/2020JD032696 910 

Newman, A. J., Monaghan, A. J., Clark, M. P., Ikeda, K., Xue, L., Gutmann, E. D., & Arnold, J. 911 

R. (2021). Hydroclimatic changes in Alaska portrayed by a high-resolution regional 912 

climate simulation. Climatic Change, 164(1–2), 1–21. https://doi.org/10.1007/S10584-913 

021-02956-X/FIGURES/12 914 

Osterkamp, T. E., & Romanovsky, V. E. (1999). Evidence for warming and thawing of 915 

discontinuous permafrost in Alaska. PERMAFROST AND PERIGLACIAL PROCESSES, 916 

10, 17–37. 917 



Papadimitriou, L. V., Koutroulis, A. G., Grillakis, M. G., & Tsanis, I. K. (2017). The effect of 918 

GCM biases on global runoff simulations of a land surface model. Hydrology and Earth 919 

System Sciences, 21(9), 4379–4401. https://doi.org/10.5194/hess-21-4379-2017 920 

Rasmussen, R., Chen, F., Liu, C. H., Ikeda, K., Prein, A., Kim, J., Schneider, T., Dai, A., Gochis, 921 

D., Dugger, A., Zhang, Y., Jaye, A., Dudhia, J., He, C., Harrold, M., Xue, L., Chen, S., 922 

Newman, A., Dougherty, E., … Miguez-Macho, G. (2023). CONUS404: The NCAR-923 

USGS 4-km long-term regional hydroclimate reanalysis over the CONUS. Bulletin of the 924 

American Meteorological Society, 1(aop). https://doi.org/10.1175/BAMS-D-21-0326.1 925 

Saito, K., Machiya, H., Iwahana, G., Ohno, H., & Yokohata, T. (2020). Mapping simulated 926 

circum-Arctic organic carbon, ground ice, and vulnerability of ice-rich permafrost to 927 

degradation. Progress in Earth and Planetary Science, 7(1), 1–15. 928 

https://doi.org/10.1186/S40645-020-00345-Z/FIGURES/7 929 

Schär, C., Frei, C., Lüthi, D., & Davies, H. C. (1996). Surrogate climate-change scenarios for 930 

regional climate models. Geophysical Research Letters, 23(6), 669–672. 931 

https://doi.org/10.1029/96GL00265 932 

Schreiber, T. (2000). Measuring Information Transfer. Physical Review Letters, 85(2), 461–464. 933 

https://doi.org/10.1103/PhysRevLett.85.461 934 

Skamarock, C., Klemp, B., Dudhia, J., Gill, O., Barker, D., Duda, G., Huang, X., Wang, W., & 935 

Powers, G. (2008). A Description of the Advanced Research WRF Version 3. 936 

https://doi.org/10.5065/D68S4MVH 937 

Stafford, J. M., Wendler, G., & Curtis, J. (2000). Temperature and precipitation of Alaska: 50 938 

year trend analysis. Theoretical and Applied Climatology, 67(1), 33–44. 939 

https://doi.org/10.1007/s007040070014 940 



Stone, R. S., Dutton, E. G., Harris, J. M., & Longenecker, D. (2002). Earlier spring snowmelt in 941 

northern Alaska as an indicator of climate change. Journal of Geophysical Research: 942 

Atmospheres, 107(D10), ACL 10-1. https://doi.org/10.1029/2000JD000286 943 

Tapiador, F. J., Navarro, A., Moreno, R., Sánchez, J. L., & García-Ortega, E. (2020). Regional 944 

climate models: 30 years of dynamical downscaling. Atmospheric Research, 235, 945 

104785. https://doi.org/10.1016/j.atmosres.2019.104785 946 

Van Der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: A structure for 947 

efficient numerical computation. Computing in Science and Engineering, 13(2), 22–30. 948 

https://doi.org/10.1109/MCSE.2011.37 949 

Van Tiel, M., Van Loon, A. F., Seibert, J., & Stahl, K. (2021). Hydrological response to warm 950 

and dry weather: Do glaciers compensate? Hydrology and Earth System Sciences, 25(6), 951 

3245–3265. https://doi.org/10.5194/hess-25-3245-2021 952 

Wang, C., Duan, Q., Gong, W., Ye, A., Di, Z., & Miao, C. (2014). An evaluation of adaptive 953 

surrogate modeling based optimization with two benchmark problems. Environmental 954 

Modelling & Software, 60, 167–179. https://doi.org/10.1016/J.ENVSOFT.2014.05.026 955 

Wei, H., Gutowski, W. J., Vorosmarty, C. J., & Fekete, B. M. (2002). Calibration and Validation 956 

of a Regional Climate Model for Pan-Arctic Hydrologic Simulation. Journal of Climate, 957 

15(22), 3222–3236. https://doi.org/10.1175/1520-958 

0442(2002)015<3222:CAVOAR>2.0.CO;2 959 

White, J. H. R., Walsh, J. E., & Thoman Jr, R. L. (2021). Using Bayesian statistics to detect 960 

trends in Alaskan precipitation. International Journal of Climatology, 41(3), 2045–2059. 961 

https://doi.org/10.1002/joc.6946 962 



Wood, A. W., Leung, L. R., Sridhar, V., & Lettenmaier, D. P. (2004). Hydrologic Implications 963 

of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs. 964 

Climatic Change 2004 62:1, 62(1), 189–216. 965 

https://doi.org/10.1023/B:CLIM.0000013685.99609.9E 966 

Xue, L., Wang, Y., Newman, A. J., Ikeda, K., Rasmussen, R. M., Giambelluca, T. W., Longman, 967 

R. J., Monaghan, A. J., Clark, M. P., & Arnold, J. R. (2020). How will rainfall change 968 

over Hawai‘i in the future? High-resolution regional climate simulation of the Hawaiian 969 

Islands. Bulletin of Atmospheric Science and Technology, 1(3), 459–490. 970 

https://doi.org/10.1007/s42865-020-00022-5 971 

 972 

 973 


