Shihan $\mathrm{Li}^1,$ Richard E Zeebe², and Shuang Zhang¹

¹Department of Oceanography, Texas A&M University ²School of Ocean and Earth Science and Technology, University of Hawaii at Manoa

March 26, 2024

PP33D-1554

Tracking carbon cycling with iLOSCAR: an extension of the LOSCAR model with double-inversion algorithm

. Introduction

1.1 Perturbed carbon cycle

- 2022 C Emission: ~10 Gt
- Since 1850
- pCO₂: 280 420 ppmv
- 1.1°C increase
- Need to deciph carbon cycle dynamics
- Observational NOT enough

1.2 Geologic hyperthermal events

- Anomalous δ^{13} C excursion \rightarrow Carbon cycle perturb
- Rapid global warming
- Trigger: large carbon injection \rightarrow Modern analog

Figure 1. Inte records of cli conditions, c cycle perturb and geologic hyperthermal during the M Paleogene hyperthermal (He et al., 20

1.3 Carbon emission trajectory

- Left: emission mass \rightarrow How much carbon released
- Right: isotopic signature \rightarrow What is the carbon source

Figure 2. An of carbon em trajectory acro specific event

1.4 Current method

Combination of proxy records and the carbon cycle • $x_{model}(t) = f(fcinp(t))$

Shihan Li¹, Richard E. Zeebe², Shuang Zhang¹

	2	. Model developm	er	nt	
ner the	•	1 Base model: LOSCAR Atmosphere, Ocean, Sediments Efficient: several seconds for		A	
data		a 200-kyr experiment Figure 3. Architecture of the			
oation	2	LOSCAR model (Zeebe, 2012).		2500 -	• F
egrated imate arbon oations	i.	Divide the proxy data to n intervals and assume a constant emission rate within each interval, i.e.:)	2000 - mdd 1500 - DOO - 1000 -	
al l events esozoic–		$\begin{aligned} fcinp(t) &= k_1 & (if \ t_0 \leq t \leq t_1) \\ &= k_2 & (if \ t_1 < t \leq t_2) \\ &\dots \\ &= k_n & (if \ t_{n-1} < t \leq t_n) \end{aligned}$		500 -	 re 4
l events)23) ? rce?	ii. iii.	Start from the (t_0, t_1) interval and k_1 is the only free parameter that can control the modeled pCO ₂ at $t = t_1$ Employ numerical methods to determine k_1	iv. v.	record Sav $\vec{y}(t)$ nex Iter unti	ds f /e t $_1$) a t in ate
example hission	3	. Model validation			
oss a t.	Ev •	yent: End Permian Mass Extin 5-6‰ δ ¹³ C decrease Low-latitude 8-10°C warming	nct	ion (~	-25 251
model		Larget mass extinction			251 25 ⁷
roxy		in the Phanerozoic (~90% or marine species)			25
	•	 Recent emission trajectory est by Wu et al., 2023 c-GENIE (intermediate) 	tima	ate	252 N
jectory		complexity) based inversior	า		Fig

• Constraints: pCO_2 and $\delta^{13}C$ Ideal for model intercomparison

¹Department of Oceanography, Texas A&M University, College Station, Texas 77840 | ²School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA

. An example of pCO_2 or the inversion model.

- he corresponding as the initial \vec{y} for the $terval(t_1, t_2)$
- the same process is solved

 $\delta^{18} O_{_{apatite}}$ (‰ VSMOW)

and $\delta^{18}O$ records across the EPME, after Corso et al., 2022.

Results

- Modeling results align with proxy pCO_2 and sea surface δ^{13} C data
- Results mirror findings from Wu et al., 2023
 - ~21,000 Gt C emission
- Running time: 13.6 min vs **1-2** months in cGENIE

Figure 6. Inversion modeling results for the EPME.

. Case study

Event: Kasimovian–Gzhelian boundary (~304 Ma) • $\delta^{13}C$ decreased, pCO₂ increased, and global warming (Chen et al., 2022)

- Paleo-glacial state
- Inversion experiment
- Input: pCO₂, Sea surface δ^{13} C
- Modeling results align with proxy records
- ~9,000 Gt C emission
- Two new features
 - Negative C emission \rightarrow Organic C burial
 - A gradual decrease in $\delta^{13}C_{source}$

5. Summary and outlook

iLOSCAR development

- tutorial available
- A reliable, efficient and user-friendly model tool • Open-source, <u>https://github.com/Shihan150/iloscar</u>,
- Better constrain the carbon emission trajectories in geologic hyperthermal events

Outlook

- Multiple proxies inversion
- Sensitivity test of inversion results on the model settings

