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Abstract 45 
 46 
Enhanced rock weathering (EW) has garnered increasing interest as a promising technique for 47 
durable carbon dioxide removal, with a range of potential co-benefits including increased soil pH 48 
and nutrient release. However, the impacts of EW on river chemistry and the potential loss of 49 
initially captured CO2 during river transport remain poorly constrained. The current lack of tools 50 
for robustly predicting the effect of riverine degassing on the EW life cycle undermines the use of 51 
this practice as a carbon mitigation strategy. Here, we present results from a first-of-its-kind 52 
dynamic river network model designed to quantify the impact of EW on river carbonate chemistry 53 
in North American watersheds. We map key water quality parameters across the river network of 54 
North America using machine learning, and use a dynamic river network model to simulate 55 
changes in river carbonate chemistry and carbon degassing during EW. Our model predicts low 56 
carbon loss (<5%) from river networks and limited changes to carbonate mineral saturation states 57 
for many of the river pathways explored here. However, there are some instances in which carbon 58 
degassing is significantly higher (>15%) and it is possible to induce large changes in carbonate 59 
saturation states, indicating that riverine carbon storage and the impacts of EW on river chemistry 60 
must be evaluated in a deployment-specific context. Although there remains uncertainty in the 61 
impact of EW on stream/river chemistry, our approach represents a step forward in the 62 
development of tools for quantifying the impacts of carbon cycling in downstream catchments on 63 
the overall EW lifecycle.  64 
 65 
Significance Statement 66 
 67 
Enhanced rock weathering (EW) has emerged as a promising long-term carbon dioxide removal 68 
(CDR) method with potential soil and crop co-benefits. However, its impact on river chemistry 69 
and the potential loss of captured CO2 during river transport is unclear. We have developed a 70 
dynamic river network model to evaluate EW's effects on North American watersheds. Following 71 
EW application to a preliminary example set of locations, many rivers show low carbon loss and 72 
limited carbonate saturation state change. However, regional variation exists, emphasizing the 73 
need for deployment-specific evaluation and further development of process-based models of 74 
stream/river carbon cycling. This study provides a step forward in the development of tools for 75 
quantifying the impact of EW on river systems, supporting the potential for large-scale EW, and 76 
informing CDR strategy decisions and carbon markets. 77 
 78 
 79 

Main Text 80 
 81 
Introduction 82 
 83 
There is growing recognition of the need for durable (long-duration) carbon dioxide removal (CDR) 84 
to meet climate targets in the coming century (1–3). Terrestrial enhanced rock weathering (EW) 85 
— the intentional application of crushed alkaline (carbonate or silicate) rock to soil to drive 86 
fixation of atmospheric CO2 as dissolved bicarbonate (HCO3-) — has been suggested to offer a 87 
scalable, relatively low cost form of CDR with durability on thousand-year timescales  (4–8). The 88 
potential magnitude of carbon removal through EW, though still poorly defined, may rival or 89 
surpass terrestrial ecosystem sequestration (e.g., via afforestation or soil organic carbon storage) 90 
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and is potentially >5 gigatons of CO2 (GtCO2; 109 tons) per year (5, 9–11). Because EW uses 91 
existing technology and infrastructure, it is ready to deploy and has potential for achieving 92 
relatively rapid scale alongside other efforts to help meet net-zero greenhouse gas emission goals. 93 
EW's potential for widespread adoption is further enhanced by a number of possible co-benefits, 94 
including enhancing crop growth via an increase in soil pH and improved availability and uptake 95 
of macro and micronutrients, reducing CO2 emissions associated with traditional fertilizer 96 
production, and possible mitigation of soil emissions of nitrous oxide (e.g., 12–14). 97 
 98 
Despite the potential of EW as an effective CDR strategy, there are still significant uncertainties 99 
that prevent generation of robust carbon removal from this practice, including the lack of a 100 
framework to track the downstream fate of carbon captured at the site of weathering. Foremost, 101 
there is no existing framework for tracking the dynamics of solute transport and storage through 102 
river networks following EW deployment. Although recent work has explored the first-order 103 
response of carbonate mineral saturation in river systems and its implications for carbon leakage 104 
(11, 15, 16), it is likely that the riverine carbon and solute transport following EW deployment will 105 
be impacted by CO2 gas exchange between the river and the atmosphere upon mixing of multiple 106 
reach-scale river segments with varying dissolved inorganic carbon (DIC) and alkalinity (ALK) 107 
content (17). Integrated over the catchment scale, this process has the potential to significantly 108 
impact the overall efficacy of EW in sequestering atmospheric CO2. In addition, existing work has 109 
focused on individual and disconnected rivers or watersheds, and there is no existing framework 110 
for tracking EW solute fluxes across catchment scales that incorporates river network topology 111 
and reach-scale interconnections in a time-dependent manner.  112 
 113 
Here, we develop a dynamic river network (DRN) model that is designed to track the transport and 114 
transformation of EW products through river systems from the reach to the continent scale. The 115 
DRN model builds upon existing river network delineation (e.g., 18, 19) and uses comprehensive 116 
data sources, machine learning methods, and reaction-transport principles to achieve predictions 117 
of key river hydrochemistry parameters following EW deployment. We focus here on tracking the 118 
impacts of EW on the North American rivers, but once fully developed and validated the 119 
framework can in principle be applied to any region of interest given rapid advances in the global 120 
reach of digital elevation models (DEMs) and river network data. 121 
 122 
Building the DRN model framework 123 
 124 
There are four key steps in constructing the DRN model (Fig. S1). First, we compile key water 125 
quality parameters from existing river stations across the contiguous United States (CONUS). 126 
Second, we build the river network topology by connecting river segments that either flow through 127 
the CONUS or receive water from rivers flowing through the CONUS. We define this set of river 128 
segments as our North American river network. Third, we use machine learning to predict the key 129 
water quality parameters for the whole North American river network based on the discrete water 130 
quality dataset and their corresponding watershed properties as a training set. Lastly, we construct 131 
the DRN model based on the predicted key water quality parameters, river 132 
hydrology/geomorphology, and reconstructed pCO2 values from prior analysis. Once configured, 133 
this DRN model can then be used to dynamically track river responses to introduction of solutes 134 
from EW. 135 
 136 
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To establish the baseline chemistry (before implementing EW) of North American rivers, we 137 
assimilate hydrogeochemistry data for the CONUS from the United States Geological Survey 138 
(USGS) (20), including comprehensive data for ALK, Ca, pH, salinity, and water temperature (Fig. 139 
S2). Based on these parameters, the monthly baseline carbonate saturation state values (W) for the 140 
CONUS rivers can be calculated (Fig. S3). To interpolate the spatially disconnected 141 
hydrogeochemistry data into a seamless reach-scale river network across North America, we first 142 
extract North American river network and topology data from the Global Reach-scale A priori 143 
Discharge Estimates for SWOT (GRADES) river network (18). This extensive network offers 144 
detailed global river reach topology and morphology (such as channel slope), along with daily 145 
discharge estimates at the reach scale over a 35-year period. Based on GRADES, we determine 146 
the monthly river surface area and volume (Fig. S4) of each river segment (Materials and Methods). 147 
We then employ a random forest (RF) machine learning algorithm, which can predict key water 148 
quality parameters (ALK, Ca, salinity, and water temperature) throughout the North American 149 
river network from compiled North American watershed parameters (i.e., climate-hydrology 150 
parameters, lithology, land cover, geomorphology, and soil properties) (Fig. S5-S8). We 151 
subsequently merge the water quality parameters predicted by the RF model, together with river 152 
discharge, surface area, and volume, with the river pCO2 values reconstructed in prior work by ref. 153 
(19) to form a single consolidated dataset. This dataset serves two purposes: first, to compute the 154 
background monthly carbonate system (for example, DIC and carbonate saturation state) and CO2 155 
degassing flux for each river segment across North America; and second, to be utilized 156 
subsequently in the DRN model. 157 

 158 
After consolidating the river network data, we proceed to construct a system of ordinary 159 
differential equations (ODEs) (Eq. 1–4) tracking the carbon budget in each discrete river segment. 160 
This ODE system (the DRN model) treats each river segment as a single reservoir and explicitly 161 
tracks tracer fluxes (DIC, ALK, Ca, and salinity) through and between reservoirs following EW 162 
implementation: 163 
 164 

𝑑𝐷𝐼𝐶
𝑑𝑡 = 𝐹!"_$%& − 𝐹'()*_$%& − 𝐹'+,-.._$%& + 𝐹(/0+1_$%& +	𝐹23_$%& 	(1) 165 

 166 
𝑑𝐴𝐿𝐾
𝑑𝑡 = 𝐹!"_456 − 𝐹'()*_456 + 𝐹(/0+1_456 +	𝐹23_456 	(2) 167 

 168 
𝑑𝐶𝑎
𝑑𝑡 = 𝐹!"_&- − 𝐹'()*_&- + 𝐹(/0+1_&- 	+ 	𝐹23_&-	(3) 169 

 170 
𝑑𝑆𝑎𝑙𝑖𝑛𝑖𝑡𝑦

𝑑𝑡 = 𝐹!"_7-89*9/: − 𝐹'()*_7-89*9/: + 𝐹(/0+1_7-89*9/: 	+ 	𝐹23_7-89*9/:	(4) 171 

  172 
where 𝐹!" terms trace the flux from the joining upstream reach, 𝐹'()* terms trace the flux flowing 173 
out of the current reach, 𝐹(/0+1 terms represent “residual” partitioning fluxes within each reach 174 
(implicitly including carbonate precipitation and net carbon metabolism), which can be solved 175 
inversely using a mass balance approach (Materials and Methods), and 𝐹23 traces the solute flux 176 
derived from EW. The DIC mass balance contains an additional term — 𝐹'+,-..  — which 177 
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represents the carbon exchange flux between a given river reach and the atmosphere and can be 178 
calculated using the following equation. 179 
 180 

𝑓𝐶𝑂; = 𝑘 ∙ ([𝐶𝑂;]1 − [𝐶𝑂;]-)	(5) 181 
 182 
where [𝐶𝑂;]1 represents the CO2 concentration in river, [𝐶𝑂;]- represents the CO2 concentration 183 
in river that is in equilibrium with the atmosphere, and k represents the gas transfer velocity at the 184 
water–air interface. The k value for each river segment is quantified based on its flow regime (low- 185 
vs. high-energy streams) using channel slope, flow velocity, and water temperature as parameters 186 
(21–23) (Materials and Methods). 187 

 188 
The ODE system (Eq. 1–4) allows us to track dynamic changes to river chemistry in any 189 
downstream reach in response to the input of EW products into any river segment. Coupling the 190 
dynamic evolution of DIC, ALK, Ca, and salinity with other river properties (e.g., water 191 
temperature, surface area) allows us to solve the complete system of carbonate species, the 192 
carbonate saturation state, and carbon degassing flux for each river reach through time. 193 
Subsequently, the cumulative carbon leakage with time for each river flow path can be calculated. 194 
(Materials and Methods). 195 
 196 
Tracking river responses to EW using the DRN model 197 

Prior to deploying our DRN model to simulate the river responses to EW, we first assess the 198 
model’s ability to capture background monthly fluctuations in river chemistry. As a case study, we 199 
use the longest Mississippi flow path to compare model predictions with actual monthly river 200 
signals for randomly chosen river segments. Encompassing a broad spectrum of spatial scales, 201 
diverse lithological characteristics, and varied climatic conditions, the Mississippi river and its 202 
watershed function as a multifaceted natural laboratory. Coupled with its extreme river data density 203 
(24), this flow path provides a useful baseline for validating the performance of our DRN model. 204 
We run the model from day 0 for each river segment along the Mississippi flow path for two years 205 
without any EW input, utilizing a time step of 0.1 day, then compare the modeled DIC and ALK 206 
time series with the background monthly DIC and ALK values from empirical data. 207 
 208 
We next introduce EW solutes into a randomly selected river segment in North America and run 209 
our DRN model to track the downstream river chemistry change and carbon degassing (e.g., 210 
carbonate saturation state and carbon degassing flux). The model outcome also enables us to 211 
monitor integrated carbon leakage during the transport of EW solutes along the entire flow path. 212 
In our simulation, basalt serves as the EW feedstock. Owing to its fast reaction rate, relatively high 213 
Mg and Ca content, and widespread availability, basalt is often chosen as the primary rock type 214 
for EW applications (5, 25). After basalt is spread to the watershed of river segment, we assume it 215 
dissolves congruently and all dissolved solutes enter the selected river segment. The dissolution 216 
rate is set as 1 ton of basalt per hectare per year in our baseline scenario, a reasonable assumption  217 
that is comparable to previous modeling and field studies (5, 9, 26). We then multiply this assumed 218 
dissolution rate by the watershed area of the selected river segment to determine the total annual 219 
input of basalt solutes into the river segment. From this, the daily input of basalt solute into the 220 
river segment is derived and fed into our DRN model. Notably, applying this dissolution rate to 221 
the global land surface would result in a global basalt dissolution flux of 15 Gt/yr.  Although this 222 
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global enhanced basalt dissolution rate falls within the range of recent estimates of the global river 223 
capacity to transport dissolved from basalt weathering without inducing carbonate precipitation 224 
(11), we do not advocate for the likelihood of any particular scenario here. Instead, this value is 225 
only meant to illustrate a scenario of relatively large-scale EW deployment. We also emphasize 226 
here that the basalt dissolution rate adopted in this study is not determined by mechanistic reaction 227 
kinetics. However, the DRN model is designed to be flexibly coupled with solute fluxes derived 228 
from field measurements or reaction-transport models of soil biogeochemistry. 229 
 230 
After setting up the EW input to the selected river segment, we run our DRN model over 2 years 231 
to determine the changes in river chemistry and carbon leakage for the whole flow path through 232 
time. To examine the regional differences in carbon leakage due to incoming EW solutes, we 233 
repeated the model simulation with 100 different random river segments. These 100 different river 234 
segments are sampled with equal probability from all North American river segments and broadly 235 
cover the climatic and hydrogeochemical heterogeneity of the North American continent. For each 236 
river segment, we apply basalt to its corresponding watershed and set the basalt dissolution rate at 237 
1 ton per hectare per year in the baseline scenario. This rate is then multiplied by the watershed 238 
area of the river segment (Fig. S9A) to calculate the total annual input of basalt solutes into the 239 
river segment (Fig. S9B). Our DRN model is run over 2 years for each segment to assess the river 240 
chemistry change and carbon leakage through time. In total, we conduct 100 DRN model runs over 241 
the North American river network. 242 
 243 
Sensitivity tests of the DRN model 244 

We conduct 10 sensitivity tests of the DRN model to assess the impact of river discharge and gas 245 
transfer velocity (k) values on the simulated carbon leakage rate across the river network. First, we 246 
randomly sample the monthly discharge values for each river segment 10 times, adhering to a 247 
normal distribution based on the mean and standard deviation provided by GRADES. Concurrently, 248 
k values are recalculated for each set of resampled discharge values (see Materials and Method for 249 
the relationship between k and discharge). We then reconstruct the DRN model and perturb it with 250 
EW at each of the selected 100 sites, employing each set of resampled discharge values and the 251 
recalculated k values. The carbon leakage from these 10 iterations is quantified and compared to 252 
the DRN model output for the baseline scenario. We also explore two additional basalt dissolution 253 
scenarios — targeting 0.5 ton of basalt dissolved per hectare per year and 1.5 ton of basalt dissolved 254 
per hectare per year, respectively — to test model sensitivity to variations in the magnitude of EW. 255 
We define the 0.5 ton as the low scenario and the 1.5 ton as the high scenario.  256 
 257 
 258 
Results and Discussion 259 
 260 
River chemistry and carbon degassing in North America 261 

Our compiled river chemistry data provide broad spatial coverage across the CONUS, 262 
comprehensively representing its geographical diversity (Fig. S3). The prior distribution of 263 
carbonate saturation state values (W) in U.S. rivers is strongly right-skewed (Fig. S3). In January, 264 
84% of the Ω values are below 5, and 96% are below 10; in July, these numbers are 76% and 90%, 265 
respectively. The slightly higher W values in the summer reflect the aggregate impacts of seasonal 266 
shifts in river chemistry and hydroclimatic parameters. In particular, increased temperature 267 
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(leading to lower CO2 solubility), accelerated background chemical weathering in watersheds (and 268 
thus greater alkalinity flux into rivers), and human activities (intensified agricultural practices and 269 
wastewater discharge) all impact seasonal shifts in W, and these will vary based on the specific 270 
geography and ecology of each river segment. Across all months, 81% of the Ω values are below 271 
5, and 93% are below 10. 272 
 273 
The RF model performs reasonably well at predicting key water quality properties at the reach 274 
scale from assimilated USGS gauging stations (Fig. S5-S8). For all target variables (i.e., ALK, Ca, 275 
salinity, and water temperature), the trained model produces R2 > 0.75 when applied to the test 276 
data, suggesting that our framework is capable of explaining more than 75% of the inherent 277 
variability in the target variables of unobserved river stations. By utilizing the consolidated dataset 278 
that includes river ALK, Ca, salinity, and water temperature predicted by the RF model, along with 279 
the river channel slope, discharge, surface area, volume, and pCO2 values, we can solve the whole 280 
carbonate system (for example, DIC and CO32-) for each river segment and reconstruct the monthly 281 
carbon degassing flux and carbonate saturation states across the North American river network 282 
(Fig. 1). The calculated carbon degassing flux reveals a considerable degree of spatial 283 
heterogeneity and strong temporal fluctuations (Fig. 1A,C). For example, the degassing flux varies 284 
spatially among segments from -0.02 to 19 gC m-2 d-1 and between 5 x 10-7 to 31 gC m-2 d-1 for 285 
January and July, respectively. The degassing flux observed in July generally exceeds that in 286 
January, consistent with ref. (19), which can be linked to higher river pCO2 levels and elevated gas 287 
transfer velocity during summertime, as well as seasonal variations in watershed hydrology. 288 
Similarly, the reconstructed Ω values across North America exhibit substantial spatial and temporal 289 
variation. Values in July typically surpass those in January (Fig. 1B,D). Overall, the distribution 290 
of Ω values is right skewed, with the majority falling below 10 — comprising 84% in January and 291 
80% in July. These low background Ω values suggest a priori that the North America river network 292 
possesses a significant capacity to assimilate EW solutes without inducing significant net 293 
carbonate precipitation, as carbonate precipitation in river waters tends to be negligible when Ω is 294 
below ~10, and in many cases insubstantial carbonate precipitation is observed in systems with W 295 
values well above 10 (16, 27–29).  296 
 297 
 298 
Model performance in reconstructing background river chemistry and carbon degassing 299 

We observe close correspondence between DRN model predictions and background monthly 300 
dissolved ALK and DIC (which in turn constrain the carbonate system) for the 1st, 200th, 400th, 301 
600th, and 771st river segments along the longest Mississippi flow path (Fig. S10). Specifically, the 302 
monthly averaged relative error for DIC ranges from 0.012% to 0.14% for our benchmark 303 
segments. For ALK, the range is also 0.012% to 0.14% for the same segments. This agreement 304 
indicates the 𝐹(/0+1 terms in Eq. 1-4 are solved accurately and our DRN model could reconstruct 305 
the background river chemistry before any ERW input. Comparison of predicted monthly carbon 306 
degassing with observation-based estimates (e.g., calculated gas exchange fluxes based on discrete 307 
solute measurements) for river segments in central Connecticut and New Hampshire (30, 31) 308 
yields an R2 = 0.7 (Fig. S11). Although our predicted values and the observation-based estimates 309 
are generally in agreement, measurement-based estimates still bear large uncertainty (as evidenced 310 
by the big error bar in Fig. S11), making the comparison with model predictions challenging. 311 
Comprehensive empirical constraints on stream/river CO2 gas exchange for validation of this and 312 
other predictive models of inland water CO2 cycling is an obvious future research topic. 313 
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 314 
River leakage following EW and the controlling factors 315 

With EW applied at each of the 100 random sites (Fig. 2A) individually over 2 years, the DRN 316 
model tracks the downstream responses for each flow path through time. As expected, the longer 317 
flow paths tend to exhibit a higher predicted total carbon degassing flux (Fig. S12). However, 318 
cumulative carbon leakage, defined as the ratio of additional carbon degassed from the river to the 319 
atmosphere compared with carbon degassed in the background state relative to the total DIC added 320 
to the headwater following the EW application (Materials and Methods), is generally below 5% 321 
for the baseline scenario. The cumulative leakage experiences a steep increase at the beginning of 322 
the model simulation and then remains relatively unchanged throughout the simulation period (Fig. 323 
2B). After applying EW for durations of 6, 12, 18, and 24 months, the percentages of flow paths 324 
with cumulative carbon leakage rates < 5% are 91%, 99%, 93%, and 94%, respectively (Fig. 2C). 325 
Two flow paths out of the 100 simulated here exhibit significantly higher leakage rates. 326 
Specifically, path 1 experiences carbon leakage approaching 20% and path 2 exceeds 5% carbon 327 
leakage for the majority of the model simulation period. The maximum cumulative leakage rate 328 
for the baseline scenario stands at 20.3%. The additional 10 sensitivity tests associated with this 329 
scenario reveal carbon leakage patterns closely aligned with those observed in the initial baseline 330 
output (Fig. S13). Across the 100 flow paths, the maximum cumulative carbon degassing fluctuates 331 
between approximately 20.2% and 23.6% for these tests, with most flow paths showing low carbon 332 
leakage throughout the simulation period. After 24 months, 93% of river flow paths exhibit carbon 333 
leakage below 5% in the 10 sensitivity tests. Similarly, the low and high scenarios demonstrate 334 
carbon leakage patterns that are consistent with the baseline scenario (Fig. S14). We also observe 335 
that carbon leakage is smaller in the low scenario compared to the baseline scenario, while carbon 336 
leakage is higher in the high scenario compared to the baseline scenario. 337 
 338 
The median carbonate saturation state (Ω) for each of the flow paths in the baseline scenario 339 
remains low and is largely unaltered after EW application when compared with the background 340 
state at each duration (Fig. 2D). However, much like the seasonal fluctuations observed in the 341 
background data, the carbonate saturation state is higher overall during summer months (after 6 or 342 
18 months) than winter months (after 12 or 24 months) (Fig. 2D), which is potentially attributable 343 
to increased temperature, accelerated background chemical weathering in watersheds, and human 344 
activities. After the continuous application of EW for either 6 or 18 months, approximately 66% 345 
of the river flow paths displayed median Ω values less than 10, and approximately 92% displayed 346 
Ω values less than 15. In contrast, following 12 or 24 months of continuous EW application, around 347 
86% of all river segments exhibited median Ω values below 10, and approximately 97% displayed 348 
Ω values less than 15. Nonetheless, some flow paths showed extremely high Ω values (Ω  > 100), 349 
particularly in the first sediments downstream of EW deployment (Fig. S15), indicating a clear 350 
need for a better understanding of calcium carbonate formation and recycling in bedload sediments 351 
under transient extremes in carbonate saturation state. 352 
 353 
Our study indicates a strong positive association between the median cumulative carbon leakage 354 
rates and median carbonate saturation states across flow paths for sustained durations 355 
encompassing 6, 12, 18, and 24 months (Fig. S16A). This relationship predominantly originates 356 
from the strong positive correlation between alkalinity and carbonate saturation states in the river 357 
(Fig. S16B), and the impact of alkalinity on carbon degassing. We argue that the EW DIC:ALK 358 
ratio and their absolute amounts, coupled with the unique hydrological attributes of the river 359 
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segments, control the dynamics of carbon leakage rates during EW implementation. Implementing 360 
an EW input with a DIC:ALK ratio of 1, as adopted by this study (Materials and Methods), will 361 
lead to an increase in the pCO₂ value in the river, as dictated by the thermodynamic relations 362 
involving DIC, ALK, and the equilibrium fluid pCO₂ (Fig. S17). Consequently, the river will shift 363 
towards more carbon degassing, resulting in a leakage of carbon from the river system (Fig. 2B). 364 
Furthermore, larger input of DIC and ALK will result in commensurately greater elevation in 365 
riverine pCO₂ (Fig. S17), fostering increased degassing and, consequently, enhanced carbon 366 
leakage. The elevated leakage rates exhibited by the two flow paths discussed above (Fig. 2B) can 367 
be explained by the temporal patterns of alkalinity in those river segments (Fig. S18A), which are 368 
in turn governed by the ratio of the alkalinity flux to the flow path volume over time (Fig. S18B). 369 
Similarly, the varying carbon leakage rates across the three basalt dissolution scenarios (Fig. S14) 370 
can also be attributed to differences in the alkalinity fluxes into the river segments, with higher 371 
leakage rates associated with higher alkalinity flux. 372 
 373 
Being the recipient of basalt dissolution products, the first river segment is poised to respond more 374 
swiftly to EW applications, making it an ideal focal point for examining the interactions between 375 
EW applications and river responses. The fluctuation in a river segment's alkalinity can be 376 
modulated by various factors including the alkalinity input flux and the river flow dynamics. Not 377 
surprisingly, after alkalinity injection, we observe a positive correlation (r = 0.58) between the 378 
alkalinity input flux and the shift in alkalinity, relative to the concurrent background state, in the 379 
first segment (Fig. S19A). At the same time, we observe a strong negative correlation (r = -0.76) 380 
between the segment volume and the shift in alkalinity (Fig. S19B). Theoretically, segments with 381 
either a smaller volume or a higher influx of basalt dissolution products from EW will exhibit a 382 
more pronounced response due to a more dramatic increase in the ALK (as well as DIC) 383 
concentration. Here, a surge in alkalinity in the first segment is directly associated with elevated 384 
leakage rates after day 1 (r = 0.81; Fig. S20). This rapid response of the first segment to the 385 
incoming EW solutes also accounts for the sharp increase in carbon leakage rate observed at the 386 
onset of our model simulation (Fig. 2B). In summary, our findings suggest that carbon leakage is 387 
predominantly controlled by both EW input fluxes and the hydrological conditions of individual 388 
river segments, with seasonal variations in flow dynamics playing a significant role in determining 389 
fluctuation in carbon leakage rate across systems. 390 
 391 
Spatial heterogeneity of river leakage and river chemistry following EW 392 

Following the HydroSHEDS watershed delineation scheme (32), we subdivide the river flow paths 393 
explored here into seven watershed regions across North America—Middle, North, Northeast, 394 
Northwest, South, Southeast, and Southwest (Fig. 3). This allows us to quantify the variations in 395 
cumulative carbon leakage rate and carbonate saturation state across these regions. The median 396 
cumulative carbon leakage rate of the flow paths after 24 months of EW application in our 397 
randomized deployment scheme increases in the following order: Southeast (0.6%), Northeast 398 
(1.4%), North (1.7%), Northwest (2.5%), Middle (2.8%), South (4.7%), and Southwest (4.9%) 399 
(Fig. 3A). The median carbonate saturation state of the flow paths increases in a similar order: 400 
Southeast (0.02), Northeast (0.9), Northwest (1.9), North (3.6), Middle (4.0), Southwest (9.1), and 401 
South (10.3) (Fig. 3B). Our study finds a positive correlation between median cumulative carbon 402 
leakage rates and median carbonate saturation states in various regions (Fig. S21). This finding 403 
aligns with the observed positive correlation between carbon leakage rates and carbonate 404 
saturation states across individual flow paths (Fig. S16A), supporting the strategic selection of 405 
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river watersheds with low initial carbonate saturation for real-world EW application. Such rivers 406 
not only accommodate EW products more effectively but also exhibit lower carbon leakage, 407 
maximizing EW's net impact on atmospheric CO2 sequestration. The distribution of cumulative 408 
carbon leakage rates is irregular both within each region and among different regions (Fig. 3C), 409 
implying significant heterogeneity in river hydrochemistry and watershed properties. Notably, the 410 
southwest region, which displays the highest median carbon leakage rate, also encompasses the 411 
two flow paths that exhibit the highest carbon leakage rates among the 100 flow paths studied here 412 
(Fig. 2B). This phenomenon is likely to be attributed to the pronounced evapotranspiration and dry 413 
conditions in the southwest, which lead to diminished river flow and storage, thereby amplifying 414 
the impact of EW on solute chemistry and facilitating higher leakage rates. Spatial heterogeneity 415 
is also evident in the carbonate saturation state of all river segments, both within each region and 416 
across different regions (Fig. 3D). This strong heterogeneity in carbonate saturation state and river 417 
leakage rate indicates a need to use deployment-specific information for any EW project 418 
attempting to create carbon offsets, as specific deployment regions and flow paths can potentially 419 
be characterized by much larger CO2 degassing than the aggregate statistics would imply.  420 
 421 
Implications for evaluating river/stream CO2 leakage in EW deployments 422 

In aggregate, our results suggest limited carbon leakage during riverine carbon transport and 423 
relatively low carbonate saturation state in the river network during EW application. Nonetheless, 424 
spatial heterogeneity is evident and non-trivial carbon leakage in rivers is ubiquitous, and in some 425 
cases can be large, such that any compensatory claims on CO2 emissions made based on the 426 
generation of EW-based carbon credits need to explicitly take this carbon loss into account or 427 
measure it empirically. Although the current DRN framework does not explicitly account for 428 
changes in carbonate precipitation resulting from the addition of EW products to river systems, 429 
our simulations show generally very small changes in the carbonate saturation state of most rivers 430 
despite very high assumed total EW solute fluxes. In addition, it is possible that carbonate formed 431 
at the reach scale will subsequently dissolve in bedload sediments due to extensive CO2 production 432 
from aerobic respiration (33, 34). Nonetheless, more realistic deployment scenarios than that 433 
explored here — in particular situations in which one or multiple suppliers are operating at scale 434 
in a relatively small region — could potentially lead to dramatic changes in carbonate saturation 435 
states that lead to more carbonate precipitation than the background state. For example, our results 436 
clearly show that initial river segments downstream of EW solute release see much larger changes 437 
to carbonate saturation state (Fig. S15) than other segments (Fig. 2D) downstream. This provides 438 
additional rationale for assessing the impact of individual EW projects on surface waters in a 439 
deployment-specific context and the need for full data transparency in EW projects. Further, this 440 
work also strongly suggests that new frameworks to prevent the overuse of a common good—441 
rivers—will need to be established.  442 
 443 
By elucidating the riverine responses to EW, we can also more accurately define the boundary 444 
conditions for river fluxes to the ocean under various EW scenarios (35). Interestingly, as inferred 445 
from the thermodynamic relationships involving DIC, ALK, and equilibrium pCO2 (Fig. S17), a 446 
river flow path experiencing increased carbon degassing during the transport of EW products will 447 
exhibit a lower DIC:ALK ratio in its final flux to the ocean. This, in turn, will mitigate the rise of 448 
pCO₂ levels in the seawater upon receiving the river flux, resulting in reduced carbon degassing 449 
from the seawater to the atmosphere (or possibly resulting in ingassing). In other words, our results 450 
imply that carbon leakage from river systems and subsequent loss from the surface ocean (7) are 451 
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not additive, and that carbon loss during riverine transport will decrease net carbon loss to 452 
degassing in the surface ocean. The exception to this dynamic would be large-scale cation removal 453 
during transport to the coastal ocean through secondary carbonate or clay formation, which 454 
remains an important topic for future research. In any case, our model sets the stage for future 455 
modeling efforts aimed at understanding the ocean's response to EW products transported by rivers 456 
in a regional, deployment-specific context.  457 
 458 
The presented DRN model framework is meant to be a step forward in the development of tools 459 
that can provide a more realistic and comprehensive assessment of the impact of EW. However, 460 
there are still uncertainties in our ability to accurately predict river/stream degassing of CO2 across 461 
a range of relevant scenarios—and a need to further validate this model framework with large-462 
scale EW trials. Our analysis should not be taken as an indication that a relatively minor discount 463 
to field CDR rates can be uniformly applied to compensate for the effects of EW on rivers 464 
regardless of deployment strategy or location. Future studies should focus on refining the DRN 465 
model by incorporating the dynamics of carbonate precipitation in response to the addition of EW 466 
products, as stressed by ref. (15). Additionally, the model should be enhanced by integrating more 467 
comprehensive carbon cycling processes, such as metabolic activity (36–38). Lastly, coupling the 468 
DRN framework with mechanistic models of upstream processes, such as feedstock dissolution in 469 
soils and cation storage and transport in the lower vadose zone, will be required to provide more 470 
realistic predictions of the impacts of EW on river chemistry and catchment-scale degassing.  471 
 472 
Conclusion 473 
 474 
We introduce a dynamic river network model designed to explore the impacts of EW on river 475 
systems across scales. In aggregate, results from a quasi-randomized EW deployment scenario 476 
yielded relatively minor shifts to carbonate mineral saturation states in most downstream river 477 
segments, but the potential for high degree of supersaturation locally. Overall carbon leakage, from 478 
carbonic acid system re-equilibration, was found to be generally below 5% throughout the two-479 
year simulation period across North American watersheds. However, impacts will be region- and 480 
deployment-specific, and it will be important to validate these results with empirical observations 481 
and additional simulations with more realistic deployment architectures. Nonetheless, this work 482 
represents a step forward in understanding and predicting the carbon degassing of river networks 483 
and the water chemistry impacts of EW. Moving forward, further development of open tools such 484 
as the DRN network presented here has the potential to inform policy decisions and be utilized in 485 
carbon marketplaces, highlighting the value of continuing to investigate, refine, and critically 486 
interrogate all aspects of the EW process. 487 
 488 
Materials and Methods 489 
 490 
River data compilation 491 
 492 
We collect a suite of river chemical species and properties (ALK, Ca, salinity, pH, water 493 
temperature and discharge) through the CONUS from USGS (20). We select eleven different 494 
parameter codes for alkalinity (00418, 00421, 29801, 29802, 29803, 39036, 39086, 39087, 99431, 495 
00410 and 90410), two parameter codes for calcium (00915 and 91051), three parameter codes for 496 
salinity (i.e., total dissolved solids) (70300, 70301 and 00515), three parameter codes for pH 497 
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(00400, 00403, and 00408), and one parameter code for temperature (00010) according to the 498 
USGS parameter coding system. To calculate flux-weighted species concentration, we further 499 
collect river discharge rates (parameter code 00060). For each of these parameters, we remove the 500 
samples that are not labeled as “Surface Water” from our river sample dataset. We further calculate 501 
the average value of each of the parameters for the samples that have the same “ActivityIdentifier”. 502 
Outlier data, defined as values higher than the 99th percentile of each parameter, are removed. Sites 503 
with multiple measurements in a day are averaged on a daily basis for each parameter, after which 504 
all parameters are matched together based on the unique site number and sampling date. To 505 
maintain a high-quality monthly signal, we remove the sites that lack at least one data point for 506 
each month. After data filtering, the monthly value of each parameter for each river station is 507 
calculated by aggregating the samples by month, weighted by the discharge rate. We further 508 
remove the river sites that do not have drainage area recorded in the USGS database. This yields 509 
our final dataset for river chemistry, which contains 1995 river sites, and each site contains 12 510 
monthly values for each property. The distribution of each river property can be found in Fig. S2. 511 
Complete monthly carbonate system (such as [𝐶𝑂<;=]) then could be solved from the monthly ALK, 512 
pH, salinity, and water temperature at each site using the seacarb package (39), considering the 513 
impact of both temperature and salinity. Subsequently, calcite saturation state (Ω) in the 1995 sites 514 
(Fig. S3) could be calculated based on solute chemistry, temperature, and salinity according to the 515 
following equation (11): 516 
 517 

𝛺 =
[𝐶𝑎;>][𝐶𝑂<;=]

𝐾."
	(𝑆1) 518 

 519 
where 𝐾." represents the apparent solubility product for calcite corrected for site-specific 520 
temperature and salinity (40) and brackets denote concentration. Eq. S1 is also used in the DRN 521 
model to calculate the evolution of Ω values in each river segment. We only present calcite Ω 522 
values given the argonite, dolomite, and other carbonate minerals are unlikely to precipitate. 523 
 524 
Building the river network in North America 525 
 526 
We use the Global Reach-scale A priori Discharge Estimates for SWOT (GRADES) river network 527 
(18) to build the river topology in North America. GRADES provides a topology of global river 528 
reaches (close to 3 million individual ones), coupled with estimates of daily discharge at each reach 529 
scale, spanning across a substantial 35-year period. It has the length (L), watershed boundary, and 530 
connectivity to other segments for each river segment. We overlay the watersheds of GRADES on 531 
the CONUS and extract the ones that intersect with the CONUS. We then extract the final water 532 
outlets for all those watersheds and further extract all the river segments whose final outlets match 533 
those watershed outlets. Specifically, wherever we apply EW on the CONUS land surface, the 534 
downstream flow path is contained in this data set. 535 

Based on the river connectivity, we delineate the whole downstream flow path starting from each 536 
river segment for the North America, which paves the way for us to feed into the EW solutes to 537 
any segment and to track the downstream response. The monthly width of the river segment is 538 
derived from ref. (19), estimated by integrating both the downstream hydraulic geometry (DHG) 539 
and at-a-station hydraulic geometry (AHG) relationships for width. With the segment length and 540 
monthly width, we calculate the monthly segment surface area (Fig. S4A,C). Following ref. (19), 541 
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the flow velocity for each segment is estimated from monthly discharge and a gauge-derived 542 
discharge-velocity (Q-V) relationship (i.e., lnV = 0.12lnQ – 1.06) (41), which predicts reliable 543 
velocity over a broad range of river discharge (0.01 to 20,000 m3 s-1). With monthly river discharge 544 
and flow velocity, we calculate the monthly cross section area (A) of each segment (i.e., A = Q/V) 545 
and further calculate the monthly volume of each segment (i.e., Volume = A * L) (Fig. xx) 546 
 547 
Gas transfer velocity (k) is estimated from channel slope and flow velocity, which together 548 
correspond to the decaying dissipation energy (eD) along river networks and have been shown to 549 
be able to predict reasonable k over large spatial scales in various regions (23). We use a slope 550 
cutoff of 0.01 (19) to differentiate low- vs. high-energy alpine streams (21), and calculate the k 551 
value for these two types of streams separately. 552 
 553 
For streams not affected by high bubble-mediated gas exchanges in steep terrains, k was estimated 554 
directly from channel slope and flow velocity (22): 555 
 556 

𝑘?@@ = 2841𝑆𝑉 + 2.02	(𝑆2) 557 
 558 
where k600 is the gas transfer velocity at a common Schmidt number (Sc) of 600 (for CO2, the 559 
Schmidt number at around 20 ℃), S is channel slope (m/m) and V is flow velocity (m/s). 560 
Specifically, channel slope is directly from the GRADES river networks. Flow velocity is derived 561 
by coupling monthly discharge from the GRADES dataset to a gauge-derived Q-V relationship as 562 
shown above. 563 
 564 
For streams affected by high bubble-mediated gas exchanges in steep terrains, k was estimated 565 
using a reported power law relationship between k600 and the dissipation energy (eD, m2 s−3) (21): 566 
 567 

ln	(𝑘?@@) = 1.18 ln(εD) + 6.43	(S3) 568 
εD = 𝑔𝑆𝑉 569 

 570 
where g is gravitational acceleration (m s−2). 571 

 572 
Finally, the following relationship is used to convert estimated k600 to gas transfer velocity (k) at 573 
specific temperatures for each month. 574 
 575 

𝑘9*	.9/! = 𝑘?@@ L
𝑆𝑐&B!
600 N

=;/<

	(𝑆4) 576 

 577 
where 600 is the Schmidt number of CO2 in freshwater at 20 ℃. 𝑆𝑐&B!is the Schmidt number for 578 
CO2 at specific temperatures in freshwater and can be calculated as: 579 
 580 

𝑆𝑐&B! = 1742 − 91.24𝑇) + 2.208𝑇); − 0.0219𝑇)<	(𝑆5) 581 
 582 
where water temperature (Tw in ℃) is estimated (along other key water quality parameters) from 583 
machine learning in this study. 584 
 585 
 586 
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Watershed property compilation 587 
 588 
We compile a suite of watershed properties used to predict the water properties (Ca, ALK, salinity 589 
and water temperature) over North America. First, we delineate the total upstream watershed for 590 
each river segment based on the river topology and individual watershed for each segment. Second, 591 
for each delineated upstream watershed, we calculate the average value of watershed properties, 592 
including monthly temperature and precipitation (42), monthly runoff (43), monthly soil moisture 593 
(44), surface lithology (45), land cover (46), land erosion rate (47, 48), soil pH and organic carbon 594 
content (49), net primary productivity (50), and nitrification rate (51). Third, we match the 595 
collected river stations (from USGS) to the appropriate river segment. To achieve this, we search 596 
within a 20 km radius centered on each river station to find the nearest river segment. We ensured 597 
that this segment's total upstream watershed area is similar to the drainage area provided by the 598 
USGS, allowing for a difference of less than 50%. After snapping, we extract the watershed 599 
properties for each river station from the already compiled watershed properties over the whole 600 
North America river network. Finally, we merge the river chemistry at each river station with its 601 
corresponding watershed properties into a dataset that will be used to train a machine learning 602 
framework. The watershed properties over the whole river network in the North America will be 603 
fed into the trained machine learning framework to map the river properties over North America. 604 
 605 

Mapping river properties over the North American river network using machine learning 606 
 607 
We employ the Random Forest (RF) algorithm, a tree-based ensemble supervised machine learning 608 
technique that offers several advantages over other machine learning techniques, including low 609 
bias and moderate variance (52). RF is based on decision tree, which is a non-parametric 610 
supervised learning algorithm used for classification or regression. Decision tree captures non-611 
linear relationships in the data and is robust to input outliers (53). However, decision trees can also 612 
be prone to overfitting (i.e., high variance), relatively low in predictive accuracy and does not yield 613 
optimal solutions. RF can be thought of an ensemble of many trees (called the bagging technique), 614 
and it reduces the high variance experienced by a single decision tree. Different than simple 615 
bagging, RF further decorrelates the trees by using a random set of predictor variables to divide 616 
the training data during each splitting. All these modifications contribute to the high predictive 617 
accuracy (low bias and moderate variance) of RF. The RF algorithm has been widely used in 618 
geoscience research (e.g., 52) and is particularly suitable for making predictions using high 619 
dimensional data with complex non-linear relationships, such as our dataset. 620 
 621 
The construction of the RF model is conducted in R (55) using the “ranger” package (56). We build 622 
a regression domain, in which the monthly river Ca concentration, ALK, salinity, and temperature 623 
are the target variables and the potential factors (watershed properties) that influence those river 624 
parameters are the predictor variables. We split the whole data into a training dataset (75% of the 625 
data) and a test dataset (the remaining 25% of the data). The training set, as the name suggests, is 626 
used to train the model — allowing it to learn the relationship between the predictor variables and 627 
the target variable. The testing set, on the other hand, is employed to evaluate the performance of 628 
the model on unseen data, providing an estimate of how accurately the model would predict with 629 
new data. During the training process, we select 500 for num. trees (i.e., the number of sub-models) 630 
and 3 for min.node.size (i.e., the minimal size of the tree branch in each sub-model) as our model 631 
hyperparameters. After model training and testing, we retrain the model on the whole dataset. This 632 



 15 

final model, trained on all available data, is considered to have optimized learning from the given 633 
dataset, and thus should offer the best possible performance when deployed to handle real-world 634 
data. We then feed the compiled watershed properties over the whole river network in North 635 
America into the final machine learning model to obtain the Ca, ALK, salinity and water 636 
temperature over the North America river network. These water properties are joined with 637 
previously modeled river pCO2 values (19) to further quantify the background monthly carbonate 638 
system chemistry and carbon degassing flux for each river-reservoir segment (Fig. 1). 639 
 640 
DRN model setup 641 
 642 
The DRN model is designed to be able to quantify the dynamics in the carbonate system (carbon 643 
mixing, saturation state shifts, and carbon degassing) in each river segment downstream following 644 
the application of EW in any watershed. The core of the DRN model is the ODE system (Eq. 1-4). 645 
First, we need to make sure our DRN model could reconstruct the background river dynamics 646 
before running any EW simulation. Accordingly, the initial equations (Eq. 1–4) will be modified 647 
to: 648 
 649 

𝑑𝐷𝐼𝐶
𝑑𝑡 = 𝐹!"_$%& − 𝐹'()*_$%& − 𝐹'+,-.._$%& + 𝐹(/0+1_$%& 	(𝑆6) 650 

 651 
𝑑𝐴𝐿𝐾
𝑑𝑡 = 𝐹!"_456 − 𝐹'()*_456 + 𝐹(/0+1_456 	(𝑆7) 652 

 653 
𝑑𝐶𝑎
𝑑𝑡 = 𝐹!"_&- − 𝐹'()*_&- + 𝐹(/0+1_&-	(𝑆8) 654 

 655 
𝑑𝑆𝑎𝑙𝑖𝑛𝑖𝑡𝑦

𝑑𝑡 = 𝐹!"_7-89*9/: − 𝐹'()*_7-89*9/: + 𝐹(/0+1_7-89*9/:	(𝑆9) 656 

 657 
As 𝐹!", 𝐹'+,-.., and 𝐹'()* can all be calculated directly from our synthesized river parameters, 658 
the key step to complete the whole ODE system is to inversely calculate the term 𝐹(/0+1, which 659 
can be readily finished following the mass balance equation. Specifically, we interpolate the 660 
monthly signal of all river parameters (e.g., DIC, ALK, salinity, Ca, water temperature, river 661 
surface area, river volume, river discharge) to daily signal using the monotone Hermite spline 662 
method (57), which yields a much more smooth spline than the linear interpolation method. Then, 663 
we calculate the value of the derivative (e.g., '$%&

'/
) as well as the 𝐹!", 𝐹'+,-.., and 𝐹'()* at each 664 

day and then solve 𝐹(/0+1 at each day for each tracer based on mass balance. Specifically, 𝐹(/0+1 665 
at each day can be easily obtained by calculating the difference between '$%&

'/
 and 𝐹!"+ 𝐹'+,-.. + 666 

𝐹'()*. Finally, we build the function for 𝐹(/0+1 change with time, which will be further used in 667 
the forward ODE equations (both the background Eq. S6–S9, or EW Eq. 1–4). To test whether our 668 
DRN model could reconstruct the background river dynamics, we pick the longest flow path in 669 
North America (the Mississippi river) and ran our ODE system (Eq. S6-S9) for this flow path from 670 
day 0 for 2 years. To run the ODE, we utilized the “vode” ode solver in the “deSolve” package 671 
(58). The "vode" solver, also known as the Variable-coefficient Ordinary Differential Equation 672 
solver, is particularly effective in handling "stiff" ODE problems. To further enhance the model 673 
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accuracy, we decreased the relative error tolerance from the default 1e-6 to 1e-7. The time step for 674 
saving the ODE output was set to be 0.1 day. 675 

 676 

Tracking river responses to EW using the DRN model 677 
 678 
For each selected river segment, we set the dissolution rate of the flood basalt 679 
(Na0.11K0.01Fe(II)0.14Mg0.22Ca0.22Al0.38Fe(III)0.05SiTi0.02O3.33) (59) in its watershed at 1 ton of basalt 680 
per hectare per year in the baseline scenario. In the sensitivity tests, two additional scenarios are 681 
employed: one with 0.5 ton of basalt per hectare per year and another with 1.5 tons of basalt per 682 
hectare per year. This basalt mineral stoichiometries stipulate that dissolution of 1 mol of basalt is 683 
equivalent to consuming 1.28 mol CO2 from the atmosphere. Meantime, 1.28 mol DIC and 1.28 684 
mol ALK (DIC:ALK = 1) along with the cations per mol of basalt dissolution, will enter the river 685 
segment. Coupling the forward ODE framework (Eq. 1–4) with specified basalt dissolution rates 686 
at each river segment, we track the dynamics of river chemistry (e.g., carbonate saturation state 687 
and carbon degassing) in each segment of each flow path for 2 years with a time step of 0.1 day. 688 
In addition to the river DIC, ALK, Ca, and salinity readily available from the ODE system, at each 689 
time step, we solve the complete carbonate system chemistry using the fast numerical routine 690 
proposed by Follows et al. (60), calculate the carbon degassing flux following Eq. 5 (with an 691 
atmospheric CO2 concentration of 380 ppm), and derive the calcite saturation state following Eq. 692 
S1. For each flow path, we calculate the cumulative carbon degassing fluxes across the whole 693 
downstream segments through time (Fig. 2B). We define the cumulative carbon leakage for each 694 
flow path following Eq. S10. 695 
 696 

𝐿D-1E(*(%) =
∑ T∑ 𝐹'+,-.._2F3"

G
9 − ∑ 𝐹'+,-.._E-DG,1(!*'"

G
9 U/

@

∑ 𝐹$%&#$%
/
@

∙ 100	(𝑆10) 697 

Where 𝐿D-1E(*(%)  represents the proportion of the cumulative carbon leakage with time, 𝑡 698 
represents the model time, 𝑖 represents the individual segment number, k represents the number of 699 
segments in the flow path, 𝐹'+,-.._2F3  represents the carbon degassing flux of each segment 700 
following the application of EW,  𝐹'+,-.._E-DG,1(!*' represents the carbon degassing flux of each 701 
segment before EW, and	𝐹$%&#$% represents the DIC flux input from EW. 702 
 703 
Data and code availability 704 
 705 
The GRADES network and its associated properties (e.g., watershed area, discharge, connectivity) 706 
are from here:  707 
https://www.reachhydro.org/home/params/merit-basins 708 
 709 
The global monthly river pCO2 values can be found at the link below. The file downloaded from 710 
this website is a ZIP file, which can be extracted using the default unzipping software on both 711 
Windows and Mac systems. 712 
https://datadryad.org/stash/dataset/doi:10.5061/dryad.d7wm37pz9 713 
The DRN model will adhere to the GNU General Public License (GPL) standard and will be open 714 
source upon acceptance of the paper.  715 
 716 

https://www.reachhydro.org/home/params/merit-basins
https://datadryad.org/stash/dataset/doi:10.5061/dryad.d7wm37pz9


 17 

Acknowledgements 717 
 718 
The authors want to acknowledge support from the Partnership for an Advanced Computing 719 
Environment (PACE) at the Georgia Institute of Technology, the Yale Center for Research 720 
Computing, and the Yale Center for Natural Carbon Capture (YCNCC). Portions of this research 721 
were conducted with the advanced computing resources provided by Texas A&M High 722 
Performance Research Computing. SZ, NJP, and CTR acknowledge funding from the DOE Earth 723 
shots award (#DE-SC0024709).  724 
 725 
References 726 
 727 
1.  National Academies of Sciences, Engineering, and Medicine, Negative Emissions 728 

Technologies and Reliable Sequestration: A Research Agenda (Washington, DC: The 729 
National Academies Press, 2019) https:/doi.org/10.17226/25259 (June 16, 2021). 730 

2.  K. Riahi, et al., “2022: Mitigation pathways compatible with long-term goals” in IPCC, 731 
2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working 732 
Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate 733 
Change [P. R. Shukla, J. Skea, et al., Eds. (10, 2022). 734 

3.  J. Rogelj, et al., Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable 735 
Development. IPCC, 82 (2018). 736 

4.  L. T. Bach, S. J. Gill, R. E. M. Rickaby, S. Gore, P. Renforth, CO2 Removal With Enhanced 737 
Weathering and Ocean Alkalinity Enhancement: Potential Risks and Co-benefits for Marine 738 
Pelagic Ecosystems. Front. Clim. 1 (2019). 739 

5.  D. J. Beerling, et al., Potential for large-scale CO2 removal via enhanced rock weathering 740 
with croplands. Nature 583, 242–248 (2020). 741 

6.  J. Hartmann, et al., Enhanced chemical weathering as a geoengineering strategy to reduce 742 
atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Rev. 743 
Geophys. 51, 113–149 (2013). 744 

7.  Y. Kanzaki, N. J. Planavsky, C. T. Reinhard, New estimates of the storage permanence and 745 
ocean co-benefits of enhanced rock weathering. PNAS Nexus 2, pgad059 (2023). 746 

8.  P. Renforth, C.-L. Washbourne, J. Taylder, D. A. C. Manning, Silicate Production and 747 
Availability for Mineral Carbonation. Environ. Sci. Technol. 45, 2035–2041 (2011). 748 

9.  S. H. Baek, et al., Impact of Climate on the Global Capacity for Enhanced Rock Weathering 749 
on Croplands. Earths Future 11, e2023EF003698 (2023). 750 

10.  L. L. Taylor, et al., Enhanced weathering strategies for stabilizing climate and averting 751 
ocean acidification. Nat. Clim. Change 6, 402–406 (2016). 752 

11.  S. Zhang, et al., River chemistry constraints on the carbon capture potential of surficial 753 
enhanced rock weathering. Limnol. Oceanogr. 67, S148–S157 (2022). 754 

12.  D. J. Beerling, et al., Farming with crops and rocks to address global climate, food and soil 755 
security. Nat. Plants, 1 (2018). 756 

13.  E. Blanc-Betes, et al., In silico assessment of the potential of basalt amendments to reduce 757 
N2O emissions from bioenergy crops. GCB Bioenergy 13, 224–241 (2021). 758 

14.  I. Chiaravalloti, et al., Mitigation of soil nitrous oxide emissions during maize production 759 
with basalt amendments. Front. Clim. 5 (2023). 760 

15.  W. J. Knapp, E. T. Tipper, The efficacy of enhancing carbonate weathering for carbon 761 
dioxide sequestration. Front. Clim. 4 (2022). 762 



 18 

16.  K. J. Harrington, R. G. Hilton, G. M. Henderson, Implications of the Riverine Response to 763 
Enhanced Weathering for CO2 removal in the UK. Appl. Geochem. 152, 105643 (2023). 764 

17.  S. Liu, P. A. Raymond, Hydrologic controls on pCO2 and CO2 efflux in US streams and 765 
rivers. Limnol. Oceanogr. Lett. 3, 428–435 (2018). 766 

18.  P. Lin, et al., Global Reconstruction of Naturalized River Flows at 2.94 Million Reaches. 767 
Water Resour. Res. 55, 6499–6516 (2019). 768 

19.  S. Liu, et al., The importance of hydrology in routing terrestrial carbon to the atmosphere 769 
via global streams and rivers. Proc. Natl. Acad. Sci. 119, e2106322119 (2022). 770 

20.  U.S. Geological Survey, National Water Information System data available on the World 771 
Wide Web (USGS Water Data for the Nation) (2016) (November 11, 2018). 772 

21.  A. J. Ulseth, et al., Distinct air–water gas exchange regimes in low- and high-energy 773 
streams. Nat. Geosci. 12, 259–263 (2019). 774 

22.  P. A. Raymond, et al., Scaling the gas transfer velocity and hydraulic geometry in streams 775 
and small rivers. Limnol. Oceanogr. Fluids Environ. 2, 41–53 (2012). 776 

23.  R. O. Hall Jr., A. J. Ulseth, Gas exchange in streams and rivers. WIREs Water 7, e1391 777 
(2020). 778 

24.  P. A. Raymond, M. B. David, J. E. Saiers, The impact of fertilization and hydrology on 779 
nitrate fluxes from Mississippi watersheds. Curr. Opin. Environ. Sustain. 4, 212–218 780 
(2012). 781 

25.  J. Strefler, T. Amann, N. Bauer, E. Kriegler, J. Hartmann, Potential and costs of carbon 782 
dioxide removal by enhanced weathering of rocks. Environ. Res. Lett. 13, 034010 (2018). 783 

26.  T. Reershemius, et al., Initial Validation of a Soil-Based Mass-Balance Approach for 784 
Empirical Monitoring of Enhanced Rock Weathering Rates. Environ. Sci. Technol. 57, 785 
19497–19507 (2023). 786 

27.  C. Neal, Calcite saturation in eastern UK rivers. Sci. Total Environ. 282–283, 311–326 787 
(2002). 788 

28.  D. L. Suarez, Calcite supersaturation and precipitation kinetics in the Lower Colorado 789 
River, All-American Canal and East Highline Canal. Water Resour. Res. 19, 653–661 790 
(1983). 791 

29.  K. Szramek, L. M. Walter, Impact of Carbonate Precipitation on Riverine Inorganic Carbon 792 
Mass Transport from a Mid-continent, Forested Watershed. Aquat. Geochem. 10, 99–137 793 
(2004). 794 

30.  K. S. Aho, P. A. Raymond, Differential Response of Greenhouse Gas Evasion to Storms in 795 
Forested and Wetland Streams. J. Geophys. Res. Biogeosciences 124, 649–662 (2019). 796 

31.  J. D. Schade, J. Bailio, W. H. McDowell, Greenhouse gas flux from headwater streams in 797 
New Hampshire, USA: Patterns and drivers. Limnol. Oceanogr. 61, S165–S174 (2016). 798 

32.  B. Lehner, G. Grill, Global river hydrography and network routing: baseline data and new 799 
approaches to study the world’s large river systems. Hydrol. Process. 27, 2171–2186 800 
(2013). 801 

33.  S. A. Comer-Warner, et al., Thermal sensitivity of CO2 and CH4 emissions varies with 802 
streambed sediment properties. Nat. Commun. 9, 2803 (2018). 803 

34.  P. Romeijn, S. A. Comer-Warner, S. Ullah, D. M. Hannah, S. Krause, Streambed Organic 804 
Matter Controls on Carbon Dioxide and Methane Emissions from Streams. Environ. Sci. 805 
Technol. 53, 2364–2374 (2019). 806 

35.  P. Renforth, G. Henderson, Assessing ocean alkalinity for carbon sequestration. Rev. 807 
Geophys. 55, 636–674 (2017). 808 



 19 

36.  T. Maavara, et al., Watershed DOC uptake occurs mostly in lakes in the summer and in 809 
rivers in the winter. Limnol. Oceanogr. 68, 735–751 (2023). 810 

37.  S. Wang, et al., The community-centered freshwater biogeochemistry model unified RIVE 811 
v1.0: a unified version for water column. Geosci. Model Dev. 17, 449–476 (2024). 812 

38.  E. S. Bernhardt, et al., The metabolic regimes of flowing waters. Limnol. Oceanogr. 63, 813 
S99–S118 (2018). 814 

39.  J.-P. Gattuso, J.-M. Epitalon, H. Lavigne, J. Orr, Seawater Carbonate Chemistry [R package 815 
seacarb version 3.2.16] (2021) (May 28, 2021). 816 

40.  R. E. Zeebe, D. Wolf-Gladrow, CO2 in seawater: Equilibrium, kinetics, isotopes, Volume 817 
65, 1 edition (Elsevier Science, 2001). 818 

41.  P. A. Raymond, et al., Global carbon dioxide emissions from inland waters. Nature 503, 819 
355–359 (2013). 820 

42.  D. N. Karger, et al., Climatologies at high resolution for the earth’s land surface areas. Sci. 821 
Data 4, 170122 (2017). 822 

43.  G. Ghiggi, V. Humphrey, S. I. Seneviratne, L. Gudmundsson, G-RUN ENSEMBLE: A 823 
Multi-Forcing Observation-Based Global Runoff Reanalysis. Water Resour. Res. 57, 824 
e2020WR028787 (2021). 825 

44.  Y. Wang, et al., Development of observation-based global multilayer soil moisture products 826 
for 1970 to 2016. Earth Syst. Sci. Data 13, 4385–4405 (2021). 827 

45.  J. Hartmann, N. Moosdorf, The new global lithological map database GLiM: A 828 
representation of rock properties at the Earth surface. Geochem. Geophys. Geosystems 13, 829 
Q12004 (2012). 830 

46.  M.-N. Tuanmu, W. Jetz, A global 1-km consensus land-cover product for biodiversity and 831 
ecosystem modelling. Glob. Ecol. Biogeogr. 23, 1031–1045 (2014). 832 

47.  G. Amatulli, D. McInerney, T. Sethi, P. Strobl, S. Domisch, Geomorpho90m, empirical 833 
evaluation and accuracy assessment of global high-resolution geomorphometric layers. Sci. 834 
Data 7, 162 (2020). 835 

48.  I. J. Larsen, D. R. Montgomery, H. M. Greenberg, The contribution of mountains to global 836 
denudation. Geology 42, 527–530 (2014). 837 

49.  L. Poggio, et al., SoilGrids 2.0: producing soil information for the globe with quantified 838 
spatial uncertainty. SOIL 7, 217–240 (2021). 839 

50.  M. Zhao, F. A. Heinsch, R. R. Nemani, S. W. Running, Improvements of the MODIS 840 
terrestrial gross and net primary production global data set. Remote Sens. Environ. 95, 164–841 
176 (2005). 842 

51.  B. Pan, S. K. Lam, E. Wang, A. Mosier, D. Chen, New approach for predicting nitrification 843 
and its fraction of N2O emissions in global terrestrial ecosystems. Environ. Res. Lett. 16, 844 
034053 (2021). 845 

52.  L. Breiman, Random Forests. Mach. Lang. 45, 5–32 (2001). 846 
53.  T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical learning: Data mining, 847 

inference, and prediction, second edition, 2nd edition (Springer, 2016). 848 
54.  B. E, S. Zhang, C. T. Driscoll, T. Wen, Human and natural impacts on the U.S. freshwater 849 

salinization and alkalinization: A machine learning approach. Sci. Total Environ. 889, 850 
164138 (2023). 851 

55.  R Core Team, R: A language and environment for statistical computing. R Found. Stat. 852 
Comput. Vienna Austria HttpswwwR-Proj. (2017). 853 



 20 

56.  M. N. Wright, A. Ziegler, ranger: A Fast Implementation of Random Forests for High 854 
Dimensional Data in C++ and R. J. Stat. Softw. 77, 1–17 (2017). 855 

57.  F. N. Fritsch, R. E. Carlson, Monotone Piecewise Cubic Interpolation. SIAM J. Numer. 856 
Anal. 17, 238–246 (1980). 857 

58.  K. Soetaert, T. Petzoldt, R. W. Setzer, Solving Differential Equations in R: Package 858 
deSolve. J. Stat. Softw. 33, 1–25 (2010). 859 

59.  L. Marini, Geological Sequestration of Carbon Dioxide: Thermodynamics, Kinetics, and 860 
Reaction Path Modeling, 1st edition (Elsevier Science, 2006). 861 

60.  M. J. Follows, T. Ito, S. Dutkiewicz, On the solution of the carbonate chemistry system in 862 
ocean biogeochemistry models. Ocean Model. 12, 290–301 (2006). 863 

 864 
 865 
 866 
 867 
 868 
 869 
 870 
 871 
 872 
 873 
 874 
 875 
 876 
 877 
 878 
 879 
 880 
 881 
 882 
 883 
 884 
 885 
 886 
 887 
 888 
 889 
 890 
Figures 891 
 892 



 21 

 893 

Figure 1. Predicted background carbon degassing flux and carbonate mineral (calcite) saturation 894 
state (Ω) for each river segment across the North America river network. (A) Carbon degassing 895 
flux in January (B) River Ω values in January (C) Carbon degassing flux in July (D) River Ω values 896 
in July. The lines represent the river segments within North America. 897 

 898 

 899 

 900 

 901 

 902 

 903 
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 905 

Figure 2. Changes in cumulative carbon leakage rate and carbonate mineral (calcite) saturation 906 
state in the downstream in response to the incoming EW fluxes in North American watersheds. (A) 907 
EW application sites (100 random sites) and their corresponding downstream segments. (B) 908 
Cumulative carbon leakage rate through time across the whole downstream segments of each flow 909 
path for each EW application site. (C) Frequency distribution of the cumulative carbon leakage of 910 
the whole flow path through time. (D) Frequency distribution of median carbonate saturation state 911 
of river segments for each flow path through time. The two symbols (1 and 2) in panel A and B 912 
represent the two flow paths with the highest leakage rates. Dashed lines in panel B represent 6 913 
months, 12 months, 18 months, and 24 months from left to right. Dashed lines in panel D represent 914 
Ω values of 10, 20, and 30 from left to right. Blue distributions in panel D indicate conditions prior 915 
to EW application, while red distributions represent conditions after EW application. 916 

 917 

 918 

 919 



 23 

920 
Figure 3. Spatial differences in river network responses to incoming EW fluxes in the North 921 
America watersheds. (A) Median cumulative carbon leakage of the whole flow path in each region 922 
after 24 months. (B) Median carbonate mineral (calcite) saturation state of all river segments in 923 
each region after 24 months. (C) Frequency distribution of the cumulative carbon leakage of the 924 
whole flow path in each region after 24 months. (D) Frequency distribution of carbonate saturation 925 
state of all flow paths in each region after 24 months. The two symbols (1 and 2) in panel A and 926 
B represent the two flow paths with the highest leakage rates. Dashed lines in panel D represent Ω 927 
values of 10, 20, and 30 from left to right. Blue distributions in panel D indicate conditions prior 928 
to EW application, while red distributions represent conditions after EW application. 929 

 930 
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Figure S1. The workflow of building the dynamic river network model. 46 
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 48 

 49 
 50 
Figure S2. Frequency distributions of collected solute, salinity, and temperature data from 51 
USGS for river data in the U.S. Shown are the key parameters for solving the carbonate system, 52 
including (A) dissolved Ca2+, (B) ALK, (C) pH, (D) salinity, and (E) temperature.  53 
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 54 
Figure S3. River site locations and distributions of calcite saturation state (Ω) in January (A) and 55 
July (B) across the coterminous U.S. 56 
  57 
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 58 
 59 
Figure S4. Reconstructed River segment surface area and volume from the GRADES database for 60 
January and July. 61 
 62 
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 63 
 64 
Figure S5. The correspondence of ML-predicted Ca concentration and the real Ca concentration 65 
for the test dataset at each month. 66 
 67 
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 68 
Figure S6. The correspondence of ML-predicted ALK and the real ALK for the test dataset at 69 
each month. 70 
 71 
 72 
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 73 
Figure S7. The correspondence of ML-predicted salinity and the real salinity for the test dataset 74 
at each month. 75 
 76 
 77 
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 78 
Figure S8. The correspondence of ML-predicted water temperature and the real water temperature 79 
for the test dataset at each month. 80 
 81 

 82 



 10 

 83 
 84 

Figure S9. Watershed areas of the headwater segment (A) and basalt dissolution rate (B) for the 85 
100 application sites across North America. 86 
  87 
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 88 
Figure S10. DRN model reconstruction of background chemistry of the Mississippi River. From 89 
top to bottom on the map, the river segment numbers are 1 (the headwater), 200, 400, 600, and 90 
771 (the Mississippi river outlet) sequentially. Background monthly river chemistry (DIC and 91 
ALK) is represented by the black dots and the model simulation result is represented by the red 92 
line. 93 
  94 
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 95 
Fig S11. Comparing predicted CO2 degassing per water surface area with values reported in the 96 
literature. The reported values are for the rivers in central Connecticut and New Hampshire 97 
(references can be found in the main text). We matched the river sites mentioned in the literature 98 
with the nearest river segments in our model. Then, we compared the average monthly or annual 99 
carbon degassing flux (as resolved by the reports) of the sites located on the same river segment 100 
with our model's outcomes. The error bar represents 1 standard deviation of the reported carbon 101 
degassing across multiple sites that are snapped to the same river segment.  102 
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 103 
 104 
Figure S12. Carbon degassing flux through time across the whole downstream segments of each 105 
flow path for the 100 ERW application sites. 106 
  107 
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 108 
 109 
Figure S13. Sensitivity tests of the cumulative carbon leakage rate through time across the 110 
whole downstream segments of each flow path for each ERW application site. (A-J) The 10 111 
sensitivity test results. (K) The baseline results. Note that the baseline results are shown here for 112 
comparison with the sensitivity test results. 113 
  114 
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 115 
 116 
Figure S14. Different scenarios (low, high, and baseline) of the cumulative carbon leakage rate 117 
through time across the whole downstream segments of each flow path for each ERW 118 
application site. (A) The low scenario with 0.5 ton of basalt dissolution per hectare per year. (B) 119 
The high scenario with 1.5 ton of basalt dissolution per hectare per year. (C) The baseline 120 
scenario with 1 ton of basalt dissolution per hectare per year. Note that the baseline scenario is 121 
shown here for comparison with the other two scenarios. 122 
  123 
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 124 
Figure S15. Frequency distribution of carbonate saturation state of the first river segment for each 125 
flow path through time. Dashed lines represent Ω values of 10, 20, and 30 from left to right. Blue 126 
distributions indicate conditions prior to EW application, while red distributions represent 127 
conditions after EW application. As the distribution of Ω values is extremely right-skewed, 128 
extreme Ω values bigger than 200 (~10% of the data) are not plotted to help visualization.  129 
 130 
 131 
 132 
 133 
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 134 
 135 

Figure S16. Correlation between the cumulative carbon leakage rate, the median carbonate 136 
saturation state, and the median alkalinity of segments for each flow path over durations of 6, 12, 137 
18, and 24 months. Here, the carbonate saturation state represents the average of the median 138 
carbonate saturation states of segments for each flow path from day 0 to the specified duration. 139 
The alkalinity represents the average of the median alkalinity of segments for each flow path from 140 
day 0 to the specified duration The correlation coefficient (r) and the p-value are also shown. 141 
 142 
 143 
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 144 
 145 
Figure S17. Thermodynamic relations of alkalinity (ALK), total dissolved inorganic carbon 146 
(DIC) and the equilibrium pCO2 in river (μatm) plotted for salinity=1 and temperature=12°C. 147 
The contour lines depict the correlation between ALK and DIC for individual pCO₂ values 148 
ranging from 300 to 5000 μatm, a range typical for the river systems in North America. The two 149 
red arrows in panel b illustrate the input of DIC and ALK at a 1:1 ratio into the river. The length 150 
of the arrow represents the quantity of DIC and ALK introduced into the river. A longer arrow, 151 
denoted by symbol 1, signifies a larger input flux and an associated greater increase in pCO2 than 152 
a shorter arrow, represented by symbol 2. 153 
 154 
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 155 
Figure S18. Alkalinity and the alkalinity/volume ratio through time of each flow path for each 156 
ERW application site. (A) Median alkalinity of river segments for each flow path through time for 157 
each ERW application site. (B) The ratio of alkalinity input flux from the basalt dissolution to the 158 
total volume of river segments for each flow path through time for each ERW application site. The 159 
two symbols in panel A and B represent the two flow paths with the highest leakage rates (see Fig. 160 
2B). Dashed lines in panel A and B represent 6 months, 12 months, 18 months, and 24 months 161 
from left to right. 162 
  163 
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 164 
Figure S19. (A) Correlation between the alkalinity change of the first river segment (relative to 165 
its concurrent background state) and the added alkalinity flux for each flow path over duration of 166 
1 day. (B) Correlation between the alkalinity change of the first river segment (relative to its 167 
concurrent background state) and the volume of the first segment over duration of 1 day. The 168 
correlation coefficient (r) and the p-value are also shown. 169 
 170 
 171 
 172 
 173 
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 175 
Figure S20. Correlation between the cumulative carbon leakage and the alkalinity change of the 176 
first river segment (relative to its concurrent background state) of each flow path over duration of 177 
1 day. The correlation coefficient (r) and the p-value are also shown. 178 
  179 
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 180 

 181 
Figure S21. Correlation between the regional median carbonate saturation state and the regional 182 
median cumulative carbon leakage rate over durations of 6, 12, 18, and 24 months. The correlation 183 
coefficient (r) and the p-value are also shown. 184 
 185 


