A new, zero-iteration analytic implementation of wet-bulb globe temperature: development, validation and comparison with other methods

Qinqin Kong¹ and Matthew Huber¹

¹Purdue University

March 15, 2024

Abstract

Wet-bulb globe temperature (WBGT)–a standard measure for workplace heat stress regulation–incorporates the complex, nonlinear interaction among temperature, humidity, wind and radiation. This complexity requires WBGT to be calculated iteratively following the recommended approach developed by Liljegren and colleagues. The need for iteration has limited the wide application of Liljegren's approach, and stimulated various simplified WBGT approximations that do not require iteration but are potentially seriously biased. By carefully examining the self-nonlinearities in Liljegren's model, we develop a zero-iteration analytic approximation of WBGT while maintaining sufficient accuracy and the physical basis of the original model. The new approximation slightly deviates from Liljegren's full model—by less than 1oC in 99\% cases over 93\% of global land area. The annual mean and 75-99\% percentiles of WBGT are also well represented with biases within ± 0.5 oC globally. This approximation is clearly more accurate than other commonly used WBGT approximations. Physical intuition can be developed on the processes controlling WBGT variations from an energy balance perspective. This may provide a basis for applying WBGT to understanding the physical control of heat stress.

A new, zero-iteration analytic implementation of wet-bulb globe temperature: development, validation and comparison with other methods

Qinqin Kong¹ and Matthew Huber¹

¹Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, United States of America, 47907

Key Points:

1

2

3

4

5

6

7

8	• Accurate wet-bulb globe temperature (WBGT) calculation, such as Liljegren's model,
9	requires iteration.
10	• By examining self-nonlinearities in Liljegren's model, we develop a simplified, an-
11	alytic form– $WBGT$ –that does not require iteration.
12	• \widehat{WBGT} is more accurate than commonly used simplified approximations, while
13	retaining most of the physics in the Liljegren formulation.

Corresponding author: Qinqin Kong, kong97@purdue.edu

14 Abstract

Wet-bulb globe temperature (WBGT)-a standard measure for workplace heat stress regulation-15 incorporates the complex, nonlinear interaction among temperature, humidity, wind and 16 radiation. This complexity requires WBGT to be calculated iteratively following the rec-17 ommended approach developed by Liljegren and colleagues. The need for iteration has 18 limited the wide application of Liljegren's approach, and stimulated various simplified 19 WBGT approximations that do not require iteration but are potentially seriously biased. 20 By carefully examining the self-nonlinearities in Liljegren's model, we develop a zero-21 iteration analytic approximation of WBGT while maintaining sufficient accuracy and the 22 physical basis of the original model. The new approximation slightly deviates from Lil-23 jegren's full model—by less than 1°C in 99% cases over 93% of global land area. The an-24 nual mean and 75-99% percentiles of WBGT are also well represented with biases within 25 $\pm 0.5^{\circ}$ C globally. This approximation is clearly more accurate than other commonly used 26 WBGT approximations. Physical intuition can be developed on the processes control-27 ling WBGT variations from an energy balance perspective. This may provide a basis for 28 applying WBGT to understanding the physical control of heat stress. 29

³⁰ Plain Language Summary

Wet-bulb globe temperature (WBGT) is a standard way to measure heat stress in the workplace. It incorporates the complex, nonlinear interactive effects of temperature, humidity, wind and radiation. This complexity requires WBGT to be calculated iteratively which is computationally intensive and less straightforward to implement algorithmically. To address these issues, we came up with a simplified version of WBGT that obviates the need for iteration. This simplified approach is computationally straightforward and also highly accurate.

³⁸ 1 Introduction

Heat stress presents significant threats to human health (Ebi et al., 2021; Buzan 30 & Huber, 2020; Kjellstrom et al., 2016) with wide-ranging social (Hsiang et al., 2013; Burke 40 et al., 2018) and economic consequences (Burke et al., 2015; Saeed et al., 2022). Met-41 rics that accurately represent the physiological impact of heat stress are crucial for the 42 monitoring, early warning, and impact assessment of heat stress (Havenith & Fiala, 2015; 43 Simpson et al., 2023). Over the last century, numerous heat stress metrics have been for-44 mulated (de Freitas & Grigorieva, 2015), among which the wet-bulb globe temperature 45 (WBGT) emerges as a notably comprehensive measure, encapsulating the interplay of 46 temperature, humidity, wind speed and radiation effects (Yaglou & Minard, 1957). Rooted 47 in physiology principles and fortified by empirical calibration, WBGT is as good or bet-48 ter than most other metrics in predicting human heat stress compensability (Vecellio et 49 al., 2022), assessing the physiological influences of heat stress (Ioannou et al., 2022), and 50 capturing the interactive effects of multiple meteorological factors on human physical work 51 capacity (Foster et al., 2022, 2022). It has been incorporated into several heat stress reg-52 ulatory standards across various domains including occupational health (NIOSH, 2016; 53 ISO, 2017; OSHA, 2017), military operations (Army, 2003) and athletic activities (ACSM, 54 1984).55

WBGT is defined as

56

$$WBGT = 0.7T_{nw} + 0.2T_q + 0.1T_a \tag{1}$$

⁵⁷ under outdoor conditions where T_{nw} , T_g and T_a refer to natural wet-bulb temperature, ⁵⁸ black globe temperature and dry-bulb temperature respectively. The WBGT model de-⁵⁹ veloped by Liljegren et al. (2008) is the recommended approach for WBGT calculation ⁶⁰ due to its foundation on heat and mass transfer principles, careful treatment of the ge-

ometry of WBGT sensors, and extensive validation (RMSE $< 1^{\circ}$ C) (Liljegren et al., 2008;

Lemke & Kjellstrom, 2012; Patel et al., 2013; Clark & Konrad, 2023). It derives T_{nw} and 62 T_q by solving the nonlinear energy balance equations of the wet wick and black globe 63 sensors. However, this process requires iterative calculations which have limited the widespread 64 adoption of Liljegren's approach. Even in recent work, a preference for simpler WBGT 65 approximations that avoid iteration persists within the scientific community (e.g., Zhu 66 et al. (2021); Brimicombe et al. (2023); Tuholske et al. (2021); Orlov et al. (2023); Kamal 67 et al. (2024)). However, these simplified approximations are so diverse in formulation that 68 they generate substantially different estimates making the results from different stud-69 ies challenging to meaningfully compare (Lemke & Kjellstrom, 2012; Kong & Huber, 2022). 70 Some approximations are based on statistical relationship rather than physics (Moran 71 et al., 2001; Australian Bureau of Meteorology, 2010; Kamal et al., 2024). The Australian 72 Bureau of Meteorology WBGT formulation (hereafter referred as sWBGT) (Australian 73 Bureau of Meteorology, 2010) has been demonstrated to be systematically biased, but 74 remain widely used because of their simplicity (Kong & Huber, 2022). The generated 75 heat stress estimates have been fed into impact models for assessing downstream social-76 economic consequences (Zhang & Shindell, 2021; Chavaillaz et al., 2019; Zhu et al., 2021; 77 Matsumoto et al., 2021; de Lima et al., 2021). The propagation of biases stemming from 78 these WBGT approximations through the chain of climate change impact assessment could 79 potentially mislead policy-making pertaining to heat stress mitigation and adaptation. 80

We aim to address this issue by developing a simplified WBGT model that does 81 not require iteration while maintaining sufficient accuracy and physics of heat and mass 82 transfer. This is achieved with an analytic approximation of Liljegren's WBGT through 83 substituting reasonable first-guess values of T_{nw} and T_g into the energy balance equa-84 tions of the wet wick and black globe sensors. The analytic approximation will be eval-85 uated against Liljegren's full model which, although subject to biases compared to field 86 observations (Lemke & Kjellstrom, 2012; Patel et al., 2013; Liljegren et al., 2008; Clark 87 & Konrad, 2023), is treated as ground truth in this paper. 88

The remainder of this paper is structured as follows. Section 2 provides a concise 89 overview of Liljegren's WBGT model focusing on the nonlinear energy balance equations. 90 Section 3 introduces the analytic approximation of WBGT the accuracy of which is eval-91 uated in Section 4. This evaluation is first conducted with synthetic data to understand 92 the bias structure across the multidimensional parameter space encompassing temper-93 ature, humidity, solar radiation and wind speed (Section 4.1). We then explore the mag-94 nitude and spatial distribution of biases within a more realistic context (Section 4.2). This 95 is primarily done with ERA5 reanalysis (Hersbach, H. et al., 2018) for a historical pe-96 riod, supplemented by the ACCESS-CM2 model (Dix et al., 2019) for a warmer climate. 97 Afterwards, we compare this analytic approximation against other commonly used ap-98 proximations of WBGT (Section 4.3). Section 5 contains a brief summary and implicaqq tions on applying WBGT to understanding physical processes controlling heat stress. 100

¹⁰¹ 2 Liljegren WBGT model

Here we briefly review the T_g and T_{nw} formulations in Liljegren's WBGT model while directing interested readers to Liljegren et al. (2008) and Kong and Huber (2022) for details.

105

2.1 Black globe temperature

106

The energy balance equation for the black globe is given by

$$\sigma \epsilon_g T_g^4 + h_{cg} (T_g - T_a) = L R_g + S R_g \tag{2}$$

where energy gain from incoming thermal (LR_g) and solar radiation (SR_g) is balanced by long-wave cooling and energy loss through convective heat transfer between the globe and ambient air corresponding respectively to the two terms on the left side of Eq. 2.

Note that LR_q encompasses both downward and upwelling thermal radiation; SR_q also 110 integrates heating from both downward (direct and diffuse) and ground surface reflected 111 solar radiation, and incorporates parameters representing solar zenith angle, albedo of 112 the globe and ground surface, and globe geometry characteristics. Please refer to Liljegren 113 et al. (2008) and Kong and Huber (2022) for the formulations of LR_g and SR_g . h_{cg} sig-114 nifies convective heat transfer coefficient associated with the globe; σ and ϵ_g stand for 115 the Stefan-Boltzmann constant and emissivity of the globe. Eq. 2 is analogous to to Eq. 116 15 in Liljegren et al. (2008), although the long-wave and surface reflected short-wave ra-117 diation embedded within LR_q and SR_q will be obtained directly from climate model out-118 put as was done in Kong and Huber (2022). In Liljegren's original approach, these ra-119 diative fluxes are approximated from temperature, humidity and ground surface albedo. 120

Eq. 2 can be rearranged into

121

$$T_g = T_a + \frac{SR_g + LR_g - \sigma\epsilon_g T_a^4}{h_{cq} + h_{rq}}$$
(3)

where h_{rg} can be interpreted as a thermal radiative heat transfer coefficient

$$h_{rg} = \sigma \epsilon_g (T_g^2 + T_a^2) (T_g + T_a)$$

¹²³ Note that $LR_g - \sigma \epsilon_g T_a^4$ is typically small and actually approaches zero when the ¹²⁴ downward and upward thermal radiation can be represented by a mean radiant temper-¹²⁵ ature of T_a in absence of solar radiation. With this term being neglected, we have

$$T_g - T_a = \frac{SR_g}{h_{cg} + h_{rg}} \tag{4}$$

The physical interpretation of Eq. 4 is that the efficiency of energy loss through long-wave cooling (h_{rg}) and convection (h_{cg}) modulates the required temperature gradient between the globe and ambient air in order to balance the energy gain from solar radiation.

Eq. 3 cannot be solved analytically since both h_{cg} and h_{rg} depend nonlinearly on 130 T_g (i.e., Eq. 3 is self-nonlinear in T_g). h_{cg} is derived from the empirical correlation for 131 heat transfer from a sphere in cross flow (Brenda Jacklitsch et al., 2016) (see Eq. 16 in 132 Liljegren et al. (2008) for its formulation). It is mainly affected by wind speed but also 133 depends on film temperature (T_f) which is the temperature of the air within the con-134 vective boundary layer proximate to the surface of the globe, and is calculated as the 135 arithmetic mean between the temperatures of the globe surface and ambient air $(T_f =$ 136 $(T_q + T_a)/2$). Consequently, Eq. 3 needs to be solved by iteration to obtain the equi-137 librium T_g . In Section 3.1, we will provide an analytic solution to T_g which does not re-138 quire iteration. 139

¹⁴⁰ 2.2 Natural wet-bulb temperature

```
<sup>141</sup> The energy balance equation for the wick is
```

$$k_x \frac{e_w - e_a}{P - e_w} M_{H2O} \Delta H + h_{cw} (T_{nw} - T_a) + \sigma \epsilon_w T_{nw}^4 = LR_w + SR_w$$
(5)

where the radiative energy gain on the right side of the equation is balanced by energy loss through evaporating water, convection, and thermal radiation corresponding respectively to the three terms on the left side of the equation. The convective heat transfer coefficient h_{cw} is obtained from the empirical correlation for heat transfer from a cylinder (Bedingfield & Drew, 1950). k_x denotes convective mass transfer coefficient which are interconnected with h_{cw} via the Chilton-Colburn analogy (Chilton & Colburn, 1934). They are both predominantly affected by wind speed with weak dependence on film temperature $(T_f = (T_a + T_{nw})/2)$ (see Eq. 8 and 10 in Liljegren et al. (2008) for their formulations). e_a and e_w represent ambient vapor pressure and the saturation vapor pressure at the temperature of the wick $(e_w = e_{sat}(T_{nw}))$; P is surface pressure; M_{H2O} is the molecular weight of water vapor; ΔH stands for the heat of vaporization.

¹⁵³ Eq. 5 can be rearranged into

$$T_{nw} = T_a + \frac{SR_w - \beta(e_{sat}(T_a) - e_a) + LR_w - \sigma\epsilon_w T_a^4}{h_{ew} + h_{cw} + h_{rw}}$$
(6)

154 where β is defined as

$$\beta = \frac{k_x M_{H2O} \Delta H}{P - e_w} \approx \frac{k_x M_{H2O} \Delta H}{P}$$

 h_{ew} and h_{rw} can be interpreted as evaporative and thermal radiative heat transfer coefficients for the wick cylinder, and are defined as

$$h_{ew} = \beta \frac{e_w - e_{sat}(T_a)}{T_{nw} - T_a} \approx \beta \frac{\partial e_{sat}(T)}{\partial T} \Big|_{T = \frac{T_{nw} + T_a}{2}}$$
(7)

157

161

$$h_{rw} = \sigma \epsilon_w (T_{nw}^2 + T_a^2) (T_{nw} + T_a)$$

¹⁵⁸ Note that h_{ew} , by definition, measures the efficiency of evaporative heat transfer ¹⁵⁹ between the wet wick and a saturated air. The fact that air can be under-saturated cre-¹⁶⁰ ates a cooling term from vapor pressure deficit (VPD) ($\beta(e_{sat}(T_a) - e_a)$ in Eq. 6).

With
$$LR_w - \sigma \epsilon_w T_a^4$$
 being typically small and

$$T_{nw} - T_a = \frac{SR_w - \beta(e_{sat}(T_a) - e_a)}{h_{ew} + h_{cw} + h_{rw}}$$
(8)

neglected, we have

Namely, the temperature gradient between the wick and ambient air is driven by net energy input from solar radiation and VPD, regulated by the efficiency of energy loss via evaporation (h_{ew}) , convection (h_{cw}) and long-wave cooling (h_{rw}) .

Similar to the case of T_g , Eq. 6 needs to be solved by iteration because both the mass transfer (k_x) and three heat transfer coefficients $(h_{ew}, h_{cw} \text{ and } h_{rw})$ depend nonlinearly on T_{nw} . An analytic approximation to T_{nw} will be provided in Section 3.2 by removing the self-nonlinearity.

¹⁶⁹ 3 Analytic approximation of wet-bulb globe temperature

In the previous section, we established that both T_g and T_{nw} cannot be solved an-170 alytically because they are embedded nonlinearly within the mass and heat transfer co-171 efficients. Numerical solutions can be pursued through iterative methods: starting with 172 an initial guess, inserting it into the transfer coefficients within Eq. 3 or 6, obtaining an 173 updated value, and iteratively repeating this process until consecutive updates deviate 174 by less than a specified tolerance. However, we argue that employing a judicious initial 175 guess might yield a result that is sufficiently accurate, thereby eliminating the need for 176 iterations. By employing this approach, Eq. 3 and 6 become analytic formulations of T_q 177 and T_{nw} , and the ensuing solutions are henceforth referred to as analytic approximations. 178

179

3.1 Black globe temperature

An analytic approximation of T_g can be obtained by substituting a certain firstguess value of T_g into h_{cg} and h_{rg} on the right side of Eq. 3. Ideally, the first-guess value should be close to T_g , but this is less critical due to reasons articulated below.

 h_{cq} is derived from empirical correlations under forced convection with surround-183 ing fluid motion (Liljegren et al., 2008), and therefore is primarily dictated by wind speed 184 with minimal sensitivity to film temperature (Fig. 1a and d). This choice is justified by 185 the dominance of forced convection over free convection under non-negligible wind speeds 186 and reasonable temperature gradients between the globe and ambient air (Gao et al., 187 2019). Under a wind speed of 2 m/s, a 10 $^{\circ}$ C increase of film temperature from 30 to 40 188 °C only cause a 0.2% reduction in h_{cg} (Fig. 1d). In fact, the international standard ISO 189 7726 (ISO, 1998) parameterizes convective heat transfer coefficients under forced con-190 vection as solely a function of wind speed. On the other hand, h_{rq} only varies by around 191 0.5% per °C change in T_g , and energy loss via thermal radiation is typically 2-5 times 192 less efficient than convection (Fig. 1a). 193

The minor influence of temperature on h_{cg} and small fractional changes in h_{rg} with temperature suggest that the initial estimate's proximity to the true value is not critical. Therefore, we choose T_a as a first guess for T_g for simplicity. The resultant approximations to both heat transfer coefficients are denoted as \hat{h}_{cg} and \hat{h}_{rg} the latter of which is calculated as $\hat{h}_{rg} = 4\sigma\epsilon_g T_a^3$. For \hat{h}_{cg} , film temperature is approximated by $T_f = \frac{T_g + T_a}{2} \approx$ T_a . Consequently, we have an analytic approximation of T_g :

$$\widehat{T_g} = T_a + \frac{SR_g + LR_g - \sigma\epsilon_g T_a^4}{\widehat{h_{ca} + h_{ra}}}$$
(9)

The accuracy of $\widehat{T_g}$ can be assessed by comparing it against the true value of T_g in Eq. 3.

$$\widehat{T_g} - T_g = (T_g - T_a) \frac{h_{cg} - \widehat{h_{cg}} + h_{rg} - \widehat{h_{rg}}}{\widehat{h_{cg}} + \widehat{h_{rg}}}$$

As explained above, the deviation of $\widehat{h_{cg}}$ from h_{cg} is negligible, which simplifies the bias of $\widehat{T_g}$ into

$$\widehat{T_g} - T_g = (T_g - T_a) \frac{h_{rg} - \widehat{h_{rg}}}{\widehat{h_{cg}} + \widehat{h_{rg}}} = \frac{\sigma \epsilon_g (T_g - T_a)^2 [(T_g + T_a)^2 + 2T_a^2]}{\widehat{h_{cg}} + \widehat{h_{rg}}}$$
(10)

It is clear that T_g always has non-negative biases the magnitude of which is proportional 204 to the square of the temperature gradient between the globe and ambient air. There-205 fore, T_q is expected to perform better under conditions of weak solar radiation and high 206 wind speed wherein the weaker solar heating and efficient convective heat transfer make 207 T_g closer to T_a . Given T_g and T_a of ~300K and $T_g - T_a$ of ~20K, the largest possible 208 bias is ~2K which can only be realized when $h_{cg} = 0$. However, the actual bias will be 209 significantly smaller since h_{cq} is usually considerably larger than h_{rq} (Fig. 1a). The phys-210 ical interpretation of this formulation is that the approximation to long-wave cooling in-211 troduces minimal biases when convection is the dominant pathway for energy loss. 212

3.2 Natural wet-bulb temperature

213

An analytic solution for T_{nw} can be obtained by substituting a first-guess value of T_{nw} into the mass and three heat transfer coefficients in Eq. 6. Similar to the case of T_g , both k_x and h_{cw} exhibit minimal sensitivity to temperature variations (Fig. 1b-d). h_{rw} only varies by 0.5% per °C change in T_{nw} and energy loss via thermal radiation is much less efficient than convection and evaporation (Fig. 1b). Therefore, the proximity of the first guess to the true T_{nw} is less critical for mass transfer and heat transfer

Figure 1. Shadings in (a)-(c) denote h_{cg} , h_{cw} and k_x respectively. Solid contours in (a) and (b) represent the ratio between convective and thermal radiative heat transfer coefficients for the black globe (h_{cg}/h_{rg}) and wick cylinder (h_{cw}/h_{rw}) . Dashed contours in (b) represent the ratio between h_{ew} and h_{rw} . Values in panel (a)-(c) are expressed as functions of film temperature and wind speed. (d) Various heat transfer coefficients for the globe and wick as functions of film temperature under a 2m/s (solid lines corresponding to left y-axis) and 0.5m/s (dashed lines corresponding to right y-axis) wind speed. Thermal radiative heat transfer coefficients are approximated as $h_{rg} \approx 4\sigma\epsilon_g T_f^3$ for the black globe and $h_{rw} \approx 4\sigma\epsilon_w T_f^3$ for the wet wick, with $\epsilon_g = \epsilon_w = 0.95$. Surface pressure has a minor impact on all heat transfer coefficients within its typical range of variation, and is fixed at 1000 hPa.

via convection and thermal radiation. However, it might be of greater concern for the evaporative heat transfer coefficient (Eq. 7), as h_{ew} varies by around 2-3% per °C change in T_{nw} , and evaporation is the most efficient energy loss pathway for the wet wick (Fig. 1b and d).

Therefore, a reasonably good first guess for T_{nw} is needed. We choose the wet-bulb 224 temperature (T_w) which is very close to T_{nw} at night and typically remains within 3°C 225 below T_{nw} during the day, depending on solar radiation intensity (Fig. 5b). For the sake 226 of computational efficiency and analytic tractability, we calculate T_w from temperature 227 and relative humidity using an empirical formula developed by Stull (2011). Stull's T_w 228 is subject to around 1°C overestimation at high temperatures, commonly occurring dur-229 ing the day (Buzan et al., 2015). This slight overestimation actually brings Stull's T_w 230 closer to T_{nw} and provides a better initial guess. The resulting analytic approximation 231 is 232

$$\widehat{T_{nw}} = T_a + \frac{SR_w - \widehat{\beta}(e_{sat}(T_a) - e_a) + LR_w - \sigma\epsilon_w T_a^4}{\widehat{h_{ew}} + \widehat{h_{rw}} + \widehat{h_{rw}}}$$
(11)

where $\hat{\beta} = \hat{k_x} M_{H2O} \Delta H/P$. By comparing against Eq. 6, we quantify the bias of $\widehat{T_{nw}}$

$$T_{nw} - T_{nw} = \eta (T_{nw} - T_a)(T_{nw} - T_w)$$
(1)

2)

$$\eta = \frac{\frac{1}{2}\beta \frac{\partial^2 e_{sat}(T)}{\partial T^2}\Big|_{T = \frac{T_{nw} + T_w + 2T_a}{4}} + \sigma \epsilon_w (T_{nw}^2 + T_w^2 + T_a^2 + T_{nw}T_w + T_aT_{nw} + T_aT_w)}{\widehat{h_{ew}} + \widehat{h_{cw}} + \widehat{h_{rw}}}$$

where we assume $\widehat{k_x} \approx k_x$ and $\widehat{h_{cw}} \approx h_{cw}$ since both the convective mass and 236 heat transfer coefficients are extremely insensitive to variations in film temperature (Fig. 237 1b-d). Since $T_{nw} \ge T_w$, T_{nw} is subject to overestimation when $T_{nw} > T_a$ and under-238 estimation otherwise. By inspection, it is clear that the magnitude of biases increases 239 with enlarging differences between T_{nw} and both T_a and T_w . Over subtropical hot-dry 240 regions, the strong VPD cooling and solar radiative heating are expected to enlarge both 241 temperature gradients with $T_{nw} < T_a$ and $T_{nw} > T_w$ leading to relatively strong neg-242 ative biases in T_{nw} . 243

3.3 Wet-bulb globe temperature

235

244

1

Substituting \widehat{T}_{g} (Eq. 9) and $\widehat{T_{nw}}$ (Eq. 11) back into Eq. 1, we obtain the analytic approximation to WBGT

$$\widehat{WBGT} = 0.7\widehat{T_{nw}} + 0.2\widehat{T_g} + 0.1T_a \tag{13}$$

 T_{g}, T_{nw} and WBGT are referred as analytic approximations in the sense that selfnonlinearities in T_{g} and T_{nw} within the energy balance equations are eliminated by substituting initial estimates of them into the mass and/or heat transfer coefficients. This permits WBGT to be expressed as an analytic function of temperature, humidity, wind and radiation, although this function remains highly complex and nonlinear.

²⁵² 4 Validation of the analytic approximation

The validation of the analytic approximation is undertaken in both an idealized and a more realistic context by comparing against results from Liljegren's full model driven by atmospheric variable inputs. In the idealized setting, we investigate the bias structure of the analytic approximation across a multidimensional parameter space of air temperature, wind speed, relative humidity and incoming solar radiation based on synthetic

data. We highlight the environmental conditions that yield relatively large biases.

Next, we examine the magnitude and spatial distribution of biases within a more 259 realistic setting using ERA5 reanalysis (Hersbach, H. et al., 2018) for the period 2013-260 2022 as the inputs. Since we aim to use this approximate framework in a range of cli-261 mate states, including a much warmer future, we also validate it against a "hot" CMIP6 262 simulation. This is conducted for the period 2091-2100 under the SSP585 scenario us-263 ing the ACCESS-CM2 model (Dix et al., 2019) which has a relatively high equilibrium 264 climate sensitivity of 4.7°C (Hausfather, 2019). The data is evaluated at hourly inter-265 vals for ERA5 and 3-hourly for ACCESS-CM2 at their original grid spacing. WBGT is 266 calculated from 2m air temperature and humidity, 10m wind speed, surface pressure, as 267 well as surface downward and upwelling flux of long-wave and short-wave radiation. 268

269

4.1 Validation and bias characterization: idealized setting

The accuracy of the analytic approximation is evaluated across a range of air temperature (20-50°C) and wind speed (0.13-3 m/s) under different levels of relative humidity (20% and 60%) and incoming solar radiation (0, 450, and 900 W/m²) (Fig. 2).

 T_g slightly overestimates T_g in Liljegren's full model by less than 0.2 °C during night-273 time and under conditions of moderate solar radiation $(450W/m^2)$. However, as solar 274 radiation intensifies and wind speed diminishes, the degree of overestimation becomes 275 more pronounced. It can exceed 1 °C under scenarios of strong solar radiation (900 W/m^2) 276 and low wind speed (< 0.5m/s) (Fig. 2a). This intensification of overestimation can be 277 attributed to the increased temperature gradient between the black globe and the am-278 bient air (as illustrated in Eq. 10) due to intense solar heating and less effective energy 279 loss through convection under low wind speed. In practice, the relatively large overes-280 timation under low wind speed is less a concern as the movement of human body cre-281 ates relative air flow especially for outdoor workers. In fact, prior studies frequently as-282 sume a minimum wind speed of 1m/s when assessing heat stress-induced labor loss (Casanueva 283 et al., 2020; Kjellstrom et al., 2018; Bröde et al., 2018). 284

 T_{nw} has small biases (within $\pm 0.2^{\circ}$ C of T_{nw} in Liljeren's full model) at nighttime 285 when T_w , our initial estimate, is close to T_{nw} (Fig. 5b). At daytime, \tilde{T}_{nw} performs well 286 under wet condition (60% relative humidity). However, under dry condition (20% rel-287 ative humidity), \hat{T}_{nw} shows substantial underestimations especially under lower wind speed 288 and higher temperature where the underestimation can extend up to -2°C. This can be 289 attributed to a strong temperature gradient between the wet wick and the ambient air 290 $(T_{nw}-T_a)$ under hot-dry conditions with low wind speed (as illustrated in Eq. 12). The 291 underestimation also intensifies under stronger solar radiation probably owing to an en-292 larged difference between T_{nw} and T_w . 293

Biases in \widehat{WBGT} are expected to be primarily influenced by biases in $\widehat{T_{nw}}$, given that T_{nw} contributes 70% to WBGT. Accordingly, we found that \widehat{WBGT} shares a similar bias structure with $\widehat{T_{nw}}$, but the magnitudes are smaller and within $\pm 0.8^{\circ}$ C across the selected ranges of meteorological conditions (Fig. 2c).

298

4.2 Validation and bias characterization: realistic setting

The bias characterization within the idealized setting demonstrates the structure of biases in the analytic approximations across a range of meteorological conditions. In practice, those meteorological conditions are not equally sampled with some combinations of temperature, humidity, solar radiation and/or wind speed more or less likely. It

Figure 2. Biases in analytic approximations of (a) T_g , (b) T_{nw} and (c) WBGT across the parameter space covering selected ranges of temperature (T_a) (20-50°C), wind speed (0.13-3m/s), relative humidity (RH) (20%, 60%) and incoming solar radiation (ssrd) (0, 450, 900 W/m^2). Biases are evaluated against Liljegren's full model. Thermal radiation and surface reflected solar radiation are approximated from temperature, relative humidity and an assumed surface albedo following the original formulation of Liljegren et al. (2008).

is of interest to examine the likely magnitudes and spatial distribution of biases in more
 realistic settings.

Figure 3 shows the area-weighted empirical distribution of biases in WBGT over 305 land. During the period 2013-2022 of ERA5, around 78% of the total samples have bi-306 ases within $\pm 0.1^{\circ}$ C, while this percentage extends to 97% for biases within $\pm 0.5^{\circ}$ C. A 307 similar level of accuracy is maintained in a warmer world with 93% of samples falling 308 within ± 0.5 °C. Although the peak of the distribution around zero becomes lower, accom-309 panied by a slightly fatter tail on the side of negative biases (Fig. 3), it is unclear whether 310 311 this accuracy reduction can be attributed to climate change (Sherwood & Huber, 2010; Williams et al., 2009), or due to potential effects from other confounding factors such 312 as the distinct spatial resolutions between ERA5 and ACCESS-CM2. For our purpose 313 however, the method is sufficiently accurate across a wide range of climates. 314

Figure 3. Empirical probability distribution of biases in our analytic approximation WBGT. The y-axes are designed to represent the percentage of samples showing biases within a 0.2 °C interval centered on the corresponding x coordinates. The empirical distribution is derived from land data weighted by grid-cell area using ERA5 reanalysis for the period 2013-2022 and the ACCESS-CM2 model for the period 2091-2100 under the SSP585 scenario. Samples with WBGT below 15°C are excluded, as they are less relevant to heat stress.

Using ERA5, we then highlight the annual 1% and 99% percentile of these biases, 315 thereby directing attention to the tails of the bias distribution and their spatial patterns 316 (Fig. 4). T_q , as demonstrated in Eq. 10, is only subject to overestimations the 1% per-317 centile of which is close to zero (Fig. 4a). The 99% percentile of the overestimations is 318 within 1°C over 97% of global land area (Fig. 4b and k). Over some alpine areas, like 319 the Himalayas, strong solar radiation stemming from an optically thin atmosphere leads 320 to large disparities between T_q and T_a , thereby causing relatively strong overestimations 321 $(>1.8^{\circ}C)$ (Fig. 4b). 322

In comparison, $\widehat{T_{nw}}$, can cause both under- and overestimations. The 1% percentile of biases is characterized by underestimations within -1°C over 85% of land area (Fig. 4d and j). Over subtropical dry regions, strong VPD and solar radiation make T_{nw} substantially smaller than T_a and larger than T_w which induces more pronounced underestimations by $\widehat{T_{nw}}$ (Fig. 4d) as demonstrated in Eq. 12. The 99% percentile of biases show weak overestimations within 0.6°C over 92% of land area (Fig. 4e and k). Over the Himalayas alpine region, small VPD (as a result of cold temperature) and strong solar radiation make T_{nw} considerably larger than both T_a and T_w leading to relatively strong overestimations (Fig. 4e).

³³² \widehat{WBGT} shares a similar spatial distribution of biases as $\widehat{T_{nw}}$ with the 1% percentile ³³³ of biases showing underestimations within -1°C over 96% of land area (Fig. 4g and j), ³³⁴ and the 99% percentile characterized by overestimations within 0.6°C over 94% of land ³³⁵ area (Fig. 4h and k).

We also show the 99% percentile of the absolute values of biases in the analytic ap-336 proximations (Fig. 4 c, f, i and l) in order to highlight the upper tail of the magnitudes 337 of their deviations from Liljegren's full model. In 99% cases, biases in T_{q} , T_{nw} and WBGT338 are limited within $\pm 1^{\circ}$ C over 97%, 82% and 93% of land area. It is also of interest to know 339 the performance of our analytic approximation in representing heat stress at the levels 340 of annual mean and different percentiles. As shown in figure 6q-t, WBGT can well rep-341 resent heat stress across annual mean and 75%, 90% and 99% percentiles with biases within 342 ± 0.5 °C globally. 343

4.3 Comparison against other approximations

344

We compare WBGT against several other WBGT approximations commonly used 345 in the literature. These include sWBGT which only contains temperature and humid-346 ity while assuming moderately strong solar radiation and low wind speeds (Australian 347 Bureau of Meteorology, 2010), the environmental stress index (ESI), derived through a 348 multivariate regression of WBGT against temperature, incoming solar radiation, and rel-349 ative humidity (Moran et al., 2001), the indoor WBGT $(WBGT_{in})$ which substitutes 350 T_{nw} with the thermodynamic wet-bulb temperature (T_w) and T_g with T_a (Dunne et al., 351 2013; C. Li et al., 2020; D. Li et al., 2020), and the one recently developed by Brimicombe 352 et al. (2023) ($WBGT_{Br}$) which calculates T_g from mean radiant temperature, and ap-353 proximates T_{nw} using Stull's T_w formulation (Stull, 2011). 354

Figure 5a illustrates the empirical bias distribution of these approximations along 355 with that of our analytic approximation based on ERA5. WBGT clearly outperforms 356 others. sWBGT performs the worst, and its bias distribution peaks at an overestima-357 tion of approximately 5°C due to the implicit assumption of moderately strong solar ra-358 diation. This overestimate can profoundly affect future heat stress projections and es-359 timate of impact on people (de Lima et al., 2021). Therefore, we do not recommend the 360 continued use of sWBGT. ESI performs significantly better with a relatively symmet-361 ric distribution of biases centered around zero. 362

The distribution of biases in both $WBGT_{in}$ and $WBGT_{Br}$ have a primary peak 363 near zero as well as secondary peaks corresponding to underestimations of approximately 364 -2.4°C and -1.2°C respectively (Fig. 5a). Both $WBGT_{in}$ and $WBGT_{Br}$ substitute T_{nw} 365 with T_w , and $WBGT_{in}$ also approximates T_g with T_a . These approximations work rel-366 atively well during nighttime especially for T_{nw} (Fig. 5b). Notably, T_g is lower than T_a 367 at nighttime, and the distribution of their differences peaks around -1°C, but can extend 368 up to -3°C (Fig. 5b). That is because air is not a black body, and consequently the long-369 wave radiative exchange between the black globe and ambient air produce net cooling 370 on the globe. However, during daytime, T_w and T_a significantly underestimate T_{nw} and 371 T_q due to the omission of solar radiative heating. The distributions of these underesti-372 mations peak around -1.2°C and -7.6°C respectively (Fig. 5b) which amounts to under-373 estimations in WBGT of -0.8°C and -1.5°C given the weights on T_{nw} and T_g in WBGT 374 formulation. The differentiated daytime versus nighttime performances explain the bi-375 modal distribution of biases in $WBGT_{in}$ and $WBGT_{Br}$ (Fig. 5a). 376

Figure 4. Annual (left) 1% and (middle) 99% percentile of biases, and (right) 99% percentile of the absolute magnitudes of biases in the analytic approximations of (a-c) T_g , (d-f) T_{nw} and (g-i) WBGT. Panels j-l represent the empirical cumulative distribution of these biases across all continental grid cells weighted by area. The 1% percentile of biases in \hat{T}_g are very close to zero and therefore are omitted in (j). Biases are evaluated by comparing against Liljegren's full model based on hourly ERA5 reanalysis data during 2013-2022.

377 378 379 The shape of the bias distribution and the relative performance of different approximations remain consistent in a future warmer world, where \widehat{WBGT} continues to have the best performance (Fig. 5c).

Figure 5. Empirical probability distribution of (a) biases in our analytic formulation WBGTand several other WBGT approximations, and (b) $T_{nw} - T_w$ and $T_g - T_a$ at both daytime and nighttime. Both (a) and (b) are derived from land data weighted by grid-cell area using ERA5 reanalysis for the period of 2013-2022. Panel (c) is the same as (a) except for the period 2091-2100 under the SSP585 scenario using the ACCESS-CM2 model. The y-axes are designed to represent the percentage of samples showing biases within a 0.2 °C interval centered on the corresponding x coordinates. Samples with WBGT below 15°C are excluded, as they are less relevant to heat stress.

Our analytic approximation also performs better in representing the annual mean 380 and 75-99% percentiles of WBGT with biases consistently within $\pm 0.5^{\circ}$ C across the world 381 as described previously (Fig. 6). sWBGT strongly overestimates WBGT especially at 382 annual mean level, and this overestimation becomes weaker towards higher percentiles 383 where the assumption of moderately strong solar radiation becomes more applicable (Fig. 384 6a-d). ESI performs well in capturing annual mean and 75% percentile of WBGT with 385 biases mostly within $\pm 1^{\circ}$ C, but considerably underestimates the 99% percentile by up 386 to -4°C across the low latitudes (Fig. 6e-h). Both $WBGT_{in}$ and $WBGT_{Br}$ consistently 387 show underestimations the magnitude of which increases towards higher percentiles (Fig. 388 6i-p). Among them, $WBGT_{Br}$ has better performance since T_q is calculated from mean 389 radiant temperature rather than replaced with T_a as is done for $WBGT_{in}$. 390

³⁹¹ 5 Summary and implication

We have developed an approximate form of WBGT that does not require iterative 392 calculation. The need for iteration in WBGT calculation arises from the nonlinear de-393 pendence of mass and/or heat transfer (through convection, thermal radiation and evap-394 oration) efficiencies on T_g or T_{nw} , rendering the energy balance equations analytically 395 intractable. However, we have shown that this dependence is weak for convection which 396 is primarily influenced by wind speed. This self-dependence is also of minor importance 397 for thermal radiation because the thermal radiative heat transfer coefficient changes by 398 a small fraction within the typical variation range of T_q or T_{nw} , and energy loss via ther-399 mal radiation is much less efficient than convection and evaporation. The dependence 400 of evaporative heat transfer coefficient on T_{nw} is of greater concern since h_{ew} is relatively 401 sensitive to T_{nw} variations (h_{ew} varies by 2-3% per °C change in T_{nw}) and evaporation 402 plays a dominant role in the energy loss of the wet wick. 403

Figure 6. Biases in the annual mean and 75%, 90% and 99% percentile values of our analytic approximation (\widehat{WBGT}) and several other approximations of WBGT. Biases are evaluated by comparing against Liljegren's full model based on hourly ERA5 reanalysis data during 2013-2022.

Figure 6. Continued.

The recognition of the weak self-nonlinearity, at least for convection and thermal 404 radiation, motivates the development of an analytic approximation of WBGT by sub-405 stituting T_a and T_w as initial estimates for T_q and T_{nw} into the mass and heat transfer 406 coefficients. The analytic approximation eliminates the need for iteration and is more accurate than other WBGT approximations commonly used in the literature. It presents 408 an useful first guess to Liljegren's full model given its reasonably high accuracy and com-409 putational straightforwardness. However, users should consider the potential underes-410 timation of heat stress under extremely hot-dry conditions. Notably, more accurate es-411 timates can be obtained through a single iteration, with the analytic approximations serv-412 ing as the updated first guesses. Recently, Liljeren's WBGT formulation has been im-413 plemented into the Community Land Model Version 5 (CLM5) for non-urban settings 414 (Buzan, 2024). Our analytic approximation could offer an useful alternative for inclu-415 sion in the model to prevent the model from slowing down due to iterative WBGT cal-416 culations. 417

The complex, nonlinear interactions between multiple meteorological parameters 418 not only require WBGT to be calculated iteratively, but also lead to a functional form 419 that is opaque to theoretical investigation and often times treated as a black box. As a 420 result, WBGT-despite being a good representation of human heat stress-has not been 421 adopted for understanding the atmospheric dynamics and thermodynamic processes con-422 trolling heat stress. Instead, strictly thermodynamic variables like T_w , moist enthalpy 423 or equivalent potential temperature are used for such purpose because of their straight-424 forward dynamic and thermodynamic constraint (Kong & Huber, 2023; Raymond et al., 425 2021; Zhang et al., 2021; Lutsko, 2021). But these thermodynamic quantities are not in-426 tended for or well calibrated to human heat stress which diminishes the practical rele-427 vance of the generated insights (Simpson et al., 2023; Lu & Romps, 2023). 428

In deriving the analytic approximation, we have gained insights that the deviation 429 of both T_q and T_{nw} from T_a is controlled by the ratio between solar radiative heating 430 (and VPD cooling for T_{nw}) and the efficiency of energy loss through convection and long-431 wave cooling (and evaporation for T_{nw}) (Eq. 4 and 8). Therefore, understanding changes 432 in T_q , T_{nw} and consequently WBGT, must involve strong constraints or knowledge of 433 the evolution of this ratio. Depending on the problem under consideration, if solar ra-434 diation and wind speed remain unchanged, the ratio for T_g (Eq. 4) is approximately con-435 stant given minor influence from changes in thermal radiative heat transfer efficiency. 436 Consequently, T_g is expected to vary at the same rate as T_a . It is less straightforward 437 to get a quick, simple relation between changes in T_{nw} and T_a , as the ratio in Eq. 8 also 438 depends on humidity and T_{nw} itself due to the VPD cooling term and evaporative heat 439 transfer coefficient. Nevertheless, given certain assumptions on humidity changes (e.g., 440 constant relative humidity), we should be able to explicitly predict how T_{nw} scales with 441 temperature as well. In addition, since T_{nw} is driven away from T_w by solar radiation 442 under the modulation of wind, we may expect the differences between them to be roughly 443 constant if both solar radiation and wind remain unchanged. If this is the case, the scal-444 ing of T_{nw} and T_w with temperature should be close to each other. 445

More generally, Eq. 4 and Eq. 8, with their clear physical interpretation, may serve 446 as a starting point for an analytic investigation of the sensitivity of WBGT to changes 447 in temperature, humidity, wind and solar radiation. Clearly, we have better intuition on 448 these traditional meteorological parameters, and established theories to constrain their 449 variations (Zhang & Boos, 2023; Byrne, 2021; Byrne & O'Gorman, 2013, 2016; McColl 450 & Tang, 2024). An explicit, analytic expression of WBGT's sensitivity to these tradi-451 tional meteorological variables helps remove the obscuring veil of WBGT's apparent com-452 plexity and may facilitate its application in understanding the physical control of heat 453 stress. For example, we can quantitatively disentangle the relative role of changes in each 454 meteorological input and the underlying physical processes in explaining WBGT responses 455

to any physical perturbations (like atmospheric blocking events, irrigation or increasing
 greenhouse gas emission). These will be further explored in upcoming studies.

458 6 Open Research

Hersbach, H. et al. (2018) was downloaded from the Copernicus Climate Change 459 Service (C3S) Climate Data Store (https://cds.climate.copernicus.eu/cdsapp#!/ 460 dataset/reanalysis-era5-single-levels?tab=form). The results contain modified 461 Copernicus Climate Change Service information 2020. Neither the European Commis-462 sion nor ECMWF is responsible for any use that may be made of the Copernicus infor-463 mation or data it contains. Dix et al. (2019) was downloaded from https://esgf-index1 464 .ceda.ac.uk/search/cmip6-ceda/. Liljegren's WBGT code in C language is accessible at https://github.com/mdljts/wbgt/blob/master/src/wbgt.c, and was ported 466 to Cython (can be compiled and implemented in Python) by Kong and Huber (2022) 467 (available at https://zenodo.org/record/5980536). The code for the analytic WBGT 468 approximation is deposited at Zenodo (https://zenodo.org/records/10802580) along 469 with a Jupyter notebook to introduce its usage. The following Python packages were utilised: 470 Numpy (Harris et al., 2020), Xarray (Hoyer & Hamman, 2017), Dask (Dask Develop-471 ment Team, 2016), Matplotlib (Hunter, 2007), and Cartopy (Met Office, 2010 - 2015). 472

473 Acknowledgments

This study is Funded by NASA FINESST grant 80NSSC22K1544, grant NSF 1805808-CBET Innovations at the Nexus of Food, Energy, and Water Systems (INFEWS: U.S.-China): A multi-scale integrated modeling approach to managing the transition to sustainability and NSF 1829764-OAC CyberTraining: CIU:Cross-disciplinary Training for Findable, Accessible, Interoperable, and Reusable (FAIR) science. We thank Rodrigo Caballero for useful discussions that clarified the presentation of concepts in this study. The authors declare no competing interests.

481 **References**

- ACSM. (1984). Position stand on the prevention of thermal injuries during distance
 running (Tech. Rep.). Medicine Sci. Sport. Exercise.
- Army, U. (2003). Heat stress control and heat casualty management (Tech. Rep.).
 Technical Bulletin Medical 507/Air Force Pamphlet.
- 486Australian Bureau of Meteorology.(2010).About the approximation to the487WBGT used by the Bureau of Meteorology.Retrieved 2021-04-03, from488http://www.bom.gov.au/info/thermal_stress/#approximation
- Bedingfield, C. H., & Drew, T. B. (1950). Analogy between Heat Transfer and Mass
 Transfer. Industrial & Engineering Chemistry, 42(6), 1164–1173. doi: 10.1021/
 ie50486a029
- Brenda Jacklitsch, W. Jon Williams, Kristin Musolin, Aitor Coca, Jung-Hyun Kim,
 & Nina Turner. (2016). Criteria for a Recommended Standard: Occupational Exposure to Heat and Hot Environments (Tech. Rep. No. DHHS (NIOSH)
 Publication No. 2016-106). Washington, D.C: DHHS, NIOSH.
- Brimicombe, C., Lo, C. H. B., Pappenberger, F., Di Napoli, C., Maciel, P., Quintino,
 T., ... Cloke, H. L. (2023). Wet Bulb Globe Temperature: Indicating Extreme
 Heat Risk on a Global Grid. *GeoHealth*, 7(2). doi: 10.1029/2022GH000701
- Bröde, P., Fiala, D., Lemke, B., & Kjellstrom, T. (2018). Estimated work ability in warm outdoor environments depends on the chosen heat stress assessment metric. *International Journal of Biometeorology*, 62(3), 331–345. doi: 10.1007/s00484-017-1346-9
- ⁵⁰³ Burke, M., González, F., Baylis, P., Heft-Neal, S., Baysan, C., Basu, S., &
- ⁵⁰⁴ Hsiang, S. (2018). Higher temperatures increase suicide rates in the

505	United States and Mexico. Nature Climate Change, $\delta(8)$, 723–729. doi:
506	10.1038/s41558-018-0222-x
507	Burke, M., Hsiang, S. M., & Miguel, E. (2015). Global non-linear effect of temper-
508	ature on economic production. Nature, $527(7577)$, $235-239$. doi: 10.1038/
509	nature15725
510	Buzan, J. R. (2024). Implementation and Evaluation of Wet Bulb Globe Tempera-
511	ture Within Non-Urban Environments in the Community Land Model Version
512	5. Journal of Advances in Modeling Earth Systems, 16(2), e2023MS003704.
513	doi: 10.1029/2023MS003704
514	Buzan, J. R., & Huber, M. (2020). Moist Heat Stress on a Hotter Earth. Annual
515	Review of Earth and Planetary Sciences, 48(1), 623–655. doi: 10.1146/annurev
516	-earth-053018-060100
517	Buzan, J. R., Oleson, K., & Huber, M. (2015). Implementation and compari-
518	solition of a suite of near stress metrics within the Community Land Model version 4.5 . Conscientific Model Development $8(2)$ 151–170
519	Version 4.5. Geoscientific Model Development, $\delta(2)$, 151–170. doi: 10.5104/gmd 8.151.2015
520	Burno M D (2021) Amplified warming of extreme temperatures over tropical land
521	Nature Geoscience, 1/(11), 837-841, doi: 10.1038/s41561-021-00828-8
523	Byrne, M. P., & O'Gorman, P. A. (2013). Land–Ocean Warming Contrast
524	over a Wide Range of Climates: Convective Quasi-Equilibrium Theory
525	and Idealized Simulations. Journal of Climate, 26(12), 4000–4016. doi:
526	10.1175/JCLI-D-12-00262.1
527	Byrne, M. P., & O'Gorman, P. A. (2016). Understanding Decreases in Land Relative
528	Humidity with Global Warming: Conceptual Model and GCM Simulations.
529	Journal of Climate, 29(24), 9045–9061. doi: 10.1175/JCLI-D-16-0351.1
530	Casanueva, A., Kotlarski, S., Fischer, A. M., Flouris, A. D., Kjellstrom, T., Lemke,
531	B., Liniger, M. A. (2020). Escalating environmental summer heat expo-
532	sure—a future threat for the European workforce. Regional Environmental
533	Change, $20(2)$, 40. doi: 10.1007/s10113-020-01625-6
534	Chavaillaz, Y., Roy, P., Partanen, AI., Da Silva, L., Bresson, E., Mengis, N.,
535	Matthews, H. D. (2019). Exposure to excessive heat and impacts on labour
536	productivity linked to cumulative CO2 emissions. Scientific Reports, $9(1)$,
537	13711. doi: 10.1038/s41598-019-50047-w
538	Chilton, T. H., & Colburn, A. P. (1934). Mass Transfer (Absorption) Coefficients
539	Prediction from Data on Heat Transfer and Fluid Friction. Industrial & Engi-
540	neering Chemistry, 26(11), 1183-1187. doi: 10.1021/1650299a012
541	Clark, J., & Konrad, C. E. (2023). Observations and Estimates of Wet Bulb Globe
542	metalogy doi: 10.1175/IAMC D.23.0078.1
543	Degle Development Team (2016) Degle Library for dynamic teals geheduling [Com
544	puter software manual] Betrieved from https://dask.org
545	de Freitas C. B. & Crigorieva E. A. (2015) A comprehensive catalogue and clas-
540	sification of human thermal climate indices International Journal of Biometeo-
548	rology, 59(1), 109–120, doi: 10.1007/s00484-014-0819-3
540	de Lima C Z Buzan J B Moore F C Baldos U L C Huber M & Hertel
550	T. W. (2021). Heat stress on agricultural workers exacerbates crop impacts
551	of climate change. Environmental Research Letters. 16(4), 044020. doi:
552	10.1088/1748-9326/abeb9f
553	Dix, M., Bi, D., Dobrohotoff, P., Fiedler, R., Harman, I., Law, R., Yang, R.
554	(2019). CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6
555	ScenarioMIP ssp585. Earth System Grid Federation. Retrieved 2024-02-10,
556	from http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.ScenarioMIP
557	$. {\tt CSIRO-ARCCSS.ACCESS-CM2.ssp585} \qquad ({\rm Medium: \ application/x-netcdf \ Version})$
558	Number: 20230220 Type: dataset) doi: 10.22033/ESGF/CMIP6.4332
559	Dunne, J. P., Stouffer, R. J., & John, J. G. (2013). Reductions in labour capacity

560	from heat stress under climate warming. Nature Climate Change, $3(6)$, 563–
561	566. doi: 10.1038/nclimate1827
562	Ebi, K. L., Capon, A., Berry, P., Broderick, C., De Dear, R., Havenith, G.,
563	Jay, O. (2021). Hot weather and heat extremes: health risks. The Lancet,
564	398(10301), 698-708. doi: $10.1016/S0140-6736(21)01208-3$
565	Foster, J., Smallcombe, J. W., Hodder, S., Jay, O., Flouris, A. D., & Havenith, G.
566	(2022). Quantifying the impact of heat on human physical work capacity; part
567	II: the observed interaction of air velocity with temperature, humidity, sweat
568	rate, and clothing is not captured by most heat stress indices. International
569	Journal of Biometeorology, 66(3), 507–520. doi: 10.1007/s00484-021-02212-y
570	Foster, J., Smallcombe, J. W., Hodder, S., Jay, O., Flouris, A. D., Nybo, L., &
571	Havenith, G. (2022). Quantifying the impact of heat on human physical work
572	capacity; part III: the impact of solar radiation varies with air temperature,
573	humidity, and clothing coverage. International Journal of Biometeorology,
574	66(1), 175–188. doi: 10.1007/s00484-021-02205-x
575	Gao, J., Wang, Y., Wu, X., Gu, X., & Song, X. (2019). A simplified indoor wet-bulb
576	globe temperature formula to determine acceptable hot environmental parame-
577	ters in naturally ventilated buildings. <i>Energy and Buildings</i> , 196, 169–177. doi:
578	10.1016/j.enbuild.2019.05.035
579	Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cour-
580	napeau, D., Oliphant, T. E. (2020). Array programming with NumPv.
581	Nature, 585 (7825), 357–362. doi: 10.1038/s41586-020-2649-2
582	Hausfather, Z. (2019). Cmip6: The next generation of climate models ex-
583	plained. Retrieved 2024-02-13, from https://www.carbonbrief.org/
584	cmip6-the-next-generation-of-climate-models-explained
585	Havenith, G., & Fiala, D. (2015, December). Thermal Indices and Thermophysiolog-
586	ical Modeling for Heat Stress. In R. Terjung (Ed.), Comprehensive Physiology
587	(pp. 255–302). Hoboken, NJ, USA: John Wiley & Sons, Inc. Retrieved 2020-
588	06-27, from http://doi.wiley.com/10.1002/cphy.c140051 doi: 10.1002/
589	cphy.c140051
590	Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horánvi, A., Muñoz Sabater, J.,
591	Thépaut, J-N. (2018). ERA5 hourly data on single levels from 1979 to
592	present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).
593	doi: 10.24381/cds.adbb2d47
594	Hoyer, S., & Hamman, J. (2017). xarray: N-D labeled arrays and datasets in
595	Python. Journal of Open Research Software, 5(1). doi: 10.5334/jors.148
596	Hsiang, S. M., Burke, M., & Miguel, E. (2013). Quantifying the Influence of Cli-
597	mate on Human Conflict. Science, 341(6151), 1235367. doi: 10.1126/science
598	.1235367
599	Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science
600	& Engineering, 9(3), 90–95. doi: 10.1109/MCSE.2007.55
601	Ioannou, L. G., Tsoutsoubi, L., Mantzios, K., Vliora, M., Nintou, E., Piil, J. F.,
602	Flouris, A. D. (2022). Indicators to assess physiological heat strain – Part 3:
603	Multi-country field evaluation and consensus recommendations. Temperature,
604	9(3), 274–291. doi: 10.1080/23328940.2022.2044739
605	ISO. (1998). Ergonomics of the thermal environment - instruments for measuring
606	physical quantities (International Standard). Geneva: International Organiza-
607	tion for Standardization (ISO).
608	ISO. (2017). Ergonomics of the thermal environment — Assessment of heat stress
609	using the WBGT (wet bulb globe temperature) index (International Standard).
610	Geneva: International Organization for Standardization (ISO).
611	Kamal, A. S. M. M., Faruki Fahim, A. K., & Shahid, S. (2024). Simplified equations
612	for wet bulb globe temperature estimation in Bangladesh. International Jour-
613	nal of Climatology, joc.8402. doi: 10.1002/joc.8402
614	Kjellstrom, T., Briggs, D., Freyberg, C., Lemke, B., Otto, M., & Hyatt, O. (2016).

615 616 617	Heat, Human Performance, and Occupational Health: A Key Issue for the Assessment of Global Climate Change Impacts. Annual Review of Public Health, 37(1), 97–112. doi: 10.1146/annurey-publicalth-032315-021740
618	Kiellstrom, T., Frevberg, C., Lemke, B., Otto, M., & Briggs, D. (2018). Estimating
619	population heat exposure and impacts on working people in conjunction with
620	climate change. International Journal of Biometeorology, 62(3), 291–306. doi:
621	10.1007/s00484-017-1407-0
622	Kong O & Huber M (2022) Explicit calculations of Wet Bulb Globe Tempera-
623	ture compared with approximations and why it matters for labor productivity.
624	Earth's Future. doi: 10.1029/2021EF002334
625	Kong, Q., & Huber, M. (2023). Regimes of soil moisture-wet bulb temperature cou-
626	pling with relevance to moist heat stress. <i>Journal of Climate</i> , 1–45. doi: 10
627	.1175/JCLI-D-23-0132.1
628	Lemke, B., & Kjellstrom, T. (2012). Calculating workplace WBGT from meteorolog-
629	ical data: a tool for climate change assessment. Industrial Health, 50(4), 267–
630	278. doi: 10.2486/indhealth.MS1352
631	Li, C., Sun, Y., Zwiers, F., Wang, D., Zhang, X., Chen, G., & Wu, H. (2020).
632	Rapid Warming in Summer Wet Bulb Globe Temperature in China with
633	Human-Induced Climate Change. Journal of Climate, 33(13), 5697–5711. doi:
634	10.1175/JCLI-D-19-0492.1
635	Li, D., Yuan, J., & Kopp, R. E. (2020). Escalating global exposure to compound
636	heat-humidity extremes with warming. Environmental Research Letters, 15(6).
637	064003. doi: 10.1088/1748-9326/ab7d04
638	Liliegren, J. C., Carhart, B. A., Lawday, P., Tschopp, S., & Sharp, R. (2008).
639	Modeling the Wet Bulb Globe Temperature Using Standard Meteorological
640	Measurements. Journal of Occupational and Environmental Hugiene, 5(10).
641	645–655. doi: 10.1080/15459620802310770
642	Lu, YC., & Romps, D. (2023). Wet-Bulb Temperature or Heat Index: Which Bet-
643	ter Predicts Fatal Heat in a Warming Climate? <i>Physiology</i> , 38(S1), 5734524.
644	doi: 10.1152/physiol.2023.38.S1.5734524
645	Lutsko, N. J. (2021). The Relative Contributions of Temperature and Moisture to
646	Heat Stress Changes under Warming. Journal of Climate, 34(3), 901–917. doi:
647	10.1175/JCLI-D-20-0262.1
648	Matsumoto, K., Tachiiri, K., & Su, X. (2021). Heat stress, labor productivity, and
649	economic impacts: analysis of climate change impacts using two-way coupled
650	modeling. Environmental Research Communications, 3(12), 125001. doi:
651	10.1088/2515-7620/ac3e14
652	McColl, K. A., & Tang, L. I. (2024). An Analytic Theory of Near-Surface Relative
653	Humidity over Land. Journal of Climate, 37(4), 1213-1230. doi: 10.1175/JCLI
654	-D-23-0342.1
655	Met Office. (2010 - 2015). Cartopy: a cartographic python library with a mat-
656	plotlib interface [Computer software manual]. Exeter, Devon. Retrieved from
657	https://scitools.org.uk/cartopy
658	Moran, D., Pandolf, K., Shapiro, Y., Heled, Y., Shani, Y., Mathew, W., & Gonza-
659	lez, R. (2001). An environmental stress index (ESI) as a substitute for the
660	wet bulb globe temperature (WBGT). Journal of Thermal Biology, 26(4-5),
661	427-431. doi: 10.1016/S0306-4565(01)00055-9
662	NIOSH. (2016). Criteria for a Recommended Standard: Occupational Exposure to
663	Heat and Hot Environments (Tech. Rep. No. DHHS (NIOSH) Publication No.
664	2016-106). Washington, D.C: DHHS, NIOSH.
665	Orlov, A., De Hertog, S., Havermann, F., Guo, S., Luo, F., Manola, I., Schleuss-
666	ner, C. (2023). Changes in Land Cover and Management Affect Heat
667	Stress and Labor Capacity. Earth's Future, 11(3), e2022EF002909. doi:
668	10.1029/2022 EF 002909
669	$OSHA. \ (2017). \ Osha \ technical \ manual, \ section \ iii, \ chapter \ 4:heat \ stress. \ (Tech. \ Rep.$

670	No. TED-01-00-015). Washington (DC): U.S. Department of Labor, OSHA:
671	Occupational Safety and Health Administration (OSHA).
672	Patel, T., Mullen, S. P., & Santee, W. R. (2013). Comparison of Methods
673	for Estimating Wet-Bulb Globe Temperature Index From Standard Me-
674	teorological Measurements. <i>Military Medicine</i> , 178(8), 926–933. doi:
675	10.7205/MILMED-D-13-00117
676	Raymond, C., Matthews, T., Horton, R. M., Fischer, E. M., Fueglistaler, S.,
677	Ivanovich, C., Zhang, Y. (2021). On the Controlling Factors for Glob-
678	ally Extreme Humid Heat. $Geophysical Research Letters, 48(23).$ doi:
679	10.1029/2021 GL096082
680	Saeed, W., Haqiqi, I., Kong, Q., Huber, M., Buzan, J. R., Chonabayashi, S.,
681	Hertel, T. W. (2022). The Poverty Impacts of Labor Heat Stress
682	in West Africa Under a Warming Climate. Earth's Future, $10(11)$. doi:
683	10.1029/2022 EF 002777
684	Sherwood, S. C., & Huber, M. (2010). An adaptability limit to climate change
685	due to heat stress. Proceedings of the National Academy of Sciences, 107(21),
686	9552–9555. doi: 10.1073/pnas.0913352107
687	Simpson, C. H., Brousse, O., Ebi, K. L., & Heaviside, C. (2023). Commonly used in-
688	dices disagree about the effect of moisture on heat stress. npj Climate and At-
689	mospheric Science, $6(1)$, 78. doi: $10.1038/s41612-023-00408-0$
690	Stull, R. (2011). Wet-Bulb Temperature from Relative Humidity and Air Tempera-
691	ture. Journal of Applied Meteorology and Climatology, $50(11)$, 2267–2269. doi:
692	10.1175/JAMC-D-11-0143.1
693	Tuholske, C., Caylor, K., Funk, C., Verdin, A., Sweeney, S., Grace, K., Evans,
694	T. (2021, October). Global urban population exposure to extreme heat. Pro-
695	ceedings of the National Academy of Sciences, 118(41), e2024792118. doi:
	10 1073/pnas 2024792118
696	10.1010/ phas.2024152110
696 697	Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the
696 697 698	Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light phys-
696 697 698 699	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light phys- ical activity (PSU HEAT Project). <i>International Journal of Biometeorology</i>,
696 697 698 699 700	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light physical activity (PSU HEAT Project). <i>International Journal of Biometeorology</i>, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z
696 697 698 699 700 701	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light physical activity (PSU HEAT Project). <i>International Journal of Biometeorology</i>, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, con-
696 697 698 699 700 701 702	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light physical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, convective threshold and false thermostats. Geophysical Research Letters, 36(21),
696 697 698 699 700 701 702 703	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light physical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, convective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849
696 697 698 699 700 701 702 703 704	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light physical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, convective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training
696 697 698 699 700 701 702 703 704 705	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light physical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, convective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training centers. A.M.A. archives of industrial health, 16(4), 302–316.
696 697 698 699 700 701 702 703 704 705 706	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light phys- ical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, con- vective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training centers. A.M.A. archives of industrial health, 16(4), 302–316. Zhang, Y., & Boos, W. R. (2023). An upper bound for extreme temperatures over
699 697 698 699 700 701 702 703 704 705 706 707	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light physical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, convective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training centers. A.M.A. archives of industrial health, 16(4), 302–316. Zhang, Y., & Boos, W. R. (2023). An upper bound for extreme temperatures over midlatitude land. Proceedings of the National Academy of Sciences, 120(12),
699 697 698 699 700 701 702 703 704 705 706 707 708	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light phys- ical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, con- vective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training centers. A.M.A. archives of industrial health, 16(4), 302–316. Zhang, Y., & Boos, W. R. (2023). An upper bound for extreme temperatures over midlatitude land. Proceedings of the National Academy of Sciences, 120(12), e2215278120. doi: 10.1073/pnas.2215278120
696 697 698 699 700 701 702 703 704 705 706 707 708 709	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light phys- ical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, con- vective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training centers. A.M.A. archives of industrial health, 16(4), 302–316. Zhang, Y., & Boos, W. R. (2023). An upper bound for extreme temperatures over midlatitude land. Proceedings of the National Academy of Sciences, 120(12), e2215278120. doi: 10.1073/pnas.2215278120 Zhang, Y., Held, I., & Fueglistaler, S. (2021). Projections of tropical heat stress con-
699 697 698 699 700 701 702 703 704 705 706 707 708 709 710	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light phys- ical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, con- vective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training centers. A.M.A. archives of industrial health, 16(4), 302–316. Zhang, Y., & Boos, W. R. (2023). An upper bound for extreme temperatures over midlatitude land. Proceedings of the National Academy of Sciences, 120(12), e2215278120. doi: 10.1073/pnas.2215278120 Zhang, Y., Held, I., & Fueglistaler, S. (2021). Projections of tropical heat stress con- strained by atmospheric dynamics. Nature Geoscience, 14(3), 133–137. doi: 10
699 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light phys- ical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, con- vective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training centers. A.M.A. archives of industrial health, 16(4), 302–316. Zhang, Y., & Boos, W. R. (2023). An upper bound for extreme temperatures over midlatitude land. Proceedings of the National Academy of Sciences, 120(12), e2215278120. doi: 10.1073/pnas.2215278120 Zhang, Y., Held, I., & Fueglistaler, S. (2021). Projections of tropical heat stress con- strained by atmospheric dynamics. Nature Geoscience, 14(3), 133–137. doi: 10 .1038/s41561-021-00695-3
699 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light phys- ical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, con- vective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training centers. A.M.A. archives of industrial health, 16(4), 302–316. Zhang, Y., & Boos, W. R. (2023). An upper bound for extreme temperatures over midlatitude land. Proceedings of the National Academy of Sciences, 120(12), e2215278120. doi: 10.1073/pnas.2215278120 Zhang, Y., Held, I., & Fueglistaler, S. (2021). Projections of tropical heat stress con- strained by atmospheric dynamics. Nature Geoscience, 14(3), 133–137. doi: 10 .1038/s41561-021-00695-3 Zhang, Y., & Shindell, D. T. (2021). Costs from labor losses due to extreme heat in
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light physical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, convective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training centers. A.M.A. archives of industrial health, 16(4), 302–316. Zhang, Y., & Boos, W. R. (2023). An upper bound for extreme temperatures over midlatitude land. Proceedings of the National Academy of Sciences, 120(12), e2215278120. doi: 10.1073/pnas.2215278120 Zhang, Y., Held, I., & Fueglistaler, S. (2021). Projections of tropical heat stress constrained by atmospheric dynamics. Nature Geoscience, 14(3), 133–137. doi: 10.1038/s41561-021-00695-3 Zhang, Y., & Shindell, D. T. (2021). Costs from labor losses due to extreme heat in the USA attributable to climate change. Climatic Change, 164(3-4), 35. doi:
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light physical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, convective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training centers. A.M.A. archives of industrial health, 16(4), 302–316. Zhang, Y., & Boos, W. R. (2023). An upper bound for extreme temperatures over midlatitude land. Proceedings of the National Academy of Sciences, 120(12), e2215278120. doi: 10.1073/pnas.2215278120 Zhang, Y., Held, I., & Fueglistaler, S. (2021). Projections of tropical heat stress constrained by atmospheric dynamics. Nature Geoscience, 14(3), 133–137. doi: 10.1038/s41561-021-00695-3 Zhang, Y., & Shindell, D. T. (2021). Costs from labor losses due to extreme heat in the USA attributable to climate change. Climatic Change, 164(3-4), 35. doi: 10.1007/s10584-021-03014-2
699 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light physical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, convective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training centers. A.M.A. archives of industrial health, 16(4), 302–316. Zhang, Y., & Boos, W. R. (2023). An upper bound for extreme temperatures over midlatitude land. Proceedings of the National Academy of Sciences, 120(12), e2215278120. doi: 10.1073/pnas.2215278120 Zhang, Y., Held, I., & Fueglistaler, S. (2021). Projections of tropical heat stress constrained by atmospheric dynamics. Nature Geoscience, 14(3), 133–137. doi: 10.1038/s41561-021-00695-3 Zhang, Y., & Shindell, D. T. (2021). Costs from labor losses due to extreme heat in the USA attributable to climate change. Climatic Change, 164(3-4), 35. doi: 10.1007/s10584-021-03014-2 Zhu, J., Wang, S., Zhang, B., & Wang, D. (2021). Adapting to Changing Labor Pro-
699 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light physical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, convective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training centers. A.M.A. archives of industrial health, 16(4), 302–316. Zhang, Y., & Boos, W. R. (2023). An upper bound for extreme temperatures over midlatitude land. Proceedings of the National Academy of Sciences, 120(12), e2215278120. doi: 10.1073/pnas.2215278120 Zhang, Y., Held, I., & Fueglistaler, S. (2021). Projections of tropical heat stress constrained by atmospheric dynamics. Nature Geoscience, 14(3), 133–137. doi: 10.1038/s41561-021-00695-3 Zhang, Y., & Shindell, D. T. (2021). Costs from labor losses due to extreme heat in the USA attributable to climate change. Climatic Change, 164(3-4), 35. doi: 10.1007/s10584-021-03014-2 Zhu, J., Wang, S., Zhang, B., & Wang, D. (2021). Adapting to Changing Labor Productivity as a Result of Intensified Heat Stress in a Changing Climate. Geo-

A new, zero-iteration analytic implementation of wet-bulb globe temperature: development, validation and comparison with other methods

Qinqin Kong¹ and Matthew Huber¹

¹Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, United States of America, 47907

Key Points:

1

2

3

4

5

6

7

8	• Accurate wet-bulb globe temperature (WBGT) calculation, such as Liljegren's model,
9	requires iteration.
10	• By examining self-nonlinearities in Liljegren's model, we develop a simplified, an-
11	alytic form– $WBGT$ –that does not require iteration.
12	• \widehat{WBGT} is more accurate than commonly used simplified approximations, while
13	retaining most of the physics in the Liljegren formulation.

Corresponding author: Qinqin Kong, kong97@purdue.edu

14 Abstract

Wet-bulb globe temperature (WBGT)-a standard measure for workplace heat stress regulation-15 incorporates the complex, nonlinear interaction among temperature, humidity, wind and 16 radiation. This complexity requires WBGT to be calculated iteratively following the rec-17 ommended approach developed by Liljegren and colleagues. The need for iteration has 18 limited the wide application of Liljegren's approach, and stimulated various simplified 19 WBGT approximations that do not require iteration but are potentially seriously biased. 20 By carefully examining the self-nonlinearities in Liljegren's model, we develop a zero-21 iteration analytic approximation of WBGT while maintaining sufficient accuracy and the 22 physical basis of the original model. The new approximation slightly deviates from Lil-23 jegren's full model—by less than 1°C in 99% cases over 93% of global land area. The an-24 nual mean and 75-99% percentiles of WBGT are also well represented with biases within 25 $\pm 0.5^{\circ}$ C globally. This approximation is clearly more accurate than other commonly used 26 WBGT approximations. Physical intuition can be developed on the processes control-27 ling WBGT variations from an energy balance perspective. This may provide a basis for 28 applying WBGT to understanding the physical control of heat stress. 29

³⁰ Plain Language Summary

Wet-bulb globe temperature (WBGT) is a standard way to measure heat stress in the workplace. It incorporates the complex, nonlinear interactive effects of temperature, humidity, wind and radiation. This complexity requires WBGT to be calculated iteratively which is computationally intensive and less straightforward to implement algorithmically. To address these issues, we came up with a simplified version of WBGT that obviates the need for iteration. This simplified approach is computationally straightforward and also highly accurate.

³⁸ 1 Introduction

Heat stress presents significant threats to human health (Ebi et al., 2021; Buzan 30 & Huber, 2020; Kjellstrom et al., 2016) with wide-ranging social (Hsiang et al., 2013; Burke 40 et al., 2018) and economic consequences (Burke et al., 2015; Saeed et al., 2022). Met-41 rics that accurately represent the physiological impact of heat stress are crucial for the 42 monitoring, early warning, and impact assessment of heat stress (Havenith & Fiala, 2015; 43 Simpson et al., 2023). Over the last century, numerous heat stress metrics have been for-44 mulated (de Freitas & Grigorieva, 2015), among which the wet-bulb globe temperature 45 (WBGT) emerges as a notably comprehensive measure, encapsulating the interplay of 46 temperature, humidity, wind speed and radiation effects (Yaglou & Minard, 1957). Rooted 47 in physiology principles and fortified by empirical calibration, WBGT is as good or bet-48 ter than most other metrics in predicting human heat stress compensability (Vecellio et 49 al., 2022), assessing the physiological influences of heat stress (Ioannou et al., 2022), and 50 capturing the interactive effects of multiple meteorological factors on human physical work 51 capacity (Foster et al., 2022, 2022). It has been incorporated into several heat stress reg-52 ulatory standards across various domains including occupational health (NIOSH, 2016; 53 ISO, 2017; OSHA, 2017), military operations (Army, 2003) and athletic activities (ACSM, 54 1984).55

WBGT is defined as

56

$$WBGT = 0.7T_{nw} + 0.2T_q + 0.1T_a \tag{1}$$

⁵⁷ under outdoor conditions where T_{nw} , T_g and T_a refer to natural wet-bulb temperature, ⁵⁸ black globe temperature and dry-bulb temperature respectively. The WBGT model de-⁵⁹ veloped by Liljegren et al. (2008) is the recommended approach for WBGT calculation ⁶⁰ due to its foundation on heat and mass transfer principles, careful treatment of the ge-

ometry of WBGT sensors, and extensive validation (RMSE $< 1^{\circ}$ C) (Liljegren et al., 2008;

Lemke & Kjellstrom, 2012; Patel et al., 2013; Clark & Konrad, 2023). It derives T_{nw} and 62 T_q by solving the nonlinear energy balance equations of the wet wick and black globe 63 sensors. However, this process requires iterative calculations which have limited the widespread 64 adoption of Liljegren's approach. Even in recent work, a preference for simpler WBGT 65 approximations that avoid iteration persists within the scientific community (e.g., Zhu 66 et al. (2021); Brimicombe et al. (2023); Tuholske et al. (2021); Orlov et al. (2023); Kamal 67 et al. (2024)). However, these simplified approximations are so diverse in formulation that 68 they generate substantially different estimates making the results from different stud-69 ies challenging to meaningfully compare (Lemke & Kjellstrom, 2012; Kong & Huber, 2022). 70 Some approximations are based on statistical relationship rather than physics (Moran 71 et al., 2001; Australian Bureau of Meteorology, 2010; Kamal et al., 2024). The Australian 72 Bureau of Meteorology WBGT formulation (hereafter referred as sWBGT) (Australian 73 Bureau of Meteorology, 2010) has been demonstrated to be systematically biased, but 74 remain widely used because of their simplicity (Kong & Huber, 2022). The generated 75 heat stress estimates have been fed into impact models for assessing downstream social-76 economic consequences (Zhang & Shindell, 2021; Chavaillaz et al., 2019; Zhu et al., 2021; 77 Matsumoto et al., 2021; de Lima et al., 2021). The propagation of biases stemming from 78 these WBGT approximations through the chain of climate change impact assessment could 79 potentially mislead policy-making pertaining to heat stress mitigation and adaptation. 80

We aim to address this issue by developing a simplified WBGT model that does 81 not require iteration while maintaining sufficient accuracy and physics of heat and mass 82 transfer. This is achieved with an analytic approximation of Liljegren's WBGT through 83 substituting reasonable first-guess values of T_{nw} and T_g into the energy balance equa-84 tions of the wet wick and black globe sensors. The analytic approximation will be eval-85 uated against Liljegren's full model which, although subject to biases compared to field 86 observations (Lemke & Kjellstrom, 2012; Patel et al., 2013; Liljegren et al., 2008; Clark 87 & Konrad, 2023), is treated as ground truth in this paper. 88

The remainder of this paper is structured as follows. Section 2 provides a concise 89 overview of Liljegren's WBGT model focusing on the nonlinear energy balance equations. 90 Section 3 introduces the analytic approximation of WBGT the accuracy of which is eval-91 uated in Section 4. This evaluation is first conducted with synthetic data to understand 92 the bias structure across the multidimensional parameter space encompassing temper-93 ature, humidity, solar radiation and wind speed (Section 4.1). We then explore the mag-94 nitude and spatial distribution of biases within a more realistic context (Section 4.2). This 95 is primarily done with ERA5 reanalysis (Hersbach, H. et al., 2018) for a historical pe-96 riod, supplemented by the ACCESS-CM2 model (Dix et al., 2019) for a warmer climate. 97 Afterwards, we compare this analytic approximation against other commonly used ap-98 proximations of WBGT (Section 4.3). Section 5 contains a brief summary and implicaqq tions on applying WBGT to understanding physical processes controlling heat stress. 100

¹⁰¹ 2 Liljegren WBGT model

Here we briefly review the T_g and T_{nw} formulations in Liljegren's WBGT model while directing interested readers to Liljegren et al. (2008) and Kong and Huber (2022) for details.

105

2.1 Black globe temperature

106

The energy balance equation for the black globe is given by

$$\sigma \epsilon_g T_g^4 + h_{cg} (T_g - T_a) = L R_g + S R_g \tag{2}$$

where energy gain from incoming thermal (LR_g) and solar radiation (SR_g) is balanced by long-wave cooling and energy loss through convective heat transfer between the globe and ambient air corresponding respectively to the two terms on the left side of Eq. 2.

Note that LR_q encompasses both downward and upwelling thermal radiation; SR_q also 110 integrates heating from both downward (direct and diffuse) and ground surface reflected 111 solar radiation, and incorporates parameters representing solar zenith angle, albedo of 112 the globe and ground surface, and globe geometry characteristics. Please refer to Liljegren 113 et al. (2008) and Kong and Huber (2022) for the formulations of LR_g and SR_g . h_{cg} sig-114 nifies convective heat transfer coefficient associated with the globe; σ and ϵ_g stand for 115 the Stefan-Boltzmann constant and emissivity of the globe. Eq. 2 is analogous to to Eq. 116 15 in Liljegren et al. (2008), although the long-wave and surface reflected short-wave ra-117 diation embedded within LR_q and SR_q will be obtained directly from climate model out-118 put as was done in Kong and Huber (2022). In Liljegren's original approach, these ra-119 diative fluxes are approximated from temperature, humidity and ground surface albedo. 120

Eq. 2 can be rearranged into

121

$$T_g = T_a + \frac{SR_g + LR_g - \sigma\epsilon_g T_a^4}{h_{cq} + h_{rq}}$$
(3)

where h_{rg} can be interpreted as a thermal radiative heat transfer coefficient

$$h_{rg} = \sigma \epsilon_g (T_g^2 + T_a^2) (T_g + T_a)$$

¹²³ Note that $LR_g - \sigma \epsilon_g T_a^4$ is typically small and actually approaches zero when the ¹²⁴ downward and upward thermal radiation can be represented by a mean radiant temper-¹²⁵ ature of T_a in absence of solar radiation. With this term being neglected, we have

$$T_g - T_a = \frac{SR_g}{h_{cg} + h_{rg}} \tag{4}$$

The physical interpretation of Eq. 4 is that the efficiency of energy loss through long-wave cooling (h_{rg}) and convection (h_{cg}) modulates the required temperature gradient between the globe and ambient air in order to balance the energy gain from solar radiation.

Eq. 3 cannot be solved analytically since both h_{cg} and h_{rg} depend nonlinearly on 130 T_g (i.e., Eq. 3 is self-nonlinear in T_g). h_{cg} is derived from the empirical correlation for 131 heat transfer from a sphere in cross flow (Brenda Jacklitsch et al., 2016) (see Eq. 16 in 132 Liljegren et al. (2008) for its formulation). It is mainly affected by wind speed but also 133 depends on film temperature (T_f) which is the temperature of the air within the con-134 vective boundary layer proximate to the surface of the globe, and is calculated as the 135 arithmetic mean between the temperatures of the globe surface and ambient air $(T_f =$ 136 $(T_q + T_a)/2$). Consequently, Eq. 3 needs to be solved by iteration to obtain the equi-137 librium T_g . In Section 3.1, we will provide an analytic solution to T_g which does not re-138 quire iteration. 139

¹⁴⁰ 2.2 Natural wet-bulb temperature

```
<sup>141</sup> The energy balance equation for the wick is
```

$$k_x \frac{e_w - e_a}{P - e_w} M_{H2O} \Delta H + h_{cw} (T_{nw} - T_a) + \sigma \epsilon_w T_{nw}^4 = LR_w + SR_w$$
(5)

where the radiative energy gain on the right side of the equation is balanced by energy loss through evaporating water, convection, and thermal radiation corresponding respectively to the three terms on the left side of the equation. The convective heat transfer coefficient h_{cw} is obtained from the empirical correlation for heat transfer from a cylinder (Bedingfield & Drew, 1950). k_x denotes convective mass transfer coefficient which are interconnected with h_{cw} via the Chilton-Colburn analogy (Chilton & Colburn, 1934). They are both predominantly affected by wind speed with weak dependence on film temperature $(T_f = (T_a + T_{nw})/2)$ (see Eq. 8 and 10 in Liljegren et al. (2008) for their formulations). e_a and e_w represent ambient vapor pressure and the saturation vapor pressure at the temperature of the wick $(e_w = e_{sat}(T_{nw}))$; P is surface pressure; M_{H2O} is the molecular weight of water vapor; ΔH stands for the heat of vaporization.

¹⁵³ Eq. 5 can be rearranged into

$$T_{nw} = T_a + \frac{SR_w - \beta(e_{sat}(T_a) - e_a) + LR_w - \sigma\epsilon_w T_a^4}{h_{ew} + h_{cw} + h_{rw}}$$
(6)

154 where β is defined as

$$\beta = \frac{k_x M_{H2O} \Delta H}{P - e_w} \approx \frac{k_x M_{H2O} \Delta H}{P}$$

 h_{ew} and h_{rw} can be interpreted as evaporative and thermal radiative heat transfer coefficients for the wick cylinder, and are defined as

$$h_{ew} = \beta \frac{e_w - e_{sat}(T_a)}{T_{nw} - T_a} \approx \beta \frac{\partial e_{sat}(T)}{\partial T} \Big|_{T = \frac{T_{nw} + T_a}{2}}$$
(7)

157

161

$$h_{rw} = \sigma \epsilon_w (T_{nw}^2 + T_a^2) (T_{nw} + T_a)$$

¹⁵⁸ Note that h_{ew} , by definition, measures the efficiency of evaporative heat transfer ¹⁵⁹ between the wet wick and a saturated air. The fact that air can be under-saturated cre-¹⁶⁰ ates a cooling term from vapor pressure deficit (VPD) ($\beta(e_{sat}(T_a) - e_a)$ in Eq. 6).

With
$$LR_w - \sigma \epsilon_w T_a^4$$
 being typically small and

$$T_{nw} - T_a = \frac{SR_w - \beta(e_{sat}(T_a) - e_a)}{h_{ew} + h_{cw} + h_{rw}}$$
(8)

neglected, we have

Namely, the temperature gradient between the wick and ambient air is driven by net energy input from solar radiation and VPD, regulated by the efficiency of energy loss via evaporation (h_{ew}) , convection (h_{cw}) and long-wave cooling (h_{rw}) .

Similar to the case of T_g , Eq. 6 needs to be solved by iteration because both the mass transfer (k_x) and three heat transfer coefficients $(h_{ew}, h_{cw} \text{ and } h_{rw})$ depend nonlinearly on T_{nw} . An analytic approximation to T_{nw} will be provided in Section 3.2 by removing the self-nonlinearity.

¹⁶⁹ 3 Analytic approximation of wet-bulb globe temperature

In the previous section, we established that both T_g and T_{nw} cannot be solved an-170 alytically because they are embedded nonlinearly within the mass and heat transfer co-171 efficients. Numerical solutions can be pursued through iterative methods: starting with 172 an initial guess, inserting it into the transfer coefficients within Eq. 3 or 6, obtaining an 173 updated value, and iteratively repeating this process until consecutive updates deviate 174 by less than a specified tolerance. However, we argue that employing a judicious initial 175 guess might yield a result that is sufficiently accurate, thereby eliminating the need for 176 iterations. By employing this approach, Eq. 3 and 6 become analytic formulations of T_q 177 and T_{nw} , and the ensuing solutions are henceforth referred to as analytic approximations. 178

179

3.1 Black globe temperature

An analytic approximation of T_g can be obtained by substituting a certain firstguess value of T_g into h_{cg} and h_{rg} on the right side of Eq. 3. Ideally, the first-guess value should be close to T_g , but this is less critical due to reasons articulated below.

 h_{cq} is derived from empirical correlations under forced convection with surround-183 ing fluid motion (Liljegren et al., 2008), and therefore is primarily dictated by wind speed 184 with minimal sensitivity to film temperature (Fig. 1a and d). This choice is justified by 185 the dominance of forced convection over free convection under non-negligible wind speeds 186 and reasonable temperature gradients between the globe and ambient air (Gao et al., 187 2019). Under a wind speed of 2 m/s, a 10 $^{\circ}$ C increase of film temperature from 30 to 40 188 °C only cause a 0.2% reduction in h_{cg} (Fig. 1d). In fact, the international standard ISO 189 7726 (ISO, 1998) parameterizes convective heat transfer coefficients under forced con-190 vection as solely a function of wind speed. On the other hand, h_{rq} only varies by around 191 0.5% per °C change in T_g , and energy loss via thermal radiation is typically 2-5 times 192 less efficient than convection (Fig. 1a). 193

The minor influence of temperature on h_{cg} and small fractional changes in h_{rg} with temperature suggest that the initial estimate's proximity to the true value is not critical. Therefore, we choose T_a as a first guess for T_g for simplicity. The resultant approximations to both heat transfer coefficients are denoted as \hat{h}_{cg} and \hat{h}_{rg} the latter of which is calculated as $\hat{h}_{rg} = 4\sigma\epsilon_g T_a^3$. For \hat{h}_{cg} , film temperature is approximated by $T_f = \frac{T_g + T_a}{2} \approx$ T_a . Consequently, we have an analytic approximation of T_g :

$$\widehat{T_g} = T_a + \frac{SR_g + LR_g - \sigma\epsilon_g T_a^4}{\widehat{h_{ca} + h_{ra}}}$$
(9)

The accuracy of $\widehat{T_g}$ can be assessed by comparing it against the true value of T_g in Eq. 3.

$$\widehat{T_g} - T_g = (T_g - T_a) \frac{h_{cg} - \widehat{h_{cg}} + h_{rg} - \widehat{h_{rg}}}{\widehat{h_{cg}} + \widehat{h_{rg}}}$$

As explained above, the deviation of $\widehat{h_{cg}}$ from h_{cg} is negligible, which simplifies the bias of $\widehat{T_g}$ into

$$\widehat{T_g} - T_g = (T_g - T_a) \frac{h_{rg} - \widehat{h_{rg}}}{\widehat{h_{cg}} + \widehat{h_{rg}}} = \frac{\sigma \epsilon_g (T_g - T_a)^2 [(T_g + T_a)^2 + 2T_a^2]}{\widehat{h_{cg}} + \widehat{h_{rg}}}$$
(10)

It is clear that T_g always has non-negative biases the magnitude of which is proportional 204 to the square of the temperature gradient between the globe and ambient air. There-205 fore, T_q is expected to perform better under conditions of weak solar radiation and high 206 wind speed wherein the weaker solar heating and efficient convective heat transfer make 207 T_g closer to T_a . Given T_g and T_a of ~300K and $T_g - T_a$ of ~20K, the largest possible 208 bias is ~2K which can only be realized when $h_{cg} = 0$. However, the actual bias will be 209 significantly smaller since h_{cq} is usually considerably larger than h_{rq} (Fig. 1a). The phys-210 ical interpretation of this formulation is that the approximation to long-wave cooling in-211 troduces minimal biases when convection is the dominant pathway for energy loss. 212

3.2 Natural wet-bulb temperature

213

An analytic solution for T_{nw} can be obtained by substituting a first-guess value of T_{nw} into the mass and three heat transfer coefficients in Eq. 6. Similar to the case of T_g , both k_x and h_{cw} exhibit minimal sensitivity to temperature variations (Fig. 1b-d). h_{rw} only varies by 0.5% per °C change in T_{nw} and energy loss via thermal radiation is much less efficient than convection and evaporation (Fig. 1b). Therefore, the proximity of the first guess to the true T_{nw} is less critical for mass transfer and heat transfer

Figure 1. Shadings in (a)-(c) denote h_{cg} , h_{cw} and k_x respectively. Solid contours in (a) and (b) represent the ratio between convective and thermal radiative heat transfer coefficients for the black globe (h_{cg}/h_{rg}) and wick cylinder (h_{cw}/h_{rw}) . Dashed contours in (b) represent the ratio between h_{ew} and h_{rw} . Values in panel (a)-(c) are expressed as functions of film temperature and wind speed. (d) Various heat transfer coefficients for the globe and wick as functions of film temperature under a 2m/s (solid lines corresponding to left y-axis) and 0.5m/s (dashed lines corresponding to right y-axis) wind speed. Thermal radiative heat transfer coefficients are approximated as $h_{rg} \approx 4\sigma\epsilon_g T_f^3$ for the black globe and $h_{rw} \approx 4\sigma\epsilon_w T_f^3$ for the wet wick, with $\epsilon_g = \epsilon_w = 0.95$. Surface pressure has a minor impact on all heat transfer coefficients within its typical range of variation, and is fixed at 1000 hPa.

via convection and thermal radiation. However, it might be of greater concern for the evaporative heat transfer coefficient (Eq. 7), as h_{ew} varies by around 2-3% per °C change in T_{nw} , and evaporation is the most efficient energy loss pathway for the wet wick (Fig. 1b and d).

Therefore, a reasonably good first guess for T_{nw} is needed. We choose the wet-bulb 224 temperature (T_w) which is very close to T_{nw} at night and typically remains within 3°C 225 below T_{nw} during the day, depending on solar radiation intensity (Fig. 5b). For the sake 226 of computational efficiency and analytic tractability, we calculate T_w from temperature 227 and relative humidity using an empirical formula developed by Stull (2011). Stull's T_w 228 is subject to around 1°C overestimation at high temperatures, commonly occurring dur-229 ing the day (Buzan et al., 2015). This slight overestimation actually brings Stull's T_w 230 closer to T_{nw} and provides a better initial guess. The resulting analytic approximation 231 is 232

$$\widehat{T_{nw}} = T_a + \frac{SR_w - \widehat{\beta}(e_{sat}(T_a) - e_a) + LR_w - \sigma\epsilon_w T_a^4}{\widehat{h_{ew}} + \widehat{h_{rw}} + \widehat{h_{rw}}}$$
(11)

where $\hat{\beta} = \hat{k_x} M_{H2O} \Delta H/P$. By comparing against Eq. 6, we quantify the bias of $\widehat{T_{nw}}$

$$T_{nw} - T_{nw} = \eta (T_{nw} - T_a)(T_{nw} - T_w)$$
(1)

2)

$$\eta = \frac{\frac{1}{2}\beta \frac{\partial^2 e_{sat}(T)}{\partial T^2}\Big|_{T = \frac{T_{nw} + T_w + 2T_a}{4}} + \sigma \epsilon_w (T_{nw}^2 + T_w^2 + T_a^2 + T_{nw}T_w + T_aT_{nw} + T_aT_w)}{\widehat{h_{ew}} + \widehat{h_{cw}} + \widehat{h_{rw}}}$$

where we assume $\widehat{k_x} \approx k_x$ and $\widehat{h_{cw}} \approx h_{cw}$ since both the convective mass and 236 heat transfer coefficients are extremely insensitive to variations in film temperature (Fig. 237 1b-d). Since $T_{nw} \ge T_w$, T_{nw} is subject to overestimation when $T_{nw} > T_a$ and under-238 estimation otherwise. By inspection, it is clear that the magnitude of biases increases 239 with enlarging differences between T_{nw} and both T_a and T_w . Over subtropical hot-dry 240 regions, the strong VPD cooling and solar radiative heating are expected to enlarge both 241 temperature gradients with $T_{nw} < T_a$ and $T_{nw} > T_w$ leading to relatively strong neg-242 ative biases in T_{nw} . 243

3.3 Wet-bulb globe temperature

235

244

1

Substituting \widehat{T}_{g} (Eq. 9) and $\widehat{T_{nw}}$ (Eq. 11) back into Eq. 1, we obtain the analytic approximation to WBGT

$$\widehat{WBGT} = 0.7\widehat{T_{nw}} + 0.2\widehat{T_g} + 0.1T_a \tag{13}$$

 T_{g}, T_{nw} and WBGT are referred as analytic approximations in the sense that selfnonlinearities in T_{g} and T_{nw} within the energy balance equations are eliminated by substituting initial estimates of them into the mass and/or heat transfer coefficients. This permits WBGT to be expressed as an analytic function of temperature, humidity, wind and radiation, although this function remains highly complex and nonlinear.

²⁵² 4 Validation of the analytic approximation

The validation of the analytic approximation is undertaken in both an idealized and a more realistic context by comparing against results from Liljegren's full model driven by atmospheric variable inputs. In the idealized setting, we investigate the bias structure of the analytic approximation across a multidimensional parameter space of air temperature, wind speed, relative humidity and incoming solar radiation based on synthetic

data. We highlight the environmental conditions that yield relatively large biases.

Next, we examine the magnitude and spatial distribution of biases within a more 259 realistic setting using ERA5 reanalysis (Hersbach, H. et al., 2018) for the period 2013-260 2022 as the inputs. Since we aim to use this approximate framework in a range of cli-261 mate states, including a much warmer future, we also validate it against a "hot" CMIP6 262 simulation. This is conducted for the period 2091-2100 under the SSP585 scenario us-263 ing the ACCESS-CM2 model (Dix et al., 2019) which has a relatively high equilibrium 264 climate sensitivity of 4.7°C (Hausfather, 2019). The data is evaluated at hourly inter-265 vals for ERA5 and 3-hourly for ACCESS-CM2 at their original grid spacing. WBGT is 266 calculated from 2m air temperature and humidity, 10m wind speed, surface pressure, as 267 well as surface downward and upwelling flux of long-wave and short-wave radiation. 268

269

4.1 Validation and bias characterization: idealized setting

The accuracy of the analytic approximation is evaluated across a range of air temperature (20-50°C) and wind speed (0.13-3 m/s) under different levels of relative humidity (20% and 60%) and incoming solar radiation (0, 450, and 900 W/m²) (Fig. 2).

 T_g slightly overestimates T_g in Liljegren's full model by less than 0.2 °C during night-273 time and under conditions of moderate solar radiation $(450W/m^2)$. However, as solar 274 radiation intensifies and wind speed diminishes, the degree of overestimation becomes 275 more pronounced. It can exceed 1 °C under scenarios of strong solar radiation (900 W/m^2) 276 and low wind speed (< 0.5m/s) (Fig. 2a). This intensification of overestimation can be 277 attributed to the increased temperature gradient between the black globe and the am-278 bient air (as illustrated in Eq. 10) due to intense solar heating and less effective energy 279 loss through convection under low wind speed. In practice, the relatively large overes-280 timation under low wind speed is less a concern as the movement of human body cre-281 ates relative air flow especially for outdoor workers. In fact, prior studies frequently as-282 sume a minimum wind speed of 1m/s when assessing heat stress-induced labor loss (Casanueva 283 et al., 2020; Kjellstrom et al., 2018; Bröde et al., 2018). 284

 T_{nw} has small biases (within $\pm 0.2^{\circ}$ C of T_{nw} in Liljeren's full model) at nighttime 285 when T_w , our initial estimate, is close to T_{nw} (Fig. 5b). At daytime, \tilde{T}_{nw} performs well 286 under wet condition (60% relative humidity). However, under dry condition (20% rel-287 ative humidity), \hat{T}_{nw} shows substantial underestimations especially under lower wind speed 288 and higher temperature where the underestimation can extend up to -2°C. This can be 289 attributed to a strong temperature gradient between the wet wick and the ambient air 290 $(T_{nw}-T_a)$ under hot-dry conditions with low wind speed (as illustrated in Eq. 12). The 291 underestimation also intensifies under stronger solar radiation probably owing to an en-292 larged difference between T_{nw} and T_w . 293

Biases in \widehat{WBGT} are expected to be primarily influenced by biases in $\widehat{T_{nw}}$, given that T_{nw} contributes 70% to WBGT. Accordingly, we found that \widehat{WBGT} shares a similar bias structure with $\widehat{T_{nw}}$, but the magnitudes are smaller and within $\pm 0.8^{\circ}$ C across the selected ranges of meteorological conditions (Fig. 2c).

298

4.2 Validation and bias characterization: realistic setting

The bias characterization within the idealized setting demonstrates the structure of biases in the analytic approximations across a range of meteorological conditions. In practice, those meteorological conditions are not equally sampled with some combinations of temperature, humidity, solar radiation and/or wind speed more or less likely. It

Figure 2. Biases in analytic approximations of (a) T_g , (b) T_{nw} and (c) WBGT across the parameter space covering selected ranges of temperature (T_a) (20-50°C), wind speed (0.13-3m/s), relative humidity (RH) (20%, 60%) and incoming solar radiation (ssrd) (0, 450, 900 W/m^2). Biases are evaluated against Liljegren's full model. Thermal radiation and surface reflected solar radiation are approximated from temperature, relative humidity and an assumed surface albedo following the original formulation of Liljegren et al. (2008).

is of interest to examine the likely magnitudes and spatial distribution of biases in more
 realistic settings.

Figure 3 shows the area-weighted empirical distribution of biases in WBGT over 305 land. During the period 2013-2022 of ERA5, around 78% of the total samples have bi-306 ases within $\pm 0.1^{\circ}$ C, while this percentage extends to 97% for biases within $\pm 0.5^{\circ}$ C. A 307 similar level of accuracy is maintained in a warmer world with 93% of samples falling 308 within ± 0.5 °C. Although the peak of the distribution around zero becomes lower, accom-309 panied by a slightly fatter tail on the side of negative biases (Fig. 3), it is unclear whether 310 311 this accuracy reduction can be attributed to climate change (Sherwood & Huber, 2010; Williams et al., 2009), or due to potential effects from other confounding factors such 312 as the distinct spatial resolutions between ERA5 and ACCESS-CM2. For our purpose 313 however, the method is sufficiently accurate across a wide range of climates. 314

Figure 3. Empirical probability distribution of biases in our analytic approximation WBGT. The y-axes are designed to represent the percentage of samples showing biases within a 0.2 °C interval centered on the corresponding x coordinates. The empirical distribution is derived from land data weighted by grid-cell area using ERA5 reanalysis for the period 2013-2022 and the ACCESS-CM2 model for the period 2091-2100 under the SSP585 scenario. Samples with WBGT below 15°C are excluded, as they are less relevant to heat stress.

Using ERA5, we then highlight the annual 1% and 99% percentile of these biases, 315 thereby directing attention to the tails of the bias distribution and their spatial patterns 316 (Fig. 4). T_q , as demonstrated in Eq. 10, is only subject to overestimations the 1% per-317 centile of which is close to zero (Fig. 4a). The 99% percentile of the overestimations is 318 within 1°C over 97% of global land area (Fig. 4b and k). Over some alpine areas, like 319 the Himalayas, strong solar radiation stemming from an optically thin atmosphere leads 320 to large disparities between T_q and T_a , thereby causing relatively strong overestimations 321 $(>1.8^{\circ}C)$ (Fig. 4b). 322

In comparison, $\widehat{T_{nw}}$, can cause both under- and overestimations. The 1% percentile of biases is characterized by underestimations within -1°C over 85% of land area (Fig. 4d and j). Over subtropical dry regions, strong VPD and solar radiation make T_{nw} substantially smaller than T_a and larger than T_w which induces more pronounced underestimations by $\widehat{T_{nw}}$ (Fig. 4d) as demonstrated in Eq. 12. The 99% percentile of biases show weak overestimations within 0.6°C over 92% of land area (Fig. 4e and k). Over the Himalayas alpine region, small VPD (as a result of cold temperature) and strong solar radiation make T_{nw} considerably larger than both T_a and T_w leading to relatively strong overestimations (Fig. 4e).

³³² \widehat{WBGT} shares a similar spatial distribution of biases as $\widehat{T_{nw}}$ with the 1% percentile ³³³ of biases showing underestimations within -1°C over 96% of land area (Fig. 4g and j), ³³⁴ and the 99% percentile characterized by overestimations within 0.6°C over 94% of land ³³⁵ area (Fig. 4h and k).

We also show the 99% percentile of the absolute values of biases in the analytic ap-336 proximations (Fig. 4 c, f, i and l) in order to highlight the upper tail of the magnitudes 337 of their deviations from Liljegren's full model. In 99% cases, biases in T_{q} , T_{nw} and WBGT338 are limited within $\pm 1^{\circ}$ C over 97%, 82% and 93% of land area. It is also of interest to know 339 the performance of our analytic approximation in representing heat stress at the levels 340 of annual mean and different percentiles. As shown in figure 6q-t, WBGT can well rep-341 resent heat stress across annual mean and 75%, 90% and 99% percentiles with biases within 342 ± 0.5 °C globally. 343

4.3 Comparison against other approximations

344

We compare WBGT against several other WBGT approximations commonly used 345 in the literature. These include sWBGT which only contains temperature and humid-346 ity while assuming moderately strong solar radiation and low wind speeds (Australian 347 Bureau of Meteorology, 2010), the environmental stress index (ESI), derived through a 348 multivariate regression of WBGT against temperature, incoming solar radiation, and rel-349 ative humidity (Moran et al., 2001), the indoor WBGT $(WBGT_{in})$ which substitutes 350 T_{nw} with the thermodynamic wet-bulb temperature (T_w) and T_g with T_a (Dunne et al., 351 2013; C. Li et al., 2020; D. Li et al., 2020), and the one recently developed by Brimicombe 352 et al. (2023) ($WBGT_{Br}$) which calculates T_g from mean radiant temperature, and ap-353 proximates T_{nw} using Stull's T_w formulation (Stull, 2011). 354

Figure 5a illustrates the empirical bias distribution of these approximations along 355 with that of our analytic approximation based on ERA5. WBGT clearly outperforms 356 others. sWBGT performs the worst, and its bias distribution peaks at an overestima-357 tion of approximately 5°C due to the implicit assumption of moderately strong solar ra-358 diation. This overestimate can profoundly affect future heat stress projections and es-359 timate of impact on people (de Lima et al., 2021). Therefore, we do not recommend the 360 continued use of sWBGT. ESI performs significantly better with a relatively symmet-361 ric distribution of biases centered around zero. 362

The distribution of biases in both $WBGT_{in}$ and $WBGT_{Br}$ have a primary peak 363 near zero as well as secondary peaks corresponding to underestimations of approximately 364 -2.4°C and -1.2°C respectively (Fig. 5a). Both $WBGT_{in}$ and $WBGT_{Br}$ substitute T_{nw} 365 with T_w , and $WBGT_{in}$ also approximates T_g with T_a . These approximations work rel-366 atively well during nighttime especially for T_{nw} (Fig. 5b). Notably, T_g is lower than T_a 367 at nighttime, and the distribution of their differences peaks around -1°C, but can extend 368 up to -3°C (Fig. 5b). That is because air is not a black body, and consequently the long-369 wave radiative exchange between the black globe and ambient air produce net cooling 370 on the globe. However, during daytime, T_w and T_a significantly underestimate T_{nw} and 371 T_q due to the omission of solar radiative heating. The distributions of these underesti-372 mations peak around -1.2°C and -7.6°C respectively (Fig. 5b) which amounts to under-373 estimations in WBGT of -0.8°C and -1.5°C given the weights on T_{nw} and T_g in WBGT 374 formulation. The differentiated daytime versus nighttime performances explain the bi-375 modal distribution of biases in $WBGT_{in}$ and $WBGT_{Br}$ (Fig. 5a). 376

Figure 4. Annual (left) 1% and (middle) 99% percentile of biases, and (right) 99% percentile of the absolute magnitudes of biases in the analytic approximations of (a-c) T_g , (d-f) T_{nw} and (g-i) WBGT. Panels j-l represent the empirical cumulative distribution of these biases across all continental grid cells weighted by area. The 1% percentile of biases in \hat{T}_g are very close to zero and therefore are omitted in (j). Biases are evaluated by comparing against Liljegren's full model based on hourly ERA5 reanalysis data during 2013-2022.

377 378 379 The shape of the bias distribution and the relative performance of different approximations remain consistent in a future warmer world, where \widehat{WBGT} continues to have the best performance (Fig. 5c).

Figure 5. Empirical probability distribution of (a) biases in our analytic formulation WBGTand several other WBGT approximations, and (b) $T_{nw} - T_w$ and $T_g - T_a$ at both daytime and nighttime. Both (a) and (b) are derived from land data weighted by grid-cell area using ERA5 reanalysis for the period of 2013-2022. Panel (c) is the same as (a) except for the period 2091-2100 under the SSP585 scenario using the ACCESS-CM2 model. The y-axes are designed to represent the percentage of samples showing biases within a 0.2 °C interval centered on the corresponding x coordinates. Samples with WBGT below 15°C are excluded, as they are less relevant to heat stress.

Our analytic approximation also performs better in representing the annual mean 380 and 75-99% percentiles of WBGT with biases consistently within $\pm 0.5^{\circ}$ C across the world 381 as described previously (Fig. 6). sWBGT strongly overestimates WBGT especially at 382 annual mean level, and this overestimation becomes weaker towards higher percentiles 383 where the assumption of moderately strong solar radiation becomes more applicable (Fig. 384 6a-d). ESI performs well in capturing annual mean and 75% percentile of WBGT with 385 biases mostly within $\pm 1^{\circ}$ C, but considerably underestimates the 99% percentile by up 386 to -4°C across the low latitudes (Fig. 6e-h). Both $WBGT_{in}$ and $WBGT_{Br}$ consistently 387 show underestimations the magnitude of which increases towards higher percentiles (Fig. 388 6i-p). Among them, $WBGT_{Br}$ has better performance since T_q is calculated from mean 389 radiant temperature rather than replaced with T_a as is done for $WBGT_{in}$. 390

³⁹¹ 5 Summary and implication

We have developed an approximate form of WBGT that does not require iterative 392 calculation. The need for iteration in WBGT calculation arises from the nonlinear de-393 pendence of mass and/or heat transfer (through convection, thermal radiation and evap-394 oration) efficiencies on T_g or T_{nw} , rendering the energy balance equations analytically 395 intractable. However, we have shown that this dependence is weak for convection which 396 is primarily influenced by wind speed. This self-dependence is also of minor importance 397 for thermal radiation because the thermal radiative heat transfer coefficient changes by 398 a small fraction within the typical variation range of T_q or T_{nw} , and energy loss via ther-399 mal radiation is much less efficient than convection and evaporation. The dependence 400 of evaporative heat transfer coefficient on T_{nw} is of greater concern since h_{ew} is relatively 401 sensitive to T_{nw} variations (h_{ew} varies by 2-3% per °C change in T_{nw}) and evaporation 402 plays a dominant role in the energy loss of the wet wick. 403

Figure 6. Biases in the annual mean and 75%, 90% and 99% percentile values of our analytic approximation (\widehat{WBGT}) and several other approximations of WBGT. Biases are evaluated by comparing against Liljegren's full model based on hourly ERA5 reanalysis data during 2013-2022.

Figure 6. Continued.

The recognition of the weak self-nonlinearity, at least for convection and thermal 404 radiation, motivates the development of an analytic approximation of WBGT by sub-405 stituting T_a and T_w as initial estimates for T_q and T_{nw} into the mass and heat transfer 406 coefficients. The analytic approximation eliminates the need for iteration and is more accurate than other WBGT approximations commonly used in the literature. It presents 408 an useful first guess to Liljegren's full model given its reasonably high accuracy and com-409 putational straightforwardness. However, users should consider the potential underes-410 timation of heat stress under extremely hot-dry conditions. Notably, more accurate es-411 timates can be obtained through a single iteration, with the analytic approximations serv-412 ing as the updated first guesses. Recently, Liljeren's WBGT formulation has been im-413 plemented into the Community Land Model Version 5 (CLM5) for non-urban settings 414 (Buzan, 2024). Our analytic approximation could offer an useful alternative for inclu-415 sion in the model to prevent the model from slowing down due to iterative WBGT cal-416 culations. 417

The complex, nonlinear interactions between multiple meteorological parameters 418 not only require WBGT to be calculated iteratively, but also lead to a functional form 419 that is opaque to theoretical investigation and often times treated as a black box. As a 420 result, WBGT-despite being a good representation of human heat stress-has not been 421 adopted for understanding the atmospheric dynamics and thermodynamic processes con-422 trolling heat stress. Instead, strictly thermodynamic variables like T_w , moist enthalpy 423 or equivalent potential temperature are used for such purpose because of their straight-424 forward dynamic and thermodynamic constraint (Kong & Huber, 2023; Raymond et al., 425 2021; Zhang et al., 2021; Lutsko, 2021). But these thermodynamic quantities are not in-426 tended for or well calibrated to human heat stress which diminishes the practical rele-427 vance of the generated insights (Simpson et al., 2023; Lu & Romps, 2023). 428

In deriving the analytic approximation, we have gained insights that the deviation 429 of both T_q and T_{nw} from T_a is controlled by the ratio between solar radiative heating 430 (and VPD cooling for T_{nw}) and the efficiency of energy loss through convection and long-431 wave cooling (and evaporation for T_{nw}) (Eq. 4 and 8). Therefore, understanding changes 432 in T_q , T_{nw} and consequently WBGT, must involve strong constraints or knowledge of 433 the evolution of this ratio. Depending on the problem under consideration, if solar ra-434 diation and wind speed remain unchanged, the ratio for T_g (Eq. 4) is approximately con-435 stant given minor influence from changes in thermal radiative heat transfer efficiency. 436 Consequently, T_g is expected to vary at the same rate as T_a . It is less straightforward 437 to get a quick, simple relation between changes in T_{nw} and T_a , as the ratio in Eq. 8 also 438 depends on humidity and T_{nw} itself due to the VPD cooling term and evaporative heat 439 transfer coefficient. Nevertheless, given certain assumptions on humidity changes (e.g., 440 constant relative humidity), we should be able to explicitly predict how T_{nw} scales with 441 temperature as well. In addition, since T_{nw} is driven away from T_w by solar radiation 442 under the modulation of wind, we may expect the differences between them to be roughly 443 constant if both solar radiation and wind remain unchanged. If this is the case, the scal-444 ing of T_{nw} and T_w with temperature should be close to each other. 445

More generally, Eq. 4 and Eq. 8, with their clear physical interpretation, may serve 446 as a starting point for an analytic investigation of the sensitivity of WBGT to changes 447 in temperature, humidity, wind and solar radiation. Clearly, we have better intuition on 448 these traditional meteorological parameters, and established theories to constrain their 449 variations (Zhang & Boos, 2023; Byrne, 2021; Byrne & O'Gorman, 2013, 2016; McColl 450 & Tang, 2024). An explicit, analytic expression of WBGT's sensitivity to these tradi-451 tional meteorological variables helps remove the obscuring veil of WBGT's apparent com-452 plexity and may facilitate its application in understanding the physical control of heat 453 stress. For example, we can quantitatively disentangle the relative role of changes in each 454 meteorological input and the underlying physical processes in explaining WBGT responses 455

to any physical perturbations (like atmospheric blocking events, irrigation or increasing
 greenhouse gas emission). These will be further explored in upcoming studies.

458 6 Open Research

Hersbach, H. et al. (2018) was downloaded from the Copernicus Climate Change 459 Service (C3S) Climate Data Store (https://cds.climate.copernicus.eu/cdsapp#!/ 460 dataset/reanalysis-era5-single-levels?tab=form). The results contain modified 461 Copernicus Climate Change Service information 2020. Neither the European Commis-462 sion nor ECMWF is responsible for any use that may be made of the Copernicus infor-463 mation or data it contains. Dix et al. (2019) was downloaded from https://esgf-index1 464 .ceda.ac.uk/search/cmip6-ceda/. Liljegren's WBGT code in C language is accessible at https://github.com/mdljts/wbgt/blob/master/src/wbgt.c, and was ported 466 to Cython (can be compiled and implemented in Python) by Kong and Huber (2022) 467 (available at https://zenodo.org/record/5980536). The code for the analytic WBGT 468 approximation is deposited at Zenodo (https://zenodo.org/records/10802580) along 469 with a Jupyter notebook to introduce its usage. The following Python packages were utilised: 470 Numpy (Harris et al., 2020), Xarray (Hoyer & Hamman, 2017), Dask (Dask Develop-471 ment Team, 2016), Matplotlib (Hunter, 2007), and Cartopy (Met Office, 2010 - 2015). 472

473 Acknowledgments

This study is Funded by NASA FINESST grant 80NSSC22K1544, grant NSF 1805808-CBET Innovations at the Nexus of Food, Energy, and Water Systems (INFEWS: U.S.-China): A multi-scale integrated modeling approach to managing the transition to sustainability and NSF 1829764-OAC CyberTraining: CIU:Cross-disciplinary Training for Findable, Accessible, Interoperable, and Reusable (FAIR) science. We thank Rodrigo Caballero for useful discussions that clarified the presentation of concepts in this study. The authors declare no competing interests.

481 **References**

- ACSM. (1984). Position stand on the prevention of thermal injuries during distance
 running (Tech. Rep.). Medicine Sci. Sport. Exercise.
- Army, U. (2003). Heat stress control and heat casualty management (Tech. Rep.).
 Technical Bulletin Medical 507/Air Force Pamphlet.
- 486Australian Bureau of Meteorology.(2010).About the approximation to the487WBGT used by the Bureau of Meteorology.Retrieved 2021-04-03, from488http://www.bom.gov.au/info/thermal_stress/#approximation
- Bedingfield, C. H., & Drew, T. B. (1950). Analogy between Heat Transfer and Mass
 Transfer. Industrial & Engineering Chemistry, 42(6), 1164–1173. doi: 10.1021/
 ie50486a029
- Brenda Jacklitsch, W. Jon Williams, Kristin Musolin, Aitor Coca, Jung-Hyun Kim,
 & Nina Turner. (2016). Criteria for a Recommended Standard: Occupational Exposure to Heat and Hot Environments (Tech. Rep. No. DHHS (NIOSH)
 Publication No. 2016-106). Washington, D.C: DHHS, NIOSH.
- Brimicombe, C., Lo, C. H. B., Pappenberger, F., Di Napoli, C., Maciel, P., Quintino,
 T., ... Cloke, H. L. (2023). Wet Bulb Globe Temperature: Indicating Extreme
 Heat Risk on a Global Grid. *GeoHealth*, 7(2). doi: 10.1029/2022GH000701
- Bröde, P., Fiala, D., Lemke, B., & Kjellstrom, T. (2018). Estimated work ability in warm outdoor environments depends on the chosen heat stress assessment metric. *International Journal of Biometeorology*, 62(3), 331–345. doi: 10.1007/s00484-017-1346-9
- ⁵⁰³ Burke, M., González, F., Baylis, P., Heft-Neal, S., Baysan, C., Basu, S., &
- ⁵⁰⁴ Hsiang, S. (2018). Higher temperatures increase suicide rates in the

505	United States and Mexico. Nature Climate Change, $\delta(8)$, 723–729. doi:
506	10.1038/s41558-018-0222-x
507	Burke, M., Hsiang, S. M., & Miguel, E. (2015). Global non-linear effect of temper-
508	ature on economic production. Nature, $527(7577)$, $235-239$. doi: 10.1038/
509	nature15725
510	Buzan, J. R. (2024). Implementation and Evaluation of Wet Bulb Globe Tempera-
511	ture Within Non-Urban Environments in the Community Land Model Version
512	5. Journal of Advances in Modeling Earth Systems, 16(2), e2023MS003704.
513	doi: 10.1029/2023MS003704
514	Buzan, J. R., & Huber, M. (2020). Moist Heat Stress on a Hotter Earth. Annual
515	Review of Earth and Planetary Sciences, 48(1), 623–655. doi: 10.1146/annurev
516	-earth-053018-060100
517	Buzan, J. R., Oleson, K., & Huber, M. (2015). Implementation and compari-
518	solition of a suite of near stress metrics within the Community Land Model version 4.5 . Conscientific Model Development $8(2)$ 151–170
519	Version 4.5. Geoscientific Model Development, $\delta(2)$, 151–170. doi: 10.5104/gmd 8.151.2015
520	Burno M D (2021) Amplified warming of extreme temperatures over tropical land
521	Nature Geoscience, 1/(11), 837-841, doi: 10.1038/s41561-021-00828-8
523	Byrne, M. P., & O'Gorman, P. A. (2013). Land–Ocean Warming Contrast
524	over a Wide Range of Climates: Convective Quasi-Equilibrium Theory
525	and Idealized Simulations. Journal of Climate, 26(12), 4000–4016. doi:
526	10.1175/JCLI-D-12-00262.1
527	Byrne, M. P., & O'Gorman, P. A. (2016). Understanding Decreases in Land Relative
528	Humidity with Global Warming: Conceptual Model and GCM Simulations.
529	Journal of Climate, 29(24), 9045–9061. doi: 10.1175/JCLI-D-16-0351.1
530	Casanueva, A., Kotlarski, S., Fischer, A. M., Flouris, A. D., Kjellstrom, T., Lemke,
531	B., Liniger, M. A. (2020). Escalating environmental summer heat expo-
532	sure—a future threat for the European workforce. Regional Environmental
533	Change, $20(2)$, 40. doi: 10.1007/s10113-020-01625-6
534	Chavaillaz, Y., Roy, P., Partanen, AI., Da Silva, L., Bresson, E., Mengis, N.,
535	Matthews, H. D. (2019). Exposure to excessive heat and impacts on labour
536	productivity linked to cumulative CO2 emissions. Scientific Reports, $9(1)$,
537	13711. doi: 10.1038/s41598-019-50047-w
538	Chilton, T. H., & Colburn, A. P. (1934). Mass Transfer (Absorption) Coefficients
539	Prediction from Data on Heat Transfer and Fluid Friction. Industrial & Engi-
540	neering Chemistry, 26(11), 1183-1187. doi: 10.1021/1650299a012
541	Clark, J., & Konrad, C. E. (2023). Observations and Estimates of Wet Bulb Globe
542	metalogy doi: 10.1175/IAMC D.23.0078.1
543	Degle Development Team (2016) Degle Library for dynamic teals geheduling [Com
544	puter software manual] Betrieved from https://dask.org
545	de Freitas C. B. & Crigorieva E. A. (2015) A comprehensive catalogue and clas-
540	sification of human thermal climate indices International Journal of Biometeo-
548	rology, 59(1), 109–120, doi: 10.1007/s00484-014-0819-3
540	de Lima C Z Buzan J B Moore F C Baldos U L C Huber M & Hertel
550	T. W. (2021). Heat stress on agricultural workers exacerbates crop impacts
551	of climate change. Environmental Research Letters. 16(4), 044020. doi:
552	10.1088/1748-9326/abeb9f
553	Dix, M., Bi, D., Dobrohotoff, P., Fiedler, R., Harman, I., Law, R., Yang, R.
554	(2019). CSIRO-ARCCSS ACCESS-CM2 model output prepared for CMIP6
555	ScenarioMIP ssp585. Earth System Grid Federation. Retrieved 2024-02-10,
556	from http://cera-www.dkrz.de/WDCC/meta/CMIP6/CMIP6.ScenarioMIP
557	$. {\tt CSIRO-ARCCSS.ACCESS-CM2.ssp585} \qquad ({\rm Medium: \ application/x-netcdf \ Version})$
558	Number: 20230220 Type: dataset) doi: 10.22033/ESGF/CMIP6.4332
559	Dunne, J. P., Stouffer, R. J., & John, J. G. (2013). Reductions in labour capacity

560	from heat stress under climate warming. Nature Climate Change, $3(6)$, $563-$
561	566. doi: $10.1038/nclimate1827$
562	Ebi, K. L., Capon, A., Berry, P., Broderick, C., De Dear, R., Havenith, G.,
563	Jay, O. (2021). Hot weather and heat extremes: health risks. The Lancet,
564	398(10301), 698-708. doi: $10.1016/S0140-6736(21)01208-3$
565	Foster, J., Smallcombe, J. W., Hodder, S., Jay, O., Flouris, A. D., & Havenith, G.
566	(2022). Quantifying the impact of heat on human physical work capacity; part
567	II: the observed interaction of air velocity with temperature, humidity, sweat
568	rate, and clothing is not captured by most heat stress indices. International
569	Journal of Biometeorology, 66(3), 507–520. doi: 10.1007/s00484-021-02212-y
570	Foster, J., Smallcombe, J. W., Hodder, S., Jay, O., Flouris, A. D., Nybo, L., &
571	Havenith, G. (2022). Quantifying the impact of heat on human physical work
572	capacity; part III: the impact of solar radiation varies with air temperature,
573	humidity, and clothing coverage. International Journal of Biometeorology,
574	66(1), 175-188. doi: 10.1007/s00484-021-02205-x
575	Gao, J., Wang, Y., Wu, X., Gu, X., & Song, X. (2019). A simplified indoor wet-bulb
576	globe temperature formula to determine acceptable hot environmental parame-
577	ters in naturally ventilated buildings. <i>Energy and Buildings</i> , 196, 169–177. doi:
578	10.1016/j.enbuild.2019.05.035
579	Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cour-
580	napeau, D., Oliphant, T. E. (2020). Array programming with NumPy.
581	Nature, 585(7825), 357-362. doi: 10.1038/s41586-020-2649-2
582	Hausfather, Z. (2019). Cmip6: The next generation of climate models ex-
583	plained. Retrieved 2024-02-13, from https://www.carbonbrief.org/
584	cmip6-the-next-generation-of-climate-models-explained
585	Havenith, G., & Fiala, D. (2015, December). Thermal Indices and Thermophysiolog-
586	ical Modeling for Heat Stress. In R. Terjung (Ed.), Comprehensive Physiology
587	(pp. 255–302). Hoboken, NJ, USA: John Wiley & Sons, Inc. Retrieved 2020-
588	06-27, from http://doi.wiley.com/10.1002/cphy.c140051 doi: 10.1002/
589	cphy.c140051
590	Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J.,
591	Thépaut, J-N. (2018). ERA5 hourly data on single levels from 1979 to
592	present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).
593	doi: 10.24381/cds.adbb2d47
594	Hoyer, S., & Hamman, J. (2017). xarray: N-D labeled arrays and datasets in
595	Python. Journal of Open Research Software, 5(1). doi: 10.5334/jors.148
596	Hsiang, S. M., Burke, M., & Miguel, E. (2013). Quantifying the Influence of Cli-
597	mate on Human Conflict. Science, 341(6151), 1235367. doi: 10.1126/science
598	.1235367
599	Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science
600	& Engineering, 9(3), 90–95. doi: 10.1109/MCSE.2007.55
601	Ioannou, L. G., Tsoutsoubi, L., Mantzios, K., Vliora, M., Nintou, E., Piil, J. F.,
602	Flouris, A. D. (2022). Indicators to assess physiological heat strain – Part 3:
603	Multi-country field evaluation and consensus recommendations. Temperature,
604	9(3), 274-291. doi: $10.1080/23328940.2022.2044739$
605	ISO. (1998). Ergonomics of the thermal environment - instruments for measuring
606	physical quantities (International Standard). Geneva: International Organiza-
607	tion for Standardization (ISO).
608	ISO. (2017). Ergonomics of the thermal environment — Assessment of heat stress
609	using the WBGT (wet bulb globe temperature) index (International Standard).
610	Geneva: International Organization for Standardization (ISO).
611	Kamal, A. S. M. M., Faruki Fahim, A. K., & Shahid, S. (2024). Simplified equations
612	for wet bulb globe temperature estimation in Bangladesh. International Jour-
613	nal of Climatology, joc.8402. doi: 10.1002/joc.8402
614	Kjellstrom, T., Briggs, D., Freyberg, C., Lemke, B., Otto, M., & Hyatt, O. (2016).

615 616 617	Heat, Human Performance, and Occupational Health: A Key Issue for the Assessment of Global Climate Change Impacts. <i>Annual Review of Public Health</i> , 37(1), 97–112. doi: 10.1146/annurey-publhealth-032315-021740
618	Kiellstrom, T., Frevberg, C., Lemke, B., Otto, M., & Briggs, D. (2018). Estimating
619	population heat exposure and impacts on working people in conjunction with
620	climate change. International Journal of Biometeorology, 62(3), 291–306. doi:
621	10.1007/s00484-017-1407-0
622	Kong O & Huber M (2022) Explicit calculations of Wet Bulb Globe Tempera-
623	ture compared with approximations and why it matters for labor productivity.
624	Earth's Future. doi: 10.1029/2021EF002334
625	Kong, Q., & Huber, M. (2023). Regimes of soil moisture-wet bulb temperature cou-
626	pling with relevance to moist heat stress. <i>Journal of Climate</i> , 1–45. doi: 10
627	.1175/JCLI-D-23-0132.1
628	Lemke, B., & Kjellstrom, T. (2012). Calculating workplace WBGT from meteorolog-
629	ical data: a tool for climate change assessment. Industrial Health, 50(4), 267–
630	278. doi: 10.2486/indhealth.MS1352
631	Li, C., Sun, Y., Zwiers, F., Wang, D., Zhang, X., Chen, G., & Wu, H. (2020).
632	Rapid Warming in Summer Wet Bulb Globe Temperature in China with
633	Human-Induced Climate Change. Journal of Climate, 33(13), 5697–5711. doi:
634	10.1175/JCLI-D-19-0492.1
635	Li, D., Yuan, J., & Kopp, R. E. (2020). Escalating global exposure to compound
636	heat-humidity extremes with warming. Environmental Research Letters, 15(6).
637	064003. doi: 10.1088/1748-9326/ab7d04
638	Liliegren, J. C., Carhart, B. A., Lawday, P., Tschopp, S., & Sharp, R. (2008).
639	Modeling the Wet Bulb Globe Temperature Using Standard Meteorological
640	Measurements. Journal of Occupational and Environmental Hugiene, 5(10).
641	645–655. doi: 10.1080/15459620802310770
642	Lu, YC., & Romps, D. (2023). Wet-Bulb Temperature or Heat Index: Which Bet-
643	ter Predicts Fatal Heat in a Warming Climate? <i>Physiology</i> , 38(S1), 5734524.
644	doi: 10.1152/physiol.2023.38.S1.5734524
645	Lutsko, N. J. (2021). The Relative Contributions of Temperature and Moisture to
646	Heat Stress Changes under Warming. Journal of Climate, 34(3), 901–917. doi:
647	10.1175/JCLI-D-20-0262.1
648	Matsumoto, K., Tachiiri, K., & Su, X. (2021). Heat stress, labor productivity, and
649	economic impacts: analysis of climate change impacts using two-way coupled
650	modeling. Environmental Research Communications, 3(12), 125001. doi:
651	10.1088/2515-7620/ac3e14
652	McColl, K. A., & Tang, L. I. (2024). An Analytic Theory of Near-Surface Relative
653	Humidity over Land. Journal of Climate, 37(4), 1213-1230. doi: 10.1175/JCLI
654	-D-23-0342.1
655	Met Office. (2010 - 2015). Cartopy: a cartographic python library with a mat-
656	plotlib interface [Computer software manual]. Exeter, Devon. Retrieved from
657	https://scitools.org.uk/cartopy
658	Moran, D., Pandolf, K., Shapiro, Y., Heled, Y., Shani, Y., Mathew, W., & Gonza-
659	lez, R. (2001). An environmental stress index (ESI) as a substitute for the
660	wet bulb globe temperature (WBGT). Journal of Thermal Biology, 26(4-5),
661	427-431. doi: 10.1016/S0306-4565(01)00055-9
662	NIOSH. (2016). Criteria for a Recommended Standard: Occupational Exposure to
663	Heat and Hot Environments (Tech. Rep. No. DHHS (NIOSH) Publication No.
664	2016-106). Washington, D.C: DHHS, NIOSH.
665	Orlov, A., De Hertog, S., Havermann, F., Guo, S., Luo, F., Manola, I., Schleuss-
666	ner, C. (2023). Changes in Land Cover and Management Affect Heat
667	Stress and Labor Capacity. Earth's Future, 11(3), e2022EF002909. doi:
668	10.1029/2022 EF 002909
669	$OSHA. \ (2017). \ Osha \ technical \ manual, \ section \ iii, \ chapter \ 4:heat \ stress. \ (Tech. \ Rep.$

670	No. TED-01-00-015). Washington (DC): U.S. Department of Labor, OSHA:
671	Occupational Safety and Health Administration (OSHA).
672	Patel, T., Mullen, S. P., & Santee, W. R. (2013). Comparison of Methods
673	for Estimating Wet-Bulb Globe Temperature Index From Standard Me-
674	teorological Measurements. <i>Military Medicine</i> , 178(8), 926–933. doi:
675	10.7205/MILMED-D-13-00117
676	Raymond, C., Matthews, T., Horton, R. M., Fischer, E. M., Fueglistaler, S.,
677	Ivanovich, C., Zhang, Y. (2021). On the Controlling Factors for Glob-
678	ally Extreme Humid Heat. $Geophysical Research Letters, 48(23).$ doi:
679	10.1029/2021 GL096082
680	Saeed, W., Haqiqi, I., Kong, Q., Huber, M., Buzan, J. R., Chonabayashi, S.,
681	Hertel, T. W. (2022). The Poverty Impacts of Labor Heat Stress
682	in West Africa Under a Warming Climate. Earth's Future, $10(11)$. doi:
683	10.1029/2022 EF 002777
684	Sherwood, S. C., & Huber, M. (2010). An adaptability limit to climate change
685	due to heat stress. Proceedings of the National Academy of Sciences, 107(21),
686	9552–9555. doi: 10.1073/pnas.0913352107
687	Simpson, C. H., Brousse, O., Ebi, K. L., & Heaviside, C. (2023). Commonly used in-
688	dices disagree about the effect of moisture on heat stress. npj Climate and At-
689	mospheric Science, $6(1)$, 78. doi: $10.1038/s41612-023-00408-0$
690	Stull, R. (2011). Wet-Bulb Temperature from Relative Humidity and Air Tempera-
691	ture. Journal of Applied Meteorology and Climatology, $50(11)$, 2267–2269. doi:
692	10.1175/JAMC-D-11-0143.1
693	Tuholske, C., Caylor, K., Funk, C., Verdin, A., Sweeney, S., Grace, K., Evans,
694	T. (2021, October). Global urban population exposure to extreme heat. Pro-
695	ceedings of the National Academy of Sciences, 118(41), e2024792118. doi:
	10 1073/pnas 2024792118
696	10.1010/phas.2024152110
696 697	Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the
696 697 698	Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light phys-
696 697 698 699	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light phys- ical activity (PSU HEAT Project). <i>International Journal of Biometeorology</i>,
696 697 698 699 700	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light physical activity (PSU HEAT Project). <i>International Journal of Biometeorology</i>, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z
696 697 698 699 700 701	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light physical activity (PSU HEAT Project). <i>International Journal of Biometeorology</i>, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, con-
696 697 698 699 700 701 702	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light physical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, convective threshold and false thermostats. Geophysical Research Letters, 36(21),
696 697 698 699 700 701 702 703	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light physical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, convective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849
696 697 698 699 700 701 702 703 704	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light physical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, convective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training
696 697 698 699 700 701 702 703 704 705	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light physical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, convective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training centers. A.M.A. archives of industrial health, 16(4), 302–316.
696 697 698 699 700 701 702 703 704 705 706	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light phys- ical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, con- vective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training centers. A.M.A. archives of industrial health, 16(4), 302–316. Zhang, Y., & Boos, W. R. (2023). An upper bound for extreme temperatures over
699 697 698 699 700 701 702 703 704 705 706 707	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light physical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, convective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training centers. A.M.A. archives of industrial health, 16(4), 302–316. Zhang, Y., & Boos, W. R. (2023). An upper bound for extreme temperatures over midlatitude land. Proceedings of the National Academy of Sciences, 120(12),
699 697 698 699 700 701 702 703 704 705 706 707 708	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light phys- ical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, con- vective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training centers. A.M.A. archives of industrial health, 16(4), 302–316. Zhang, Y., & Boos, W. R. (2023). An upper bound for extreme temperatures over midlatitude land. Proceedings of the National Academy of Sciences, 120(12), e2215278120. doi: 10.1073/pnas.2215278120
696 697 698 699 700 701 702 703 704 705 706 707 708 709	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light phys- ical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, con- vective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training centers. A.M.A. archives of industrial health, 16(4), 302–316. Zhang, Y., & Boos, W. R. (2023). An upper bound for extreme temperatures over midlatitude land. Proceedings of the National Academy of Sciences, 120(12), e2215278120. doi: 10.1073/pnas.2215278120 Zhang, Y., Held, I., & Fueglistaler, S. (2021). Projections of tropical heat stress con-
699 697 698 699 700 701 702 703 704 705 706 707 708 709 710	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light phys- ical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, con- vective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training centers. A.M.A. archives of industrial health, 16(4), 302–316. Zhang, Y., & Boos, W. R. (2023). An upper bound for extreme temperatures over midlatitude land. Proceedings of the National Academy of Sciences, 120(12), e2215278120. doi: 10.1073/pnas.2215278120 Zhang, Y., Held, I., & Fueglistaler, S. (2021). Projections of tropical heat stress con- strained by atmospheric dynamics. Nature Geoscience, 14(3), 133–137. doi: 10
699 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light phys- ical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, con- vective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training centers. A.M.A. archives of industrial health, 16(4), 302–316. Zhang, Y., & Boos, W. R. (2023). An upper bound for extreme temperatures over midlatitude land. Proceedings of the National Academy of Sciences, 120(12), e2215278120. doi: 10.1073/pnas.2215278120 Zhang, Y., Held, I., & Fueglistaler, S. (2021). Projections of tropical heat stress con- strained by atmospheric dynamics. Nature Geoscience, 14(3), 133–137. doi: 10 .1038/s41561-021-00695-3
699 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light phys- ical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, con- vective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training centers. A.M.A. archives of industrial health, 16(4), 302–316. Zhang, Y., & Boos, W. R. (2023). An upper bound for extreme temperatures over midlatitude land. Proceedings of the National Academy of Sciences, 120(12), e2215278120. doi: 10.1073/pnas.2215278120 Zhang, Y., Held, I., & Fueglistaler, S. (2021). Projections of tropical heat stress con- strained by atmospheric dynamics. Nature Geoscience, 14(3), 133–137. doi: 10 .1038/s41561-021-00695-3 Zhang, Y., & Shindell, D. T. (2021). Costs from labor losses due to extreme heat in
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light physical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, convective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training centers. A.M.A. archives of industrial health, 16(4), 302–316. Zhang, Y., & Boos, W. R. (2023). An upper bound for extreme temperatures over midlatitude land. Proceedings of the National Academy of Sciences, 120(12), e2215278120. doi: 10.1073/pnas.2215278120 Zhang, Y., Held, I., & Fueglistaler, S. (2021). Projections of tropical heat stress constrained by atmospheric dynamics. Nature Geoscience, 14(3), 133–137. doi: 10.1038/s41561-021-00695-3 Zhang, Y., & Shindell, D. T. (2021). Costs from labor losses due to extreme heat in the USA attributable to climate change. Climatic Change, 164(3-4), 35. doi:
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light physical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, convective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training centers. A.M.A. archives of industrial health, 16(4), 302–316. Zhang, Y., & Boos, W. R. (2023). An upper bound for extreme temperatures over midlatitude land. Proceedings of the National Academy of Sciences, 120(12), e2215278120. doi: 10.1073/pnas.2215278120 Zhang, Y., Held, I., & Fueglistaler, S. (2021). Projections of tropical heat stress constrained by atmospheric dynamics. Nature Geoscience, 14(3), 133–137. doi: 10.1038/s41561-021-00695-3 Zhang, Y., & Shindell, D. T. (2021). Costs from labor losses due to extreme heat in the USA attributable to climate change. Climatic Change, 164(3-4), 35. doi: 10.1007/s10584-021-03014-2
699 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light physical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, convective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training centers. A.M.A. archives of industrial health, 16(4), 302–316. Zhang, Y., & Boos, W. R. (2023). An upper bound for extreme temperatures over midlatitude land. Proceedings of the National Academy of Sciences, 120(12), e2215278120. doi: 10.1073/pnas.2215278120 Zhang, Y., Held, I., & Fueglistaler, S. (2021). Projections of tropical heat stress constrained by atmospheric dynamics. Nature Geoscience, 14(3), 133–137. doi: 10.1038/s41561-021-00695-3 Zhang, Y., & Shindell, D. T. (2021). Costs from labor losses due to extreme heat in the USA attributable to climate change. Climatic Change, 164(3-4), 35. doi: 10.1007/s10584-021-03014-2 Zhu, J., Wang, S., Zhang, B., & Wang, D. (2021). Adapting to Changing Labor Pro-
699 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716	 Vecellio, D. J., Wolf, S. T., Cottle, R. M., & Kenney, W. L. (2022). Utility of the Heat Index in defining the upper limits of thermal balance during light physical activity (PSU HEAT Project). International Journal of Biometeorology, 66(9), 1759–1769. doi: 10.1007/s00484-022-02316-z Williams, I. N., Pierrehumbert, R. T., & Huber, M. (2009). Global warming, convective threshold and false thermostats. Geophysical Research Letters, 36(21), L21805. doi: 10.1029/2009GL039849 Yaglou, C. P., & Minard, D. (1957). Control of heat casualties at military training centers. A.M.A. archives of industrial health, 16(4), 302–316. Zhang, Y., & Boos, W. R. (2023). An upper bound for extreme temperatures over midlatitude land. Proceedings of the National Academy of Sciences, 120(12), e2215278120. doi: 10.1073/pnas.2215278120 Zhang, Y., Held, I., & Fueglistaler, S. (2021). Projections of tropical heat stress constrained by atmospheric dynamics. Nature Geoscience, 14(3), 133–137. doi: 10.1038/s41561-021-00695-3 Zhang, Y., & Shindell, D. T. (2021). Costs from labor losses due to extreme heat in the USA attributable to climate change. Climatic Change, 164(3-4), 35. doi: 10.1007/s10584-021-03014-2 Zhu, J., Wang, S., Zhang, B., & Wang, D. (2021). Adapting to Changing Labor Productivity as a Result of Intensified Heat Stress in a Changing Climate. Geo-