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Abstract

To comprehensively characterize convective precipitation in the central Amazon region, we utilize the Python FLEXible ob-

ject TRacKeR (PyFLEXTRKR) to track mesoscale convective systems (MCSs) observed through satellite measurements and

simulated by the Weather Research and Forecasting (WRF) model at convection-permitting resolution. This study spans a

two-month period during the wet seasons of 2014 and 2015. We observe a strong correlation between MCS track density and

accumulated precipitation in the Amazon basin. Key factors contributing to precipitation, such as MCS properties (number,

size, rainfall intensity, and movement), are thoroughly examined. Our analysis reveals that while the overall model produces

fewer MCSs with smaller mean sizes compared to observations, it tends to overpredict total precipitation due to excessive rainfall

intensity for heavy rainfall events ([?] 10 mm h-1) and longer traveled distances than observed. These biases in simulated MCS

properties vary with the strength of constraints on convective background environment. Moreover, while the wet bias from

heavy (convective) rainfall outweighs the dry bias in light (stratiform) rainfall, the latter can be crucial, particularly when MCS

cloud cover is significantly underestimated. A relevant case study for April 1, 2014 highlights the influence of environmental

conditions on the MCS lifecycle and identifies an unrealistic model representation in convective precipitation features.
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Key Points: 6 

• Simulated and observed MCS clouds and precipitation are tracked during the 2014/15 wet 7 
seasons in central Amazon.  8 

• Excessive heavy rain intensity (≥  10 mm h-1) and relatively long travel distance of 9 
simulated MCS lead to overall overprediction of precipitation. 10 

• Dry bias associated with stratiform rainfall may also drive MCS precipitation bias when 11 
cloud cover is substantially underpredicted.   12 
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Abstract 13 

To comprehensively characterize convective precipitation in the central Amazon region, we 14 
utilize the Python FLEXible object TRacKeR (PyFLEXTRKR) to track mesoscale convective 15 
systems (MCSs) observed through satellite measurements and simulated by the Weather Research 16 
and Forecasting (WRF) model at convection-permitting resolution. This study spans a two-month 17 
period during the wet seasons of 2014 and 2015. We observe a strong correlation between MCS 18 
track density and accumulated precipitation in the Amazon basin. Key factors contributing to 19 
precipitation, such as MCS properties (number, size, rainfall intensity, and movement), are 20 
thoroughly examined. Our analysis reveals that while the overall model produces fewer MCSs 21 
with smaller mean sizes compared to observations, it tends to overpredict total precipitation due 22 
to excessive rainfall intensity for heavy rainfall events (≥ 10 mm h-1) and longer traveled distances 23 
than observed. These biases in simulated MCS properties could vary with the strength of 24 
constraints on convective background environment. Moreover, while the wet bias from heavy 25 
(convective) rainfall outweighs the dry bias in light (stratiform) rainfall, the latter can be crucial, 26 
particularly when MCS cloud cover is significantly underestimated. A relevant case study for April 27 
1, 2014 highlights the influence of environmental conditions on the MCS lifecycle and identifies 28 
an unrealistic model representation in convective precipitation features. 29 

Plain Language Summary 30 

We tracked large-size rain storms called mesoscale convective systems (MCSs) in the central 31 
Amazon during the wet seasons of 2014 and 2015 using an automated feature tracking algorithm. 32 
Data generated from MCS tracking helps us understand how MCSs rainfall is produced as a 33 
function of the number of storms, as well as their size, rain intensity, and motion, and how those 34 
can be better simulated by weather and climate models. We found that generally the model 35 
produces less and smaller MCSs than in reality, but the total MCS rainfall amount is often 36 
overestimated. This is because simulated MCSs travel longer, and most importantly they produce 37 
unrealistically intense heavy rainfall events. On the other hand, light rainfall events are mostly 38 
underrepresented by the model. Thus, the model error in total precipitation is determined by how 39 
these two compensate each other. Our analysis also suggests accurate model representation in 40 
environment is required for simulating realistic MCS properties.   41 

  42 
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1 Introduction 43 
Mesoscale convective system (MCS) is a deep convective storm with clouds and precipitation 44 

organized on spatial scales of 100 km (Houze 2014). In the Amazon, MCSs produce over 60% of 45 
the total rainfall during the wet season (March-April-May, MAM), primarily due to their relatively 46 
long duration and wide extent than less organized convective storms (Nesbitt et al. 2006; Feng et 47 
al. 2021; Schumacher and Rasmussen 2020). In addition to the hydrological impact of MCSs, their 48 
extensive anvil clouds have a sizeable impact on the regional radiation budget (Feng et al. 2011). 49 
Thus, MCSs play a noteworthy role in regional and global climate. 50 

Most Amazonian MCSs are initiated by near-surface convergence associated with prevailing 51 
trade winds, surface friction, and dirunal sea breeze circulations on the Atlantic coast (Sousa et al. 52 
2021). After initiation, many MCSs travel long distances across the Amazon basin with a lifetime 53 
over half a day, sustained by environmental conditions that are frequently favorable for deep 54 
convection and growing to substantial sizes owing to rich tropical moisture. Hence, the local 55 
precipitation diurnal cycle in the Amazon basin is tied closely to westward propagating MCSs (Tai 56 
et al. 2021).   57 

Several studies have employed a combination of routine and field campaign observational 58 
datasets to characterize MCSs in the Amazon region including weather radars, satellite 59 
observations, and surface measurements. Such efforts capture the intricate dynamics of MCS, their 60 
spatial distribution, intensity, and lifecycle evolution (e.g., Laurent et al. 2002; Petersen et al. 2002; 61 
Cifelli et al. 2002; Rickenbach et al. 2002; Machado et al. 2004). The recent GoAmazon2014/5 62 
field campaign (Martin et al. 2016) collected many valuable observational data sets that have been 63 
used to characterize the diurnal variation, morphology, propagation, vertical motion, and 64 
precipitation of convective clouds around central Amazon (Burleyson et al. 2016; Rehbein et al. 65 
2019; Giangrande et al. 2020; Wang et al. 2020; Tian et al. 2021; Anselmo et al. 2020). In addition 66 
to observations, advanced  regional climate and convection-permitting models have been utilized 67 
to simulate MCSs over the Amazon under various meteorological conditions. By integrating 68 
observations with simulations, researchers have deepened our understanding of the processes 69 
governing MCS formation and evolution in the Amazon (Silva Dias et al. 2002; Carvalho et al. 70 
2002; Machado et al. 2004; Tai et al. 2021, Paccini et al. 2023). These studies provide insights into 71 
the convective organization within the Amazon basin, shedding light on the complex interactions 72 
between atmospheric dynamics, moisture availability, and convective activity.  73 

Nonetheless, remaining model uncertainties in MCSs over Amazon has motivated additional 74 
research in the field. Prior studies have shown that simulated MCS precipitation is quite sensitive 75 
to model resolution (vertical and horizontal), atmospheric forcing in initial and boundary 76 
conditions, soil moisture, and physics parameterizations (land surface, planetary boundary layer, 77 
cloud microphysics, and radiation) (e.g., Luo et al. 2015; Stensrud et al. 2000; Feng et al. 2018; 78 
Prein et al. 2021; Tai et al 2021; Prein et al. 2022; Na et al. 2022; Rasmos-Valle et al. 2023; Yang 79 
et al. 2023). Due to constraints in availability and spatial coverage of observational data in the 80 
sparsely populated Amazon, most evaluations of simulated MCS behaviors have been conducted 81 
in a confined region and narrow time windows which may be shorter than the MCS lifetime. Thus, 82 
additional work is warranted to examine modeled MCSs in realistic Amazonian conditions.  83 
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Cataloging MCS frequency, size, precipitation intensity, and movement, are essential for 84 
determining precipitation processes that contribute to total accumulative rainfall in the Amazon. 85 
However, representation of these MCS characteristics in state-of-the-art atmospheric models lacks 86 
rigorous quantitative validation. A pioneering study from Laurent et al. (2002) uses geostationary 87 
satellite data with 30-min frequency to enable deep convective cloud tracking, providing a 88 
different aspect in assessing modeled storms. With an increasing amount and quality of available 89 
satellite data, a number of cloud cluster tracking tools have been developed in recent years to 90 
characterize the lifecycle of deep convective clouds (Anselmo et al. 2021; Huang et al. 2018; Feng 91 
et al. 2019; 2021, 2023; Rehbein et al. 2018; Galarneau et al. 2023; Prein et al. 2020; Da Silva et 92 
al. 2023). One example is the Python FLEXible object TRacKeR (PyFLEXTRKR, Feng et al. 93 
2023) algorithm, which we adopt in this study to facilitate MCS tracking in the central Amazon 94 
using satellite observations and a series of  convection-permitting (4-km grid spacing) simulations 95 
during the 2014/15 wet seasons. The goal of this study is to elucidate the role of key MCS 96 
properties in driving the model precipitation errors through an in-depth storm tracking analysis. 97 

The remainder of this paper is organized as following. Section 2 provides the details of the 98 
model and experiments as well as the algorithm used for trackings both simulated and observed 99 
MCSs. Results of analysis derived from MCS tracking statistics across timescales are 100 
demonstrated in Section 3. Finally, summary and conclusion are provided in Section 4.  101 

2 Methods 102 

2.1 Model setup and experiments  103 
We use the WRF model version 3.9.1 (ARW, Skamarock et al. (2008)) to simulate convective 104 

clouds over the entire Amazon region, using a general configuration similar to our previous work 105 
in this region (Tai et al. 2021). Our study period includes a month in 2014 (March 11 to April 10) 106 
and 2015 (March 1 - 31). The model domain encompasses the northern part of the South American 107 
continent as well as adjacent oceans (Figure 1). The domain is constructed with a horizontal grid 108 
spacing of 4 km and a stretched vertical coordinate of 60 levels. The model top is located at 100 109 
hPa. The physics schemes used for the simulations include: Thompson microphysics 110 
parameterization (Thompson et al. 2008), Mellor-Yamada-Nakanishi Niino (MYNN) boundary 111 
layer parameterization (Nakanishi and Niino 2009), Mellor-Yamada-Janjic surface layer 112 
parameterization (Janjić 2001), Unified Noah land-surface parameterization (Chen and Dudhia 113 
2001), and the RRTMG longwave and shortwave radiation parameterization (Iacono et al. 2008). 114 
No cumulus parametrization is used because the model’s horizontal grid spacing (4 km) is capable 115 
of resolving MCSs (Prein et al 2020; Na et al 2022). We use 6-hourly, 1° ´ 1° NCEP FNL 116 
operational model global tropospheric analysis for model initialization (National Centers for 117 
Environmental Prediction 2000).  118 
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 119 
Figure 1 Map shows the configured WRF model domain for the simulations used in this study. 120 
Color shading illustrates terrain heights. Yellow dots denote the locations of radiosonde profiles 121 
that are assimilated along with the simulations. The location of ARM T3 site during 122 
GoAmazon2014/5 is indicated. The dashed rectangle marked by dashed line represents the study 123 
area for the MCS tracking analysis. Subdomain denoted by blue box is used for profiles sampling 124 
discussed in Section 3.4. 125 

The model is also coupled with a data assimilation (DA) scheme to better constrain the 126 
simulation’s background meteorological condtions, identical to the approach used in Tai et al. 127 
(2021). Conventional observations (e.g., radiosonde profiles, surface meteorology, aircraft, ship 128 
and others) and satellite radiances are assimilated by using the three-dimensional variational 129 
(3DVar) technique as provided in the package of version 3.6 Community Gridpoint Statistical 130 
Interpolation (GSI, Shao et al. 2015). It produces optimized analyses by blending the model data 131 
with observations as collected for the NCEP Global Data Assimilation System (GDAS, 132 
http://rda.ucar.edu/datasets/ds337.0/) and the radiosonde profiles measured at the T3 site (Figure 133 
1) deployed by the DOE’s Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF, 134 
Miller et al. 2016) during the GoAmazon2014/5 field campaign (Martin et al. 2016).  135 

Assimilated radiosondes were launched every 6 hours at the ARM T3 (e.g., 00, 06, 12, and18 136 
UTC; 20, 02, 08, and 14 LT) throughout the campaign to measure tropospheric winds, temperature, 137 
pressure, and humidity profiles. Over the intensive observational periods (IOPs), one additional 138 
radiosonde was launched at 15 UTC (11 LT) to enhance measurement of the diurnal variation of 139 
environmental conditions. In addition to ARM’s radiosondes, meteorological profiles measured at 140 
other sites as archived in the NCEP ADP global upper air and surface weather observations product 141 
are also assimilated in our model configuration. Note these observations have lower temporal 142 
frequency (up to twice a day at 00 and 12 UTC) and vertical resolution than those performed at 143 
the T3 site. The yellow dots denoted in Figure 1 indicate the locations of available radiosonde data 144 
at 12 UTC of March 12, 2014. The DA-coupled simulation is initialized at 00 UTC on the first day 145 
of each simulated month. The 3DVar data assimilation is performed every 12 hours (at 00 and 12 146 

ARM T3
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UTC) throughout the simulation periods. More details regarding the model configuration and DA 147 
strategy can be found in Tai et al. (2021). 148 

2.2 Tracking observed MCSs  149 

The MCS tracking is performed using the Python FLEXible object TRacKeR (PyFLEXTRKR, 150 
Feng et al. (2021, 2023)), a software package which is designed to track any atmospheric features 151 
in 2-D geographic planes using user-prescribed observational data sets or model output. To 152 
objectively identify and track the deep convective clouds, the PyFLEXTRKR primarily uses 2-D 153 
projections of infrared brightness temperature (Tb) observations commonly measured by 154 
geostationary satellites. When tracking observed MCSs with PyFLEXTRKR, we use NASA’s 155 
Global Merged IR V1 infrared brightness temperature (Janowiak et al. 2017) data set. This dataset 156 
comprises multiple operational geostationary satellite data sources and includes viewing angle and 157 
parallax corrections. It has a continuous global coverage from 60°S to 60°N with a horizontal grid 158 
spacing of ~ 4 km and a temporal resolution of 30 min. We use hourly Tb data to identify and track 159 
deep convective clouds associated with MCSs identical to the approach adopted by Feng 160 
et al., (2021; 2023). A detailed discussion of the impact of uncertainties in MCS tracking owing to 161 
the IR Tb data set are described in Feng et al. (2021). Moreover, PyFLEXTRKR also uses 162 
collocated surface precipitation to assist identification of MCS “precipitation features (PF, 163 
contiguous area with rain rate > 2 mm h-1)” (Feng et al., 2021). Because PyFLEXTRKR tracks all 164 
deep convective clouds with a pre-defined minimum area threshold, the tracking data consists of 165 
records from early stage (near initiation) of individual deep convective clouds to the decay stage 166 
when the area of the cloud system decreases. More details of the PyFLEXTRKR algorithm can be 167 
found in Feng et al. (2023). 168 

We use the NASA Integrated Multi-satellitE Retrievals for Global Precipitation Measurement 169 
(GPM) (IMERG) V06B precipitation data (Huffman et al. 2019) as a source of observed rainfall 170 
data in the MCS tracking algorithm. Precipitation estimates in IMERG are obtained by various 171 
precipitation-retrieving satellite passive microwave (PMW) sensors using the Goddard Profiling 172 
algorithm (Kummerow et al., 2001, 2015, 2011). Intercalibration is performed using the GPM 173 
Combined Radar Radiometer Analysis product. The precipitation product has a grid spacing of 174 
0.1° and is also available every 30 minutes over a large portion of the globe (Huffman et al., 2014; 175 
Hou et al., 2014; Tang et al., 2016; Tan et al., 2019). We further averaged the 30 min IMERG data 176 
to hourly, and coarsened the 4 km Tb data to match the IMERG grid. Hence, the collocated Tb and 177 
IMERG precipitation data at 0.1° and hourly resolution are jointly used for MCS tracking in this 178 
study.  179 

2.3 Tracking simulated MCSs 180 
In WRF simulations, the top-of-atmosphere (TOA) outgoing longwave radiation (OLR) is used 181 

to infer the Tb. An empirical function is employed in PyFLEXTRKR to convert OLR to Tb 182 
following the formula from Yang and Slingo (2001). To avoid observational and simulated data 183 
resolution mismatches, the 4 km WRF simulation output is regridded based on the coordinate of 184 
observational data in a grid resolution of 0.1°. In this study, the thresholds used to define 185 
convective clouds, MCSs, and PFs in terms of cloud top brightness temperature, rain rate, and 186 
feature size are listed in Table 1. The sensitivity of MCS tracking due to variations of these 187 
thresholds was found to be qualitatively minor based on prior tests (not shown). A recent study 188 



manuscript submitted to Journal of Geophysical Research: Atmosphere 

 

comparing six different feature tracking algorithms applied to observed and simulated MCSs over 189 
South America found that most of the MCS properties from PyFLEXTRKR are representative of 190 
results from other obeject tracking tools (Prein et al. 2023), suggesting our algorithm can produce 191 
representative MCS characteristics. 192 

Table 1 Summary of parameters used for the MCS tracking algorithm in the PyFLEXTRKR. 193 

 194 
2.4 A MCS tracking example 195 

Figure 2 demonstrates an example of MCS detection and tracking at 13 UTC on March 19, 196 
2014, during our study period. In this case, WRF simulates comparable fractions of core and cold 197 
anvil clouds. However, due to narrowing between two simulated cloud clusters (Figure 2b), there 198 
are two separate MCSs identified rather than a single MCS in observations (Figure 2a). The results 199 
of cloud type identification based on the defined thresholds in Table 1 are shown in Figures 2c and 200 
2d. The tracked precipitation features corresponding to this MCS event are shown in Figures 2g 201 
and 2h, identified using the rain rates in Figures 2e and 2f. The model produces much higher rain 202 
rates than is observed in this time. The simulated maximum rain rate is 49.41 mm h-1; whereas, the 203 
maximum satellite-retrieved observational rain rate was less than half of that (21.9 mm h-1). This 204 
tendency leads to a relatively large fraction of heavy rainfall area in the simulated MCS than is 205 
observed. In addition, the model produces a large area of very light rainfall near the east side of 206 

Category Parameter Value Unit Description 

Cloud 
identification 

Warm cloud Tb 261 K Brightness temperature threshold for 
identification of “warm anvil” 

Cold cloud Tb 241 K Brightness temperature threshold for 
identification of “cold anvil” 

Core cloud Tb 225 K Brightness temperature threshold for 
identification of “core cloud” 

Minimum cold core 
cloud pixels 4 unitless 

Mininum number of pixels of cold 
core cloud in qualification of a “core 

cloud” 

Minimum area 800 km2 Minimum area in qualification of a 
“cloud” object 

Missing data fraction 0.35 unitless Maximum fraction for missing data 

Minimum area 40000 km2 Minimum total cloud area in 
qualification of a MCS 

MCS 
identification 

Minimum duration 4 hour Minimum duration in qualification of 
a MCS 

Minimum PF rain rate 3 mm h-1 Minimum rain rate in qualification as 
part of a PF 

Minimum PF link area 648 km2 Minimum linked area of a PF 

PF 
identification 

Minimum PF major axis 100 km Minimum length for a PF’s major axis 

Maximum PF major axis 1800 km Maximum length for a PF’s major 
axis 

Minimum PF duration 4 hour Maximum duration for a PF 
Minimum PF rainrate 2 mm h-1 Cut-off rain rate in a PF 

Heavy rain rate 
threshold 10 mm h-1 Minimum rain rate to be defined as 

“heavy rain” 
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the domain likely associated with a sea breeze circulation (Figure 2f) that is less evident in the 207 
satellite observations (Figure 2e). 208 

 209 

Figure 2 Snapshots of brightness temperature, cloud type, rain rate, and  precipitation type as 210 
recorded along with the MCS tracking at 13 UTC on March 19, 2014. The results derived from 211 
satellite observation and WRF simulation are illustrated in (a), (c), (e), (g) and (b), (d), (f), (h), 212 
respectively.  213 

  214 
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3 Results 215 

3.1 Number and spatial distribution of tracked MCSs  216 

We examine the total number as well as the spatial distribution of all tracked MCSs from both 217 
observational and simulated data sets over the study domain (Figure 1). We tracked 125 and 115 218 
observed MCSs occurring during the months of 2014 and 2015, respectively; compared to 120 and 219 
94 MCSs tracked during the same period in the simulations. Therefore, there were slightly fewer 220 
simulated MCSs (-8%) in the 2014 period, but a notable simulated deficit of MCSs (-22%) during 221 
the 2015 period.  222 

 MCS object track density is mapped onto a 1° ´ 1° grid and illustrated in Figure 4. During the 223 
2014 sampling period, more MCSs are observed near the northwest corner of the domain. The 224 
difference map for 2014 (Figure 3c) indicates that while more MCSs are simulated over the 225 
northwestern and eastern parts of the domain, fewer MCSs (negative blue patches) occur within 226 
grid cells near Amazon river. Interestingly, during the 2015 sampling period, MCSs are also under-227 
predicted along the Amazon river, particularly over the northeastern central Amazon (Figure 3f). 228 

While observed rain maps show relatively a consistent rainfall distribution and amount over 229 
the analysis domain (Figures 4a and 4d), simulated rainfall amount is distinctly higher in 2015 230 
than for 2014 (Figures 4b and 4e), despite lower MCS occurrence (Figures 3c and 3f).  For instance, 231 
during the 2014 period, observed domain-mean precipitation is 160.3 mm, which is slightly lower 232 
than is simulated (168.8 mm). Nevertheless, during the 2015 period, simulated and observed 233 
domain-mean precipitation are 209.5 and 171.4, respectively. Which suggests the domain-mean 234 
precipitation bias dramatically increases from +5% to +22%.  235 

Model bias in MCS occurrence (Figures 3c and 3f) modulates the overall pattern of rainfall 236 
bias (Figures 4c and 4f), which confirms that MCS precipitation contributes to a considerably large 237 
fraction of total rainfall during these two periods. The dry bias along the Amazon river is analyzed 238 
during both years (Figures 4c and 4f) and can be attributed to relatively low MCS occurrence 239 
simulated by the model (Figures 3c and 3f) despite potentially higher rain rate (Figure 2). This 240 
implies that the current model configuration may be associated with unresolved precipitation 241 
processes related to river-atmosphere interactions such as river-breezes that enhance deep 242 
convection under easterly trade winds (Burleyson et al. 2016), among other possible factors. 243 
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 244 

Figure 3 Spatial distribution of gridded MCS track density (i.e., number of MCS objects passing 245 
through 1°´1° grid boxes) from observations (a, d) and WRF simulations (b, e) over the study 246 
domain. (c) and (f) illustrate the difference between (a), (b) and (d), (e), respectively. The top 247 
(bottom) row represents results for the month of 2014 (2015). 248 

 249 

Figure 4 Similar to Figure 3, but for monthly precipitation amount (mm). The domain mean 250 
precipitation is given in the title of each panel (a, b, d, and, e) 251 

3.2 MCS properties  252 

The tracking data for all MCSs are used to obtain monthly mean values per MCS in both the 253 
2014/15 periods. Besides the occurrence (number of MCSs) as discussed, the accumulated 254 
precipitation of a MCS can be attributed to its size, duration, rainfall intensity, and distance 255 
traveled, we analyze properties including MCS cloud area, rain rate, and motion (e.g., duration, 256 
speed, and movement distance). This helps elucidate how these factors contribute to overall 257 
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precipitation amount and what is the fractional bias in each MCS properties. The results of selected 258 
6 MCS properties are given in Figure 5.  259 

We first assess the area covered by the entire MCS cloud shield (Tb < 241 K), and further 260 
categorize the cloud cover into convective and stratiform areas (Feng et al. 2021, 2023). The 261 
convective (core cloud) area is defined as the continuous area with cloud top temperature below 262 
225 K within a much wider MCS cloudy patch. The remaining area with Tb from 225 to 241 K is 263 
attributed to stratiform (cold anvil cloud) type. The statistics show that the total extent of simulated 264 
MCS cloud area is generally smaller than observed; while observed mean MCS sizes are larger 265 
than 80,000 km2 in both months, modeled MCSs are approximately 70,000 km2. Observations 266 
suggest the ratios of convective/stratiform cloud cover are 1.13 and 1.05 in 2014 and 2015 period; 267 
whereas, simulated ratios increase to 1.36 and 1.43, respectively, most likely due to reduction of 268 
stratiform cloud areas.  269 

The results also show simulated MCSs produce robustly higher rainfall intensity than is 270 
observed during each analysis period. The MCS precipitation is further partitioned into two types: 271 
heavy (≥ 10 mm h-1) and light (< 10 mm h-1). Distinct and consistent positive biases in modeled 272 
rain rates are seen in the heavy rainfall regime, driving the simulated total rain rate to be larger 273 
than twice of the average observed rate. While total rain rate does not vary much between the two 274 
periods (both are 9.1 mm h-1), heavy rain rate substantially increases from 18.3 to 19.2 mm h-1. 275 

Finally, we examine the duration, movement speed, and distance traveled of tracked MCSs. 276 
The observations suggest that MCSs had similar durations across both analysis periods. Though 277 
simulated MCSs had slightly shorter durations than were observed during 2014 ( by ~1 hour), the 278 
model significantly under-predicted the MCS lifespan (by > 2 hours) in 2015. Further, simulated 279 
MCSs motion was significantly over-predicted by ~3 – 4 m s-1 (~80%) during both analysis periods. 280 
Hence, the yearly differences in lifespan and propagation speed lead to larger horizontal excursions 281 
by the MCSs in both months. The simulated MCSs traveled longer distances than observed (~ +40  282 
km in 2014 and ~ +20 km for 2015 in average).  283 

As a result of the accumulated factors of MCS size, rain intensity, and movement, the modeled 284 
total precipitation per MCS is about 500 mm less (-20%) than what is observed in 2014 but about 285 
700 mm more (+35%) in 2015. The much larger simulated rainfall amount in 2015 is most likely 286 
due to unrealistically higher rain intensity. The observed ratios between heavy/light precipitation 287 
are 0.4 and 0.33 for 2014 and 2015, respectively. However, it becomes nearly opposite in the 288 
simulations, as the corresponding ratios are 1.7 and 2 for the two periods. Therefore, besides 289 
having biases in total precipitation, the model also poorly represents the fractions of heavy and 290 
light precipitation. 291 

The dramatic increase of errors in MCS occurrence (Section 3.1) as well as total precipitation 292 
from 2014 to 2015 periods catches attention because model skill in rainfall prediction usually does 293 
not significantly change from year to year. One possible source of this discrepancy in our 294 
simulations comes from biases in meterological conditions resulting from our data assimilation 295 
scheme. The quantitiy of radiosonde observations for during 2015 is approixmatley half of what 296 
was available to assimilate during 2014 (Figure 6). Thus, a much weaker constraint in simulated 297 
environmental conditions during 2015 most likely leads to enlarged biases in convective 298 
background conditions, which is expected to affect the examined MCS properties. Moreover, 299 
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results of partitioned precipitation quantity (heavy vs. light) indicate the excessive MCS total 300 
precipitation in the model for the 2015 period is primarily due to a much larger fraction of heavy 301 
rainfall. The overpredicated amount of heavy rainfall reaches more than three times of the observed 302 
value. Conversely, the simulated light rainfall amount is much less than what was observed (by ~ 303 
50%), which partially compensates the positive bias in heavy rain.  304 

 305 

Figure 5 Comparison of monthly-mean values for MCS properties, including: MCS area, rain rate, 306 
total MCS precipitation, duration, movement speed, and distance traveled. The statistics obtained 307 
from observations and simulations are represented by blue and orange bars. In the plots for MCS 308 
area, the fractions of stratiform- and convective-type clouds are indicated by light blue (orange) 309 
and dark blue (red) bars, respectively. For rain rate comparison, the total and heavy (≥ 10 mm h-310 
1) rain rates are denoted by light blue (orange) and light blue + dark blue (orange + red) bars. Total 311 
precipitation is partitioned into light (light blue and orange bars) and heavy (dark blue and red bars) 312 
rain types.  313 
 314 
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 315 

 316 

Figure 6 The number of assimilated data points from radiosonde specific humidity observations 317 
over the model domain (Figure 1). The blue and red curves represent timeseries results for 2014 318 
and 2015 analysis periods. Y-axis denotes the number of assimilation cycles.  319 

3.3 Daily variability 320 

The tracked MCS properties, including the number, area, movement distance, and rain rate are 321 
further broken down to facilitate model validation on daily timescales. Approximately four MCSs 322 
were observed daily, on average, during the 2014 period, with only two days in which no MCSs 323 
were identified (Figure 7a). Although the model reproduced only slightly fewer MCSs in terms of 324 
the monthly mean value, it does not fully capture the daily variations, particularly during the first 325 
half of the month. Overall, the MCS cloud area is underpredicted by the model. Over the entire 326 
month, an average MCS size of ~9.4 ´ 104 km2 is observed in satellite data; whereas, the model 327 
yields ~7 ´ 104 km2. The model has more difficulty in simulating large MCSs (area > 10 ´ 104 328 
km2), such as the ones observed on 3/13, 3/22 and 4/1. While the correlation between the observed 329 
and simulated MCS movement distance is much lower than for other properties, simulated MCSs 330 
more frequently travel farther than observed ones (20 out of 31 days). Lastly, the simulated mean 331 
MCS rain rate is much higher than in observations (approximately +90%) every day.    332 

Duringthe 2015 period (Figure 7b), simulated MCS number is notably underpredicted after 333 
3/22 despite qualitative agreement in the trend. A noticeable contrast on the first day of simulations 334 
(3/1) may be due to model spin-up. There are no days during the 2015 period with observed MCS 335 
size larger than 15 ´ 104 km2; thus, the MCS size is generally smaller than during the 2014 period. 336 
As a result, although the simulated mean MCS area is still smaller than observed, the deficit is not 337 
as large as it is during 2014. Similar to results obtained for 2014 period, there are 19 out of 31 days 338 
that MCSs traveled farther than observed in 2015. Despite variability in model biases of MCS 339 
properties, positive biases in MCS rain rate is robustly observed and are largest during the2015 340 
period. 341 
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 342 

Figure 7 Daily variations of MCS tracking statistics including number, area, movement distance, 343 
and mean rain rate for the analysis period in (a) 2014 and (b) 2015. The dashed line denoted in (a) 344 
identifies the date (April 1, 2014) selected for case study (Section 3.4).   345 

We next quantify heavy versus light rainfall-regime dependent model biases relative to biases 346 
in rain rate and cloud area (Figure 8). During most of the 2014 analysis period (Figure 8a), MCS 347 
precipitation is overpredicted on fewer than half of the days (13 out of 31) and underpredicted for 348 
the remaining 18 days. Moreover, on 3/13, 3/22, and 4/1, the negative biases in light rain are much 349 
more distinct than otherwise typical positive biases in heavy rainfall. This happens when MCS 350 
cloud areas in both convective and stratiform types are significantly under-predicted. During the 351 
2015 analysis period, there are only two days such as 3/4 and  3/15 when negative biases of light 352 
rainfall are lower than -2000 mm and thus compensate or even lead to a negative total MCS 353 
precipitation bias. Other than those days, heavy rainfall bias dominates the total precipitation bias. 354 
Rain rate biases in heavy precipitation are noticeably higher in 2015 than 2014. Given relative 355 
minor model-observation differences in MCS area, excessive simulated rain rate is responsible for 356 
large positive biases in total MCS precipitation for 2015 analysis period as shown in Figure 6. 357 
With varied scenarios as observed during the two sampling periods, it suggests model validation 358 
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using only accumulated precipitation amount will most likely ignore crucial model errors that may 359 
be revealed from examination of many MCS properties.  360 

 361 

Figure 8 Similar to Figure 7 but for biases in MCS precipitation amount, rain rate, and cloud area. 362 
The black lines denote results for the total biases. Green lines illustrate fractional results for the 363 
heavy rainfall (≥ 10 mm h-1) and convective-type (core) clouds. Orange lines represent results for 364 
the part with light rain (< 10 mm h-1) and stratiform-type (cold anvil) clouds. The dashed line 365 
denoted in (a) identifies the date (April 1, 2014) selected for case study (Section 3.4).   366 

3.4 Case study: April 1, 2014 367 

Following the discussion in the previous section, we further investigate the contrasts between 368 
observed and simulated MCS clouds and precipitation by highlighting a case study for April 1, 369 
2014. On this day, a MCS (denoted by white arrows at first row in Figure 9) initiated over 370 
northeastern corner of the analysis domain and experienced upscale growth through decay as it 371 
propagated westward (Figure 9). In general, the model reasonably reproduces the MCS’s lifecycle 372 
with relatively accurate placement of clouds in time, allowing us to examine the evolution of 373 
clouds (Figure 9) and corresponding precipitation processes (Figure 10) with confidence. In this 374 
case, the model tends to simulate smaller cloud cover regardless of cloud types. The simulated 375 
stratiform clouds dissipated faster than observed after 12 UTC, particularly on the southeastern 376 
flank of the MCS, as the brightness temperature of cloud top significantly increases. Nevertheless, 377 
more isolated convective initiation remains active on the leading edge of the propagating MCS. 378 
Therefore, only a relatively narrow core cloud band is sustained in simulations. In reality, satellite 379 
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observations suggest a much wider MCS cloud patch propagating toward the southwest through 380 
the domain.  381 

The contrast between observed and simulated heavy/light rain distribution is shown in Figure 382 
10. Though observations suggest heavy rainfall patches are scattered and mostly located in the 383 
center of a much wider light rain area, simulated heavy rainfall patches tend to have a much larger 384 
fractional area than observed and appear on the leading edge of relatively narrow cloud bands. 385 
This structural difference in the precipitation features implies that, most likely there are model 386 
deficiencies in representing the dynamics and/or microphysics within the simulated MCS causing 387 
the issue and warrants in-depth investigation in a future study to provide further insight.  388 

The diurnal variations of cloud and precipitation type relative area fractions are shown in 389 
Figure 11. The evolution of simulated core cloud fraction is overall aligned with the observed trend 390 
until 12 UTC. Similar fractions (~20 – 30%) are obtained for cold anvil clouds. While the observed 391 
cold anvil cloud fraction is consistently around 30%, simulated cold anvil cloud fraction dropped 392 
to ~20% at the end of the day. Cold anvil clouds started dissipating at 16 UTC, which is about 3-4 393 
hours later than the dissipation of core clouds. 394 

The area fraction of heavy rain is consistent between observations and simulations and does 395 
not exceed 6% over the course of the day. However, we see a notable contrast in the fraction of 396 
light rain area. Overall, the observed light rain area covers more than twice of what it does in 397 
simulations. Hourly rain rate comparison indicates light rain rates in both observations and 398 
simulations are never greater than 5 mm hr-1; whereas simulated heavy rain rate is mostly near 20 399 
mm hr-1, approximately 4 mm hr-1 more than observed, on average. Given much larger negative 400 
bias in anvil cloud cover and relatively small heavy rain rate bias during this event, the total MCS 401 
precipitation is thus primarily driven by the significant under-prediction of stratiform cloud cover. 402 
However, it is worth noting that validations of IMERG data against ground based observations 403 
(either radar or rain gauges) reveal that IMERG tends to significantly overestimate the frequency 404 
of weak precipitation (1-2 mm h-1) while underestimating intense precipitation, particularly over 405 
land (Cui et al. 2020; Zhang et al. 2021; Ayat et al. 2021). Moreover, the actual resolution of 406 
IMERG is significantly coarser than its grid spacing (Guilloteau & Foufoula-Georgiou, 2020). 407 
Thus, associated rainrate model biases themselves may be overestimated.  408 

To elucidate how environment conditions may influence differences in this MCS’s lifecycle, 409 
we examine the pre-storm environment (before 12 UTC) as observed by radiosonde profiles at the 410 
AMF T3 site and simulated profiles within a 2° by 2° box centered at the AMF site (Figure 1). 411 
Vertical interpolation with an interval of 0.1 km was carried out for both radiosonde and model 412 
profiles. To exclude profiles affected by convective clouds, only the model profiles with column 413 
maximum reflectivity less than 0 dBZ are sampled. Resulting wind profiles valid at 00, 06, and 12 414 
UTC are illustrated in Figure 12.  415 

There are two jets evident in the observed wind speed profiles; one peaking at  z = 2–3 km, 416 
and another above mid-troposphere (z = 7–9 km) (Figure 12a). Owing to small vertical 417 
heterogeneity in the meridional wind, these jets are primarily a result of variations in the zonal 418 
wind (Figure 12 b-c). Wind conditions do not vary significantly in the pre-storm environment. 419 
Although the model simulated wind conditions over the period are qualitatively similar to 420 
observations, simulated maximum wind speed of the lower jet is consistently smaller (~2–3 m s-1 421 
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less than radiosonde). Furthermore, at 12 UTC, the lower jet descends to height below 1 km in the 422 
model. This may imply a shallower and weaker low-level jet being simulated, leading to much 423 
weaker moisture transport and convergence in the lower troposphere. Results of convective 424 
available potential energy (CAPE) and convective inhibition (CIN) further demonstrate while the 425 
available energy for convective growth increases from 00 to 12 UTC in reality, the model simulates 426 
a completely opposite trend (Figure 13), where CAPE dropped from nearly 2000 to 500 J kg-1 over 427 
the 12-hour period. Despite good agreement in CIN values, the simulated environment does not 428 
favor convective growth as observed. This evidence may at least partially explain why the 429 
simulated MCS quickly dissipates after 12 UTC and thus has a much smaller area cover by 430 
stratiform clouds.     431 

 432 

Figure 9 Similar to Figure 2a - 2d, but for 03 to 21 UTC on April 1, 2014. White arrows on the 433 
panels for 03 UTC point to the initiating MCS of interest. 434 
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 435 

Figure 10 Similar to Figure 2e - 2h, but for 03 to 21 UTC on April 1, 2014.  436 

 437 
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 438 

Figure 11 Comparison in diurnal varations of area percentages of cloud (top panel) and 439 
precipitation (middle panel) types as computed over the analysis domain on April 1, 2014. 440 
Correspondng rain rate comparison in dependency of precipitation type is displayed in the bottom 441 
panel. 442 
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 443 

Figure 12 Wind speed, zonal (U-) wind, and meridional (V-) wind profiles as observed by 444 
radiosondes launched (a, b, and c) and simulated by WRF (d, e, and f) at the location of ARM T3 445 
site. Colors denoted in legend indicate results for 00, 06, and 12 UTC of April 1, 2014. Swath of 446 
each line in d, e, and f represents the range within ± 1 standard deviation among the samples. 447 



manuscript submitted to Journal of Geophysical Research: Atmosphere 

 

 448 

Figure 13 CIN (line with dots; left y-axis) and CAPE (bar; righy y-axis) values computed using 449 
ARM T3 radiosonde and corresponding WRF-simulated profiles at 00, 06, and 12 UTC of April 450 
1, 2014.  451 

 452 

4 Summary and conclusions 453 
Mesoscale convective systems (MCSs) are responsible for a large fraction of the total 454 

precipitation in the Amazon. However, various uncertainties in state-of-the-art atmospheric 455 
models hinder them from reproducing a realistic lifecycle and morphology of MCSs within this 456 
region. To facilitate comprehensive characterization of MCS precipitation in the central Amazon, 457 
the Python FLEXible object TRacKeR (PyFLEXTRKR) is employed to track individual MCSs 458 
that are simulated by convection permitting (4 km grid) Weather Research and Forecasting (WRF) 459 
simulations. The WRF simulations are performed over two separate months during the 2014 and 460 
2015 Amazon wet seasons. A 3DVar data assimilation scheme is used to constrain environmental 461 
conditions throughout simulations. These results are then compared to observed satellite analogs 462 
to examine possible mechanisms of MCS model biases. 463 

First, we examined the MCS occurrence and its relation to accumulated precipitation. Overall, 464 
the model tended to produce fewer MCSs than were observed within the study area. While only 465 
8% fewer MCSs are reproduced in 2014 period, we observe a difference of -22% for the month in 466 
2015. The heterogenous precipitation bias distribution is closely tied with how well the MCS track 467 
density was reproduced.  A distinct feature of dry biases along the Amazon river is identified and 468 
found to be well explained by model error in reproducing realistic MCS occurrence near the river.  469 

Analysis of monthly means of tracked MCS characteristics further reveal the contrasts between 470 
observed and modeled MCS properties in general. Although simulated MCSs are generally smaller 471 
than observed ones, they produced far more rain and propagated farther than observed. Moreover, 472 
we find the model-observation discrepencies in various MCS properties must be considered when 473 
accounting for the sources of MCS total precipitation bias. For example, in 2014 period, MCS total 474 
precipitation is underestimated by the model due in part to relatively large negative bias in MCS 475 
size and minor positive rain rate bias. Whereas in 2015, while model bias in MCS size is relatively 476 
small, substantial positive bias in rain rate results in severe overpredication of MCS total 477 
precipitation. Aside from biases in total precipitation, we also show that the model has difficulty 478 
in reproducing realistic fraction of heavy/light precipitation.  479 
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 The model errors in MCS number, rain rate, and precipitation (MCS and domain-mean) 480 
notably increase from 2014 to 2015 (Figures 3, 4, and 5). We find the degraded model performance 481 
is most likely driven by the availability of observational data for assimilation. The amount of 482 
assimilated radiosonde moisture data in 2015 dropped to only half of what was available in 2014 483 
despite consistent assimilation of radiosonde profiles collected at the ARM T3 site in central 484 
Amazon. This reinforces the importance of additional observation sites to constrain simulated 485 
synoptic environments over the continent.   486 

We further break down the statistics by each day and demonstrate that model skill in 487 
reproducing MCS properties, including number, size, and distance traveled, could vary 488 
significantly from day to day. On many days, the bias in total precipitation can be attributed to the 489 
wet bias in heavy rainfall, which result in overall overpredicted precipitation. However, light 490 
rainfall may occasionally drive the total precipitation error. Such events happened when both 491 
convective and stratiform cloud cover are under-predicted, hence both contribute to dry biases in 492 
precipitation. This suggests that it is critical to validate simulated precipitation by considering its 493 
dependency per rainfall regime because the biases sourced in different regimes may imply 494 
unrealistic model representations of various dynamical and/or microphysics processes. Analysis 495 
of daily bias provides more details in terms of model biases in MCS characteristics.  496 

Finally, an analysis of an MCS on April 1, 2014 is provided to illustrate how differently the 497 
clouds and precipitation are resolved in both observational and model data. We showed that in this 498 
particular event, while relatively small wet bias in heavy rainfall is analyzed, the large dry bias in 499 
light rain controls the total precipitation bias. This is mainly caused by significant under-prediction 500 
in area cover of light rain. Examination of the pre-storm environment suggests the jet in lower 501 
troposphere is relatively shallow and weak in the simulations compared to observations. This could 502 
lead to insufficient moisture transport and hence weaker convergence that are essential for 503 
convective growth and sustainability. Moreover, weaker simulated CAPE also indicated 504 
unfavorable conditions for convective growth. Given the evidence, we conclude the environmental 505 
conditions may be causing the early dissipation of MCSs and significant negative bias in stratiform 506 
cloud cover.  507 

In addition to environmental conditions as discussed in Section 3.4, potential sources of model 508 
uncertainties in reproducing observed MCS clouds/precipitation may also relate to 1) model 509 
resolution, which directly influences how MCS’s dynamic structure (e.g. vertical motion) may be 510 
resolved and thus alters the secondary circulation accordingly (Varble et al. 2020); and 2) 511 
paramterization of microphysical processes. For instance, the magnitude of simulated stratiform 512 
precipitation is found to be associated with ice particle mass fluxes as predicted by the employed 513 
microphysics schemes (Han et al. 2019). Heating profiles could be changed drastically by 514 
replacing one microphysics scheme by another (Feng et al. 2018).  515 

Compared to a mesoscale model, climate models tend to simulate even more unrealistic 516 
representations of tropical precipitation features (e.g., Tai et al. 2021), due in part to coarse grid 517 
spacing and much more simplified physics parameterizations. Given the substantial increase in 518 
computational power, climate models are now more frequently run at cloud-resolving scales (e.g., 519 
Tang et al. 2021; Liu et al. 2023). Despite promise as seen in selected case studies (Liu et al. 2023), 520 
a high-resolution configuration does not always lead to distinct improvements in general 521 
precipitation features (e.g., diurnal cycle) and associated meteorological conditions. We note 522 
climate models should use mesoscale model (e.g., WRF) simulations as benchmarks when 523 
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assessing their performance. In this way, the behaviors of state-of-the-art climate models can be 524 
constrained by both success and failure of relatively well-developed mesoscale models.   525 
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Key Points: 6 

• Simulated and observed MCS clouds and precipitation are tracked during the 2014/15 wet 7 
seasons in central Amazon.  8 

• Excessive heavy rain intensity (≥  10 mm h-1) and relatively long travel distance of 9 
simulated MCS lead to overall overprediction of precipitation. 10 

• Dry bias associated with stratiform rainfall may also drive MCS precipitation bias when 11 
cloud cover is substantially underpredicted.   12 
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Abstract 13 

To comprehensively characterize convective precipitation in the central Amazon region, we 14 
utilize the Python FLEXible object TRacKeR (PyFLEXTRKR) to track mesoscale convective 15 
systems (MCSs) observed through satellite measurements and simulated by the Weather Research 16 
and Forecasting (WRF) model at convection-permitting resolution. This study spans a two-month 17 
period during the wet seasons of 2014 and 2015. We observe a strong correlation between MCS 18 
track density and accumulated precipitation in the Amazon basin. Key factors contributing to 19 
precipitation, such as MCS properties (number, size, rainfall intensity, and movement), are 20 
thoroughly examined. Our analysis reveals that while the overall model produces fewer MCSs 21 
with smaller mean sizes compared to observations, it tends to overpredict total precipitation due 22 
to excessive rainfall intensity for heavy rainfall events (≥ 10 mm h-1) and longer traveled distances 23 
than observed. These biases in simulated MCS properties could vary with the strength of 24 
constraints on convective background environment. Moreover, while the wet bias from heavy 25 
(convective) rainfall outweighs the dry bias in light (stratiform) rainfall, the latter can be crucial, 26 
particularly when MCS cloud cover is significantly underestimated. A relevant case study for April 27 
1, 2014 highlights the influence of environmental conditions on the MCS lifecycle and identifies 28 
an unrealistic model representation in convective precipitation features. 29 

Plain Language Summary 30 

We tracked large-size rain storms called mesoscale convective systems (MCSs) in the central 31 
Amazon during the wet seasons of 2014 and 2015 using an automated feature tracking algorithm. 32 
Data generated from MCS tracking helps us understand how MCSs rainfall is produced as a 33 
function of the number of storms, as well as their size, rain intensity, and motion, and how those 34 
can be better simulated by weather and climate models. We found that generally the model 35 
produces less and smaller MCSs than in reality, but the total MCS rainfall amount is often 36 
overestimated. This is because simulated MCSs travel longer, and most importantly they produce 37 
unrealistically intense heavy rainfall events. On the other hand, light rainfall events are mostly 38 
underrepresented by the model. Thus, the model error in total precipitation is determined by how 39 
these two compensate each other. Our analysis also suggests accurate model representation in 40 
environment is required for simulating realistic MCS properties.   41 

  42 
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1 Introduction 43 
Mesoscale convective system (MCS) is a deep convective storm with clouds and precipitation 44 

organized on spatial scales of 100 km (Houze 2014). In the Amazon, MCSs produce over 60% of 45 
the total rainfall during the wet season (March-April-May, MAM), primarily due to their relatively 46 
long duration and wide extent than less organized convective storms (Nesbitt et al. 2006; Feng et 47 
al. 2021; Schumacher and Rasmussen 2020). In addition to the hydrological impact of MCSs, their 48 
extensive anvil clouds have a sizeable impact on the regional radiation budget (Feng et al. 2011). 49 
Thus, MCSs play a noteworthy role in regional and global climate. 50 

Most Amazonian MCSs are initiated by near-surface convergence associated with prevailing 51 
trade winds, surface friction, and dirunal sea breeze circulations on the Atlantic coast (Sousa et al. 52 
2021). After initiation, many MCSs travel long distances across the Amazon basin with a lifetime 53 
over half a day, sustained by environmental conditions that are frequently favorable for deep 54 
convection and growing to substantial sizes owing to rich tropical moisture. Hence, the local 55 
precipitation diurnal cycle in the Amazon basin is tied closely to westward propagating MCSs (Tai 56 
et al. 2021).   57 

Several studies have employed a combination of routine and field campaign observational 58 
datasets to characterize MCSs in the Amazon region including weather radars, satellite 59 
observations, and surface measurements. Such efforts capture the intricate dynamics of MCS, their 60 
spatial distribution, intensity, and lifecycle evolution (e.g., Laurent et al. 2002; Petersen et al. 2002; 61 
Cifelli et al. 2002; Rickenbach et al. 2002; Machado et al. 2004). The recent GoAmazon2014/5 62 
field campaign (Martin et al. 2016) collected many valuable observational data sets that have been 63 
used to characterize the diurnal variation, morphology, propagation, vertical motion, and 64 
precipitation of convective clouds around central Amazon (Burleyson et al. 2016; Rehbein et al. 65 
2019; Giangrande et al. 2020; Wang et al. 2020; Tian et al. 2021; Anselmo et al. 2020). In addition 66 
to observations, advanced  regional climate and convection-permitting models have been utilized 67 
to simulate MCSs over the Amazon under various meteorological conditions. By integrating 68 
observations with simulations, researchers have deepened our understanding of the processes 69 
governing MCS formation and evolution in the Amazon (Silva Dias et al. 2002; Carvalho et al. 70 
2002; Machado et al. 2004; Tai et al. 2021, Paccini et al. 2023). These studies provide insights into 71 
the convective organization within the Amazon basin, shedding light on the complex interactions 72 
between atmospheric dynamics, moisture availability, and convective activity.  73 

Nonetheless, remaining model uncertainties in MCSs over Amazon has motivated additional 74 
research in the field. Prior studies have shown that simulated MCS precipitation is quite sensitive 75 
to model resolution (vertical and horizontal), atmospheric forcing in initial and boundary 76 
conditions, soil moisture, and physics parameterizations (land surface, planetary boundary layer, 77 
cloud microphysics, and radiation) (e.g., Luo et al. 2015; Stensrud et al. 2000; Feng et al. 2018; 78 
Prein et al. 2021; Tai et al 2021; Prein et al. 2022; Na et al. 2022; Rasmos-Valle et al. 2023; Yang 79 
et al. 2023). Due to constraints in availability and spatial coverage of observational data in the 80 
sparsely populated Amazon, most evaluations of simulated MCS behaviors have been conducted 81 
in a confined region and narrow time windows which may be shorter than the MCS lifetime. Thus, 82 
additional work is warranted to examine modeled MCSs in realistic Amazonian conditions.  83 
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Cataloging MCS frequency, size, precipitation intensity, and movement, are essential for 84 
determining precipitation processes that contribute to total accumulative rainfall in the Amazon. 85 
However, representation of these MCS characteristics in state-of-the-art atmospheric models lacks 86 
rigorous quantitative validation. A pioneering study from Laurent et al. (2002) uses geostationary 87 
satellite data with 30-min frequency to enable deep convective cloud tracking, providing a 88 
different aspect in assessing modeled storms. With an increasing amount and quality of available 89 
satellite data, a number of cloud cluster tracking tools have been developed in recent years to 90 
characterize the lifecycle of deep convective clouds (Anselmo et al. 2021; Huang et al. 2018; Feng 91 
et al. 2019; 2021, 2023; Rehbein et al. 2018; Galarneau et al. 2023; Prein et al. 2020; Da Silva et 92 
al. 2023). One example is the Python FLEXible object TRacKeR (PyFLEXTRKR, Feng et al. 93 
2023) algorithm, which we adopt in this study to facilitate MCS tracking in the central Amazon 94 
using satellite observations and a series of  convection-permitting (4-km grid spacing) simulations 95 
during the 2014/15 wet seasons. The goal of this study is to elucidate the role of key MCS 96 
properties in driving the model precipitation errors through an in-depth storm tracking analysis. 97 

The remainder of this paper is organized as following. Section 2 provides the details of the 98 
model and experiments as well as the algorithm used for trackings both simulated and observed 99 
MCSs. Results of analysis derived from MCS tracking statistics across timescales are 100 
demonstrated in Section 3. Finally, summary and conclusion are provided in Section 4.  101 

2 Methods 102 

2.1 Model setup and experiments  103 
We use the WRF model version 3.9.1 (ARW, Skamarock et al. (2008)) to simulate convective 104 

clouds over the entire Amazon region, using a general configuration similar to our previous work 105 
in this region (Tai et al. 2021). Our study period includes a month in 2014 (March 11 to April 10) 106 
and 2015 (March 1 - 31). The model domain encompasses the northern part of the South American 107 
continent as well as adjacent oceans (Figure 1). The domain is constructed with a horizontal grid 108 
spacing of 4 km and a stretched vertical coordinate of 60 levels. The model top is located at 100 109 
hPa. The physics schemes used for the simulations include: Thompson microphysics 110 
parameterization (Thompson et al. 2008), Mellor-Yamada-Nakanishi Niino (MYNN) boundary 111 
layer parameterization (Nakanishi and Niino 2009), Mellor-Yamada-Janjic surface layer 112 
parameterization (Janjić 2001), Unified Noah land-surface parameterization (Chen and Dudhia 113 
2001), and the RRTMG longwave and shortwave radiation parameterization (Iacono et al. 2008). 114 
No cumulus parametrization is used because the model’s horizontal grid spacing (4 km) is capable 115 
of resolving MCSs (Prein et al 2020; Na et al 2022). We use 6-hourly, 1° ´ 1° NCEP FNL 116 
operational model global tropospheric analysis for model initialization (National Centers for 117 
Environmental Prediction 2000).  118 
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 119 
Figure 1 Map shows the configured WRF model domain for the simulations used in this study. 120 
Color shading illustrates terrain heights. Yellow dots denote the locations of radiosonde profiles 121 
that are assimilated along with the simulations. The location of ARM T3 site during 122 
GoAmazon2014/5 is indicated. The dashed rectangle marked by dashed line represents the study 123 
area for the MCS tracking analysis. Subdomain denoted by blue box is used for profiles sampling 124 
discussed in Section 3.4. 125 

The model is also coupled with a data assimilation (DA) scheme to better constrain the 126 
simulation’s background meteorological condtions, identical to the approach used in Tai et al. 127 
(2021). Conventional observations (e.g., radiosonde profiles, surface meteorology, aircraft, ship 128 
and others) and satellite radiances are assimilated by using the three-dimensional variational 129 
(3DVar) technique as provided in the package of version 3.6 Community Gridpoint Statistical 130 
Interpolation (GSI, Shao et al. 2015). It produces optimized analyses by blending the model data 131 
with observations as collected for the NCEP Global Data Assimilation System (GDAS, 132 
http://rda.ucar.edu/datasets/ds337.0/) and the radiosonde profiles measured at the T3 site (Figure 133 
1) deployed by the DOE’s Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF, 134 
Miller et al. 2016) during the GoAmazon2014/5 field campaign (Martin et al. 2016).  135 

Assimilated radiosondes were launched every 6 hours at the ARM T3 (e.g., 00, 06, 12, and18 136 
UTC; 20, 02, 08, and 14 LT) throughout the campaign to measure tropospheric winds, temperature, 137 
pressure, and humidity profiles. Over the intensive observational periods (IOPs), one additional 138 
radiosonde was launched at 15 UTC (11 LT) to enhance measurement of the diurnal variation of 139 
environmental conditions. In addition to ARM’s radiosondes, meteorological profiles measured at 140 
other sites as archived in the NCEP ADP global upper air and surface weather observations product 141 
are also assimilated in our model configuration. Note these observations have lower temporal 142 
frequency (up to twice a day at 00 and 12 UTC) and vertical resolution than those performed at 143 
the T3 site. The yellow dots denoted in Figure 1 indicate the locations of available radiosonde data 144 
at 12 UTC of March 12, 2014. The DA-coupled simulation is initialized at 00 UTC on the first day 145 
of each simulated month. The 3DVar data assimilation is performed every 12 hours (at 00 and 12 146 

ARM T3



manuscript submitted to Journal of Geophysical Research: Atmosphere 

 

UTC) throughout the simulation periods. More details regarding the model configuration and DA 147 
strategy can be found in Tai et al. (2021). 148 

2.2 Tracking observed MCSs  149 

The MCS tracking is performed using the Python FLEXible object TRacKeR (PyFLEXTRKR, 150 
Feng et al. (2021, 2023)), a software package which is designed to track any atmospheric features 151 
in 2-D geographic planes using user-prescribed observational data sets or model output. To 152 
objectively identify and track the deep convective clouds, the PyFLEXTRKR primarily uses 2-D 153 
projections of infrared brightness temperature (Tb) observations commonly measured by 154 
geostationary satellites. When tracking observed MCSs with PyFLEXTRKR, we use NASA’s 155 
Global Merged IR V1 infrared brightness temperature (Janowiak et al. 2017) data set. This dataset 156 
comprises multiple operational geostationary satellite data sources and includes viewing angle and 157 
parallax corrections. It has a continuous global coverage from 60°S to 60°N with a horizontal grid 158 
spacing of ~ 4 km and a temporal resolution of 30 min. We use hourly Tb data to identify and track 159 
deep convective clouds associated with MCSs identical to the approach adopted by Feng 160 
et al., (2021; 2023). A detailed discussion of the impact of uncertainties in MCS tracking owing to 161 
the IR Tb data set are described in Feng et al. (2021). Moreover, PyFLEXTRKR also uses 162 
collocated surface precipitation to assist identification of MCS “precipitation features (PF, 163 
contiguous area with rain rate > 2 mm h-1)” (Feng et al., 2021). Because PyFLEXTRKR tracks all 164 
deep convective clouds with a pre-defined minimum area threshold, the tracking data consists of 165 
records from early stage (near initiation) of individual deep convective clouds to the decay stage 166 
when the area of the cloud system decreases. More details of the PyFLEXTRKR algorithm can be 167 
found in Feng et al. (2023). 168 

We use the NASA Integrated Multi-satellitE Retrievals for Global Precipitation Measurement 169 
(GPM) (IMERG) V06B precipitation data (Huffman et al. 2019) as a source of observed rainfall 170 
data in the MCS tracking algorithm. Precipitation estimates in IMERG are obtained by various 171 
precipitation-retrieving satellite passive microwave (PMW) sensors using the Goddard Profiling 172 
algorithm (Kummerow et al., 2001, 2015, 2011). Intercalibration is performed using the GPM 173 
Combined Radar Radiometer Analysis product. The precipitation product has a grid spacing of 174 
0.1° and is also available every 30 minutes over a large portion of the globe (Huffman et al., 2014; 175 
Hou et al., 2014; Tang et al., 2016; Tan et al., 2019). We further averaged the 30 min IMERG data 176 
to hourly, and coarsened the 4 km Tb data to match the IMERG grid. Hence, the collocated Tb and 177 
IMERG precipitation data at 0.1° and hourly resolution are jointly used for MCS tracking in this 178 
study.  179 

2.3 Tracking simulated MCSs 180 
In WRF simulations, the top-of-atmosphere (TOA) outgoing longwave radiation (OLR) is used 181 

to infer the Tb. An empirical function is employed in PyFLEXTRKR to convert OLR to Tb 182 
following the formula from Yang and Slingo (2001). To avoid observational and simulated data 183 
resolution mismatches, the 4 km WRF simulation output is regridded based on the coordinate of 184 
observational data in a grid resolution of 0.1°. In this study, the thresholds used to define 185 
convective clouds, MCSs, and PFs in terms of cloud top brightness temperature, rain rate, and 186 
feature size are listed in Table 1. The sensitivity of MCS tracking due to variations of these 187 
thresholds was found to be qualitatively minor based on prior tests (not shown). A recent study 188 
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comparing six different feature tracking algorithms applied to observed and simulated MCSs over 189 
South America found that most of the MCS properties from PyFLEXTRKR are representative of 190 
results from other obeject tracking tools (Prein et al. 2023), suggesting our algorithm can produce 191 
representative MCS characteristics. 192 

Table 1 Summary of parameters used for the MCS tracking algorithm in the PyFLEXTRKR. 193 

 194 
2.4 A MCS tracking example 195 

Figure 2 demonstrates an example of MCS detection and tracking at 13 UTC on March 19, 196 
2014, during our study period. In this case, WRF simulates comparable fractions of core and cold 197 
anvil clouds. However, due to narrowing between two simulated cloud clusters (Figure 2b), there 198 
are two separate MCSs identified rather than a single MCS in observations (Figure 2a). The results 199 
of cloud type identification based on the defined thresholds in Table 1 are shown in Figures 2c and 200 
2d. The tracked precipitation features corresponding to this MCS event are shown in Figures 2g 201 
and 2h, identified using the rain rates in Figures 2e and 2f. The model produces much higher rain 202 
rates than is observed in this time. The simulated maximum rain rate is 49.41 mm h-1; whereas, the 203 
maximum satellite-retrieved observational rain rate was less than half of that (21.9 mm h-1). This 204 
tendency leads to a relatively large fraction of heavy rainfall area in the simulated MCS than is 205 
observed. In addition, the model produces a large area of very light rainfall near the east side of 206 

Category Parameter Value Unit Description 

Cloud 
identification 

Warm cloud Tb 261 K Brightness temperature threshold for 
identification of “warm anvil” 

Cold cloud Tb 241 K Brightness temperature threshold for 
identification of “cold anvil” 

Core cloud Tb 225 K Brightness temperature threshold for 
identification of “core cloud” 

Minimum cold core 
cloud pixels 4 unitless 

Mininum number of pixels of cold 
core cloud in qualification of a “core 

cloud” 

Minimum area 800 km2 Minimum area in qualification of a 
“cloud” object 

Missing data fraction 0.35 unitless Maximum fraction for missing data 

Minimum area 40000 km2 Minimum total cloud area in 
qualification of a MCS 

MCS 
identification 

Minimum duration 4 hour Minimum duration in qualification of 
a MCS 

Minimum PF rain rate 3 mm h-1 Minimum rain rate in qualification as 
part of a PF 

Minimum PF link area 648 km2 Minimum linked area of a PF 

PF 
identification 

Minimum PF major axis 100 km Minimum length for a PF’s major axis 

Maximum PF major axis 1800 km Maximum length for a PF’s major 
axis 

Minimum PF duration 4 hour Maximum duration for a PF 
Minimum PF rainrate 2 mm h-1 Cut-off rain rate in a PF 

Heavy rain rate 
threshold 10 mm h-1 Minimum rain rate to be defined as 

“heavy rain” 
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the domain likely associated with a sea breeze circulation (Figure 2f) that is less evident in the 207 
satellite observations (Figure 2e). 208 

 209 

Figure 2 Snapshots of brightness temperature, cloud type, rain rate, and  precipitation type as 210 
recorded along with the MCS tracking at 13 UTC on March 19, 2014. The results derived from 211 
satellite observation and WRF simulation are illustrated in (a), (c), (e), (g) and (b), (d), (f), (h), 212 
respectively.  213 

  214 
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3 Results 215 

3.1 Number and spatial distribution of tracked MCSs  216 

We examine the total number as well as the spatial distribution of all tracked MCSs from both 217 
observational and simulated data sets over the study domain (Figure 1). We tracked 125 and 115 218 
observed MCSs occurring during the months of 2014 and 2015, respectively; compared to 120 and 219 
94 MCSs tracked during the same period in the simulations. Therefore, there were slightly fewer 220 
simulated MCSs (-8%) in the 2014 period, but a notable simulated deficit of MCSs (-22%) during 221 
the 2015 period.  222 

 MCS object track density is mapped onto a 1° ´ 1° grid and illustrated in Figure 4. During the 223 
2014 sampling period, more MCSs are observed near the northwest corner of the domain. The 224 
difference map for 2014 (Figure 3c) indicates that while more MCSs are simulated over the 225 
northwestern and eastern parts of the domain, fewer MCSs (negative blue patches) occur within 226 
grid cells near Amazon river. Interestingly, during the 2015 sampling period, MCSs are also under-227 
predicted along the Amazon river, particularly over the northeastern central Amazon (Figure 3f). 228 

While observed rain maps show relatively a consistent rainfall distribution and amount over 229 
the analysis domain (Figures 4a and 4d), simulated rainfall amount is distinctly higher in 2015 230 
than for 2014 (Figures 4b and 4e), despite lower MCS occurrence (Figures 3c and 3f).  For instance, 231 
during the 2014 period, observed domain-mean precipitation is 160.3 mm, which is slightly lower 232 
than is simulated (168.8 mm). Nevertheless, during the 2015 period, simulated and observed 233 
domain-mean precipitation are 209.5 and 171.4, respectively. Which suggests the domain-mean 234 
precipitation bias dramatically increases from +5% to +22%.  235 

Model bias in MCS occurrence (Figures 3c and 3f) modulates the overall pattern of rainfall 236 
bias (Figures 4c and 4f), which confirms that MCS precipitation contributes to a considerably large 237 
fraction of total rainfall during these two periods. The dry bias along the Amazon river is analyzed 238 
during both years (Figures 4c and 4f) and can be attributed to relatively low MCS occurrence 239 
simulated by the model (Figures 3c and 3f) despite potentially higher rain rate (Figure 2). This 240 
implies that the current model configuration may be associated with unresolved precipitation 241 
processes related to river-atmosphere interactions such as river-breezes that enhance deep 242 
convection under easterly trade winds (Burleyson et al. 2016), among other possible factors. 243 
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 244 

Figure 3 Spatial distribution of gridded MCS track density (i.e., number of MCS objects passing 245 
through 1°´1° grid boxes) from observations (a, d) and WRF simulations (b, e) over the study 246 
domain. (c) and (f) illustrate the difference between (a), (b) and (d), (e), respectively. The top 247 
(bottom) row represents results for the month of 2014 (2015). 248 

 249 

Figure 4 Similar to Figure 3, but for monthly precipitation amount (mm). The domain mean 250 
precipitation is given in the title of each panel (a, b, d, and, e) 251 

3.2 MCS properties  252 

The tracking data for all MCSs are used to obtain monthly mean values per MCS in both the 253 
2014/15 periods. Besides the occurrence (number of MCSs) as discussed, the accumulated 254 
precipitation of a MCS can be attributed to its size, duration, rainfall intensity, and distance 255 
traveled, we analyze properties including MCS cloud area, rain rate, and motion (e.g., duration, 256 
speed, and movement distance). This helps elucidate how these factors contribute to overall 257 
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precipitation amount and what is the fractional bias in each MCS properties. The results of selected 258 
6 MCS properties are given in Figure 5.  259 

We first assess the area covered by the entire MCS cloud shield (Tb < 241 K), and further 260 
categorize the cloud cover into convective and stratiform areas (Feng et al. 2021, 2023). The 261 
convective (core cloud) area is defined as the continuous area with cloud top temperature below 262 
225 K within a much wider MCS cloudy patch. The remaining area with Tb from 225 to 241 K is 263 
attributed to stratiform (cold anvil cloud) type. The statistics show that the total extent of simulated 264 
MCS cloud area is generally smaller than observed; while observed mean MCS sizes are larger 265 
than 80,000 km2 in both months, modeled MCSs are approximately 70,000 km2. Observations 266 
suggest the ratios of convective/stratiform cloud cover are 1.13 and 1.05 in 2014 and 2015 period; 267 
whereas, simulated ratios increase to 1.36 and 1.43, respectively, most likely due to reduction of 268 
stratiform cloud areas.  269 

The results also show simulated MCSs produce robustly higher rainfall intensity than is 270 
observed during each analysis period. The MCS precipitation is further partitioned into two types: 271 
heavy (≥ 10 mm h-1) and light (< 10 mm h-1). Distinct and consistent positive biases in modeled 272 
rain rates are seen in the heavy rainfall regime, driving the simulated total rain rate to be larger 273 
than twice of the average observed rate. While total rain rate does not vary much between the two 274 
periods (both are 9.1 mm h-1), heavy rain rate substantially increases from 18.3 to 19.2 mm h-1. 275 

Finally, we examine the duration, movement speed, and distance traveled of tracked MCSs. 276 
The observations suggest that MCSs had similar durations across both analysis periods. Though 277 
simulated MCSs had slightly shorter durations than were observed during 2014 ( by ~1 hour), the 278 
model significantly under-predicted the MCS lifespan (by > 2 hours) in 2015. Further, simulated 279 
MCSs motion was significantly over-predicted by ~3 – 4 m s-1 (~80%) during both analysis periods. 280 
Hence, the yearly differences in lifespan and propagation speed lead to larger horizontal excursions 281 
by the MCSs in both months. The simulated MCSs traveled longer distances than observed (~ +40  282 
km in 2014 and ~ +20 km for 2015 in average).  283 

As a result of the accumulated factors of MCS size, rain intensity, and movement, the modeled 284 
total precipitation per MCS is about 500 mm less (-20%) than what is observed in 2014 but about 285 
700 mm more (+35%) in 2015. The much larger simulated rainfall amount in 2015 is most likely 286 
due to unrealistically higher rain intensity. The observed ratios between heavy/light precipitation 287 
are 0.4 and 0.33 for 2014 and 2015, respectively. However, it becomes nearly opposite in the 288 
simulations, as the corresponding ratios are 1.7 and 2 for the two periods. Therefore, besides 289 
having biases in total precipitation, the model also poorly represents the fractions of heavy and 290 
light precipitation. 291 

The dramatic increase of errors in MCS occurrence (Section 3.1) as well as total precipitation 292 
from 2014 to 2015 periods catches attention because model skill in rainfall prediction usually does 293 
not significantly change from year to year. One possible source of this discrepancy in our 294 
simulations comes from biases in meterological conditions resulting from our data assimilation 295 
scheme. The quantitiy of radiosonde observations for during 2015 is approixmatley half of what 296 
was available to assimilate during 2014 (Figure 6). Thus, a much weaker constraint in simulated 297 
environmental conditions during 2015 most likely leads to enlarged biases in convective 298 
background conditions, which is expected to affect the examined MCS properties. Moreover, 299 
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results of partitioned precipitation quantity (heavy vs. light) indicate the excessive MCS total 300 
precipitation in the model for the 2015 period is primarily due to a much larger fraction of heavy 301 
rainfall. The overpredicated amount of heavy rainfall reaches more than three times of the observed 302 
value. Conversely, the simulated light rainfall amount is much less than what was observed (by ~ 303 
50%), which partially compensates the positive bias in heavy rain.  304 

 305 

Figure 5 Comparison of monthly-mean values for MCS properties, including: MCS area, rain rate, 306 
total MCS precipitation, duration, movement speed, and distance traveled. The statistics obtained 307 
from observations and simulations are represented by blue and orange bars. In the plots for MCS 308 
area, the fractions of stratiform- and convective-type clouds are indicated by light blue (orange) 309 
and dark blue (red) bars, respectively. For rain rate comparison, the total and heavy (≥ 10 mm h-310 
1) rain rates are denoted by light blue (orange) and light blue + dark blue (orange + red) bars. Total 311 
precipitation is partitioned into light (light blue and orange bars) and heavy (dark blue and red bars) 312 
rain types.  313 
 314 
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 316 

Figure 6 The number of assimilated data points from radiosonde specific humidity observations 317 
over the model domain (Figure 1). The blue and red curves represent timeseries results for 2014 318 
and 2015 analysis periods. Y-axis denotes the number of assimilation cycles.  319 

3.3 Daily variability 320 

The tracked MCS properties, including the number, area, movement distance, and rain rate are 321 
further broken down to facilitate model validation on daily timescales. Approximately four MCSs 322 
were observed daily, on average, during the 2014 period, with only two days in which no MCSs 323 
were identified (Figure 7a). Although the model reproduced only slightly fewer MCSs in terms of 324 
the monthly mean value, it does not fully capture the daily variations, particularly during the first 325 
half of the month. Overall, the MCS cloud area is underpredicted by the model. Over the entire 326 
month, an average MCS size of ~9.4 ´ 104 km2 is observed in satellite data; whereas, the model 327 
yields ~7 ´ 104 km2. The model has more difficulty in simulating large MCSs (area > 10 ´ 104 328 
km2), such as the ones observed on 3/13, 3/22 and 4/1. While the correlation between the observed 329 
and simulated MCS movement distance is much lower than for other properties, simulated MCSs 330 
more frequently travel farther than observed ones (20 out of 31 days). Lastly, the simulated mean 331 
MCS rain rate is much higher than in observations (approximately +90%) every day.    332 

Duringthe 2015 period (Figure 7b), simulated MCS number is notably underpredicted after 333 
3/22 despite qualitative agreement in the trend. A noticeable contrast on the first day of simulations 334 
(3/1) may be due to model spin-up. There are no days during the 2015 period with observed MCS 335 
size larger than 15 ´ 104 km2; thus, the MCS size is generally smaller than during the 2014 period. 336 
As a result, although the simulated mean MCS area is still smaller than observed, the deficit is not 337 
as large as it is during 2014. Similar to results obtained for 2014 period, there are 19 out of 31 days 338 
that MCSs traveled farther than observed in 2015. Despite variability in model biases of MCS 339 
properties, positive biases in MCS rain rate is robustly observed and are largest during the2015 340 
period. 341 
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 342 

Figure 7 Daily variations of MCS tracking statistics including number, area, movement distance, 343 
and mean rain rate for the analysis period in (a) 2014 and (b) 2015. The dashed line denoted in (a) 344 
identifies the date (April 1, 2014) selected for case study (Section 3.4).   345 

We next quantify heavy versus light rainfall-regime dependent model biases relative to biases 346 
in rain rate and cloud area (Figure 8). During most of the 2014 analysis period (Figure 8a), MCS 347 
precipitation is overpredicted on fewer than half of the days (13 out of 31) and underpredicted for 348 
the remaining 18 days. Moreover, on 3/13, 3/22, and 4/1, the negative biases in light rain are much 349 
more distinct than otherwise typical positive biases in heavy rainfall. This happens when MCS 350 
cloud areas in both convective and stratiform types are significantly under-predicted. During the 351 
2015 analysis period, there are only two days such as 3/4 and  3/15 when negative biases of light 352 
rainfall are lower than -2000 mm and thus compensate or even lead to a negative total MCS 353 
precipitation bias. Other than those days, heavy rainfall bias dominates the total precipitation bias. 354 
Rain rate biases in heavy precipitation are noticeably higher in 2015 than 2014. Given relative 355 
minor model-observation differences in MCS area, excessive simulated rain rate is responsible for 356 
large positive biases in total MCS precipitation for 2015 analysis period as shown in Figure 6. 357 
With varied scenarios as observed during the two sampling periods, it suggests model validation 358 
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using only accumulated precipitation amount will most likely ignore crucial model errors that may 359 
be revealed from examination of many MCS properties.  360 

 361 

Figure 8 Similar to Figure 7 but for biases in MCS precipitation amount, rain rate, and cloud area. 362 
The black lines denote results for the total biases. Green lines illustrate fractional results for the 363 
heavy rainfall (≥ 10 mm h-1) and convective-type (core) clouds. Orange lines represent results for 364 
the part with light rain (< 10 mm h-1) and stratiform-type (cold anvil) clouds. The dashed line 365 
denoted in (a) identifies the date (April 1, 2014) selected for case study (Section 3.4).   366 

3.4 Case study: April 1, 2014 367 

Following the discussion in the previous section, we further investigate the contrasts between 368 
observed and simulated MCS clouds and precipitation by highlighting a case study for April 1, 369 
2014. On this day, a MCS (denoted by white arrows at first row in Figure 9) initiated over 370 
northeastern corner of the analysis domain and experienced upscale growth through decay as it 371 
propagated westward (Figure 9). In general, the model reasonably reproduces the MCS’s lifecycle 372 
with relatively accurate placement of clouds in time, allowing us to examine the evolution of 373 
clouds (Figure 9) and corresponding precipitation processes (Figure 10) with confidence. In this 374 
case, the model tends to simulate smaller cloud cover regardless of cloud types. The simulated 375 
stratiform clouds dissipated faster than observed after 12 UTC, particularly on the southeastern 376 
flank of the MCS, as the brightness temperature of cloud top significantly increases. Nevertheless, 377 
more isolated convective initiation remains active on the leading edge of the propagating MCS. 378 
Therefore, only a relatively narrow core cloud band is sustained in simulations. In reality, satellite 379 
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observations suggest a much wider MCS cloud patch propagating toward the southwest through 380 
the domain.  381 

The contrast between observed and simulated heavy/light rain distribution is shown in Figure 382 
10. Though observations suggest heavy rainfall patches are scattered and mostly located in the 383 
center of a much wider light rain area, simulated heavy rainfall patches tend to have a much larger 384 
fractional area than observed and appear on the leading edge of relatively narrow cloud bands. 385 
This structural difference in the precipitation features implies that, most likely there are model 386 
deficiencies in representing the dynamics and/or microphysics within the simulated MCS causing 387 
the issue and warrants in-depth investigation in a future study to provide further insight.  388 

The diurnal variations of cloud and precipitation type relative area fractions are shown in 389 
Figure 11. The evolution of simulated core cloud fraction is overall aligned with the observed trend 390 
until 12 UTC. Similar fractions (~20 – 30%) are obtained for cold anvil clouds. While the observed 391 
cold anvil cloud fraction is consistently around 30%, simulated cold anvil cloud fraction dropped 392 
to ~20% at the end of the day. Cold anvil clouds started dissipating at 16 UTC, which is about 3-4 393 
hours later than the dissipation of core clouds. 394 

The area fraction of heavy rain is consistent between observations and simulations and does 395 
not exceed 6% over the course of the day. However, we see a notable contrast in the fraction of 396 
light rain area. Overall, the observed light rain area covers more than twice of what it does in 397 
simulations. Hourly rain rate comparison indicates light rain rates in both observations and 398 
simulations are never greater than 5 mm hr-1; whereas simulated heavy rain rate is mostly near 20 399 
mm hr-1, approximately 4 mm hr-1 more than observed, on average. Given much larger negative 400 
bias in anvil cloud cover and relatively small heavy rain rate bias during this event, the total MCS 401 
precipitation is thus primarily driven by the significant under-prediction of stratiform cloud cover. 402 
However, it is worth noting that validations of IMERG data against ground based observations 403 
(either radar or rain gauges) reveal that IMERG tends to significantly overestimate the frequency 404 
of weak precipitation (1-2 mm h-1) while underestimating intense precipitation, particularly over 405 
land (Cui et al. 2020; Zhang et al. 2021; Ayat et al. 2021). Moreover, the actual resolution of 406 
IMERG is significantly coarser than its grid spacing (Guilloteau & Foufoula-Georgiou, 2020). 407 
Thus, associated rainrate model biases themselves may be overestimated.  408 

To elucidate how environment conditions may influence differences in this MCS’s lifecycle, 409 
we examine the pre-storm environment (before 12 UTC) as observed by radiosonde profiles at the 410 
AMF T3 site and simulated profiles within a 2° by 2° box centered at the AMF site (Figure 1). 411 
Vertical interpolation with an interval of 0.1 km was carried out for both radiosonde and model 412 
profiles. To exclude profiles affected by convective clouds, only the model profiles with column 413 
maximum reflectivity less than 0 dBZ are sampled. Resulting wind profiles valid at 00, 06, and 12 414 
UTC are illustrated in Figure 12.  415 

There are two jets evident in the observed wind speed profiles; one peaking at  z = 2–3 km, 416 
and another above mid-troposphere (z = 7–9 km) (Figure 12a). Owing to small vertical 417 
heterogeneity in the meridional wind, these jets are primarily a result of variations in the zonal 418 
wind (Figure 12 b-c). Wind conditions do not vary significantly in the pre-storm environment. 419 
Although the model simulated wind conditions over the period are qualitatively similar to 420 
observations, simulated maximum wind speed of the lower jet is consistently smaller (~2–3 m s-1 421 
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less than radiosonde). Furthermore, at 12 UTC, the lower jet descends to height below 1 km in the 422 
model. This may imply a shallower and weaker low-level jet being simulated, leading to much 423 
weaker moisture transport and convergence in the lower troposphere. Results of convective 424 
available potential energy (CAPE) and convective inhibition (CIN) further demonstrate while the 425 
available energy for convective growth increases from 00 to 12 UTC in reality, the model simulates 426 
a completely opposite trend (Figure 13), where CAPE dropped from nearly 2000 to 500 J kg-1 over 427 
the 12-hour period. Despite good agreement in CIN values, the simulated environment does not 428 
favor convective growth as observed. This evidence may at least partially explain why the 429 
simulated MCS quickly dissipates after 12 UTC and thus has a much smaller area cover by 430 
stratiform clouds.     431 

 432 

Figure 9 Similar to Figure 2a - 2d, but for 03 to 21 UTC on April 1, 2014. White arrows on the 433 
panels for 03 UTC point to the initiating MCS of interest. 434 
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 435 

Figure 10 Similar to Figure 2e - 2h, but for 03 to 21 UTC on April 1, 2014.  436 

 437 
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 438 

Figure 11 Comparison in diurnal varations of area percentages of cloud (top panel) and 439 
precipitation (middle panel) types as computed over the analysis domain on April 1, 2014. 440 
Correspondng rain rate comparison in dependency of precipitation type is displayed in the bottom 441 
panel. 442 
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 443 

Figure 12 Wind speed, zonal (U-) wind, and meridional (V-) wind profiles as observed by 444 
radiosondes launched (a, b, and c) and simulated by WRF (d, e, and f) at the location of ARM T3 445 
site. Colors denoted in legend indicate results for 00, 06, and 12 UTC of April 1, 2014. Swath of 446 
each line in d, e, and f represents the range within ± 1 standard deviation among the samples. 447 
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 448 

Figure 13 CIN (line with dots; left y-axis) and CAPE (bar; righy y-axis) values computed using 449 
ARM T3 radiosonde and corresponding WRF-simulated profiles at 00, 06, and 12 UTC of April 450 
1, 2014.  451 

 452 

4 Summary and conclusions 453 
Mesoscale convective systems (MCSs) are responsible for a large fraction of the total 454 

precipitation in the Amazon. However, various uncertainties in state-of-the-art atmospheric 455 
models hinder them from reproducing a realistic lifecycle and morphology of MCSs within this 456 
region. To facilitate comprehensive characterization of MCS precipitation in the central Amazon, 457 
the Python FLEXible object TRacKeR (PyFLEXTRKR) is employed to track individual MCSs 458 
that are simulated by convection permitting (4 km grid) Weather Research and Forecasting (WRF) 459 
simulations. The WRF simulations are performed over two separate months during the 2014 and 460 
2015 Amazon wet seasons. A 3DVar data assimilation scheme is used to constrain environmental 461 
conditions throughout simulations. These results are then compared to observed satellite analogs 462 
to examine possible mechanisms of MCS model biases. 463 

First, we examined the MCS occurrence and its relation to accumulated precipitation. Overall, 464 
the model tended to produce fewer MCSs than were observed within the study area. While only 465 
8% fewer MCSs are reproduced in 2014 period, we observe a difference of -22% for the month in 466 
2015. The heterogenous precipitation bias distribution is closely tied with how well the MCS track 467 
density was reproduced.  A distinct feature of dry biases along the Amazon river is identified and 468 
found to be well explained by model error in reproducing realistic MCS occurrence near the river.  469 

Analysis of monthly means of tracked MCS characteristics further reveal the contrasts between 470 
observed and modeled MCS properties in general. Although simulated MCSs are generally smaller 471 
than observed ones, they produced far more rain and propagated farther than observed. Moreover, 472 
we find the model-observation discrepencies in various MCS properties must be considered when 473 
accounting for the sources of MCS total precipitation bias. For example, in 2014 period, MCS total 474 
precipitation is underestimated by the model due in part to relatively large negative bias in MCS 475 
size and minor positive rain rate bias. Whereas in 2015, while model bias in MCS size is relatively 476 
small, substantial positive bias in rain rate results in severe overpredication of MCS total 477 
precipitation. Aside from biases in total precipitation, we also show that the model has difficulty 478 
in reproducing realistic fraction of heavy/light precipitation.  479 
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 The model errors in MCS number, rain rate, and precipitation (MCS and domain-mean) 480 
notably increase from 2014 to 2015 (Figures 3, 4, and 5). We find the degraded model performance 481 
is most likely driven by the availability of observational data for assimilation. The amount of 482 
assimilated radiosonde moisture data in 2015 dropped to only half of what was available in 2014 483 
despite consistent assimilation of radiosonde profiles collected at the ARM T3 site in central 484 
Amazon. This reinforces the importance of additional observation sites to constrain simulated 485 
synoptic environments over the continent.   486 

We further break down the statistics by each day and demonstrate that model skill in 487 
reproducing MCS properties, including number, size, and distance traveled, could vary 488 
significantly from day to day. On many days, the bias in total precipitation can be attributed to the 489 
wet bias in heavy rainfall, which result in overall overpredicted precipitation. However, light 490 
rainfall may occasionally drive the total precipitation error. Such events happened when both 491 
convective and stratiform cloud cover are under-predicted, hence both contribute to dry biases in 492 
precipitation. This suggests that it is critical to validate simulated precipitation by considering its 493 
dependency per rainfall regime because the biases sourced in different regimes may imply 494 
unrealistic model representations of various dynamical and/or microphysics processes. Analysis 495 
of daily bias provides more details in terms of model biases in MCS characteristics.  496 

Finally, an analysis of an MCS on April 1, 2014 is provided to illustrate how differently the 497 
clouds and precipitation are resolved in both observational and model data. We showed that in this 498 
particular event, while relatively small wet bias in heavy rainfall is analyzed, the large dry bias in 499 
light rain controls the total precipitation bias. This is mainly caused by significant under-prediction 500 
in area cover of light rain. Examination of the pre-storm environment suggests the jet in lower 501 
troposphere is relatively shallow and weak in the simulations compared to observations. This could 502 
lead to insufficient moisture transport and hence weaker convergence that are essential for 503 
convective growth and sustainability. Moreover, weaker simulated CAPE also indicated 504 
unfavorable conditions for convective growth. Given the evidence, we conclude the environmental 505 
conditions may be causing the early dissipation of MCSs and significant negative bias in stratiform 506 
cloud cover.  507 

In addition to environmental conditions as discussed in Section 3.4, potential sources of model 508 
uncertainties in reproducing observed MCS clouds/precipitation may also relate to 1) model 509 
resolution, which directly influences how MCS’s dynamic structure (e.g. vertical motion) may be 510 
resolved and thus alters the secondary circulation accordingly (Varble et al. 2020); and 2) 511 
paramterization of microphysical processes. For instance, the magnitude of simulated stratiform 512 
precipitation is found to be associated with ice particle mass fluxes as predicted by the employed 513 
microphysics schemes (Han et al. 2019). Heating profiles could be changed drastically by 514 
replacing one microphysics scheme by another (Feng et al. 2018).  515 

Compared to a mesoscale model, climate models tend to simulate even more unrealistic 516 
representations of tropical precipitation features (e.g., Tai et al. 2021), due in part to coarse grid 517 
spacing and much more simplified physics parameterizations. Given the substantial increase in 518 
computational power, climate models are now more frequently run at cloud-resolving scales (e.g., 519 
Tang et al. 2021; Liu et al. 2023). Despite promise as seen in selected case studies (Liu et al. 2023), 520 
a high-resolution configuration does not always lead to distinct improvements in general 521 
precipitation features (e.g., diurnal cycle) and associated meteorological conditions. We note 522 
climate models should use mesoscale model (e.g., WRF) simulations as benchmarks when 523 
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assessing their performance. In this way, the behaviors of state-of-the-art climate models can be 524 
constrained by both success and failure of relatively well-developed mesoscale models.   525 
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