Characterizing Wet Season Precipitation in the Central Amazon Using a Mesoscale Convective System Tracking Algorithm

Sheng-Lun Tai¹, Zhe Feng¹, James Marquis², and Jerome Fast³

¹Pacific Northwest National Laboratory (DOE) ²Unknown ³PNNL

March 13, 2024

Abstract

To comprehensively characterize convective precipitation in the central Amazon region, we utilize the Python FLEXible object TRacKeR (PyFLEXTRKR) to track mesoscale convective systems (MCSs) observed through satellite measurements and simulated by the Weather Research and Forecasting (WRF) model at convection-permitting resolution. This study spans a two-month period during the wet seasons of 2014 and 2015. We observe a strong correlation between MCS track density and accumulated precipitation in the Amazon basin. Key factors contributing to precipitation, such as MCS properties (number, size, rainfall intensity, and movement), are thoroughly examined. Our analysis reveals that while the overall model produces fewer MCSs with smaller mean sizes compared to observations, it tends to overpredict total precipitation due to excessive rainfall intensity for heavy rainfall events ([?] 10 mm h-1) and longer traveled distances than observed. These biases in simulated MCS properties vary with the strength of constraints on convective background environment. Moreover, while the wet bias from heavy (convective) rainfall outweighs the dry bias in light (stratiform) rainfall, the latter can be crucial, particularly when MCS cloud cover is significantly underestimated. A relevant case study for April 1, 2014 highlights the influence of environmental conditions on the MCS lifecycle and identifies an unrealistic model representation in convective precipitation features.

Characterizing Wet Season Precipitation in the Central Amazon Using a Mesoscale Convective System Tracking Algorithm

3	Sheng-Lun	Tai. Zhe Fend	. James Mara	uis, and Jerome Fast
5	Sheng-Lun		s, James Mary	uis, and oci onic i ast

- Pacific Northwest National Laboratory, Richland, WA.
- 5 Corresponding author: Sheng-Lun Tai (<u>sheng-lun.tai@pnnl.gov</u>)

6 Key Points:

4

7 8	•	Simulated and observed MCS clouds and precipitation are tracked during the 2014/15 wet seasons in central Amazon.
9	•	Excessive heavy rain intensity ($\geq 10 \text{ mm h}^{-1}$) and relatively long travel distance of

simulated MCS lead to overall overprediction of precipitation.
Dry bias associated with stratiform rainfall may also drive MCS precipitation bias when cloud cover is substantially underpredicted.

13 Abstract

14 To comprehensively characterize convective precipitation in the central Amazon region, we 15 utilize the Python FLEXible object TRacKeR (PyFLEXTRKR) to track mesoscale convective 16 systems (MCSs) observed through satellite measurements and simulated by the Weather Research 17 and Forecasting (WRF) model at convection-permitting resolution. This study spans a two-month 18 period during the wet seasons of 2014 and 2015. We observe a strong correlation between MCS track density and accumulated precipitation in the Amazon basin. Key factors contributing to 19 20 precipitation, such as MCS properties (number, size, rainfall intensity, and movement), are 21 thoroughly examined. Our analysis reveals that while the overall model produces fewer MCSs 22 with smaller mean sizes compared to observations, it tends to overpredict total precipitation due 23 to excessive rainfall intensity for heavy rainfall events ($\geq 10 \text{ mm h}^{-1}$) and longer traveled distances than observed. These biases in simulated MCS properties could vary with the strength of 24 25 constraints on convective background environment. Moreover, while the wet bias from heavy (convective) rainfall outweighs the dry bias in light (stratiform) rainfall, the latter can be crucial, 26 27 particularly when MCS cloud cover is significantly underestimated. A relevant case study for April 28 1, 2014 highlights the influence of environmental conditions on the MCS lifecycle and identifies 29 an unrealistic model representation in convective precipitation features.

30 Plain Language Summary

31 We tracked large-size rain storms called mesoscale convective systems (MCSs) in the central 32 Amazon during the wet seasons of 2014 and 2015 using an automated feature tracking algorithm. 33 Data generated from MCS tracking helps us understand how MCSs rainfall is produced as a 34 function of the number of storms, as well as their size, rain intensity, and motion, and how those 35 can be better simulated by weather and climate models. We found that generally the model 36 produces less and smaller MCSs than in reality, but the total MCS rainfall amount is often overestimated. This is because simulated MCSs travel longer, and most importantly they produce 37 38 unrealistically intense heavy rainfall events. On the other hand, light rainfall events are mostly underrepresented by the model. Thus, the model error in total precipitation is determined by how 39 40 these two compensate each other. Our analysis also suggests accurate model representation in 41 environment is required for simulating realistic MCS properties.

43 **1 Introduction**

Mesoscale convective system (MCS) is a deep convective storm with clouds and precipitation organized on spatial scales of 100 km (Houze 2014). In the Amazon, MCSs produce over 60% of the total rainfall during the wet season (March-April-May, MAM), primarily due to their relatively long duration and wide extent than less organized convective storms (Nesbitt et al. 2006; Feng et al. 2021; Schumacher and Rasmussen 2020). In addition to the hydrological impact of MCSs, their extensive anvil clouds have a sizeable impact on the regional radiation budget (Feng et al. 2011). Thus, MCSs play a noteworthy role in regional and global climate.

Most Amazonian MCSs are initiated by near-surface convergence associated with prevailing trade winds, surface friction, and dirunal sea breeze circulations on the Atlantic coast (Sousa et al. 2021). After initiation, many MCSs travel long distances across the Amazon basin with a lifetime over half a day, sustained by environmental conditions that are frequently favorable for deep convection and growing to substantial sizes owing to rich tropical moisture. Hence, the local precipitation diurnal cycle in the Amazon basin is tied closely to westward propagating MCSs (Tai et al. 2021).

58 Several studies have employed a combination of routine and field campaign observational 59 datasets to characterize MCSs in the Amazon region including weather radars, satellite 60 observations, and surface measurements. Such efforts capture the intricate dynamics of MCS, their spatial distribution, intensity, and lifecycle evolution (e.g., Laurent et al. 2002; Petersen et al. 2002; 61 62 Cifelli et al. 2002; Rickenbach et al. 2002; Machado et al. 2004). The recent GoAmazon2014/5 63 field campaign (Martin et al. 2016) collected many valuable observational data sets that have been used to characterize the diurnal variation, morphology, propagation, vertical motion, and 64 precipitation of convective clouds around central Amazon (Burleyson et al. 2016; Rehbein et al. 65 2019; Giangrande et al. 2020; Wang et al. 2020; Tian et al. 2021; Anselmo et al. 2020). In addition 66 67 to observations, advanced regional climate and convection-permitting models have been utilized 68 to simulate MCSs over the Amazon under various meteorological conditions. By integrating observations with simulations, researchers have deepened our understanding of the processes 69 governing MCS formation and evolution in the Amazon (Silva Dias et al. 2002; Carvalho et al. 70 2002; Machado et al. 2004; Tai et al. 2021, Paccini et al. 2023). These studies provide insights into 71 72 the convective organization within the Amazon basin, shedding light on the complex interactions 73 between atmospheric dynamics, moisture availability, and convective activity.

74 Nonetheless, remaining model uncertainties in MCSs over Amazon has motivated additional 75 research in the field. Prior studies have shown that simulated MCS precipitation is quite sensitive to model resolution (vertical and horizontal), atmospheric forcing in initial and boundary 76 77 conditions, soil moisture, and physics parameterizations (land surface, planetary boundary layer, 78 cloud microphysics, and radiation) (e.g., Luo et al. 2015; Stensrud et al. 2000; Feng et al. 2018; 79 Prein et al. 2021; Tai et al 2021; Prein et al. 2022; Na et al. 2022; Rasmos-Valle et al. 2023; Yang 80 et al. 2023). Due to constraints in availability and spatial coverage of observational data in the 81 sparsely populated Amazon, most evaluations of simulated MCS behaviors have been conducted 82 in a confined region and narrow time windows which may be shorter than the MCS lifetime. Thus, 83 additional work is warranted to examine modeled MCSs in realistic Amazonian conditions.

84 Cataloging MCS frequency, size, precipitation intensity, and movement, are essential for 85 determining precipitation processes that contribute to total accumulative rainfall in the Amazon. 86 However, representation of these MCS characteristics in state-of-the-art atmospheric models lacks 87 rigorous quantitative validation. A pioneering study from Laurent et al. (2002) uses geostationary 88 satellite data with 30-min frequency to enable deep convective cloud tracking, providing a 89 different aspect in assessing modeled storms. With an increasing amount and quality of available 90 satellite data, a number of cloud cluster tracking tools have been developed in recent years to 91 characterize the lifecycle of deep convective clouds (Anselmo et al. 2021; Huang et al. 2018; Feng 92 et al. 2019; 2021, 2023; Rehbein et al. 2018; Galarneau et al. 2023; Prein et al. 2020; Da Silva et 93 al. 2023). One example is the Python FLEXible object TRacKeR (PyFLEXTRKR, Feng et al. 94 2023) algorithm, which we adopt in this study to facilitate MCS tracking in the central Amazon 95 using satellite observations and a series of convection-permitting (4-km grid spacing) simulations 96 during the 2014/15 wet seasons. The goal of this study is to elucidate the role of key MCS 97 properties in driving the model precipitation errors through an in-depth storm tracking analysis.

98 The remainder of this paper is organized as following. Section 2 provides the details of the 99 model and experiments as well as the algorithm used for trackings both simulated and observed 100 MCSs. Results of analysis derived from MCS tracking statistics across timescales are 101 demonstrated in Section 3. Finally, summary and conclusion are provided in Section 4.

102 **2 Methods**

103 2.1 Model setup and experiments

104 We use the WRF model version 3.9.1 (ARW, Skamarock et al. (2008)) to simulate convective 105 clouds over the entire Amazon region, using a general configuration similar to our previous work 106 in this region (Tai et al. 2021). Our study period includes a month in 2014 (March 11 to April 10) 107 and 2015 (March 1 - 31). The model domain encompasses the northern part of the South American continent as well as adjacent oceans (Figure 1). The domain is constructed with a horizontal grid 108 spacing of 4 km and a stretched vertical coordinate of 60 levels. The model top is located at 100 109 110 hPa. The physics schemes used for the simulations include: Thompson microphysics 111 parameterization (Thompson et al. 2008), Mellor-Yamada-Nakanishi Niino (MYNN) boundary laver parameterization (Nakanishi and Niino 2009), Mellor-Yamada-Janjic surface layer 112 parameterization (Janjić 2001), Unified Noah land-surface parameterization (Chen and Dudhia 113 114 2001), and the RRTMG longwave and shortwave radiation parameterization (Iacono et al. 2008). 115 No cumulus parametrization is used because the model's horizontal grid spacing (4 km) is capable of resolving MCSs (Prein et al 2020; Na et al 2022). We use 6-hourly, 1° × 1° NCEP FNL 116 operational model global tropospheric analysis for model initialization (National Centers for 117 118 Environmental Prediction 2000).

Figure 1 Map shows the configured WRF model domain for the simulations used in this study. Color shading illustrates terrain heights. Yellow dots denote the locations of radiosonde profiles that are assimilated along with the simulations. The location of ARM T3 site during GoAmazon2014/5 is indicated. The dashed rectangle marked by dashed line represents the study area for the MCS tracking analysis. Subdomain denoted by blue box is used for profiles sampling discussed in Section 3.4.

126 The model is also coupled with a data assimilation (DA) scheme to better constrain the 127 simulation's background meteorological conditions, identical to the approach used in Tai et al. 128 (2021). Conventional observations (e.g., radiosonde profiles, surface meteorology, aircraft, ship 129 and others) and satellite radiances are assimilated by using the three-dimensional variational 130 (3DVar) technique as provided in the package of version 3.6 Community Gridpoint Statistical 131 Interpolation (GSI, Shao et al. 2015). It produces optimized analyses by blending the model data 132 with observations as collected for the NCEP Global Data Assimilation System (GDAS, 133 http://rda.ucar.edu/datasets/ds337.0/) and the radiosonde profiles measured at the T3 site (Figure 134 1) deployed by the DOE's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF, 135 Miller et al. 2016) during the GoAmazon2014/5 field campaign (Martin et al. 2016).

136 Assimilated radiosondes were launched every 6 hours at the ARM T3 (e.g., 00, 06, 12, and 18 UTC; 20, 02, 08, and 14 LT) throughout the campaign to measure tropospheric winds, temperature, 137 pressure, and humidity profiles. Over the intensive observational periods (IOPs), one additional 138 139 radiosonde was launched at 15 UTC (11 LT) to enhance measurement of the diurnal variation of 140 environmental conditions. In addition to ARM's radiosondes, meteorological profiles measured at other sites as archived in the NCEP ADP global upper air and surface weather observations product 141 are also assimilated in our model configuration. Note these observations have lower temporal 142 143 frequency (up to twice a day at 00 and 12 UTC) and vertical resolution than those performed at the T3 site. The yellow dots denoted in Figure 1 indicate the locations of available radiosonde data 144 145 at 12 UTC of March 12, 2014. The DA-coupled simulation is initialized at 00 UTC on the first day 146 of each simulated month. The 3DVar data assimilation is performed every 12 hours (at 00 and 12

147 UTC) throughout the simulation periods. More details regarding the model configuration and DA 148

148 strategy can be found in Tai et al. (2021).

149 2.2 Tracking observed MCSs

150 The MCS tracking is performed using the Python FLEXible object TRacKeR (PyFLEXTRKR, 151 Feng et al. (2021, 2023)), a software package which is designed to track any atmospheric features 152 in 2-D geographic planes using user-prescribed observational data sets or model output. To 153 objectively identify and track the deep convective clouds, the PyFLEXTRKR primarily uses 2-D 154 projections of infrared brightness temperature (Tb) observations commonly measured by 155 geostationary satellites. When tracking observed MCSs with PyFLEXTRKR, we use NASA's 156 Global Merged IR V1 infrared brightness temperature (Janowiak et al. 2017) data set. This dataset 157 comprises multiple operational geostationary satellite data sources and includes viewing angle and parallax corrections. It has a continuous global coverage from 60°S to 60°N with a horizontal grid 158 159 spacing of ~ 4 km and a temporal resolution of 30 min. We use hourly Tb data to identify and track 160 deep convective clouds associated with MCSs identical to the approach adopted by Feng 161 et al., (2021; 2023). A detailed discussion of the impact of uncertainties in MCS tracking owing to 162 the IR Tb data set are described in Feng et al. (2021). Moreover, PyFLEXTRKR also uses 163 collocated surface precipitation to assist identification of MCS "precipitation features (PF, contiguous area with rain rate > 2 mm h^{-1})" (Feng et al., 2021). Because PyFLEXTRKR tracks all 164 deep convective clouds with a pre-defined minimum area threshold, the tracking data consists of 165 166 records from early stage (near initiation) of individual deep convective clouds to the decay stage 167 when the area of the cloud system decreases. More details of the PyFLEXTRKR algorithm can be 168 found in Feng et al. (2023).

169 We use the NASA Integrated Multi-satellitE Retrievals for Global Precipitation Measurement 170 (GPM) (IMERG) V06B precipitation data (Huffman et al. 2019) as a source of observed rainfall 171 data in the MCS tracking algorithm. Precipitation estimates in IMERG are obtained by various 172 precipitation-retrieving satellite passive microwave (PMW) sensors using the Goddard Profiling 173 algorithm (Kummerow et al., 2001, 2015, 2011). Intercalibration is performed using the GPM 174 Combined Radar Radiometer Analysis product. The precipitation product has a grid spacing of 175 0.1° and is also available every 30 minutes over a large portion of the globe (Huffman et al., 2014; 176 Hou et al., 2014; Tang et al., 2016; Tan et al., 2019). We further averaged the 30 min IMERG data to hourly, and coarsened the 4 km Tb data to match the IMERG grid. Hence, the collocated Tb and 177 178 IMERG precipitation data at 0.1° and hourly resolution are jointly used for MCS tracking in this 179 study.

180 2.3 Tracking simulated MCSs

181 In WRF simulations, the top-of-atmosphere (TOA) outgoing longwave radiation (OLR) is used 182 to infer the Tb. An empirical function is employed in PyFLEXTRKR to convert OLR to Tb 183 following the formula from Yang and Slingo (2001). To avoid observational and simulated data 184 resolution mismatches, the 4 km WRF simulation output is regridded based on the coordinate of observational data in a grid resolution of 0.1°. In this study, the thresholds used to define 185 186 convective clouds, MCSs, and PFs in terms of cloud top brightness temperature, rain rate, and 187 feature size are listed in Table 1. The sensitivity of MCS tracking due to variations of these 188 thresholds was found to be qualitatively minor based on prior tests (not shown). A recent study

- 189 comparing six different feature tracking algorithms applied to observed and simulated MCSs over
- 190 South America found that most of the MCS properties from PyFLEXTRKR are representative of
- results from other obeject tracking tools (Prein et al. 2023), suggesting our algorithm can produce
- 192 representative MCS characteristics.

Category	Parameter	Value	Unit	Description
	Warm cloud Tb	261	K	Brightness temperature threshold for identification of "warm anvil"
	Cold cloud Tb	241	K	Brightness temperature threshold for identification of "cold anvil"
	Core cloud Tb	225	K	Brightness temperature threshold for identification of "core cloud"
Cloud identification	Minimum cold core cloud pixels	4	unitless	Mininum number of pixels of cold core cloud in qualification of a "core cloud"
	Minimum area	800	km ²	Minimum area in qualification of a "cloud" object
	Missing data fraction	0.35	unitless	Maximum fraction for missing data
	Minimum area	40000	km ²	Minimum total cloud area in qualification of a MCS
MCS identification	Minimum duration	4	hour	Minimum duration in qualification of a MCS
	Minimum PF rain rate	3	$mm h^{-1}$	Minimum rain rate in qualification as part of a PF
	Minimum PF link area	648	km ²	Minimum linked area of a PF
	Minimum PF major axis	100	km	Minimum length for a PF's major axis
PF identification	Maximum PF major axis	1800	km	Maximum length for a PF's major axis
	Minimum PF duration	4	hour	Maximum duration for a PF
	Minimum PF rainrate	2	$mm h^{-1}$	Cut-off rain rate in a PF
	Heavy rain rate threshold	10	$mm h^{-1}$	Minimum rain rate to be defined as "heavy rain"

193 Table 1 Summary of parameters used for the MCS tracking algorithm in the PyFLEXTRKR.

194

195 2.4 A MCS tracking example

196 Figure 2 demonstrates an example of MCS detection and tracking at 13 UTC on March 19, 197 2014, during our study period. In this case, WRF simulates comparable fractions of core and cold 198 anvil clouds. However, due to narrowing between two simulated cloud clusters (Figure 2b), there 199 are two separate MCSs identified rather than a single MCS in observations (Figure 2a). The results 200 of cloud type identification based on the defined thresholds in Table 1 are shown in Figures 2c and 201 2d. The tracked precipitation features corresponding to this MCS event are shown in Figures 2g 202 and 2h, identified using the rain rates in Figures 2e and 2f. The model produces much higher rain 203 rates than is observed in this time. The simulated maximum rain rate is 49.41 mm h⁻¹; whereas, the 204 maximum satellite-retrieved observational rain rate was less than half of that (21.9 mm h⁻¹). This 205 tendency leads to a relatively large fraction of heavy rainfall area in the simulated MCS than is 206 observed. In addition, the model produces a large area of very light rainfall near the east side of 207 the domain likely associated with a sea breeze circulation (Figure 2f) that is less evident in the 208 satellite observations (Figure 2e).

209

Figure 2 Snapshots of brightness temperature, cloud type, rain rate, and precipitation type as recorded along with the MCS tracking at 13 UTC on March 19, 2014. The results derived from satellite observation and WRF simulation are illustrated in (a), (c), (e), (g) and (b), (d), (f), (h), respectively.

215 **3 Results**

216 3.1 Number and spatial distribution of tracked MCSs

We examine the total number as well as the spatial distribution of all tracked MCSs from both observational and simulated data sets over the study domain (Figure 1). We tracked 125 and 115 observed MCSs occurring during the months of 2014 and 2015, respectively; compared to 120 and 94 MCSs tracked during the same period in the simulations. Therefore, there were slightly fewer simulated MCSs (-8%) in the 2014 period, but a notable simulated deficit of MCSs (-22%) during the 2015 period.

MCS object track density is mapped onto a $1^{\circ} \times 1^{\circ}$ grid and illustrated in Figure 4. During the 2014 sampling period, more MCSs are observed near the northwest corner of the domain. The difference map for 2014 (Figure 3c) indicates that while more MCSs are simulated over the northwestern and eastern parts of the domain, fewer MCSs (negative blue patches) occur within grid cells near Amazon river. Interestingly, during the 2015 sampling period, MCSs are also underpredicted along the Amazon river, particularly over the northeastern central Amazon (Figure 3f).

While observed rain maps show relatively a consistent rainfall distribution and amount over the analysis domain (Figures 4a and 4d), simulated rainfall amount is distinctly higher in 2015 than for 2014 (Figures 4b and 4e), despite lower MCS occurrence (Figures 3c and 3f). For instance, during the 2014 period, observed domain-mean precipitation is 160.3 mm, which is slightly lower than is simulated (168.8 mm). Nevertheless, during the 2015 period, simulated and observed domain-mean precipitation are 209.5 and 171.4, respectively. Which suggests the domain-mean precipitation bias dramatically increases from +5% to +22%.

236 Model bias in MCS occurrence (Figures 3c and 3f) modulates the overall pattern of rainfall 237 bias (Figures 4c and 4f), which confirms that MCS precipitation contributes to a considerably large 238 fraction of total rainfall during these two periods. The dry bias along the Amazon river is analyzed 239 during both years (Figures 4c and 4f) and can be attributed to relatively low MCS occurrence 240 simulated by the model (Figures 3c and 3f) despite potentially higher rain rate (Figure 2). This 241 implies that the current model configuration may be associated with unresolved precipitation 242 processes related to river-atmosphere interactions such as river-breezes that enhance deep 243 convection under easterly trade winds (Burleyson et al. 2016), among other possible factors.

Figure 3 Spatial distribution of gridded MCS track density (i.e., number of MCS objects passing through $1^{\circ}\times1^{\circ}$ grid boxes) from observations (a, d) and WRF simulations (b, e) over the study domain. (c) and (f) illustrate the difference between (a), (b) and (d), (e), respectively. The top

248 (bottom) row represents results for the month of 2014 (2015).

Figure 4 Similar to Figure 3, but for monthly precipitation amount (mm). The domain mean precipitation is given in the title of each panel (a, b, d, and, e)

252 3.2 MCS properties

244

The tracking data for all MCSs are used to obtain monthly mean values per MCS in both the 254 2014/15 periods. Besides the occurrence (number of MCSs) as discussed, the accumulated 255 precipitation of a MCS can be attributed to its size, duration, rainfall intensity, and distance 256 traveled, we analyze properties including MCS cloud area, rain rate, and motion (e.g., duration, 257 speed, and movement distance). This helps elucidate how these factors contribute to overall precipitation amount and what is the fractional bias in each MCS properties. The results of selected
 6 MCS properties are given in Figure 5.

260 We first assess the area covered by the entire MCS cloud shield (Tb < 241 K), and further 261 categorize the cloud cover into convective and stratiform areas (Feng et al. 2021, 2023). The 262 convective (core cloud) area is defined as the continuous area with cloud top temperature below 263 225 K within a much wider MCS cloudy patch. The remaining area with Tb from 225 to 241 K is 264 attributed to stratiform (cold anvil cloud) type. The statistics show that the total extent of simulated 265 MCS cloud area is generally smaller than observed; while observed mean MCS sizes are larger 266 than 80,000 km² in both months, modeled MCSs are approximately 70,000 km². Observations 267 suggest the ratios of convective/stratiform cloud cover are 1.13 and 1.05 in 2014 and 2015 period; 268 whereas, simulated ratios increase to 1.36 and 1.43, respectively, most likely due to reduction of 269 stratiform cloud areas.

The results also show simulated MCSs produce robustly higher rainfall intensity than is observed during each analysis period. The MCS precipitation is further partitioned into two types: heavy ($\geq 10 \text{ mm h}^{-1}$) and light (< 10 mm h⁻¹). Distinct and consistent positive biases in modeled rain rates are seen in the heavy rainfall regime, driving the simulated total rain rate to be larger than twice of the average observed rate. While total rain rate does not vary much between the two periods (both are 9.1 mm h⁻¹), heavy rain rate substantially increases from 18.3 to 19.2 mm h⁻¹.

276 Finally, we examine the duration, movement speed, and distance traveled of tracked MCSs. 277 The observations suggest that MCSs had similar durations across both analysis periods. Though 278 simulated MCSs had slightly shorter durations than were observed during 2014 (by ~1 hour), the 279 model significantly under-predicted the MCS lifespan (by > 2 hours) in 2015. Further, simulated 280 MCSs motion was significantly over-predicted by $\sim 3-4$ m s⁻¹ ($\sim 80\%$) during both analysis periods. 281 Hence, the yearly differences in lifespan and propagation speed lead to larger horizontal excursions 282 by the MCSs in both months. The simulated MCSs traveled longer distances than observed ($\sim +40$ 283 km in 2014 and $\sim +20$ km for 2015 in average).

284 As a result of the accumulated factors of MCS size, rain intensity, and movement, the modeled 285 total precipitation per MCS is about 500 mm less (-20%) than what is observed in 2014 but about 286 700 mm more (+35%) in 2015. The much larger simulated rainfall amount in 2015 is most likely 287 due to unrealistically higher rain intensity. The observed ratios between heavy/light precipitation 288 are 0.4 and 0.33 for 2014 and 2015, respectively. However, it becomes nearly opposite in the 289 simulations, as the corresponding ratios are 1.7 and 2 for the two periods. Therefore, besides 290 having biases in total precipitation, the model also poorly represents the fractions of heavy and 291 light precipitation.

292 The dramatic increase of errors in MCS occurrence (Section 3.1) as well as total precipitation 293 from 2014 to 2015 periods catches attention because model skill in rainfall prediction usually does 294 not significantly change from year to year. One possible source of this discrepancy in our 295 simulations comes from biases in meterological conditions resulting from our data assimilation 296 scheme. The quantitiy of radiosonde observations for during 2015 is approixmatley half of what 297 was available to assimilate during 2014 (Figure 6). Thus, a much weaker constraint in simulated 298 environmental conditions during 2015 most likely leads to enlarged biases in convective 299 background conditions, which is expected to affect the examined MCS properties. Moreover,

results of partitioned precipitation quantity (heavy vs. light) indicate the excessive MCS total precipitation in the model for the 2015 period is primarily due to a much larger fraction of heavy rainfall. The overpredicated amount of heavy rainfall reaches more than three times of the observed value. Conversely, the simulated light rainfall amount is much less than what was observed (by \sim 50%), which partially compensates the positive bias in heavy rain.

306 Figure 5 Comparison of monthly-mean values for MCS properties, including: MCS area, rain rate, 307 total MCS precipitation, duration, movement speed, and distance traveled. The statistics obtained 308 from observations and simulations are represented by blue and orange bars. In the plots for MCS area, the fractions of stratiform- and convective-type clouds are indicated by light blue (orange) 309 and dark blue (red) bars, respectively. For rain rate comparison, the total and heavy ($\geq 10 \text{ mm h}^{-1}$ 310 311 ¹) rain rates are denoted by light blue (orange) and light blue + dark blue (orange + red) bars. Total 312 precipitation is partitioned into light (light blue and orange bars) and heavy (dark blue and red bars) 313 rain types.

314

Figure 6 The number of assimilated data points from radiosonde specific humidity observations over the model domain (Figure 1). The blue and red curves represent timeseries results for 2014

and 2015 analysis periods. Y-axis denotes the number of assimilation cycles.

320 3.3 Daily variability

321 The tracked MCS properties, including the number, area, movement distance, and rain rate are 322 further broken down to facilitate model validation on daily timescales. Approximately four MCSs 323 were observed daily, on average, during the 2014 period, with only two days in which no MCSs 324 were identified (Figure 7a). Although the model reproduced only slightly fewer MCSs in terms of 325 the monthly mean value, it does not fully capture the daily variations, particularly during the first 326 half of the month. Overall, the MCS cloud area is underpredicted by the model. Over the entire month, an average MCS size of $\sim 9.4 \times 10^4$ km² is observed in satellite data; whereas, the model 327 328 yields $\sim 7 \times 10^4$ km². The model has more difficulty in simulating large MCSs (area > 10×10^4 329 km^2), such as the ones observed on 3/13, 3/22 and 4/1. While the correlation between the observed 330 and simulated MCS movement distance is much lower than for other properties, simulated MCSs 331 more frequently travel farther than observed ones (20 out of 31 days). Lastly, the simulated mean 332 MCS rain rate is much higher than in observations (approximately +90%) every day.

333 During the 2015 period (Figure 7b), simulated MCS number is notably underpredicted after 334 3/22 despite qualitative agreement in the trend. A noticeable contrast on the first day of simulations 335 (3/1) may be due to model spin-up. There are no days during the 2015 period with observed MCS 336 size larger than 15×10^4 km²; thus, the MCS size is generally smaller than during the 2014 period. 337 As a result, although the simulated mean MCS area is still smaller than observed, the deficit is not 338 as large as it is during 2014. Similar to results obtained for 2014 period, there are 19 out of 31 days 339 that MCSs traveled farther than observed in 2015. Despite variability in model biases of MCS 340 properties, positive biases in MCS rain rate is robustly observed and are largest during the2015 341 period.

Figure 7 Daily variations of MCS tracking statistics including number, area, movement distance,
and mean rain rate for the analysis period in (a) 2014 and (b) 2015. The dashed line denoted in (a)
identifies the date (April 1, 2014) selected for case study (Section 3.4).

346 We next quantify heavy versus light rainfall-regime dependent model biases relative to biases 347 in rain rate and cloud area (Figure 8). During most of the 2014 analysis period (Figure 8a), MCS 348 precipitation is overpredicted on fewer than half of the days (13 out of 31) and underpredicted for 349 the remaining 18 days. Moreover, on 3/13, 3/22, and 4/1, the negative biases in light rain are much 350 more distinct than otherwise typical positive biases in heavy rainfall. This happens when MCS 351 cloud areas in both convective and stratiform types are significantly under-predicted. During the 352 2015 analysis period, there are only two days such as 3/4 and 3/15 when negative biases of light 353 rainfall are lower than -2000 mm and thus compensate or even lead to a negative total MCS 354 precipitation bias. Other than those days, heavy rainfall bias dominates the total precipitation bias. 355 Rain rate biases in heavy precipitation are noticeably higher in 2015 than 2014. Given relative 356 minor model-observation differences in MCS area, excessive simulated rain rate is responsible for 357 large positive biases in total MCS precipitation for 2015 analysis period as shown in Figure 6. 358 With varied scenarios as observed during the two sampling periods, it suggests model validation

Figure 8 Similar to Figure 7 but for biases in MCS precipitation amount, rain rate, and cloud area. The black lines denote results for the total biases. Green lines illustrate fractional results for the heavy rainfall ($\geq 10 \text{ mm h}^{-1}$) and convective-type (core) clouds. Orange lines represent results for the part with light rain (< 10 mm h⁻¹) and stratiform-type (cold anvil) clouds. The dashed line denoted in (a) identifies the date (April 1, 2014) selected for case study (Section 3.4).

367 3.4 Case study: April 1, 2014

361

368 Following the discussion in the previous section, we further investigate the contrasts between 369 observed and simulated MCS clouds and precipitation by highlighting a case study for April 1, 370 2014. On this day, a MCS (denoted by white arrows at first row in Figure 9) initiated over 371 northeastern corner of the analysis domain and experienced upscale growth through decay as it propagated westward (Figure 9). In general, the model reasonably reproduces the MCS's lifecycle 372 373 with relatively accurate placement of clouds in time, allowing us to examine the evolution of 374 clouds (Figure 9) and corresponding precipitation processes (Figure 10) with confidence. In this 375 case, the model tends to simulate smaller cloud cover regardless of cloud types. The simulated 376 stratiform clouds dissipated faster than observed after 12 UTC, particularly on the southeastern 377 flank of the MCS, as the brightness temperature of cloud top significantly increases. Nevertheless, 378 more isolated convective initiation remains active on the leading edge of the propagating MCS. 379 Therefore, only a relatively narrow core cloud band is sustained in simulations. In reality, satellite

observations suggest a much wider MCS cloud patch propagating toward the southwest throughthe domain.

The contrast between observed and simulated heavy/light rain distribution is shown in Figure 10. Though observations suggest heavy rainfall patches are scattered and mostly located in the center of a much wider light rain area, simulated heavy rainfall patches tend to have a much larger fractional area than observed and appear on the leading edge of relatively narrow cloud bands. This structural difference in the precipitation features implies that, most likely there are model deficiencies in representing the dynamics and/or microphysics within the simulated MCS causing the issue and warrants in-depth investigation in a future study to provide further insight.

The diurnal variations of cloud and precipitation type relative area fractions are shown in Figure 11. The evolution of simulated core cloud fraction is overall aligned with the observed trend until 12 UTC. Similar fractions ($\sim 20 - 30\%$) are obtained for cold anvil clouds. While the observed cold anvil cloud fraction is consistently around 30%, simulated cold anvil cloud fraction dropped to $\sim 20\%$ at the end of the day. Cold anvil clouds started dissipating at 16 UTC, which is about 3–4 hours later than the dissipation of core clouds.

395 The area fraction of heavy rain is consistent between observations and simulations and does 396 not exceed 6% over the course of the day. However, we see a notable contrast in the fraction of 397 light rain area. Overall, the observed light rain area covers more than twice of what it does in 398 simulations. Hourly rain rate comparison indicates light rain rates in both observations and 399 simulations are never greater than 5 mm hr⁻¹; whereas simulated heavy rain rate is mostly near 20 400 mm hr⁻¹, approximately 4 mm hr⁻¹ more than observed, on average. Given much larger negative 401 bias in anyil cloud cover and relatively small heavy rain rate bias during this event, the total MCS precipitation is thus primarily driven by the significant under-prediction of stratiform cloud cover. 402 403 However, it is worth noting that validations of IMERG data against ground based observations 404 (either radar or rain gauges) reveal that IMERG tends to significantly overestimate the frequency of weak precipitation (1-2 mm h⁻¹) while underestimating intense precipitation, particularly over 405 land (Cui et al. 2020; Zhang et al. 2021; Avat et al. 2021). Moreover, the actual resolution of 406 IMERG is significantly coarser than its grid spacing (Guilloteau & Foufoula-Georgiou, 2020). 407 408 Thus, associated rainrate model biases themselves may be overestimated.

To elucidate how environment conditions may influence differences in this MCS's lifecycle, we examine the pre-storm environment (before 12 UTC) as observed by radiosonde profiles at the AMF T3 site and simulated profiles within a 2° by 2° box centered at the AMF site (Figure 1). Vertical interpolation with an interval of 0.1 km was carried out for both radiosonde and model profiles. To exclude profiles affected by convective clouds, only the model profiles with column maximum reflectivity less than 0 dBZ are sampled. Resulting wind profiles valid at 00, 06, and 12 UTC are illustrated in Figure 12.

There are two jets evident in the observed wind speed profiles; one peaking at z = 2-3 km, and another above mid-troposphere (z = 7-9 km) (Figure 12a). Owing to small vertical heterogeneity in the meridional wind, these jets are primarily a result of variations in the zonal wind (Figure 12 b-c). Wind conditions do not vary significantly in the pre-storm environment. Although the model simulated wind conditions over the period are qualitatively similar to observations, simulated maximum wind speed of the lower jet is consistently smaller ($\sim 2-3$ m s⁻¹

422 less than radiosonde). Furthermore, at 12 UTC, the lower jet descends to height below 1 km in the 423 model. This may imply a shallower and weaker low-level jet being simulated, leading to much 424 weaker moisture transport and convergence in the lower troposphere. Results of convective 425 available potential energy (CAPE) and convective inhibition (CIN) further demonstrate while the 426 available energy for convective growth increases from 00 to 12 UTC in reality, the model simulates 427 a completely opposite trend (Figure 13), where CAPE dropped from nearly 2000 to 500 J kg⁻¹ over 428 the 12-hour period. Despite good agreement in CIN values, the simulated environment does not 429 favor convective growth as observed. This evidence may at least partially explain why the simulated MCS quickly dissipates after 12 UTC and thus has a much smaller area cover by 430 431 stratiform clouds.

Figure 9 Similar to Figure 2a – 2d, but for 03 to 21 UTC on April 1, 2014. White arrows on the panels for 03 UTC point to the initiating MCS of interest.

436 Figure 10 Similar to Figure 2e – 2h, but for 03 to 21 UTC on April 1, 2014.

Figure 11 Comparison in diurnal varations of area percentages of cloud (top panel) and
precipitation (middle panel) types as computed over the analysis domain on April 1, 2014.
Corresponding rain rate comparison in dependency of precipitation type is displayed in the bottom
panel.

443

Figure 12 Wind speed, zonal (U-) wind, and meridional (V-) wind profiles as observed by radiosondes launched (a, b, and c) and simulated by WRF (d, e, and f) at the location of ARM T3 site. Colors denoted in legend indicate results for 00, 06, and 12 UTC of April 1, 2014. Swath of each line in d, e, and f represents the range within \pm 1 standard deviation among the samples.

Figure 13 CIN (line with dots; left y-axis) and CAPE (bar; righy y-axis) values computed using
ARM T3 radiosonde and corresponding WRF-simulated profiles at 00, 06, and 12 UTC of April
1, 2014.

452

453 **4 Summary and conclusions**

454 Mesoscale convective systems (MCSs) are responsible for a large fraction of the total 455 precipitation in the Amazon. However, various uncertainties in state-of-the-art atmospheric 456 models hinder them from reproducing a realistic lifecycle and morphology of MCSs within this 457 region. To facilitate comprehensive characterization of MCS precipitation in the central Amazon, 458 the Python FLEXible object TRacKeR (PyFLEXTRKR) is employed to track individual MCSs 459 that are simulated by convection permitting (4 km grid) Weather Research and Forecasting (WRF) 460 simulations. The WRF simulations are performed over two separate months during the 2014 and 461 2015 Amazon wet seasons. A 3DVar data assimilation scheme is used to constrain environmental 462 conditions throughout simulations. These results are then compared to observed satellite analogs to examine possible mechanisms of MCS model biases. 463

First, we examined the MCS occurrence and its relation to accumulated precipitation. Overall, the model tended to produce fewer MCSs than were observed within the study area. While only % fewer MCSs are reproduced in 2014 period, we observe a difference of -22% for the month in 2015. The heterogenous precipitation bias distribution is closely tied with how well the MCS track density was reproduced. A distinct feature of dry biases along the Amazon river is identified and found to be well explained by model error in reproducing realistic MCS occurrence near the river.

470 Analysis of monthly means of tracked MCS characteristics further reveal the contrasts between 471 observed and modeled MCS properties in general. Although simulated MCSs are generally smaller 472 than observed ones, they produced far more rain and propagated farther than observed. Moreover, 473 we find the model-observation discrepencies in various MCS properties must be considered when 474 accounting for the sources of MCS total precipitation bias. For example, in 2014 period, MCS total 475 precipitation is underestimated by the model due in part to relatively large negative bias in MCS 476 size and minor positive rain rate bias. Whereas in 2015, while model bias in MCS size is relatively 477 small, substantial positive bias in rain rate results in severe overpredication of MCS total precipitation. Aside from biases in total precipitation, we also show that the model has difficulty 478 479 in reproducing realistic fraction of heavy/light precipitation.

The model errors in MCS number, rain rate, and precipitation (MCS and domain-mean) notably increase from 2014 to 2015 (Figures 3, 4, and 5). We find the degraded model performance is most likely driven by the availability of observational data for assimilation. The amount of assimilated radiosonde moisture data in 2015 dropped to only half of what was available in 2014 despite consistent assimilation of radiosonde profiles collected at the ARM T3 site in central Amazon. This reinforces the importance of additional observation sites to constrain simulated synoptic environments over the continent.

487 We further break down the statistics by each day and demonstrate that model skill in 488 reproducing MCS properties, including number, size, and distance traveled, could vary 489 significantly from day to day. On many days, the bias in total precipitation can be attributed to the 490 wet bias in heavy rainfall, which result in overall overpredicted precipitation. However, light 491 rainfall may occasionally drive the total precipitation error. Such events happened when both 492 convective and stratiform cloud cover are under-predicted, hence both contribute to dry biases in 493 precipitation. This suggests that it is critical to validate simulated precipitation by considering its 494 dependency per rainfall regime because the biases sourced in different regimes may imply 495 unrealistic model representations of various dynamical and/or microphysics processes. Analysis 496 of daily bias provides more details in terms of model biases in MCS characteristics.

497 Finally, an analysis of an MCS on April 1, 2014 is provided to illustrate how differently the 498 clouds and precipitation are resolved in both observational and model data. We showed that in this 499 particular event, while relatively small wet bias in heavy rainfall is analyzed, the large dry bias in 500 light rain controls the total precipitation bias. This is mainly caused by significant under-prediction 501 in area cover of light rain. Examination of the pre-storm environment suggests the jet in lower 502 troposphere is relatively shallow and weak in the simulations compared to observations. This could 503 lead to insufficient moisture transport and hence weaker convergence that are essential for 504 convective growth and sustainability. Moreover, weaker simulated CAPE also indicated 505 unfavorable conditions for convective growth. Given the evidence, we conclude the environmental 506 conditions may be causing the early dissipation of MCSs and significant negative bias in stratiform 507 cloud cover.

508 In addition to environmental conditions as discussed in Section 3.4, potential sources of model 509 uncertainties in reproducing observed MCS clouds/precipitation may also relate to 1) model 510 resolution, which directly influences how MCS's dynamic structure (e.g. vertical motion) may be 511 resolved and thus alters the secondary circulation accordingly (Varble et al. 2020); and 2) 512 paramterization of microphysical processes. For instance, the magnitude of simulated stratiform 513 precipitation is found to be associated with ice particle mass fluxes as predicted by the employed 514 microphysics schemes (Han et al. 2019). Heating profiles could be changed drastically by 515 replacing one microphysics scheme by another (Feng et al. 2018).

516 Compared to a mesoscale model, climate models tend to simulate even more unrealistic representations of tropical precipitation features (e.g., Tai et al. 2021), due in part to coarse grid 517 518 spacing and much more simplified physics parameterizations. Given the substantial increase in computational power, climate models are now more frequently run at cloud-resolving scales (e.g., 519 520 Tang et al. 2021; Liu et al. 2023). Despite promise as seen in selected case studies (Liu et al. 2023), 521 a high-resolution configuration does not always lead to distinct improvements in general 522 precipitation features (e.g., diurnal cycle) and associated meteorological conditions. We note climate models should use mesoscale model (e.g., WRF) simulations as benchmarks when 523

- 524 assessing their performance. In this way, the behaviors of state-of-the-art climate models can be
- 525 constrained by both success and failure of relatively well-developed mesoscale models.

526 Acknowledgments

- 527 This research was supported by the Atmospheric Science Research (ASR) program as part of the
- 528 DOE Office of Biological and Environmental Research. Pacific Northwest National Laboratory is
- 529 operated by DOE by the Battelle Memorial Institute under contract DE-A06-76RLO 1830. The
- 530 modeling computation was performed on PNNL's Research Computing clusters.

531 Data Availability Statement

532 The WRF community model is available from the National Ceter for Atmospheric Research

- 533 (NCAR) at <u>http://www2.mmm.ucar.edu/wrf/users/</u>. The NCEP FNL operational model Global
- 534 Tropospheric Analysis is accessible at <u>https://rda.ucar.edu/datasets/ds083.2/</u>. The NCEP ADP
- 535 global upper air and surface weather obserbations (prepbufr format) can be downloaded from 536 https://rda.ucar.edu/datasets/ds337.0/. The dataset of National Aeronautics and Space
- Administration (NASA) Global Merged IR V1 infrared brightness temperature can be accessed at
- 538 <u>https://disc.gsfc.nasa.gov/datasets/GPM_MERGIR_1/summary/</u>. The IMERG Final-Run V06B
 539 precipitation products used in this study were acquired from <u>http://pmm.nasa.gov/data-</u>
- 540 access/downloads/gpm/. The GoAmazon2014/15 data used in this manuscript are freely available
- 541 from the ARM data archive (https://www.arm.gov/data). The WRF model outputs generated by
- 542 the simulations in this study are saved on a long-term storage system at PNNL (rc-
- 543 <u>support@pnnl.gov</u>)
- 544

545 **References**

- 546 Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm Morphology and Rainfall Characteristics of 547 TDND (Description Factories Mar. 124, 2702, 2721, https://linius/10.1175/MWD2200.1
- 547 TRMM Precipitation Features. *Mon. Wea. Rev.*, **134**, 2702–2721, <u>https://doi.org/10.1175/MWR3200.1</u>. 548
- Feng, Z., Leung, L. R., Liu, N., Wang, J., Houze, R. A., Li, J., et al. (2021). A global high-resolution mesoscale convective system database using satellite-derived cloud tops, surface precipitation, and tracking. *Journal of Geophysical Research: Atmospheres*, 126, e2020JD034202.
 https://doi.org/10.1029/2020JD034202
- Sousa, A. C., L. A. Candido, and P. Satyamurty, 2021: Convective Cloud Clusters and Squall Lines along
 the Coastal Amazon. *Mon. Wea. Rev.*, 149, 3589–3608, <u>https://doi.org/10.1175/MWR-D-21-0045.1</u>.
- 555 Schumacher, R.S., Rasmussen, K.L. The formation, character and changing nature of mesoscale convective 556 systems. *Nat Rev Earth Environ* **1**, 300–314 (2020). https://doi.org/10.1038/s43017-020-0057-7
- 557 Feng, Z., Dong, X., Xi, B., Schumacher, C., Minnis, P., and Khaiyer, M. (2011), Top-of-atmosphere
- radiation budget of convective core/stratiform rain and anvil clouds from deep convective systems, J.
- 559 Geophys. Res., 116, D23202, doi:<u>10.1029/2011JD016451</u>.

- 560 Laurent, H., Machado, L. A. T., Morales, C. A., and Durieux, L., Characteristics of the Amazonian
- mesoscale convective systems observed from satellite and radar during the WETAMC/LBA experiment, J.
 Geophys. Res., 107(D20), 8054, doi:10.1029/2001JD000337, 2002.
- 563 Petersen, W. A., S. W. Nesbitt, R. J. Blakeslee, R. Cifelli, P. Hein, and S. A. Rutledge, 2002: TRMM
- 564 Observations of Intraseasonal Variability in Convective Regimes over the Amazon. J. Climate, 15, 1278–
- 565 1294, https://doi.org/10.1175/1520-0442(2002)015<1278:TOOIVI>2.0.CO;2.
- Cifelli, R., Petersen, W. A., Carey, L. D., Rutledge, S. A., and da Silva Dias, M. A. F., Radar observations
 of the kinematic, microphysical, and precipitation characteristics of two MCSs in TRMM LBA, J. Geophys.
 Res., 107(D20), 8077, doi: ref="info:doi/doi:10.1029/2000JD000264">doi:10.1029/2000JD000264 2002.
- 569 Da Silva, N. A., & Haerter, J. O. (2023). The precipitation characteristics of mesoscale convective systems
- 570overEurope. JournalofGeophysicalResearch:Atmospheres, 128,571e2023JD039045. https://doi.org/10.1029/2023JD039045.Atmospheres, 128,Atmospheres, 128,
- 572 Rickenbach, T. M., Ferreira, R. N., Halverson, J. B., Herdies, D. L., and Silva Dias, M. A. F., Modulation
- 573 of convection in the southwestern Amazon basin by extratropical stationary fronts, J. Geophys. Res.,
- 574 107(D20), doi:10.1029/2000JD000263, 2002.
- Machado, L. A. T., Morales, C., & Avissar, R. (2004). The Large-Scale Biosphere-Atmosphere Experiment
 in Amazonia (LBA): Insights and future research needs. Journal of Geophysical Research: Atmospheres,
 109(D20).
- 578 Burleyson, C. D., Z. Feng, S. M. Hagos, J. Fast, L. A. T. Machado, and S. T. Martin, 2016: Spatial
- 579 Variability of the Background Diurnal Cycle of Deep Convection around the GoAmazon2014/5 Field 580 Campaign Sites. J. Appl. Meteor. Climatol., 55, 1579–1598, https://doi.org/10.1175/JAMC-D-15-0229.1.
- 581 Campaign Sics. *5. Appl. Meleor. Cumulol.*, 55, 1579–1578, <u>https://doi.org/10.1175/JAMC-D</u>
- Rehbein, A, Ambrizzi, T, Mechoso, CR, Espinosa, SAI, Myers, TA. Mesoscale convective systems over
 the Amazon basin: The GoAmazon2014/5 program. *Int J Climatol.* 2019; 39: 5599–5618.
 <u>https://doi.org/10.1002/joc.6173</u>
- Giangrande, S. E., Wang, D., and Mechem, D. B.: Cloud regimes over the Amazon Basin: perspectives
 from the GoAmazon2014/5 campaign, Atmos. Chem. Phys., 20, 7489–7507, https://doi.org/10.5194/acp20-7489-2020, 2020.
- 588
- Wang, D., Giangrande, S. E., Feng, Z., Hardin, J. C., & Prein, A. F. (2020). Updraft and downdraft core
 size and intensity as revealed by radar wind profilers: MCS observations and idealized model comparisons. *Journal of Geophysical Research: Atmospheres*, 125, e2019JD031774.
 https://doi.org/10.1029/2019JD031774
- 592 <u>nups://</u> 593
- Tian, Y., Zhang, Y., Klein, S. A., & Schumacher, C. (2021). Interpreting the diurnal cycle of clouds and
 precipitation in the ARM GoAmazon observations: Shallow to deep convection transition. *Journal of Geophysical Research: Atmospheres*, 126, e2020JD033766. <u>https://doi.org/10.1029/2020JD033766</u>
- 597 Anselmo, E. M., C. Schumacher, and L. A. T. Machado, 2020: The Amazonian Low-Level Jet and Its 598 Connection to Convective Cloud Propagation and Evolution. *Mon. Wea. Rev.*, **148**, 4083–4099, 599 https://doi.org/10.1175/MWR-D-19-0414.1.
- 600 Carvalho, L. M. V., Silva Dias, M. A. F., & Fitzjarrald, D. R. (2002). Atmospheric conditions for deep 601 convective clouds in the Amazon. Journal of Geophysical Research: Atmospheres, 107(D20).

- Machado, L. A. T., Laurent, H., Gherboudj, I., Lima, A. P., Morales, C., Blakeslee, R., ... & Cifelli, R.
- 603 (2004). The convective, turbulent, and microphysical characteristics of the Amazon boundary layer.
- 604 Monthly Weather Review, 132(11), 2919-2931.
- Prein, A. F., Ge, M., Valle, A. R., Wang, D., & Giangrande, S. E. (2022). Towards a unified setup to
 simulate mid-latitude and tropical mesoscale convective systems at kilometer-scales. Earth and Space
 Science, 9, e2022EA002295. https://doi.org/10.1029/2022EA002295
- Paccini, L., & Stevens, B. (2023). Assessing precipitation over the Amazon basin as simulated by a stormresolving model. *Journal of Geophysical Research: Atmospheres*, 128, e2022JD037436.
 https://doi.org/10.1029/2022JD037436
- 611 Silva Dias, M. A. F., et al., A case study of convective organization into precipitating lines in the Southwest 612 Amazon during the WETAMC and TRMM-LBA, *J. Geophys. Res.*, 107(D20), 8078, 613 doi:10.1029/2001JD000375, 2002.
- Tai, S.-L., Feng, Z., Ma, P.-L., Schumacher, C., & Fast, J. D. (2021). Representations of precipitation
- 615 diurnal cycle in the amazon as simulated by observationally constrained cloud-system resolving and global
- 616 climate models. Journal of Advances in Modeling Earth Systems, 13, e2021MS002586.
- 617 https://doi.org/10.1029/2021MS002586
- 618 Feng, Z., Leung, L. R., Houze, R. A., Hagos, S., Hardin, J., Yang, Q., et al. (2018). Structure and evolution
- 619 of mesoscale convective systems: Sensitivity to cloud microphysics in convection-permitting simulations 620 over the United States. *Journal of Advances in Modeling Earth Systems*, 10, 1470–1494.
- 621 https://doi.org/10.1029/2018MS001305
- Prein, A. F., Ge, M., Valle, A. R., Wang, D., & Giangrande, S. E. (2022). Towards a unified setup to
 simulate mid-latitude and tropical mesoscale convective systems at kilometer-scales. *Earth and Space Science*, 9, e2022EA002295. <u>https://doi.org/10.1029/2022EA002295</u>
- 625
- Prein A. F., Rasmussen R. M., Wang D. and Giangrande S. E. (2021). Sensitivity of organized convective
 storms to model grid spacing in current and future climates. Phil. Trans. R. Soc. A. 379:20190546.
- Ramos-Valle, A. N., Prein, A. F., Ge, M., Wang, D., & Giangrande, S. E. (2023). Grid spacing sensitivities
 of simulated mid-latitude and tropical mesoscale convective systems in the convective gray zone. *Journal*
- 631 of Geophysical Research: Atmospheres, 128, e2022JD037043. https://doi.org/10.1029/2022JD037043
- 632
- Yang, Z., Varble, A., Berg, L. K., Qian, Y., Tai, S.-L., Chen, J., et al. (2023). Sensitivity of precipitation
 displacement of a simulated MCS to changes in land Surface conditions. *Journal of Geophysical Research: Atmospheres*, 128, e2022JD037642. https://doi.org/10.1029/2022JD037642
- Laurent, H., Machado, L. A. T., Morales, C. A., and Durieux, L., Characteristics of the Amazonian
 mesoscale convective systems observed from satellite and radar during the WETAMC/LBA experiment, J.
- 638 Geophys. Res., 107(D20), 8054, doi: 10.1029/2001JD000337, 2002.
- Anselmo, EM, Machado, LAT, Schumacher, C, Kiladis, GN. Amazonian mesoscale convective systems:
 Life cycle and propagation characteristics. Int J Climatol. 2021; 41: 3968–3981.
 https://doi.org/10.1002/joc.7053

- Huang, X., Hu, C., Huang, X. *et al.* A long-term tropical mesoscale convective systems dataset based on a novel objective automatic tracking algorithm. *Clim Dyn* **51**, 3145–3159 (2018).
- 644 https://doi.org/10.1007/s00382-018-4071-0
- Feng Z., L. Leung, N. Liu, J. Wang, R.A. Houze, J. Li, and J.C. Hardin, et al. 2021. "A Global Highresolution Mesoscale Convective System Database using Satellite-derived Cloud Tops, Surface
 Precipitation, and Tracking." *Journal of Geophysical Research: Atmospheres* 126, no. 8:e2020JD034202.
 PNNL SA 157800 doi:10.1020/2020JD034202
- 648 PNNL-SA-157800. doi:10.1029/2020JD034202
- 649 Feng Z., J.C. Hardin, H.C. Barnes, J. Li, L. Leung, A.C. Varble, and Z. Zhang. 2023. "PyFLEXTRKR: a
- Flexible Feature Tracking Python Software for Convective Cloud Analysis." *Geoscientific Model Development* 16, no. 10:2753-2776. PNNL-SA-179219. doi:10.5194/gmd-16-2753-2023
- 652 Rehbein, A., Ambrizzi, T. and Mechoso, C.R. (2018), Mesoscale convective systems over the Amazon
- basin. Part I: climatological aspects. Int. J. Climatol, 38: 215-229. <u>https://doi.org/10.1002/joc.5171</u>
- Galarneau, T. J., Zeng, X., Dixon, R. D., Ouyed, A., Su, H., & Cui, W. (2023). Tropical mesoscale
 convective system formation environments. *Atmospheric Science Letters*, 24(5), e1152.
 <u>https://doi.org/10.1002/asl.1152</u>
- Prein, A.F., Liu, C., Ikeda, K. *et al.* Simulating North American mesoscale convective systems with a
 convection-permitting climate model. *Clim Dyn* 55, 95–110 (2020). https://doi.org/10.1007/s00382-0173993-2
- 660 Emanuel, K., 2023: On the Physics of High CAPE. J. Atmos. Sci., **80**, 2669–2683, 661 <u>https://doi.org/10.1175/JAS-D-23-0060.1</u>.
- Martin, S. T., Artaxo, P., Machado, L. A. T., Manzi, A. O., Souza, R. A. F., Schumacher, C., Wang, J.,
- Andreae, M. O., Barbosa, H. M. J., Fan, J., Fisch, G., Goldstein, A. H., Guenther, A., Jimenez, J. L., Pöschl,
- 664 U., Silva Dias, M. A., Smith, J. N., and Wendisch, M.: Introduction: Observations and Modeling of the
- 665 Green Ocean Amazon (GoAmazon2014/5), Atmos. Chem. Phys., 16, 4785–4797, 666 <u>https://doi.org/10.5194/acp-16-4785-2016</u>, 2016.
- 667 Na, Y., Fu, Q., Leung, L. R., Kodama, C., & Lu, R. (2022). Mesoscale convective systems simulated by a
- 668 high-resolution global nonhydrostatic model over the United States and China. Journal of Geophysical
- 669 *Research: Atmospheres*, 127, e2021JD035916. <u>https://doi.org/10.1029/2021JD035916</u>
- 670 Cheng, W. Y. Y., and W. R. Cotton, 2004: Sensitivity of a Cloud-Resolving Simulation of the Genesis of 671 a Mesoscale Convective System to Horizontal Heterogeneities in Soil Moisture Initialization. J.
- 672 *Hydrometeor.*, **5**, 934–958, <u>https://doi.org/10.1175/1525-7541(2004)005<0934:SOACSO>2.0.CO;2</u>.
- 673 National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of
- 674 Commerce. (2000). NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July
- 675 1999 (Updated daily) [Dataset]. Research Data Archive at the National Center for Atmospheric Research,
 676 Computational and Information Systems Laboratory. https://doi.org/10.5065/D6M043C6. Accessed⁺ 01
- 677 Apr 2020.
- 678 Andreas Franz Prein, Zhe Feng, Thomas fiolleau, et al. Km-Scale Simulations of Mesoscale Convective
- 679 Systems (MCSs) Over South America A Feature Tracker Intercomparison. ESS Open Archive. October
 680 27, 2023. DOI: 10.22541/essoar.169841723.36785590/v1
- Da Silva, N. A., & Haerter, J. O. (2023). The precipitation characteristics of mesoscale convective systems
- over Europe. Journal of Geophysical Research: Atmospheres, 128, e2023JD039045.
 https://doi.org/10.1029/2023JD039045

- Liu, W., Ullrich, P. A., Li, J., Zarzycki, C., Caldwell, P. M., Leung, L. R., & Qian, Y. (2023). The June
- 685 2012 North American derecho: A testbed for evaluating regional and global climate modeling systems at cloud-resolving scales. *Journal of Advances in Modeling Earth Systems*, **15**, e2022MS003358.
- 687 <u>https://doi.org/10.1029/2022MS003358</u>
- Tang, Q., Prather, M. J., Hsu, J., Ruiz, D. J., Cameron-Smith, P. J., Xie, S., and Golaz, J.-C. (2021).
- Evaluation of the interactive stratospheric ozone (O3v2) module in the E3SM version 1 Earth system model,
 Geosci. Model Dev., 14, 1219–1236, https://doi.org/10.5194/gmd-14-1219-2021
- $690 \quad Geosci. Model Dev., 14, 1219-1230, <u>https://doi.org/10.5194/gmd-14-1219-2021</u>$
- Han, B., Fan, J., Varble, A., Morrison, H., Williams, C. R., Chen, B., et al. (2019). Cloud-resolving model
- 692 intercomparison of an MC3E squall line case: Part II. Stratiform precipitation properties. *Journal of* 693 *Geophysical Research: Atmospheres*, 124, 1090–1117. <u>https://doi.org/10.1029/2018JD029596</u>
- Varble, A., H. Morrison, and E. Zipser, 2020: Effects of Under-Resolved Convective Dynamics on the
 Evolution of a Squall Line. *Mon. Wea. Rev.*, 148, 289–311, <u>https://doi.org/10.1175/MWR-D-19-0187.1</u>.
- 696 Houze, R. A. (2014). Cloud Dynamics (2nd ed.): Elsevier/Academic Press, Oxford.
- 697 Cui, W., X. Dong, B. Xi, Z. Feng, and J. Fan, 2020: Can the GPM IMERG Final Product Accurately
 698 Represent MCSs' Precipitation Characteristics over the Central and Eastern United States?. J.
 699 Hydrometeor., 21, 39–57, https://doi.org/10.1175/JHM-D-19-0123.1.
- Zhang, Z., A. Varble, Z. Feng, J. Hardin, and E. Zipser, 2021: Growth of Mesoscale Convective Systems
 in Observations and a Seasonal Convection-Permitting Simulation over Argentina. Mon. Wea. Rev., 149,
 3469–3490, https://doi.org/10.1175/MWR-D-20-0411.1.
- Ayat, H., J. P. Evans, S. Sherwood, and A. Behrangi, 2020: Are Storm Characteristics the Same When
 Viewed Using Merged Surface Radars or a Merged Satellite Product?. J. Hydrometeor., 22, 43–
 62, https://doi.org/10.1175/JHM-D-20-0187.1.
- 706 Guilloteau, C., Foufoula-Georgiou, E. (2020). Multiscale Evaluation of Satellite Precipitation Products:
- 707 Effective Resolution of IMERG. In: Levizzani, V., Kidd, C., Kirschbaum, D., Kummerow, C., Nakamura,
- 708 K., Turk, F. (eds) Satellite Precipitation Measurement. Advances in Global Change Research, vol 69.
- 709 Springer, Cham. https://doi.org/10.1007/978-3-030-35798-6 5

Characterizing Wet Season Precipitation in the Central Amazon Using a Mesoscale Convective System Tracking Algorithm

3	Sheng-Lun	Tai. Zhe Fend	. James Mara	uis, and Jerome Fast
5	Sheng-Lun		s, James Mary	uis, and oci onic i ast

- Pacific Northwest National Laboratory, Richland, WA.
- 5 Corresponding author: Sheng-Lun Tai (<u>sheng-lun.tai@pnnl.gov</u>)

6 Key Points:

4

7 8	•	Simulated and observed MCS clouds and precipitation are tracked during the 2014/15 wet seasons in central Amazon.
9	•	Excessive heavy rain intensity ($\geq 10 \text{ mm h}^{-1}$) and relatively long travel distance of

simulated MCS lead to overall overprediction of precipitation.
Dry bias associated with stratiform rainfall may also drive MCS precipitation bias when cloud cover is substantially underpredicted.

13 Abstract

14 To comprehensively characterize convective precipitation in the central Amazon region, we 15 utilize the Python FLEXible object TRacKeR (PyFLEXTRKR) to track mesoscale convective 16 systems (MCSs) observed through satellite measurements and simulated by the Weather Research 17 and Forecasting (WRF) model at convection-permitting resolution. This study spans a two-month 18 period during the wet seasons of 2014 and 2015. We observe a strong correlation between MCS track density and accumulated precipitation in the Amazon basin. Key factors contributing to 19 20 precipitation, such as MCS properties (number, size, rainfall intensity, and movement), are 21 thoroughly examined. Our analysis reveals that while the overall model produces fewer MCSs 22 with smaller mean sizes compared to observations, it tends to overpredict total precipitation due 23 to excessive rainfall intensity for heavy rainfall events ($\geq 10 \text{ mm h}^{-1}$) and longer traveled distances than observed. These biases in simulated MCS properties could vary with the strength of 24 25 constraints on convective background environment. Moreover, while the wet bias from heavy (convective) rainfall outweighs the dry bias in light (stratiform) rainfall, the latter can be crucial, 26 27 particularly when MCS cloud cover is significantly underestimated. A relevant case study for April 28 1, 2014 highlights the influence of environmental conditions on the MCS lifecycle and identifies 29 an unrealistic model representation in convective precipitation features.

30 Plain Language Summary

31 We tracked large-size rain storms called mesoscale convective systems (MCSs) in the central 32 Amazon during the wet seasons of 2014 and 2015 using an automated feature tracking algorithm. 33 Data generated from MCS tracking helps us understand how MCSs rainfall is produced as a 34 function of the number of storms, as well as their size, rain intensity, and motion, and how those 35 can be better simulated by weather and climate models. We found that generally the model 36 produces less and smaller MCSs than in reality, but the total MCS rainfall amount is often overestimated. This is because simulated MCSs travel longer, and most importantly they produce 37 38 unrealistically intense heavy rainfall events. On the other hand, light rainfall events are mostly underrepresented by the model. Thus, the model error in total precipitation is determined by how 39 40 these two compensate each other. Our analysis also suggests accurate model representation in 41 environment is required for simulating realistic MCS properties.

43 **1 Introduction**

Mesoscale convective system (MCS) is a deep convective storm with clouds and precipitation organized on spatial scales of 100 km (Houze 2014). In the Amazon, MCSs produce over 60% of the total rainfall during the wet season (March-April-May, MAM), primarily due to their relatively long duration and wide extent than less organized convective storms (Nesbitt et al. 2006; Feng et al. 2021; Schumacher and Rasmussen 2020). In addition to the hydrological impact of MCSs, their extensive anvil clouds have a sizeable impact on the regional radiation budget (Feng et al. 2011). Thus, MCSs play a noteworthy role in regional and global climate.

Most Amazonian MCSs are initiated by near-surface convergence associated with prevailing trade winds, surface friction, and dirunal sea breeze circulations on the Atlantic coast (Sousa et al. 2021). After initiation, many MCSs travel long distances across the Amazon basin with a lifetime over half a day, sustained by environmental conditions that are frequently favorable for deep convection and growing to substantial sizes owing to rich tropical moisture. Hence, the local precipitation diurnal cycle in the Amazon basin is tied closely to westward propagating MCSs (Tai et al. 2021).

58 Several studies have employed a combination of routine and field campaign observational 59 datasets to characterize MCSs in the Amazon region including weather radars, satellite 60 observations, and surface measurements. Such efforts capture the intricate dynamics of MCS, their spatial distribution, intensity, and lifecycle evolution (e.g., Laurent et al. 2002; Petersen et al. 2002; 61 62 Cifelli et al. 2002; Rickenbach et al. 2002; Machado et al. 2004). The recent GoAmazon2014/5 63 field campaign (Martin et al. 2016) collected many valuable observational data sets that have been used to characterize the diurnal variation, morphology, propagation, vertical motion, and 64 precipitation of convective clouds around central Amazon (Burleyson et al. 2016; Rehbein et al. 65 2019; Giangrande et al. 2020; Wang et al. 2020; Tian et al. 2021; Anselmo et al. 2020). In addition 66 67 to observations, advanced regional climate and convection-permitting models have been utilized 68 to simulate MCSs over the Amazon under various meteorological conditions. By integrating observations with simulations, researchers have deepened our understanding of the processes 69 governing MCS formation and evolution in the Amazon (Silva Dias et al. 2002; Carvalho et al. 70 2002; Machado et al. 2004; Tai et al. 2021, Paccini et al. 2023). These studies provide insights into 71 72 the convective organization within the Amazon basin, shedding light on the complex interactions 73 between atmospheric dynamics, moisture availability, and convective activity.

74 Nonetheless, remaining model uncertainties in MCSs over Amazon has motivated additional 75 research in the field. Prior studies have shown that simulated MCS precipitation is quite sensitive to model resolution (vertical and horizontal), atmospheric forcing in initial and boundary 76 77 conditions, soil moisture, and physics parameterizations (land surface, planetary boundary layer, 78 cloud microphysics, and radiation) (e.g., Luo et al. 2015; Stensrud et al. 2000; Feng et al. 2018; 79 Prein et al. 2021; Tai et al 2021; Prein et al. 2022; Na et al. 2022; Rasmos-Valle et al. 2023; Yang 80 et al. 2023). Due to constraints in availability and spatial coverage of observational data in the 81 sparsely populated Amazon, most evaluations of simulated MCS behaviors have been conducted 82 in a confined region and narrow time windows which may be shorter than the MCS lifetime. Thus, 83 additional work is warranted to examine modeled MCSs in realistic Amazonian conditions.

84 Cataloging MCS frequency, size, precipitation intensity, and movement, are essential for 85 determining precipitation processes that contribute to total accumulative rainfall in the Amazon. 86 However, representation of these MCS characteristics in state-of-the-art atmospheric models lacks 87 rigorous quantitative validation. A pioneering study from Laurent et al. (2002) uses geostationary 88 satellite data with 30-min frequency to enable deep convective cloud tracking, providing a 89 different aspect in assessing modeled storms. With an increasing amount and quality of available 90 satellite data, a number of cloud cluster tracking tools have been developed in recent years to 91 characterize the lifecycle of deep convective clouds (Anselmo et al. 2021; Huang et al. 2018; Feng 92 et al. 2019; 2021, 2023; Rehbein et al. 2018; Galarneau et al. 2023; Prein et al. 2020; Da Silva et 93 al. 2023). One example is the Python FLEXible object TRacKeR (PyFLEXTRKR, Feng et al. 94 2023) algorithm, which we adopt in this study to facilitate MCS tracking in the central Amazon 95 using satellite observations and a series of convection-permitting (4-km grid spacing) simulations 96 during the 2014/15 wet seasons. The goal of this study is to elucidate the role of key MCS 97 properties in driving the model precipitation errors through an in-depth storm tracking analysis.

98 The remainder of this paper is organized as following. Section 2 provides the details of the 99 model and experiments as well as the algorithm used for trackings both simulated and observed 100 MCSs. Results of analysis derived from MCS tracking statistics across timescales are 101 demonstrated in Section 3. Finally, summary and conclusion are provided in Section 4.

102 **2 Methods**

103 2.1 Model setup and experiments

104 We use the WRF model version 3.9.1 (ARW, Skamarock et al. (2008)) to simulate convective 105 clouds over the entire Amazon region, using a general configuration similar to our previous work 106 in this region (Tai et al. 2021). Our study period includes a month in 2014 (March 11 to April 10) 107 and 2015 (March 1 - 31). The model domain encompasses the northern part of the South American continent as well as adjacent oceans (Figure 1). The domain is constructed with a horizontal grid 108 spacing of 4 km and a stretched vertical coordinate of 60 levels. The model top is located at 100 109 110 hPa. The physics schemes used for the simulations include: Thompson microphysics 111 parameterization (Thompson et al. 2008), Mellor-Yamada-Nakanishi Niino (MYNN) boundary laver parameterization (Nakanishi and Niino 2009), Mellor-Yamada-Janjic surface layer 112 parameterization (Janjić 2001), Unified Noah land-surface parameterization (Chen and Dudhia 113 114 2001), and the RRTMG longwave and shortwave radiation parameterization (Iacono et al. 2008). 115 No cumulus parametrization is used because the model's horizontal grid spacing (4 km) is capable of resolving MCSs (Prein et al 2020; Na et al 2022). We use 6-hourly, 1° × 1° NCEP FNL 116 operational model global tropospheric analysis for model initialization (National Centers for 117 118 Environmental Prediction 2000).

Figure 1 Map shows the configured WRF model domain for the simulations used in this study. Color shading illustrates terrain heights. Yellow dots denote the locations of radiosonde profiles that are assimilated along with the simulations. The location of ARM T3 site during GoAmazon2014/5 is indicated. The dashed rectangle marked by dashed line represents the study area for the MCS tracking analysis. Subdomain denoted by blue box is used for profiles sampling discussed in Section 3.4.

126 The model is also coupled with a data assimilation (DA) scheme to better constrain the 127 simulation's background meteorological conditions, identical to the approach used in Tai et al. 128 (2021). Conventional observations (e.g., radiosonde profiles, surface meteorology, aircraft, ship 129 and others) and satellite radiances are assimilated by using the three-dimensional variational 130 (3DVar) technique as provided in the package of version 3.6 Community Gridpoint Statistical 131 Interpolation (GSI, Shao et al. 2015). It produces optimized analyses by blending the model data 132 with observations as collected for the NCEP Global Data Assimilation System (GDAS, 133 http://rda.ucar.edu/datasets/ds337.0/) and the radiosonde profiles measured at the T3 site (Figure 134 1) deployed by the DOE's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF, 135 Miller et al. 2016) during the GoAmazon2014/5 field campaign (Martin et al. 2016).

136 Assimilated radiosondes were launched every 6 hours at the ARM T3 (e.g., 00, 06, 12, and 18 UTC; 20, 02, 08, and 14 LT) throughout the campaign to measure tropospheric winds, temperature, 137 pressure, and humidity profiles. Over the intensive observational periods (IOPs), one additional 138 139 radiosonde was launched at 15 UTC (11 LT) to enhance measurement of the diurnal variation of 140 environmental conditions. In addition to ARM's radiosondes, meteorological profiles measured at other sites as archived in the NCEP ADP global upper air and surface weather observations product 141 are also assimilated in our model configuration. Note these observations have lower temporal 142 143 frequency (up to twice a day at 00 and 12 UTC) and vertical resolution than those performed at the T3 site. The yellow dots denoted in Figure 1 indicate the locations of available radiosonde data 144 145 at 12 UTC of March 12, 2014. The DA-coupled simulation is initialized at 00 UTC on the first day 146 of each simulated month. The 3DVar data assimilation is performed every 12 hours (at 00 and 12

147 UTC) throughout the simulation periods. More details regarding the model configuration and DA 148

148 strategy can be found in Tai et al. (2021).

149 2.2 Tracking observed MCSs

150 The MCS tracking is performed using the Python FLEXible object TRacKeR (PyFLEXTRKR, 151 Feng et al. (2021, 2023)), a software package which is designed to track any atmospheric features 152 in 2-D geographic planes using user-prescribed observational data sets or model output. To 153 objectively identify and track the deep convective clouds, the PyFLEXTRKR primarily uses 2-D 154 projections of infrared brightness temperature (Tb) observations commonly measured by 155 geostationary satellites. When tracking observed MCSs with PyFLEXTRKR, we use NASA's 156 Global Merged IR V1 infrared brightness temperature (Janowiak et al. 2017) data set. This dataset 157 comprises multiple operational geostationary satellite data sources and includes viewing angle and parallax corrections. It has a continuous global coverage from 60°S to 60°N with a horizontal grid 158 159 spacing of ~ 4 km and a temporal resolution of 30 min. We use hourly Tb data to identify and track 160 deep convective clouds associated with MCSs identical to the approach adopted by Feng 161 et al., (2021; 2023). A detailed discussion of the impact of uncertainties in MCS tracking owing to 162 the IR Tb data set are described in Feng et al. (2021). Moreover, PyFLEXTRKR also uses 163 collocated surface precipitation to assist identification of MCS "precipitation features (PF, contiguous area with rain rate > 2 mm h^{-1})" (Feng et al., 2021). Because PyFLEXTRKR tracks all 164 deep convective clouds with a pre-defined minimum area threshold, the tracking data consists of 165 166 records from early stage (near initiation) of individual deep convective clouds to the decay stage 167 when the area of the cloud system decreases. More details of the PyFLEXTRKR algorithm can be 168 found in Feng et al. (2023).

169 We use the NASA Integrated Multi-satellitE Retrievals for Global Precipitation Measurement 170 (GPM) (IMERG) V06B precipitation data (Huffman et al. 2019) as a source of observed rainfall 171 data in the MCS tracking algorithm. Precipitation estimates in IMERG are obtained by various 172 precipitation-retrieving satellite passive microwave (PMW) sensors using the Goddard Profiling 173 algorithm (Kummerow et al., 2001, 2015, 2011). Intercalibration is performed using the GPM 174 Combined Radar Radiometer Analysis product. The precipitation product has a grid spacing of 175 0.1° and is also available every 30 minutes over a large portion of the globe (Huffman et al., 2014; 176 Hou et al., 2014; Tang et al., 2016; Tan et al., 2019). We further averaged the 30 min IMERG data to hourly, and coarsened the 4 km Tb data to match the IMERG grid. Hence, the collocated Tb and 177 178 IMERG precipitation data at 0.1° and hourly resolution are jointly used for MCS tracking in this 179 study.

180 2.3 Tracking simulated MCSs

181 In WRF simulations, the top-of-atmosphere (TOA) outgoing longwave radiation (OLR) is used 182 to infer the Tb. An empirical function is employed in PyFLEXTRKR to convert OLR to Tb 183 following the formula from Yang and Slingo (2001). To avoid observational and simulated data 184 resolution mismatches, the 4 km WRF simulation output is regridded based on the coordinate of observational data in a grid resolution of 0.1°. In this study, the thresholds used to define 185 186 convective clouds, MCSs, and PFs in terms of cloud top brightness temperature, rain rate, and 187 feature size are listed in Table 1. The sensitivity of MCS tracking due to variations of these 188 thresholds was found to be qualitatively minor based on prior tests (not shown). A recent study

- 189 comparing six different feature tracking algorithms applied to observed and simulated MCSs over
- 190 South America found that most of the MCS properties from PyFLEXTRKR are representative of
- results from other obeject tracking tools (Prein et al. 2023), suggesting our algorithm can produce
- 192 representative MCS characteristics.

Category	Parameter	Value	Unit	Description
	Warm cloud Tb	261	K	Brightness temperature threshold for identification of "warm anvil"
	Cold cloud Tb	241	K	Brightness temperature threshold for identification of "cold anvil"
	Core cloud Tb	225	K	Brightness temperature threshold for identification of "core cloud"
Cloud identification	Minimum cold core cloud pixels	4	unitless	Mininum number of pixels of cold core cloud in qualification of a "core cloud"
	Minimum area	800	km ²	Minimum area in qualification of a "cloud" object
	Missing data fraction	0.35	unitless	Maximum fraction for missing data
	Minimum area	40000	km ²	Minimum total cloud area in qualification of a MCS
MCS identification	Minimum duration	4	hour	Minimum duration in qualification of a MCS
	Minimum PF rain rate	3	$mm h^{-1}$	Minimum rain rate in qualification as part of a PF
	Minimum PF link area	648	km ²	Minimum linked area of a PF
	Minimum PF major axis	100	km	Minimum length for a PF's major axis
PF identification	Maximum PF major axis	1800	km	Maximum length for a PF's major axis
	Minimum PF duration	4	hour	Maximum duration for a PF
	Minimum PF rainrate	2	$mm h^{-1}$	Cut-off rain rate in a PF
	Heavy rain rate threshold	10	$mm h^{-1}$	Minimum rain rate to be defined as "heavy rain"

193 Table 1 Summary of parameters used for the MCS tracking algorithm in the PyFLEXTRKR.

194

195 2.4 A MCS tracking example

196 Figure 2 demonstrates an example of MCS detection and tracking at 13 UTC on March 19, 197 2014, during our study period. In this case, WRF simulates comparable fractions of core and cold 198 anvil clouds. However, due to narrowing between two simulated cloud clusters (Figure 2b), there 199 are two separate MCSs identified rather than a single MCS in observations (Figure 2a). The results 200 of cloud type identification based on the defined thresholds in Table 1 are shown in Figures 2c and 201 2d. The tracked precipitation features corresponding to this MCS event are shown in Figures 2g 202 and 2h, identified using the rain rates in Figures 2e and 2f. The model produces much higher rain 203 rates than is observed in this time. The simulated maximum rain rate is 49.41 mm h⁻¹; whereas, the 204 maximum satellite-retrieved observational rain rate was less than half of that (21.9 mm h⁻¹). This 205 tendency leads to a relatively large fraction of heavy rainfall area in the simulated MCS than is 206 observed. In addition, the model produces a large area of very light rainfall near the east side of 207 the domain likely associated with a sea breeze circulation (Figure 2f) that is less evident in the 208 satellite observations (Figure 2e).

209

Figure 2 Snapshots of brightness temperature, cloud type, rain rate, and precipitation type as recorded along with the MCS tracking at 13 UTC on March 19, 2014. The results derived from satellite observation and WRF simulation are illustrated in (a), (c), (e), (g) and (b), (d), (f), (h), respectively.

215 **3 Results**

216 3.1 Number and spatial distribution of tracked MCSs

We examine the total number as well as the spatial distribution of all tracked MCSs from both observational and simulated data sets over the study domain (Figure 1). We tracked 125 and 115 observed MCSs occurring during the months of 2014 and 2015, respectively; compared to 120 and 94 MCSs tracked during the same period in the simulations. Therefore, there were slightly fewer simulated MCSs (-8%) in the 2014 period, but a notable simulated deficit of MCSs (-22%) during the 2015 period.

MCS object track density is mapped onto a $1^{\circ} \times 1^{\circ}$ grid and illustrated in Figure 4. During the 2014 sampling period, more MCSs are observed near the northwest corner of the domain. The difference map for 2014 (Figure 3c) indicates that while more MCSs are simulated over the northwestern and eastern parts of the domain, fewer MCSs (negative blue patches) occur within grid cells near Amazon river. Interestingly, during the 2015 sampling period, MCSs are also underpredicted along the Amazon river, particularly over the northeastern central Amazon (Figure 3f).

While observed rain maps show relatively a consistent rainfall distribution and amount over the analysis domain (Figures 4a and 4d), simulated rainfall amount is distinctly higher in 2015 than for 2014 (Figures 4b and 4e), despite lower MCS occurrence (Figures 3c and 3f). For instance, during the 2014 period, observed domain-mean precipitation is 160.3 mm, which is slightly lower than is simulated (168.8 mm). Nevertheless, during the 2015 period, simulated and observed domain-mean precipitation are 209.5 and 171.4, respectively. Which suggests the domain-mean precipitation bias dramatically increases from +5% to +22%.

236 Model bias in MCS occurrence (Figures 3c and 3f) modulates the overall pattern of rainfall 237 bias (Figures 4c and 4f), which confirms that MCS precipitation contributes to a considerably large 238 fraction of total rainfall during these two periods. The dry bias along the Amazon river is analyzed 239 during both years (Figures 4c and 4f) and can be attributed to relatively low MCS occurrence 240 simulated by the model (Figures 3c and 3f) despite potentially higher rain rate (Figure 2). This 241 implies that the current model configuration may be associated with unresolved precipitation 242 processes related to river-atmosphere interactions such as river-breezes that enhance deep 243 convection under easterly trade winds (Burleyson et al. 2016), among other possible factors.

Figure 3 Spatial distribution of gridded MCS track density (i.e., number of MCS objects passing through $1^{\circ}\times1^{\circ}$ grid boxes) from observations (a, d) and WRF simulations (b, e) over the study domain. (c) and (f) illustrate the difference between (a), (b) and (d), (e), respectively. The top

248 (bottom) row represents results for the month of 2014 (2015).

Figure 4 Similar to Figure 3, but for monthly precipitation amount (mm). The domain mean precipitation is given in the title of each panel (a, b, d, and, e)

252 3.2 MCS properties

244

The tracking data for all MCSs are used to obtain monthly mean values per MCS in both the 254 2014/15 periods. Besides the occurrence (number of MCSs) as discussed, the accumulated 255 precipitation of a MCS can be attributed to its size, duration, rainfall intensity, and distance 256 traveled, we analyze properties including MCS cloud area, rain rate, and motion (e.g., duration, 257 speed, and movement distance). This helps elucidate how these factors contribute to overall precipitation amount and what is the fractional bias in each MCS properties. The results of selected
 6 MCS properties are given in Figure 5.

260 We first assess the area covered by the entire MCS cloud shield (Tb < 241 K), and further 261 categorize the cloud cover into convective and stratiform areas (Feng et al. 2021, 2023). The 262 convective (core cloud) area is defined as the continuous area with cloud top temperature below 263 225 K within a much wider MCS cloudy patch. The remaining area with Tb from 225 to 241 K is 264 attributed to stratiform (cold anvil cloud) type. The statistics show that the total extent of simulated 265 MCS cloud area is generally smaller than observed; while observed mean MCS sizes are larger 266 than 80,000 km² in both months, modeled MCSs are approximately 70,000 km². Observations 267 suggest the ratios of convective/stratiform cloud cover are 1.13 and 1.05 in 2014 and 2015 period; 268 whereas, simulated ratios increase to 1.36 and 1.43, respectively, most likely due to reduction of 269 stratiform cloud areas.

The results also show simulated MCSs produce robustly higher rainfall intensity than is observed during each analysis period. The MCS precipitation is further partitioned into two types: heavy ($\geq 10 \text{ mm h}^{-1}$) and light (< 10 mm h⁻¹). Distinct and consistent positive biases in modeled rain rates are seen in the heavy rainfall regime, driving the simulated total rain rate to be larger than twice of the average observed rate. While total rain rate does not vary much between the two periods (both are 9.1 mm h⁻¹), heavy rain rate substantially increases from 18.3 to 19.2 mm h⁻¹.

276 Finally, we examine the duration, movement speed, and distance traveled of tracked MCSs. 277 The observations suggest that MCSs had similar durations across both analysis periods. Though 278 simulated MCSs had slightly shorter durations than were observed during 2014 (by ~1 hour), the 279 model significantly under-predicted the MCS lifespan (by > 2 hours) in 2015. Further, simulated 280 MCSs motion was significantly over-predicted by $\sim 3-4$ m s⁻¹ ($\sim 80\%$) during both analysis periods. 281 Hence, the yearly differences in lifespan and propagation speed lead to larger horizontal excursions 282 by the MCSs in both months. The simulated MCSs traveled longer distances than observed ($\sim +40$ 283 km in 2014 and $\sim +20$ km for 2015 in average).

284 As a result of the accumulated factors of MCS size, rain intensity, and movement, the modeled 285 total precipitation per MCS is about 500 mm less (-20%) than what is observed in 2014 but about 286 700 mm more (+35%) in 2015. The much larger simulated rainfall amount in 2015 is most likely 287 due to unrealistically higher rain intensity. The observed ratios between heavy/light precipitation 288 are 0.4 and 0.33 for 2014 and 2015, respectively. However, it becomes nearly opposite in the 289 simulations, as the corresponding ratios are 1.7 and 2 for the two periods. Therefore, besides 290 having biases in total precipitation, the model also poorly represents the fractions of heavy and 291 light precipitation.

292 The dramatic increase of errors in MCS occurrence (Section 3.1) as well as total precipitation 293 from 2014 to 2015 periods catches attention because model skill in rainfall prediction usually does 294 not significantly change from year to year. One possible source of this discrepancy in our 295 simulations comes from biases in meterological conditions resulting from our data assimilation 296 scheme. The quantitiy of radiosonde observations for during 2015 is approixmatley half of what 297 was available to assimilate during 2014 (Figure 6). Thus, a much weaker constraint in simulated 298 environmental conditions during 2015 most likely leads to enlarged biases in convective 299 background conditions, which is expected to affect the examined MCS properties. Moreover,

results of partitioned precipitation quantity (heavy vs. light) indicate the excessive MCS total precipitation in the model for the 2015 period is primarily due to a much larger fraction of heavy rainfall. The overpredicated amount of heavy rainfall reaches more than three times of the observed value. Conversely, the simulated light rainfall amount is much less than what was observed (by \sim 50%), which partially compensates the positive bias in heavy rain.

306 Figure 5 Comparison of monthly-mean values for MCS properties, including: MCS area, rain rate, 307 total MCS precipitation, duration, movement speed, and distance traveled. The statistics obtained 308 from observations and simulations are represented by blue and orange bars. In the plots for MCS area, the fractions of stratiform- and convective-type clouds are indicated by light blue (orange) 309 and dark blue (red) bars, respectively. For rain rate comparison, the total and heavy ($\geq 10 \text{ mm h}^{-1}$ 310 311 ¹) rain rates are denoted by light blue (orange) and light blue + dark blue (orange + red) bars. Total 312 precipitation is partitioned into light (light blue and orange bars) and heavy (dark blue and red bars) 313 rain types.

314

Figure 6 The number of assimilated data points from radiosonde specific humidity observations over the model domain (Figure 1). The blue and red curves represent timeseries results for 2014

and 2015 analysis periods. Y-axis denotes the number of assimilation cycles.

320 3.3 Daily variability

321 The tracked MCS properties, including the number, area, movement distance, and rain rate are 322 further broken down to facilitate model validation on daily timescales. Approximately four MCSs 323 were observed daily, on average, during the 2014 period, with only two days in which no MCSs 324 were identified (Figure 7a). Although the model reproduced only slightly fewer MCSs in terms of 325 the monthly mean value, it does not fully capture the daily variations, particularly during the first 326 half of the month. Overall, the MCS cloud area is underpredicted by the model. Over the entire month, an average MCS size of $\sim 9.4 \times 10^4$ km² is observed in satellite data; whereas, the model 327 328 yields $\sim 7 \times 10^4$ km². The model has more difficulty in simulating large MCSs (area > 10×10^4 329 km^2), such as the ones observed on 3/13, 3/22 and 4/1. While the correlation between the observed 330 and simulated MCS movement distance is much lower than for other properties, simulated MCSs 331 more frequently travel farther than observed ones (20 out of 31 days). Lastly, the simulated mean 332 MCS rain rate is much higher than in observations (approximately +90%) every day.

333 During the 2015 period (Figure 7b), simulated MCS number is notably underpredicted after 334 3/22 despite qualitative agreement in the trend. A noticeable contrast on the first day of simulations 335 (3/1) may be due to model spin-up. There are no days during the 2015 period with observed MCS 336 size larger than 15×10^4 km²; thus, the MCS size is generally smaller than during the 2014 period. 337 As a result, although the simulated mean MCS area is still smaller than observed, the deficit is not 338 as large as it is during 2014. Similar to results obtained for 2014 period, there are 19 out of 31 days 339 that MCSs traveled farther than observed in 2015. Despite variability in model biases of MCS 340 properties, positive biases in MCS rain rate is robustly observed and are largest during the2015 341 period.

Figure 7 Daily variations of MCS tracking statistics including number, area, movement distance,
and mean rain rate for the analysis period in (a) 2014 and (b) 2015. The dashed line denoted in (a)
identifies the date (April 1, 2014) selected for case study (Section 3.4).

346 We next quantify heavy versus light rainfall-regime dependent model biases relative to biases 347 in rain rate and cloud area (Figure 8). During most of the 2014 analysis period (Figure 8a), MCS 348 precipitation is overpredicted on fewer than half of the days (13 out of 31) and underpredicted for 349 the remaining 18 days. Moreover, on 3/13, 3/22, and 4/1, the negative biases in light rain are much 350 more distinct than otherwise typical positive biases in heavy rainfall. This happens when MCS 351 cloud areas in both convective and stratiform types are significantly under-predicted. During the 352 2015 analysis period, there are only two days such as 3/4 and 3/15 when negative biases of light 353 rainfall are lower than -2000 mm and thus compensate or even lead to a negative total MCS 354 precipitation bias. Other than those days, heavy rainfall bias dominates the total precipitation bias. 355 Rain rate biases in heavy precipitation are noticeably higher in 2015 than 2014. Given relative 356 minor model-observation differences in MCS area, excessive simulated rain rate is responsible for 357 large positive biases in total MCS precipitation for 2015 analysis period as shown in Figure 6. 358 With varied scenarios as observed during the two sampling periods, it suggests model validation

Figure 8 Similar to Figure 7 but for biases in MCS precipitation amount, rain rate, and cloud area. The black lines denote results for the total biases. Green lines illustrate fractional results for the heavy rainfall ($\geq 10 \text{ mm h}^{-1}$) and convective-type (core) clouds. Orange lines represent results for the part with light rain (< 10 mm h⁻¹) and stratiform-type (cold anvil) clouds. The dashed line denoted in (a) identifies the date (April 1, 2014) selected for case study (Section 3.4).

367 3.4 Case study: April 1, 2014

361

368 Following the discussion in the previous section, we further investigate the contrasts between 369 observed and simulated MCS clouds and precipitation by highlighting a case study for April 1, 370 2014. On this day, a MCS (denoted by white arrows at first row in Figure 9) initiated over 371 northeastern corner of the analysis domain and experienced upscale growth through decay as it propagated westward (Figure 9). In general, the model reasonably reproduces the MCS's lifecycle 372 373 with relatively accurate placement of clouds in time, allowing us to examine the evolution of 374 clouds (Figure 9) and corresponding precipitation processes (Figure 10) with confidence. In this 375 case, the model tends to simulate smaller cloud cover regardless of cloud types. The simulated 376 stratiform clouds dissipated faster than observed after 12 UTC, particularly on the southeastern 377 flank of the MCS, as the brightness temperature of cloud top significantly increases. Nevertheless, 378 more isolated convective initiation remains active on the leading edge of the propagating MCS. 379 Therefore, only a relatively narrow core cloud band is sustained in simulations. In reality, satellite

observations suggest a much wider MCS cloud patch propagating toward the southwest throughthe domain.

The contrast between observed and simulated heavy/light rain distribution is shown in Figure 10. Though observations suggest heavy rainfall patches are scattered and mostly located in the center of a much wider light rain area, simulated heavy rainfall patches tend to have a much larger fractional area than observed and appear on the leading edge of relatively narrow cloud bands. This structural difference in the precipitation features implies that, most likely there are model deficiencies in representing the dynamics and/or microphysics within the simulated MCS causing the issue and warrants in-depth investigation in a future study to provide further insight.

The diurnal variations of cloud and precipitation type relative area fractions are shown in Figure 11. The evolution of simulated core cloud fraction is overall aligned with the observed trend until 12 UTC. Similar fractions ($\sim 20 - 30\%$) are obtained for cold anvil clouds. While the observed cold anvil cloud fraction is consistently around 30%, simulated cold anvil cloud fraction dropped to $\sim 20\%$ at the end of the day. Cold anvil clouds started dissipating at 16 UTC, which is about 3–4 hours later than the dissipation of core clouds.

395 The area fraction of heavy rain is consistent between observations and simulations and does 396 not exceed 6% over the course of the day. However, we see a notable contrast in the fraction of 397 light rain area. Overall, the observed light rain area covers more than twice of what it does in 398 simulations. Hourly rain rate comparison indicates light rain rates in both observations and 399 simulations are never greater than 5 mm hr⁻¹; whereas simulated heavy rain rate is mostly near 20 400 mm hr⁻¹, approximately 4 mm hr⁻¹ more than observed, on average. Given much larger negative 401 bias in anyil cloud cover and relatively small heavy rain rate bias during this event, the total MCS precipitation is thus primarily driven by the significant under-prediction of stratiform cloud cover. 402 403 However, it is worth noting that validations of IMERG data against ground based observations 404 (either radar or rain gauges) reveal that IMERG tends to significantly overestimate the frequency of weak precipitation (1-2 mm h⁻¹) while underestimating intense precipitation, particularly over 405 land (Cui et al. 2020; Zhang et al. 2021; Avat et al. 2021). Moreover, the actual resolution of 406 IMERG is significantly coarser than its grid spacing (Guilloteau & Foufoula-Georgiou, 2020). 407 408 Thus, associated rainrate model biases themselves may be overestimated.

To elucidate how environment conditions may influence differences in this MCS's lifecycle, we examine the pre-storm environment (before 12 UTC) as observed by radiosonde profiles at the AMF T3 site and simulated profiles within a 2° by 2° box centered at the AMF site (Figure 1). Vertical interpolation with an interval of 0.1 km was carried out for both radiosonde and model profiles. To exclude profiles affected by convective clouds, only the model profiles with column maximum reflectivity less than 0 dBZ are sampled. Resulting wind profiles valid at 00, 06, and 12 UTC are illustrated in Figure 12.

There are two jets evident in the observed wind speed profiles; one peaking at z = 2-3 km, and another above mid-troposphere (z = 7-9 km) (Figure 12a). Owing to small vertical heterogeneity in the meridional wind, these jets are primarily a result of variations in the zonal wind (Figure 12 b-c). Wind conditions do not vary significantly in the pre-storm environment. Although the model simulated wind conditions over the period are qualitatively similar to observations, simulated maximum wind speed of the lower jet is consistently smaller ($\sim 2-3$ m s⁻¹

422 less than radiosonde). Furthermore, at 12 UTC, the lower jet descends to height below 1 km in the 423 model. This may imply a shallower and weaker low-level jet being simulated, leading to much 424 weaker moisture transport and convergence in the lower troposphere. Results of convective 425 available potential energy (CAPE) and convective inhibition (CIN) further demonstrate while the 426 available energy for convective growth increases from 00 to 12 UTC in reality, the model simulates 427 a completely opposite trend (Figure 13), where CAPE dropped from nearly 2000 to 500 J kg⁻¹ over 428 the 12-hour period. Despite good agreement in CIN values, the simulated environment does not 429 favor convective growth as observed. This evidence may at least partially explain why the simulated MCS quickly dissipates after 12 UTC and thus has a much smaller area cover by 430 431 stratiform clouds.

Figure 9 Similar to Figure 2a – 2d, but for 03 to 21 UTC on April 1, 2014. White arrows on the panels for 03 UTC point to the initiating MCS of interest.

436 Figure 10 Similar to Figure 2e – 2h, but for 03 to 21 UTC on April 1, 2014.

Figure 11 Comparison in diurnal varations of area percentages of cloud (top panel) and
precipitation (middle panel) types as computed over the analysis domain on April 1, 2014.
Corresponding rain rate comparison in dependency of precipitation type is displayed in the bottom
panel.

443

Figure 12 Wind speed, zonal (U-) wind, and meridional (V-) wind profiles as observed by radiosondes launched (a, b, and c) and simulated by WRF (d, e, and f) at the location of ARM T3 site. Colors denoted in legend indicate results for 00, 06, and 12 UTC of April 1, 2014. Swath of each line in d, e, and f represents the range within \pm 1 standard deviation among the samples.

Figure 13 CIN (line with dots; left y-axis) and CAPE (bar; righy y-axis) values computed using
ARM T3 radiosonde and corresponding WRF-simulated profiles at 00, 06, and 12 UTC of April
1, 2014.

452

453 **4 Summary and conclusions**

454 Mesoscale convective systems (MCSs) are responsible for a large fraction of the total 455 precipitation in the Amazon. However, various uncertainties in state-of-the-art atmospheric 456 models hinder them from reproducing a realistic lifecycle and morphology of MCSs within this 457 region. To facilitate comprehensive characterization of MCS precipitation in the central Amazon, 458 the Python FLEXible object TRacKeR (PyFLEXTRKR) is employed to track individual MCSs 459 that are simulated by convection permitting (4 km grid) Weather Research and Forecasting (WRF) 460 simulations. The WRF simulations are performed over two separate months during the 2014 and 461 2015 Amazon wet seasons. A 3DVar data assimilation scheme is used to constrain environmental 462 conditions throughout simulations. These results are then compared to observed satellite analogs to examine possible mechanisms of MCS model biases. 463

First, we examined the MCS occurrence and its relation to accumulated precipitation. Overall, the model tended to produce fewer MCSs than were observed within the study area. While only % fewer MCSs are reproduced in 2014 period, we observe a difference of -22% for the month in 2015. The heterogenous precipitation bias distribution is closely tied with how well the MCS track density was reproduced. A distinct feature of dry biases along the Amazon river is identified and found to be well explained by model error in reproducing realistic MCS occurrence near the river.

470 Analysis of monthly means of tracked MCS characteristics further reveal the contrasts between 471 observed and modeled MCS properties in general. Although simulated MCSs are generally smaller 472 than observed ones, they produced far more rain and propagated farther than observed. Moreover, 473 we find the model-observation discrepencies in various MCS properties must be considered when 474 accounting for the sources of MCS total precipitation bias. For example, in 2014 period, MCS total 475 precipitation is underestimated by the model due in part to relatively large negative bias in MCS 476 size and minor positive rain rate bias. Whereas in 2015, while model bias in MCS size is relatively 477 small, substantial positive bias in rain rate results in severe overpredication of MCS total precipitation. Aside from biases in total precipitation, we also show that the model has difficulty 478 479 in reproducing realistic fraction of heavy/light precipitation.

The model errors in MCS number, rain rate, and precipitation (MCS and domain-mean) notably increase from 2014 to 2015 (Figures 3, 4, and 5). We find the degraded model performance is most likely driven by the availability of observational data for assimilation. The amount of assimilated radiosonde moisture data in 2015 dropped to only half of what was available in 2014 despite consistent assimilation of radiosonde profiles collected at the ARM T3 site in central Amazon. This reinforces the importance of additional observation sites to constrain simulated synoptic environments over the continent.

487 We further break down the statistics by each day and demonstrate that model skill in 488 reproducing MCS properties, including number, size, and distance traveled, could vary 489 significantly from day to day. On many days, the bias in total precipitation can be attributed to the 490 wet bias in heavy rainfall, which result in overall overpredicted precipitation. However, light 491 rainfall may occasionally drive the total precipitation error. Such events happened when both 492 convective and stratiform cloud cover are under-predicted, hence both contribute to dry biases in 493 precipitation. This suggests that it is critical to validate simulated precipitation by considering its 494 dependency per rainfall regime because the biases sourced in different regimes may imply 495 unrealistic model representations of various dynamical and/or microphysics processes. Analysis 496 of daily bias provides more details in terms of model biases in MCS characteristics.

497 Finally, an analysis of an MCS on April 1, 2014 is provided to illustrate how differently the 498 clouds and precipitation are resolved in both observational and model data. We showed that in this 499 particular event, while relatively small wet bias in heavy rainfall is analyzed, the large dry bias in 500 light rain controls the total precipitation bias. This is mainly caused by significant under-prediction 501 in area cover of light rain. Examination of the pre-storm environment suggests the jet in lower 502 troposphere is relatively shallow and weak in the simulations compared to observations. This could 503 lead to insufficient moisture transport and hence weaker convergence that are essential for 504 convective growth and sustainability. Moreover, weaker simulated CAPE also indicated 505 unfavorable conditions for convective growth. Given the evidence, we conclude the environmental 506 conditions may be causing the early dissipation of MCSs and significant negative bias in stratiform 507 cloud cover.

508 In addition to environmental conditions as discussed in Section 3.4, potential sources of model 509 uncertainties in reproducing observed MCS clouds/precipitation may also relate to 1) model 510 resolution, which directly influences how MCS's dynamic structure (e.g. vertical motion) may be 511 resolved and thus alters the secondary circulation accordingly (Varble et al. 2020); and 2) 512 paramterization of microphysical processes. For instance, the magnitude of simulated stratiform 513 precipitation is found to be associated with ice particle mass fluxes as predicted by the employed 514 microphysics schemes (Han et al. 2019). Heating profiles could be changed drastically by 515 replacing one microphysics scheme by another (Feng et al. 2018).

516 Compared to a mesoscale model, climate models tend to simulate even more unrealistic representations of tropical precipitation features (e.g., Tai et al. 2021), due in part to coarse grid 517 518 spacing and much more simplified physics parameterizations. Given the substantial increase in computational power, climate models are now more frequently run at cloud-resolving scales (e.g., 519 520 Tang et al. 2021; Liu et al. 2023). Despite promise as seen in selected case studies (Liu et al. 2023), 521 a high-resolution configuration does not always lead to distinct improvements in general 522 precipitation features (e.g., diurnal cycle) and associated meteorological conditions. We note climate models should use mesoscale model (e.g., WRF) simulations as benchmarks when 523

- 524 assessing their performance. In this way, the behaviors of state-of-the-art climate models can be
- 525 constrained by both success and failure of relatively well-developed mesoscale models.

526 Acknowledgments

- 527 This research was supported by the Atmospheric Science Research (ASR) program as part of the
- 528 DOE Office of Biological and Environmental Research. Pacific Northwest National Laboratory is
- 529 operated by DOE by the Battelle Memorial Institute under contract DE-A06-76RLO 1830. The
- 530 modeling computation was performed on PNNL's Research Computing clusters.

531 Data Availability Statement

532 The WRF community model is available from the National Ceter for Atmospheric Research

- 533 (NCAR) at <u>http://www2.mmm.ucar.edu/wrf/users/</u>. The NCEP FNL operational model Global
- 534 Tropospheric Analysis is accessible at <u>https://rda.ucar.edu/datasets/ds083.2/</u>. The NCEP ADP
- 535 global upper air and surface weather obserbations (prepbufr format) can be downloaded from 536 https://rda.ucar.edu/datasets/ds337.0/. The dataset of National Aeronautics and Space
- Administration (NASA) Global Merged IR V1 infrared brightness temperature can be accessed at
- 538 <u>https://disc.gsfc.nasa.gov/datasets/GPM_MERGIR_1/summary/</u>. The IMERG Final-Run V06B
 539 precipitation products used in this study were acquired from <u>http://pmm.nasa.gov/data-</u>
- 540 access/downloads/gpm/. The GoAmazon2014/15 data used in this manuscript are freely available
- 541 from the ARM data archive (https://www.arm.gov/data). The WRF model outputs generated by
- 542 the simulations in this study are saved on a long-term storage system at PNNL (rc-
- 543 <u>support@pnnl.gov</u>)
- 544

545 **References**

- 546 Nesbitt, S. W., R. Cifelli, and S. A. Rutledge, 2006: Storm Morphology and Rainfall Characteristics of 547 TDND (Description Factories Mar. 124, 2702, 2721, https://linius/10.1175/MWD2200.1
- 547 TRMM Precipitation Features. *Mon. Wea. Rev.*, **134**, 2702–2721, <u>https://doi.org/10.1175/MWR3200.1</u>. 548
- Feng, Z., Leung, L. R., Liu, N., Wang, J., Houze, R. A., Li, J., et al. (2021). A global high-resolution mesoscale convective system database using satellite-derived cloud tops, surface precipitation, and tracking. *Journal of Geophysical Research: Atmospheres*, 126, e2020JD034202.
 https://doi.org/10.1029/2020JD034202
- Sousa, A. C., L. A. Candido, and P. Satyamurty, 2021: Convective Cloud Clusters and Squall Lines along
 the Coastal Amazon. *Mon. Wea. Rev.*, 149, 3589–3608, <u>https://doi.org/10.1175/MWR-D-21-0045.1</u>.
- 555 Schumacher, R.S., Rasmussen, K.L. The formation, character and changing nature of mesoscale convective 556 systems. *Nat Rev Earth Environ* **1**, 300–314 (2020). https://doi.org/10.1038/s43017-020-0057-7
- 557 Feng, Z., Dong, X., Xi, B., Schumacher, C., Minnis, P., and Khaiyer, M. (2011), Top-of-atmosphere
- radiation budget of convective core/stratiform rain and anvil clouds from deep convective systems, J.
- 559 Geophys. Res., 116, D23202, doi:<u>10.1029/2011JD016451</u>.

- 560 Laurent, H., Machado, L. A. T., Morales, C. A., and Durieux, L., Characteristics of the Amazonian
- mesoscale convective systems observed from satellite and radar during the WETAMC/LBA experiment, J.
 Geophys. Res., 107(D20), 8054, doi:10.1029/2001JD000337, 2002.
- 563 Petersen, W. A., S. W. Nesbitt, R. J. Blakeslee, R. Cifelli, P. Hein, and S. A. Rutledge, 2002: TRMM
- 564 Observations of Intraseasonal Variability in Convective Regimes over the Amazon. J. Climate, 15, 1278–
- 565 1294, https://doi.org/10.1175/1520-0442(2002)015<1278:TOOIVI>2.0.CO;2.
- Cifelli, R., Petersen, W. A., Carey, L. D., Rutledge, S. A., and da Silva Dias, M. A. F., Radar observations
 of the kinematic, microphysical, and precipitation characteristics of two MCSs in TRMM LBA, J. Geophys.
 Res., 107(D20), 8077, doi: ref="info:doi/doi:10.1029/2000JD000264">doi:10.1029/2000JD000264 2002.
- 568 Res., 107(D20), 8077, doi: 1e1- info.doi/doi:10.1029/2000JD000204 >doi:10.1029/2000JD000204 2002.
 569 Da Silva, N. A., & Haerter, J. O. (2023). The precipitation characteristics of mesoscale convective systems
- 569Da Silva, N. A., & Haerter, J. O. (2023). The precipitation characteristics of mesoscale convective systems570overEurope. JournalofGeophysicalResearch:Atmospheres, 128,571e2023JD039045. https://doi.org/10.1029/2023JD039045.
- 572 Rickenbach, T. M., Ferreira, R. N., Halverson, J. B., Herdies, D. L., and Silva Dias, M. A. F., Modulation
- 573 of convection in the southwestern Amazon basin by extratropical stationary fronts, J. Geophys. Res.,
- 574 107(D20), doi:10.1029/2000JD000263, 2002.
- Machado, L. A. T., Morales, C., & Avissar, R. (2004). The Large-Scale Biosphere-Atmosphere Experiment
 in Amazonia (LBA): Insights and future research needs. Journal of Geophysical Research: Atmospheres,
 109(D20).
- 578 Burleyson, C. D., Z. Feng, S. M. Hagos, J. Fast, L. A. T. Machado, and S. T. Martin, 2016: Spatial
- 579 Variability of the Background Diurnal Cycle of Deep Convection around the GoAmazon2014/5 Field 580 Campaign Sites. J. Appl. Meteor. Climatol., 55, 1579–1598, https://doi.org/10.1175/JAMC-D-15-0229.1.
- 581 Campaign Sics. *5. Appl. Meleor. Cumulol.*, 55, 1579–1596, <u>https://doi.org/10.1175/3AMC-D</u>
- Rehbein, A, Ambrizzi, T, Mechoso, CR, Espinosa, SAI, Myers, TA. Mesoscale convective systems over
 the Amazon basin: The GoAmazon2014/5 program. *Int J Climatol.* 2019; 39: 5599–5618.
 <u>https://doi.org/10.1002/joc.6173</u>
- Giangrande, S. E., Wang, D., and Mechem, D. B.: Cloud regimes over the Amazon Basin: perspectives
 from the GoAmazon2014/5 campaign, Atmos. Chem. Phys., 20, 7489–7507, https://doi.org/10.5194/acp20-7489-2020, 2020.
- 588

Wang, D., Giangrande, S. E., Feng, Z., Hardin, J. C., & Prein, A. F. (2020). Updraft and downdraft core
 size and intensity as revealed by radar wind profilers: MCS observations and idealized model comparisons.
 Journal of Geophysical Research: Atmospheres, 125, e2019JD031774.
 https://doi.org/10.1029/2019JD031774

- 593
- Tian, Y., Zhang, Y., Klein, S. A., & Schumacher, C. (2021). Interpreting the diurnal cycle of clouds and
 precipitation in the ARM GoAmazon observations: Shallow to deep convection transition. *Journal of Geophysical Research: Atmospheres*, 126, e2020JD033766. <u>https://doi.org/10.1029/2020JD033766</u>
- Anselmo, E. M., C. Schumacher, and L. A. T. Machado, 2020: The Amazonian Low-Level Jet and Its
 Connection to Convective Cloud Propagation and Evolution. *Mon. Wea. Rev.*, 148, 4083–4099,
 https://doi.org/10.1175/MWR-D-19-0414.1.
- 600 Carvalho, L. M. V., Silva Dias, M. A. F., & Fitzjarrald, D. R. (2002). Atmospheric conditions for deep 601 convective clouds in the Amazon. Journal of Geophysical Research: Atmospheres, 107(D20).

- Machado, L. A. T., Laurent, H., Gherboudj, I., Lima, A. P., Morales, C., Blakeslee, R., ... & Cifelli, R.
- 603 (2004). The convective, turbulent, and microphysical characteristics of the Amazon boundary layer.
- 604 Monthly Weather Review, 132(11), 2919-2931.
- Prein, A. F., Ge, M., Valle, A. R., Wang, D., & Giangrande, S. E. (2022). Towards a unified setup to
 simulate mid-latitude and tropical mesoscale convective systems at kilometer-scales. Earth and Space
 Science, 9, e2022EA002295. https://doi.org/10.1029/2022EA002295
- Paccini, L., & Stevens, B. (2023). Assessing precipitation over the Amazon basin as simulated by a stormresolving model. *Journal of Geophysical Research: Atmospheres*, 128, e2022JD037436.
 https://doi.org/10.1029/2022JD037436
- 611 Silva Dias, M. A. F., et al., A case study of convective organization into precipitating lines in the Southwest 612 Amazon during the WETAMC and TRMM-LBA, *J. Geophys. Res.*, 107(D20), 8078, 613 doi:10.1029/2001JD000375, 2002.
- Tai, S.-L., Feng, Z., Ma, P.-L., Schumacher, C., & Fast, J. D. (2021). Representations of precipitation
- 615 diurnal cycle in the amazon as simulated by observationally constrained cloud-system resolving and global
- 616 climate models. Journal of Advances in Modeling Earth Systems, 13, e2021MS002586.
- 617 https://doi.org/10.1029/2021MS002586
- 618 Feng, Z., Leung, L. R., Houze, R. A., Hagos, S., Hardin, J., Yang, Q., et al. (2018). Structure and evolution
- 619 of mesoscale convective systems: Sensitivity to cloud microphysics in convection-permitting simulations 620 over the United States. *Journal of Advances in Modeling Earth Systems*, 10, 1470–1494.
- 621 https://doi.org/10.1029/2018MS001305
- Prein, A. F., Ge, M., Valle, A. R., Wang, D., & Giangrande, S. E. (2022). Towards a unified setup to
 simulate mid-latitude and tropical mesoscale convective systems at kilometer-scales. *Earth and Space Science*, 9, e2022EA002295. <u>https://doi.org/10.1029/2022EA002295</u>
- 625
- Prein A. F., Rasmussen R. M., Wang D. and Giangrande S. E. (2021). Sensitivity of organized convective
 storms to model grid spacing in current and future climates. Phil. Trans. R. Soc. A. 379:20190546.
- Ramos-Valle, A. N., Prein, A. F., Ge, M., Wang, D., & Giangrande, S. E. (2023). Grid spacing sensitivities
 of simulated mid-latitude and tropical mesoscale convective systems in the convective gray zone. *Journal*
- 631 of Geophysical Research: Atmospheres, 128, e2022JD037043. https://doi.org/10.1029/2022JD037043
- 632
- Yang, Z., Varble, A., Berg, L. K., Qian, Y., Tai, S.-L., Chen, J., et al. (2023). Sensitivity of precipitation
 displacement of a simulated MCS to changes in land Surface conditions. *Journal of Geophysical Research: Atmospheres*, 128, e2022JD037642. https://doi.org/10.1029/2022JD037642
- Laurent, H., Machado, L. A. T., Morales, C. A., and Durieux, L., Characteristics of the Amazonian
 mesoscale convective systems observed from satellite and radar during the WETAMC/LBA experiment, J.
- 638 Geophys. Res., 107(D20), 8054, doi: 10.1029/2001JD000337, 2002.
- Anselmo, EM, Machado, LAT, Schumacher, C, Kiladis, GN. Amazonian mesoscale convective systems:
 Life cycle and propagation characteristics. Int J Climatol. 2021; 41: 3968–3981.
 https://doi.org/10.1002/joc.7053

- Huang, X., Hu, C., Huang, X. *et al.* A long-term tropical mesoscale convective systems dataset based on a novel objective automatic tracking algorithm. *Clim Dyn* **51**, 3145–3159 (2018).
- 644 https://doi.org/10.1007/s00382-018-4071-0
- Feng Z., L. Leung, N. Liu, J. Wang, R.A. Houze, J. Li, and J.C. Hardin, et al. 2021. "A Global Highresolution Mesoscale Convective System Database using Satellite-derived Cloud Tops, Surface
 Precipitation, and Tracking." *Journal of Geophysical Research: Atmospheres* 126, no. 8:e2020JD034202.
 PNNL SA 157800 doi:10.1020/2020JD034202
- 648 PNNL-SA-157800. doi:10.1029/2020JD034202
- 649 Feng Z., J.C. Hardin, H.C. Barnes, J. Li, L. Leung, A.C. Varble, and Z. Zhang. 2023. "PyFLEXTRKR: a
- Flexible Feature Tracking Python Software for Convective Cloud Analysis." *Geoscientific Model Development* 16, no. 10:2753-2776. PNNL-SA-179219. doi:10.5194/gmd-16-2753-2023
- 652 Rehbein, A., Ambrizzi, T. and Mechoso, C.R. (2018), Mesoscale convective systems over the Amazon
- basin. Part I: climatological aspects. Int. J. Climatol, 38: 215-229. <u>https://doi.org/10.1002/joc.5171</u>
- Galarneau, T. J., Zeng, X., Dixon, R. D., Ouyed, A., Su, H., & Cui, W. (2023). Tropical mesoscale
 convective system formation environments. *Atmospheric Science Letters*, 24(5), e1152.
 <u>https://doi.org/10.1002/asl.1152</u>
- Prein, A.F., Liu, C., Ikeda, K. *et al.* Simulating North American mesoscale convective systems with a
 convection-permitting climate model. *Clim Dyn* 55, 95–110 (2020). https://doi.org/10.1007/s00382-0173993-2
- 660 Emanuel, K., 2023: On the Physics of High CAPE. J. Atmos. Sci., **80**, 2669–2683, 661 <u>https://doi.org/10.1175/JAS-D-23-0060.1</u>.
- 662 Martin, S. T., Artaxo, P., Machado, L. A. T., Manzi, A. O., Souza, R. A. F., Schumacher, C., Wang, J.,
- Andreae, M. O., Barbosa, H. M. J., Fan, J., Fisch, G., Goldstein, A. H., Guenther, A., Jimenez, J. L., Pöschl,
- 664 U., Silva Dias, M. A., Smith, J. N., and Wendisch, M.: Introduction: Observations and Modeling of the
- 665 Green Ocean Amazon (GoAmazon2014/5), Atmos. Chem. Phys., 16, 4785–4797, 666 <u>https://doi.org/10.5194/acp-16-4785-2016</u>, 2016.
- 667 Na, Y., Fu, Q., Leung, L. R., Kodama, C., & Lu, R. (2022). Mesoscale convective systems simulated by a
- 668 high-resolution global nonhydrostatic model over the United States and China. Journal of Geophysical
- 669 *Research: Atmospheres*, 127, e2021JD035916. <u>https://doi.org/10.1029/2021JD035916</u>
- 670 Cheng, W. Y. Y., and W. R. Cotton, 2004: Sensitivity of a Cloud-Resolving Simulation of the Genesis of 671 a Mesoscale Convective System to Horizontal Heterogeneities in Soil Moisture Initialization. J.
- 672 *Hydrometeor.*, **5**, 934–958, <u>https://doi.org/10.1175/1525-7541(2004)005<0934:SOACSO>2.0.CO;2</u>.
- 673 National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of
- 674 Commerce. (2000). NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July
- 675 1999 (Updated daily) [Dataset]. Research Data Archive at the National Center for Atmospheric Research,
 676 Computational and Information Systems Laboratory. https://doi.org/10.5065/D6M043C6. Accessed⁺ 01
- 677 Apr 2020.
- 678 Andreas Franz Prein, Zhe Feng, Thomas fiolleau, et al. Km-Scale Simulations of Mesoscale Convective
- 679 Systems (MCSs) Over South America A Feature Tracker Intercomparison. ESS Open Archive. October
 680 27, 2023. DOI: 10.22541/essoar.169841723.36785590/v1
- Da Silva, N. A., & Haerter, J. O. (2023). The precipitation characteristics of mesoscale convective systems
- over Europe. Journal of Geophysical Research: Atmospheres, 128, e2023JD039045.
 https://doi.org/10.1029/2023JD039045

- Liu, W., Ullrich, P. A., Li, J., Zarzycki, C., Caldwell, P. M., Leung, L. R., & Qian, Y. (2023). The June
- 685 2012 North American derecho: A testbed for evaluating regional and global climate modeling systems at cloud-resolving scales. *Journal of Advances in Modeling Earth Systems*, **15**, e2022MS003358.
- 687 <u>https://doi.org/10.1029/2022MS003358</u>
- Tang, Q., Prather, M. J., Hsu, J., Ruiz, D. J., Cameron-Smith, P. J., Xie, S., and Golaz, J.-C. (2021).
- Evaluation of the interactive stratospheric ozone (O3v2) module in the E3SM version 1 Earth system model,
 Geosci. Model Dev., 14, 1219–1236, https://doi.org/10.5194/gmd-14-1219-2021
- $690 \quad Geosci. Model Dev., 14, 1219-1230, \underline{hups://doi.org/10.5194/gmd-14-1219-2021}$
- Han, B., Fan, J., Varble, A., Morrison, H., Williams, C. R., Chen, B., et al. (2019). Cloud-resolving model
- 692 intercomparison of an MC3E squall line case: Part II. Stratiform precipitation properties. *Journal of* 693 *Geophysical Research: Atmospheres*, 124, 1090–1117. <u>https://doi.org/10.1029/2018JD029596</u>
- Varble, A., H. Morrison, and E. Zipser, 2020: Effects of Under-Resolved Convective Dynamics on the
 Evolution of a Squall Line. *Mon. Wea. Rev.*, 148, 289–311, <u>https://doi.org/10.1175/MWR-D-19-0187.1</u>.
- 696 Houze, R. A. (2014). Cloud Dynamics (2nd ed.): Elsevier/Academic Press, Oxford.
- 697 Cui, W., X. Dong, B. Xi, Z. Feng, and J. Fan, 2020: Can the GPM IMERG Final Product Accurately
 698 Represent MCSs' Precipitation Characteristics over the Central and Eastern United States?. J.
 699 Hydrometeor., 21, 39–57, https://doi.org/10.1175/JHM-D-19-0123.1.
- Zhang, Z., A. Varble, Z. Feng, J. Hardin, and E. Zipser, 2021: Growth of Mesoscale Convective Systems
 in Observations and a Seasonal Convection-Permitting Simulation over Argentina. Mon. Wea. Rev., 149,
 3469–3490, https://doi.org/10.1175/MWR-D-20-0411.1.
- Ayat, H., J. P. Evans, S. Sherwood, and A. Behrangi, 2020: Are Storm Characteristics the Same When
 Viewed Using Merged Surface Radars or a Merged Satellite Product?. J. Hydrometeor., 22, 43–
 62, https://doi.org/10.1175/JHM-D-20-0187.1.
- 706 Guilloteau, C., Foufoula-Georgiou, E. (2020). Multiscale Evaluation of Satellite Precipitation Products:
- 707 Effective Resolution of IMERG. In: Levizzani, V., Kidd, C., Kirschbaum, D., Kummerow, C., Nakamura,
- 708 K., Turk, F. (eds) Satellite Precipitation Measurement. Advances in Global Change Research, vol 69.
- 709 Springer, Cham. https://doi.org/10.1007/978-3-030-35798-6 5