
P
os
te
d
on

13
M
ar

20
24

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
71
03
32
13
.3
6
79
23
08
/v

1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Near-Automated Estimate of City Nitrogen Oxides Emissions

Applied to South and Southeast Asia

Gongda Lu1, Eloise Ann Marais1, Karn Vohra1, Rebekah P Horner1, Dandan Zhang2,
Randall V Martin3, and Sarath K Guttikunda4

1University College London
2Washington University in St Louis
3Washington University in St. Louis
4Urban Emissions

March 13, 2024

Abstract

Cities in South and Southeast Asia are developing rapidly without routine, up-to-date knowledge of air pollutant precursor

emissions. This data deficit can potentially be addressed for nitrogen oxides (NOx) by deriving city NOx emissions from

satellite observations of nitrogen dioxide (NO2) sampled under windy conditions. NO2 plumes of isolated cities are aligned

along a consistent wind-rotated direction and a best-fit Gaussian is applied to estimate emissions. This approach currently

relies on non-standardized selection of the area to sample around the city centre and Gaussian fits often fail or yield non-

physical parameters. Here, we automate this approach by defining many (54) sampling areas that we test with TROPOspheric

Monitoring Instrument (TROPOMI) NO2 observations for 2019 over 19 cities in South and Southeast Asia. Our approach

is efficient, adaptable to many cities, standardizes and eliminates sensitivity of the Gaussian fit to sampling area choice, and

increases success of deriving annual emissions from 40-60% with one sampling area to 100% (all 19 cities) with 54. The annual

emissions we estimate range from 16±5 mol s-1 for Yangon (Myanmar) and Bangalore (India) to 125±41 mol s-1 for Dhaka

(Bangladesh). With the enhanced success of our approach, we find evidence from comparison of our top-down emissions to past

studies and to inventory estimates that the wind rotation and EMG fit approach may be biased, as it does not adequately

account for spatial and seasonal variability in NOx photochemistry. Further methodological development is needed to enhance

its accuracy and to exploit it to derive sub-annual emissions.
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Key points: 14 

• A refined approach to estimate nitrogen oxides emissions for isolated cities using 15 
wind fields and satellite nitrogen dioxide data. 16 

• Many sampling areas defined for each city, increasing success of deriving emissions 17 
from 40-60% for one area to 100% for 54 areas. 18 

• Applied to 19 cities in South and Southeast Asia to estimate annual emissions of 23 to 19 
181 kilotonnes in 2019.  20 
  21 
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Abstract 22 

Cities in South and Southeast Asia are developing rapidly without routine, up-to-date 23 
knowledge of air pollutant precursor emissions. This data deficit can potentially be addressed 24 
for nitrogen oxides (NOx) by deriving city NOx emissions from satellite observations of 25 
nitrogen dioxide (NO2) sampled under windy conditions. NO2 plumes of isolated cities are 26 
aligned along a consistent wind-rotated direction and a best-fit Gaussian is applied to estimate 27 
emissions. This approach currently relies on non-standardized selection of the area to sample 28 
around the city centre and Gaussian fits often fail or yield non-physical parameters. Here, we 29 
automate this approach by defining many (54) sampling areas that we test with TROPOspheric 30 
Monitoring Instrument (TROPOMI) NO2 observations for 2019 over 19 cities in South and 31 
Southeast Asia. Our approach is efficient, adaptable to many cities, standardizes and eliminates 32 
sensitivity of the Gaussian fit to sampling area choice, and increases success of deriving annual 33 
emissions from 40-60% with one sampling area to 100% (all 19 cities) with 54. The annual 34 
emissions we estimate range from 16±5 mol s-1 for Yangon (Myanmar) and Bangalore (India) 35 
to 125±41 mol s-1 for Dhaka (Bangladesh). With the enhanced success of our approach, we 36 
find evidence from comparison of our top-down emissions to past studies and to inventory 37 
estimates that the wind rotation and EMG fit approach may be biased, as it does not adequately 38 
account for spatial and seasonal variability in NOx photochemistry. Further methodological 39 
development is needed to enhance its accuracy and to exploit it to derive sub-annual emissions. 40 

 41 

Plain Language Summary 42 

Cities are a large source of nitrogen oxides (NOx) that go on to form many types of air pollutants 43 
of harm to human health. City NOx emissions estimated with observations from space-based 44 
instruments are vital in regions that lack access to up-to-date, locally developed inventories. 45 
Success of obtaining satellite-derived emissions hinges on user selection of a sampling area 46 
around each city centre. Here we present an automated, efficient method that uses many (54) 47 
sampling areas. When tested on 19 cities in South and Southeast Asia, annual NOx emissions 48 
are obtained for all 19 cities compared to about half the selected cities when using a single 49 
sampling area. With this updated approach, we estimate total NOx emissions in 2019 that range 50 
from 23 kilotonnes for Yangon and Bangalore to almost 10-times more (181 kilotonnes) for 51 
Dhaka. The greater success of our updated approach also helps us identify that the accuracy of 52 
emissions derivation from satellite observations should be further improved by accounting for 53 
the influence of spatial and seasonal variability in NOx photochemistry.  54 

 55 

1 Introduction 56 

Nitrogen oxides (NOx ≡ NO2 + NO) react to form particulate nitrate and tropospheric 57 
ozone and deposit to sensitive habitats (Luo et al., 2019; Sillman, 1999), thus degrading air 58 
quality, altering climate, and adversely affecting human health and the environment (Grulke & 59 
Heath, 2020; Lelieveld et al., 2015; Yue et al., 2017; Marais et al., 2023). Controls targeting 60 
anthropogenic sources of NOx have been extensively implemented in cities in Europe, the US 61 
and China (Curier et al., 2014; de Foy et al., 2016; Silvern et al., 2019). In cities in other parts 62 
of the world, particularly South and Southeast Asia, NOx is increasing rapidly due to fast 63 
economic development and limited or absent air quality policies (Vohra et al., 2021; 2022). 64 
Vohra et al. (2022) used 14 years of satellite observations of NO2 from the Ozone Monitoring 65 
Instrument (OMI) to infer increases of ~1-14 % a-1 in surface NO2 pollution in almost all rapidly 66 
developing large cities in South and Southeast Asia. Only in Jakarta did NO2 decline due to 67 
emission controls applied to vehicles (Vohra et al., 2022). Population projections suggest that, 68 
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by 2100, one-fifth of the world’s most populous cities will be in Southeast Asia (Hoornweg & 69 
Pope, 2017), necessitating reliable and up-to-date NOx emissions estimates for assessing the 70 
impact of this growth on urban air quality and for informing air quality policies.  71 

Bottom-up inventories provide estimates of anthropogenic NOx emissions, but publicly 72 
available versions for South and Southeast Asia do not adequately represent contemporary 73 
local conditions, as these are derived using outdated activity data, are resource-intensive to 74 
produce so lag the present day, are at spatial resolutions that are coarser than many cities in the 75 
region, and data needed to compile the inventories do not exist for many countries (Kurokawa 76 
& Ohara, 2020). The two most used bottom-up inventories for these regions are the Regional 77 
Emission inventory in Asia (REAS) (Kurokawa & Ohara, 2020) and the inventory known as 78 
MIX, a mosaic of REAS and other regional inventories (Li et al., 2017). REAS and MIX are 79 
at ~25 km resolution, MIX only covers 2 years of data, and the most recent years are 2015 for 80 
REAS and 2010 for MIX. Still, REAS and inventories used to create MIX are routinely 81 
incorporated in global inventories such as the Community Emissions Data System (CEDSGBD-82 
MAPS) (McDuffie et al., 2020), and Hemispheric Transport of Air Pollution (HTAP) (Crippa et 83 
al., 2023). 84 

Independent and contemporary estimates of city NOx emissions can be derived with 85 
satellite observations of tropospheric NO2 vertical column densities (VCDs) without the need 86 
for resource-intensive computer models. A method first proposed by Beirle et al. (2011) 87 
involves selecting isolated cities and treating these as large point sources of NOx. In this 88 
approach, individual satellite pixels within a target domain centred on a city centre were split 89 
into eight major wind directions to resolve the city plume in each direction. A mathematical 90 
function was then fit to the plume to account for its Gaussian shape and exponential decay of 91 
NO2. This fit, referred to as an Exponential Modified Gaussian (EMG), yields parameters that 92 
are then used to estimate NOx emissions. It also yields an effective lifetime of NOx for the city 93 
plume that is dominated by dispersion for the windy conditions sampled. As dispersion 94 
dominates, the derived lifetime is much shorter than the chemical lifetime of NOx that includes 95 
conversion to nitric acid (HNO3) or organic nitrates (de Foy et al., 2014; Laughner & Cohen, 96 
2019) and, to a lesser extent, dry deposition of NO2 (Zhang et al., 2012). Beirle et al. (2011) 97 
used OMI observations of NO2 to derive NOx emissions for eight global megacities. The Beirle 98 
et al. (2011) approach required many (four) years of OMI data to achieve distinct plumes in 99 
each wind direction.  100 

Valin et al. (2013) expanded on the approach developed by Beirle et al. (2011) by 101 
demonstrating that all satellite data can instead be aligned along a single upwind-downwind 102 
direction relative to the city centre. This approach reduced the number of observations needed 103 
to distribute the data by wind direction and so extended application to a greater number of 104 
geographically isolated cities over shorter sampling periods. Wind rotation of OMI 105 
observations and the EMG fit have since been used to calculate city NOx emissions 106 
predominantly in the US (de Foy et al., 2014; Goldberg et al., 2019a; Lu et al., 2015) and for 107 
select cities worldwide (Goldberg et al., 2021). Following the 2017 launch of the higher spatial 108 
resolution TROPOspheric Monitoring Instrument (TROPOMI), the wind rotation, EMG fit, 109 
and related approaches have been extended to smaller isolated cities and shorter sampling 110 
periods than was possible with OMI. Applications include cities in western Europe (Lorente et 111 
al., 2019; Pope et al., 2022), China (Wu et al., 2021), the US (Goldberg et al., 2019b), and 112 
worldwide (Lange et al., 2022), as well as investigating changes in NOx emissions due to 113 
COVID-19 lockdown measures in the New York Metropolitan Area (Tzortziou et al., 2022) 114 
and for select cities in India, Argentina, and Spain (Lange et al., 2022). So far, the wind rotation 115 
and EMG fit has only been applied to 5-13 cities in South and Southeast Asia as part of global 116 
studies (Goldberg et al., 2021; Lange et al., 2022). 117 
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Even though there has been substantial development and use of the EMG fit, it still 118 
requires that a user define a sampling area around the city that effectively captures the wind 119 
rotated plume. The area selected varies with city size and plume length (Lu et al., 2015; 120 
Goldberg et al., 2019a; Lange et al., 2022). This approach often yields no or poor EMG fits 121 
and non-physical best-fit parameters (Laughner & Cohen, 2019), decreasing the likelihood of 122 
deriving top-down emissions. Selecting appropriate city-specific areas for the wide-ranging 123 
city sizes in South and Southeast Asia is also time consuming and not standardized.  124 

Here we develop a near-automated and efficient EMG fitting routine for deriving 125 
annual city NOx emissions, demonstrate the utility of this automation by applying it to 126 
TROPOMI NO2 observations over isolated cities in South and Southeast Asia with wide-127 
ranging city sizes, compare our top-down emissions to past studies and a global bottom-up 128 
inventory, and exploit the greater success of our updated sampling to identify opportunities to 129 
further develop the EMG fit approach. 130 

 131 

2 Materials and Methods 132 

2.1 TROPOMI NO2 and City Selection 133 

We use Level 2 TROPOMI NO2 tropospheric column VCDs for 2019 from the 134 
Sentinel-5P Products Algorithm Laboratory (S5P-PAL) portal (https://data-portal.s5p-135 
pal.com/; last acquired 30 January 2022). These data have been retrieved with a consistent 136 
algorithm (version 02.03.01) and corrected for a low bias in NO2 over polluted scenes (Eskes 137 
et al., 2021). TROPOMI achieves daily global coverage with a swath width of 2600 km, an 138 
equator crossing time of 13:30 local solar time (LST), and a nadir pixel resolution that increased 139 
on 5 August 2019 from 7 km × 3.5 km to 5.5 km × 3.5 km. We use cloud-free, high-quality 140 
data identified with a quality flag ³ 0.75 (van Geffen et al., 2021).  141 

To identify isolated cities appropriate for top-down estimate of NOx emissions, we first 142 
oversample TROPOMI NO2 to obtain high-resolution gridded annual means (0.05° × 0.05°; 143 
~6 km latitude × ~5 km longitude) by weighting areas of overlap between the satellite pixels 144 
and cells on a fixed latitude-longitude grid using tessellation (Sun et al., 2018). We use the 145 
resultant gridded TROPOMI NO2 shown in Figure 1 to manually select 19 cities that are 146 
isolated hotspots. The 19 selected cities are Karachi, Islamabad, and Lahore in Pakistan; Kabul 147 
in Afghanistan; Ahmedabad, Mumbai, Delhi, Bangalore, Chennai, and Kolkata in India; 148 
Colombo in Sri Lanka; Dhaka in Bangladesh; Yangon in Myanmar; Bangkok in Thailand; 149 
Kuala Lumpur in Malaysia; the sovereign city Singapore; Ho Chi Minh City in Vietnam; 150 
Jakarta in Indonesia; and Manila in the Philippines. Other hotspots in Figure 1 are either not 151 
cities, such as the coal-fired power plants concentrated in eastern India, or are not isolated, such 152 
as Hanoi, Haiphong and Nam Dinh in northern Vietnam. 153 

 154 
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 155 
Figure 1. Annual mean TROPOMI tropospheric NO2 VCDs over South and Southeast Asia in 156 
2019. Maps show South (left) and Southeast (right) Asia TROPOMI NO2 oversampled to 0.05° 157 
× 0.05°. The 19 selected cities, numbered from east to west, are Karachi (1), Islamabad (5), 158 
and Lahore (6) in Pakistan; Kabul (2) in Afghanistan; Ahmedabad (3), Mumbai (4), Delhi (7), 159 
Bangalore (8), Chennai (10), and Kolkata (11) in India; Colombo (9) in Sri Lanka; Dhaka (12) 160 
in Bangladesh; Yangon (13) in Myanmar; Bangkok (14) in Thailand; Kuala Lumpur (15) in 161 
Malaysia; the sovereign city Singapore (16); Ho Chi Minh City (17) in Vietnam; Jakarta (18) 162 
in Indonesia; and Manila in the Philippines (19). 163 

 164 

2.2 Wind Rotation and EMG Fit 165 

Figure 2 illustrates the major steps involved in the wind rotation and EMG fit to derive 166 
annual NOx emissions for Singapore. The wind fields we use to calculate wind direction and 167 
speed to retain TROPOMI NO2 observations under windy conditions are the fifth generation 168 
European ReAnalysis (ERA5) 3D hourly u and v wind components 169 
(https://cds.climate.copernicus.eu/cdsapp#!/home; last acquired 18 March 2022) provided at 170 
0.25° × 0.25° resolution. At each TROPOMI NO2 pixel, we compute collocated mean ERA5 171 
wind speeds and directions 30 min around 13:30 LST, the TROPOMI overpass time, in the 172 
lowest 5 layers (³ 900 hPa) to capture dispersion of mixed-layer near-surface NO2 plumes. 173 
Within a 4° × 4° domain around each city centre, we isolate TROPOMI pixels with coincident 174 
wind speeds > 2 m s-1, the threshold typically used for windy conditions (Beirle et al., 2011; 175 
Pope et al., 2022). We rotate each TROPOMI NO2 pixel by the angle of its wind direction, 176 
preserving the distance of the pixel from the city centre. This aligns all pixels along the same 177 
“upwind-downwind” direction that in our work is from north to south (Figure 2(a)). After wind 178 
rotating all pixels in a year (as in Figure 2), we grid pixels onto a uniform 0.05° × 0.05° grid 179 
using simple point-in-box averaging (Figure 2(a)) and fill empty grid cells (grey squares in 180 
Figure 2(a)) using nearest-neighbour interpolation to reduce low biases in the steps that follow.  181 

Next, the 2D map in Figure 2(b) is converted to 1D line densities by summing all grid 182 
cells in the across-wind (east-to-west) direction in 0.05° upwind-downwind (north-to-south) 183 
increments. In the standard approach, a single area smaller than the 4° × 4° domain is used, 184 
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defined by the distance upwind, downwind, and across-wind of the city centre. Instead of using 185 
a single area, we define multiple areas that encompass the range of sizes typically used in past 186 
studies (Goldberg et al., 2021; Lange et al., 2022; Laughner & Cohen, 2019). These, defined 187 
as distances from the city centre, are 0.5°, 0.75°, and 1° upwind, 0.5°, 0.75°, 1.0°, 1.25°, 1.5°, 188 
1.75°, 2.0° downwind, and 0.5°, 0.75°, and 1.0° across-wind, with the requirement that the 189 
distance downwind of the city centre is ³ the distance upwind to capture the extent of the city 190 
plume. This yields 54 areas and associated line densities. The sizes of the smallest and largest 191 
areas sampled and the across-wind 0.05° increments summed to obtain line densities in the 192 
smallest area sampled are shown in Figure 2(b).  193 

The EMG model we use to fit to the observed 1D line densities is the Laughner & 194 
Cohen (2019) formulation: 195 

𝐹(𝑥|𝑎, 𝑥!, 𝜇" , 𝜎" , 𝐵) = 	
#
$"!

exp 0%"
"!
+ &"#

$"!#
− "

"!
3 erfc 0− '

√$
7")%"
&"

− &"
"!
83 + 𝐵   (1), 196 

where x is the distance of each line density upwind and downwind of the city centre (Figure 197 
2(c)) and a, x0, µx, σx and B are best-fit parameters. Of these, a is total NO2 in the plume (in 198 
moles), x0 is the e-folding distance or length scale of NO2 decay (in km), µx is the location of 199 
the apparent source relative to the city centre (in km) or the peak of the Gaussian fit that in 200 
Figure 2(c) is located ~20 km downwind or south of the city centre, σx is the Gaussian 201 
smoothing length scale (in km) that is ~2.355 ´ the Full Width at Half Maximum (FWHM), 202 
and B is background NO2 (in moles m-1).  203 

We use initial guesses for the best-fit parameters in Equation (1) that are similar to those 204 
from Laughner & Cohen (2019), but our fitting procedure differs. Laughner & Cohen (2019) 205 
used a non-linear interior point minimization algorithm (the fmincon function in MATLAB) to 206 
optimize model parameters with 10 iterations per line density. Instead, we perform the fit with 207 
the scipy.optimize.curve_fit module from SciPy Python package version 1.7.3 and iterate on 208 
the fit until the difference in fitting parameters between the current and previous iteration is 209 
negligible (< 0.001%) for at most 10 iterations. Fit convergence is usually achieved after 3 210 
iterations. Only good-quality fits are retained, identified with goodness-of-fits (R2) > 0.8, as in 211 
Laughner & Cohen (2019). We further screen for physically implausible best-fit parameters 212 
using criteria similar to Laughner & Cohen (2019): a is positive, x0 is at least 1.6 km 213 
(approximately 1/e of the grid resolution), µx is within the sampling area, the emission width 214 
is less than the e-folding distance (σx < x0), background NO2 is positive and less than the 215 
maximum line density value, and the e-folding distance occurs between the plume centre and 216 
the edge of the sampling area. We introduce an additional requirement to ensure that x0 is within 217 
the sampling area (x0 < length of sampling area downwind of the city centre). 218 

The Singapore example in Figure 2 is an ideal city, as all 54 EMG fits are successful. 219 
Figure 2(c) shows that the observed line densities are most sensitive to the across-wind length, 220 
as this determines the amount of NO2 summed to yield each line density. We will demonstrate 221 
in Section 3 that for many of the cities in Figure 1 a large number of EMG fits fail to meet the 222 
conditions for success, necessitating as many as 54 fits.  223 

The successful EMG fits are used to calculate effective NOx lifetimes (𝜏*+"; reported 224 
in h) and midday NOx emissions (𝐸*+"; in moles s-1): 225 

𝜏*+" =
"!
,

            (2) 226 

𝐸*+" = 𝛾 × #
-$%"

           (3), 227 
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where w is the sampling area mean wind speed (in m s-1) and γ is the unitless molar ratio of 228 
[NOx]/[NO2] to convert moles NO2 to moles NOx. The up to 54 individual estimates of 𝜏*+" 229 
and 𝐸*+" are averaged to obtain values for each city.  230 

 231 

 232 

 233 
Figure 2. Illustration of major steps in the wind rotation and EMG fit to derive annual NOx 234 
emissions for Singapore. The main steps in each panel are wind rotate and grid windy scene 235 
TROPOMI NO2 pixels to 0.05° × 0.05° (a), fill data gaps (b), and fit the EMG function (Eq. 236 
(1)) (solid lines) to observed line densities (filled circles) (c). In (b), black rectangles show the 237 
extent of the largest and smallest sampling areas and dashed lines in the smallest area show the 238 
0.05° increments used to calculate the line densities in (c). All 54 successful EMG fits, 18 lines 239 
for each of the three across-wind lengths, are shown in (c). Values in (c) give the mean and 240 
standard deviation of the city NOx emissions (Eq. (3)), effective NOx lifetime (Eq. (2)), and 241 
sampling area ERA5 wind speed. The goodness-of-fit (R2) is ≥ 0.99 for all fits in (c). 242 

 243 

We use the same [NOx]/[NO2] = 1.32 value as Beirle et al. (2011) and subsequent 244 
studies to represent rapid cycling between NO and NO2. Liu et al. (2022) determined with 245 
synthetic experiments that city NOx emissions are relatively unaffected by variability in 246 
[NOx]/[NO2], but that study was for US cities. Surface measurements aid in determining 247 
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suitability of [NOx]/[NO2] = 1.32, but these are limited to cities in India and have data quality 248 
issues (Vohra et al., 2021). Instead, we use the GEOS-Chem model to assess suitability of the 249 
1.32 value. We simulate the model in 2019 and sample the lowest model layer around the 250 
TROPOMI overpass time. We use output from a coarse and finer resolution version of GEOS-251 
Chem to also test sensitivity of this ratio to model resolution, especially given many of these 252 
cities are coastal (Figure 1). We use the classical configuration of the model that operates on a 253 
single computational node, called GEOS-Chem Classic (GCClassic), and the high-254 
performance model configuration (GCHP) that is a parallelized across multiple computational 255 
nodes to enable finer resolution global simulations (Eastham et al., 2018). GCClassic is version 256 
13.3.4 (https://doi.org/10.5281/zenodo.5764874) run on a fixed 2° × 2.5° global grid and 257 
GCHP is version 13.4.1 (https://doi.org/10.5281/zenodo.6564711) run on a C360 global grid 258 
(~25 km ́  ~31 km). GCClassic and GCHP use the same vertical grid and chemical mechanism. 259 
For GCClassic, grid squares that overlap with each city are sampled, whereas for GCHP, we 260 
use city sampling extents determined from a combination of administrative and geographic 261 
boundary shapefiles and Google Maps (Figure S1). Midday sampling is at 12:00 to 15:00 LST 262 
from GCClassic and 13:00 to 14:00 LST from GCHP. At midday, NOx is in photochemical 263 
steady state, so the relative abundance of NO and NO2 is insensitive to the extent of the 264 
sampling window around midday (Potts et al., 2021).  265 

We calculate uncertainties in the NOx emissions by adding individual errors in 266 
quadrature. These include best-fit parameters x0 and a, sampling area mean wind speed w, the 267 
TROPOMI NO2 observations, and [NOx]/[NO2]. We use the relative standard deviation from 268 
all successful EMG fits to calculate city-specific errors in x0 and a. For w, we consider errors 269 
due to the choice of spatial and temporal sampling and the threshold used for windy conditions. 270 
We use the Beirle et al. (2011) estimated 10% error in temporal sampling choice and 5% error 271 
due to vertical sampling choice. We conduct our own tests of the sensitivity to threshold and 272 
spatial sampling choice. For [NOx]/[NO2] we assess whether the 10% error attributed to this 273 
variable by Beirle et al. (2011) is appropriate by quantifying the percent deviation of GCClassic 274 
and GCHP [NOx]/[NO2] from 1.32. Beirle et al. (2011) applied a 30% error to OMI that is also 275 
appropriate for TROPOMI. Even though uncertainties in TROPOMI slant columns (NO2 along 276 
the viewing path) are much less than those from OMI (van Geffen et al., 2020), the air mass 277 
factor used to convert slant columns to VCDs remains the largest contributor to errors in NO2 278 
VCDs and is similar for OMI and TROPOMI (van Geffen et al., 2021). 279 

2.3 Bottom-up Anthropogenic Emissions 280 

We compare our top-down estimates to anthropogenic NOx emissions from the widely 281 
used bottom-up HTAP inventory version 3 (HTAP_v3) (Crippa et al., 2023). HTAP_v3 has 282 
high enough spatial resolution (0.1° × 0.1°) to resolve cities selected in Figure 1. The most 283 
recent year is 2018, achieved by extending emissions from the regional REAS inventory ending 284 
in 2015 to the year 2018 with trends from the Emissions Database for Global Atmospheric 285 
Research (EDGAR) inventory. The same sampling boundaries as GCHP are used (Section 2.2; 286 
Figure S1). The HTAP_v3 NOx emissions include contributions from aviation, transport (road, 287 
rail, pipeline, inland waters), shipping, energy, industry, and residential sectors. 288 

Cities targeted can be influenced by non-anthropogenic NOx sources, such as open 289 
burning of biomass (Marvin et al., 2021) and natural sources such as soils (Weng et al., 2020) 290 
and lightning (Miyazaki et al., 2014). We assess suitability of comparing our top-down 291 
emissions to anthropogenic bottom-up emissions only by determining the percent contribution 292 
of anthropogenic emissions to total NOx emissions. To do this, we simulate total NOx emissions 293 
with the Harmonized Emissions Component (HEMCO) standalone model version 3.0.0 294 
(https://zenodo.org/records/4984639; last accessed 20 March 2022) (Lin et al., 2021) and 295 

https://doi.org/10.5281/zenodo.5764874
https://zenodo.org/records/4984639
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sample the same spatial extent as GCHP and HTAP_v3 (Figure S1). HEMCO is run at a spatial 296 
resolution of 0.25° × 0.3125° (~ 28 km latitude × ~ 33 km longitude). HEMCO calculates open 297 
biomass burning emissions using the Global Fire Emissions Database with small fires 298 
(GFED4s) inventory (Randerson et al., 2017) and reads in and processes lightning and soil NOx 299 
from offline emissions at the same resolution as HEMCO (Murray et al., 2012; Weng et al., 300 
2020).  301 

Bottom-up emissions from HTAP_v3 are 24-h means, whereas top-down estimates 302 
derived using TROPOMI are representative of midday emissions. Goldberg et al. (2021) 303 
multiplied satellite-derived midday NOx emissions by 0.77 to convert midday top-down NOx 304 
emissions to 24-h means for comparison to bottom-up inventories. This value was inferred 305 
from bottom-up emissions estimates for the Netherlands, so may not be suitable for the selected 306 
cities in South and Southeast Asia. The hourly scaling factors used by HEMCO for the chosen 307 
cities range from 0.70 to 1.16. These are for the year 2000 and are extrapolations of values for 308 
conditions in Europe, so may not be suitable for the year and cities targeted in this study. Given 309 
this, we do not scale top-down emissions and instead discuss whether differences in averaging 310 
times contribute to discrepancies between top-down and bottom-up emissions estimates.  311 

 312 

3 Results and Discussion 313 

3.1 Wind Rotation and EMG Fit Metrics 314 

Isolating windy condition (> 2 m s-1) satellite pixels removes 8-34% of all 2019 quality- 315 
and cloud-screened TROPOMI NO2 pixels for most cities in Figure 1. Cities with greater data 316 
loss are Lahore (43% data loss), Kabul (58%) and Islamabad (63%). No spatial data gap filling 317 
(Section 2.2, Figure 2) is needed within the areas sampled, due to the high sampling frequency 318 
of TROPOMI. If only a single domain size is selected, annual EMG fits meet all criteria for 319 
success for 7 to 12 of the 19 cities in Figure 1, depending on the sampling area chosen. Using 320 
our extended method, we successfully derive annual NOx emissions for all 19 cities, due to the 321 
enhanced probability of obtaining at least one successful EMG fit.  322 

Figure shows the number of successful EMG fits (orange bars) range from 3 (Kabul) to 323 
all 54 (Singapore). Singapore, Dhaka, Jakarta, Karachi, Manila, and Mumbai are least impacted 324 
by the choice of sampling area. The 6 cities in Figure 3 with < 20 fits are most likely to fail if 325 
only a single sampling area is used. For all retained EMG fits, differences between observed 326 
and fitted NO2 line densities, the fit residuals, are negligible. The most common causes for a 327 
failed EMG fit rank as: background NO2 (B in Equation (1)) > maximum NO2 line density (36% 328 
of all fits conducted), R2 £ 0.8 (24%), emission width > e-folding distance (19%), total plume 329 
NO2 (a in Equation (1)) < 0 (13%), and e-folding distance > the downwind length of the 330 
sampling area (12%). Multiple causes can co-occur in a single fit, so cumulative percentages 331 
exceed 100%. 332 

We also test sensitivity of top-down NOx emissions to the choice of wind speed 333 
threshold and horizontal sampling extent to attribute an error to these. For this, we apply a 334 
stricter wind speed threshold of 3 m s-1 and test the difference in NOx emissions if instead of 335 
filtering for windy conditions using pixel-mean wind fields, we calculate a sampling-area mean 336 
wind speed to filter for windy conditions as in Goldberg et al. (2019a). We apply these 337 
conditions to a mid-sized sampling area of 0.75° upwind, 1.5° downwind, and ±0.75° across-338 
wind. Variability in NOx emissions for cities with successful EMG fits for all 4 wind sampling 339 
conditions is at most 10% (Figure S2). Given these results, we attribute a 10% error to the 340 
choice of horizontal sampling and to the wind speed threshold. 341 
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GCClassic (coarse resolution) annual mean [NOx]/[NO2] for the target cities ranges 342 
from 1.25 (Dhaka) to 1.41 (Kabul). The range in ratios from GCHP (finer resolution) is wider 343 
at 1.24 (Ahmedabad) to 1.64 (Kolkata). The difference in ratios between the coarse and fine 344 
resolution models is typically ±10%, except for a few cities with ratios from the fine resolution 345 
model that exceed the coarse resolution model by 14% for Singapore, 16% for Lahore, 23% 346 
for Dhaka, and 23% for Kolkata. This is because the fine resolution model better resolves the 347 
city plume that includes a greater proportion of NOx as NO from fresh emission sources. As 348 
the difference between the model city ratios and the 1.32 value is ±10% for most cities, we use 349 
the same 10% error for [NOx]/[NO2] as Beirle et al. (2011).  350 

 351 

 352 
Figure 3. Successful EMG fits and top-down NOx emissions for the cities targeted in this study. 353 
Bars are emissions (green) and the corresponding number of successful fits (orange). Black 354 
error lines are NOx emission standard deviations for all successful fits. The orange dashed line 355 
at 54 indicates the maximum possible EMG fits. Emissions multiplied by ~1.45 yields 356 
emissions in Gg NO2 a-1.  357 

 358 

3.2 Top-Down NOx Emissions 359 

Green bars in Figure 3 show the mean annual top-down NOx emissions for all cities 360 
(values are in Table S1). These range from ~16 mol s-1 for Bangalore and Yangon to ~125 mol 361 
s-1 for Dhaka. The range in the total mass of NOx emitted for these cities, assuming the midday 362 
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emission rate is reasonably representative of the 24-h emission rate, is 23-181 Gg NOx as NO2. 363 
Emissions for most cities are < 50 mol s-1 (<73 Gg NOx as NO2 a-1). Cities with emissions 364 
between 50-100 mol s-1 (73-145 Gg NOx as NO2 a-1) include Karachi, Delhi, and Jakarta and > 365 
100 mol s-1 (> 145 Gg NOx as NO2 a-1) include Bangkok, Singapore, and Dhaka. Emission 366 
rates for Bangkok, Dhaka and Singapore are comparable to the range of top-down emissions 367 
estimated for large, polluted cities in China using the EMG approach (Wu et al., 2021). The 368 
effective lifetimes for the cities in Figure 1 (shown in Figure S3) range from 1.2 h for Colombo 369 
to 6.3 h for Kuala Lumpur. Variability in effective lifetimes depends most strongly on the 370 
downwind extent of the plume. The Pearson’s correlation coefficient, R, between city mean 371 
effective lifetimes and x0 values is 0.90.   372 

For the target cities, the relative standard deviations of annual NOx emissions (black 373 
error lines in Figure 3) range from just 1% for Bangalore to 27% for Kuala Lumpur. This is far 374 
less than the equivalent Gaussian fit uncertainty of 10-50% estimated by Beirle et al. (2011) 375 
for a single sampling area. The relatively large variability in Kuala Lumpur NOx emissions is 376 
because the smaller EMG sampling areas do not fully encompass the elongated wind rotated 377 
city NO2 plume, causing a low bias in NOx emissions for the smaller areas sampled. The effect 378 
of this is dampened by the almost 30 successful fits used to obtain mean NOx emissions for this 379 
city. The relative standard deviations of the NOx lifetimes (Figure S3) range from 3% for 380 
Bangalore to 37% for Chennai. The relative standard deviations of other parameters are ~6% 381 
for wind speeds (Figure S4), 4% (Bangalore) to 38% (Chennai) for x0, and 4% (Kabul and 382 
Bangalore) to 37% (Bangkok) for a.  383 

The overall uncertainty in annual NOx emissions we obtain by adding all error 384 
contributions in quadrature ranges from 32% for Bangalore and Yangon to 55% for Bangkok. 385 
Values for all cities are in Table S1. The TROPOMI NO2 VCDs make the largest contribution 386 
to the overall uncertainty. The higher-end of our uncertainty estimates is similar to the typical 387 
~50% uncertainty reported in past studies (Beirle et al., 2011; Verstraeten et al., 2018; Goldberg 388 
et al., 2021). We use our overall uncertainties in the comparison of our top-down emissions to 389 
values from the literature and from HTAP in the sections that follows. 390 

 391 

3.3 Comparison to Top-Down Estimates from Past Studies 392 

To assess our approach, we compare in Figure 4 our annual NOx emissions to values 393 
from past studies that used similar sampling time periods and a single sampling area. These 394 
include multiyear (2017-2019) mean emissions from Goldberg et al. (2021) obtained using the 395 
OMI sensor and emissions from Lange et al. (2022) obtained with select days of TROPOMI 396 
data from 2018 to 2020. Goldberg et al. (2021) estimated emissions for 10 of the 19 cities in 397 
our study. These we read from their Figure S10 for Karachi, Figure S11 for 4 cities in India, 398 
and Figure S13 for 5 cities in Southeast Asia and divide by the 0.77 midday to 24-h scaling 399 
factor used in that study. Emissions are reported by Lange et al. (2022) for 5 of the 19 cities in 400 
our study. Based on the regression statistics in Figure 4, our emissions are typically ~26% more 401 
than estimates from these past studies. Exceptions are Mumbai, Ahmedabad, and Chennai that 402 
in our study are 16-29% less than Goldberg et al. (2021). Lange et al. (2022) used an earlier 403 
version of the TROPOMI data product that has a known low bias in NO2 VCDs over very 404 
polluted scenes (van Geffen et al., 2022). Differences in TROPOMI data products are the likely 405 
cause for our higher Delhi (by 27%) and Singapore (by 18%) emissions. Relatively small error 406 
estimates from Lange et al. (2022) are because they only propagate error contributions from 407 
the wind speed data and the EMG fit. 408 

 409 
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 410 
Figure 4. Comparison of our and past top-down NOx emissions. Symbols compare our 411 
emissions to those from Goldberg et al. (2021) (red) and Lange et al. (2022) (blue). Error bars 412 
are overall uncertainties for our study (Section 2.2, Table S1), the same 53% uncertainty 413 
applied to all cities by Goldberg et al. (2021) and the city-specific uncertainties for Lange et al. 414 
(2022). Lines are the Theil regression fit (solid black) and 1:1 relationship (dashed grey). Inset 415 
text gives the regression statistics and Pearson’s correlation coefficient (R). Arrows and inset 416 
text for Dhaka give the error values that extend beyond the plotting range. 417 

 418 

Discrepancies between Goldberg et al. (2021) and our emissions are not as 419 
straightforward to diagnose, as Goldberg et al. (2021) use NO2 VCDs from a different sensor 420 
(OMI) and apply a systematic 37% increase to NOx emissions to correct for a low bias in OMI 421 
attributed to the coarse resolution a priori used in the NO2 VCDs retrieval. Sampling area 422 
choice may also be a factor. For example, the smallest of our 54 areas yields NOx emissions of 423 
102 mol s-1 for Singapore that is 10 mol s-1 less than the mean of all EMG fits. Goldberg et al. 424 
(2021) used year-round OMI data for all cities except Delhi and Karachi. As these cities are 425 
north of 25°N, only May-September observations were used by Goldberg et al. (2021). We find 426 
that Delhi and Karachi mean May-September TROPOMI NO2 VCDs in 2019 averaged within 427 
the 4° ´ 4° domain selected for each city (Figure 2(a)-(b)) are 11-12% less than those in 428 
October-April, due to the shorter photochemical lifetime of NOx in the warmer months. Open 429 
biomass burning emissions also influence seasonality in the TROPOMI NO2 VCDs, but the 430 
EMG fit accounts for this by distinguishing background NO2 (B in Equation (1)) from NO2 in 431 
the city plume (a in Equation (1)).  432 

We find that if we apply the EMG fit to individual months for Delhi and Karachi, all 433 
54 EMG fits fail for Delhi in July-August and yield spurious results in September due to large 434 
data loss resulting from persistent clouds during the monsoon season. All 12 months are 435 
retained for Karachi, Singapore and Manila. November-April mean values of a are 21% more 436 
than in May-October for Karachi, 9% more for Singapore, and 39% more for Manila. This 437 
suggests that using NO2 VCDs for a portion of the year may yield systematic biases in 438 
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emissions that may not reflect seasonality in the underlying activities affecting the emissions. 439 
Larger wintertime than summertime emissions have also been reported in the global study of 440 
Lange et al. (2022). They quantified summer-to-winter emission ratios of ~0.5 for Colombo 441 
and Delhi. The top-down emissions calculation (Equation (3)) does not fully account for 442 
seasonality in photochemistry. The derived effective NOx lifetimes used to calculate NOx 443 
emissions (Equation (2)) are mostly influenced by dispersion. As a result, the effective lifetimes 444 
are much shorter than the expected chemical lifetimes of NOx (de Foy et al., 2014). In the 445 
synthetic experiment scenarios tested by de Foy et al. (2014), the EMG fit applied to wind 446 
rotated data yielded an effective lifetime of 4 h for a 12-h chemical lifetime scenario. According 447 
to Shah et al. (2020), the chemical lifetime of NOx for central-eastern China centred at ~35°N, 448 
the northerly portion of our domain, ranges from ~6 h in summer to ~24 h in winter. None of 449 
the monthly effective lifetimes for our target cities reproduces this seasonality and the longest 450 
lifetime is 13.3±3.7 h for Yangon in November. The implication is that the size of absolute 451 
emissions derived with sub-annual satellite data may be biased, but should have negligible 452 
effect if used to quantify relative trends, as in Goldberg et al. (2021) and Laughner & Cohen 453 
(2019), for example. 454 

 455 

3.4 Comparison to Bottom-up Emissions 456 

Figure 5 compares annual top-down and bottom-up NOx emissions. According to our 457 
HEMCO simulations, anthropogenic sources account for most (>87%) annual NOx emissions. 458 
The relative differences between our top-down estimates and the bottom-up inventory are 459 
within 50% for Mumbai (1%), Bangkok (2%), Chennai (9%), Ahmedabad (11%), Kolkata 460 
(21%), Singapore (21%), Bangalore (32%), Manila (35%), and Kuala Lumpur (46%). A 50-461 
100% difference occurs for Ho Chi Minh City (53%), Jakarta (54%), Delhi (64%), and 462 
Colombo (91%). Even greater relative differences occur for Karachi (2.1 times), Islamabad 463 
(2.1 times), Lahore (2.4 times), Yangon (3.3 times), Dhaka (6.9 times), and Kabul (11-fold). 464 
The largest absolute discrepancies are for Dhaka and Jakarta. Bottom-up emissions are 107 465 
mol s-1 less than the top-down values for Dhaka and 78 mol s-1 more for Jakarta. On a mass 466 
basis, this is equivalent to a 155 Gg NOx as NO2 underestimate for Dhaka and a 113 Gg NOx 467 
as NO2 overestimate for Jakarta.  468 

The different years used (2018 for HTAP, 2019 for TROPOMI) should at most account 469 
for a 14% difference in emissions, based on the size of annual trends inferred by Vohra et al. 470 
(2022) using long-term observations of OMI NO2 VCDs over large and fast-growing cities in 471 
South and Southeast Asia. Vohra et al. (2022) identified that emission inventories do not 472 
capture the steep decline in NOx emissions in Jakarta attributed to national policies targeting 473 
vehicles. In addition to misrepresenting annual changes in underlying activities, the emission 474 
factors are mostly informed by studies in China and Japan (Kurokawa & Ohara, 2020). The 475 
bottom-up and top-down emissions differences for many cities also exceed the ±30% 476 
difference that results from the choice of bottom-up emissions grid sampling and the ±30% 477 
difference from the timing of the top-down (midday) and bottom-up (24-h) estimates inferred 478 
by Goldberg et al. (2021). 479 

Apparent in Figure 5 is a latitudinal pattern in the discrepancies. Top-down emissions 480 
are greater than bottom-up emissions for cities to the north and vice versa for cities to the south, 481 
so that in general top-down emissions exceed bottom-up emissions in South Asia and vice 482 
versa in Southeast Asia. NOx chemical loss varies with latitude, due to variability in the amount 483 
of sunlight available to form hydroxyl and peroxy radicals required to form HNO3 and organic 484 
nitrates, the main daytime chemical loss pathway for NOx. This latitudinal pattern is likely 485 
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because the EMG fit also does not fully account for spatial variability in NOx photochemistry, 486 
imparting a bias in the top-down emissions. The size of this bias will depend on the relative 487 
contribution of NOx chemical loss to total loss in the wind rotated plume.  488 

 489 

 490 

 491 
Figure 5. Comparison of annual top-down and bottom-up NOx emissions for target cities. Data 492 
are coloured by city centre latitude and split into top-down NOx emissions < 40 mol s-1 (a) and 493 
³ 40 mol s-1 (b). Error bars are the overall uncertainty in top-down emissions estimates. Grey 494 
lines indicate 1:1 agreement (solid) and ±50% difference (dashed). The bottom-up emissions 495 
sampling extent of each city is in Figure S1. Data used to generate the figure are in Table S1. 496 

 497 

4 Conclusions 498 

City nitrogen oxides (NOx) emissions can be derived with a now well-established 499 
approach using satellite observations of nitrogen dioxide (NO2), wind rotation and a Gaussian 500 
fit to the city plume. Issues with this approach are that the choice of sampling area around the 501 
city centre is not standardized and so is prone to subjective area selection and the Gaussian fit 502 
often fails or yields non-physical best-fit parameters. Here we address these issues by applying 503 
54 sampling areas to isolated cities. We test our method with TROPOspheric Monitoring 504 
Instrument (TROPOMI) NO2 observations for 2019 over 19 large, isolated cities in South and 505 
Southeast Asia that lack contemporary, publicly available bottom-up emissions estimates.  506 

Annual NOx emissions, obtained for all 19 cities, are < 73 Gg NOx as NO2 a-1 for most 507 
cities, between 73-145 Gg NOx as NO2 a-1 for Karachi, Delhi, and Jakarta and > 145 Gg NOx 508 
as NO2 a-1 for Bangkok, Dhaka, and Singapore. The overall uncertainty in the annual emissions 509 
is 30-60%. Our emissions estimates are in general ~27% more than past studies that use a single 510 
sampling area, due to differences in satellite data products and months targeted. The latter we 511 
suggest may lead to biases, as the top-down emissions estimate does not properly account for 512 
seasonality in photochemical loss of NOx. Relative differences between our top-down estimates 513 
and a widely used bottom-up inventory are < 50% for 9 of the 19 cities, within 50-100% for 514 
Ho Chi Minh City, Jakarta, Delhi, and Colombo, and much greater for Karachi (2.1 times), 515 
Islamabad (2.1 times), Lahore (2.4 times), Yangon (3.3 times), Dhaka (6.9 times), and Kabul 516 
(11-fold). There is a latitudinal dependence of the size of these discrepancies that we suggest 517 
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is because the top-down approach also does not properly account for spatial variability in the 518 
chemical lifetime of NOx.  519 

The increased success of deriving NOx emissions with our updated approach enables 520 
us to identify that further development is needed to account for time and space variability in 521 
the chemical lifetime of NOx to fully exploit the top-down approach to interrogate seasonality 522 
in emissions, to validate bottom-up emissions, to exploit hourly observations from 523 
geostationary instruments, and to inform air quality regulation.  524 
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Abstract 22 

Cities in South and Southeast Asia are developing rapidly without routine, up-to-date 23 
knowledge of air pollutant precursor emissions. This data deficit can potentially be addressed 24 
for nitrogen oxides (NOx) by deriving city NOx emissions from satellite observations of 25 
nitrogen dioxide (NO2) sampled under windy conditions. NO2 plumes of isolated cities are 26 
aligned along a consistent wind-rotated direction and a best-fit Gaussian is applied to estimate 27 
emissions. This approach currently relies on non-standardized selection of the area to sample 28 
around the city centre and Gaussian fits often fail or yield non-physical parameters. Here, we 29 
automate this approach by defining many (54) sampling areas that we test with TROPOspheric 30 
Monitoring Instrument (TROPOMI) NO2 observations for 2019 over 19 cities in South and 31 
Southeast Asia. Our approach is efficient, adaptable to many cities, standardizes and eliminates 32 
sensitivity of the Gaussian fit to sampling area choice, and increases success of deriving annual 33 
emissions from 40-60% with one sampling area to 100% (all 19 cities) with 54. The annual 34 
emissions we estimate range from 16±5 mol s-1 for Yangon (Myanmar) and Bangalore (India) 35 
to 125±41 mol s-1 for Dhaka (Bangladesh). With the enhanced success of our approach, we 36 
find evidence from comparison of our top-down emissions to past studies and to inventory 37 
estimates that the wind rotation and EMG fit approach may be biased, as it does not adequately 38 
account for spatial and seasonal variability in NOx photochemistry. Further methodological 39 
development is needed to enhance its accuracy and to exploit it to derive sub-annual emissions. 40 

 41 

Plain Language Summary 42 

Cities are a large source of nitrogen oxides (NOx) that go on to form many types of air pollutants 43 
of harm to human health. City NOx emissions estimated with observations from space-based 44 
instruments are vital in regions that lack access to up-to-date, locally developed inventories. 45 
Success of obtaining satellite-derived emissions hinges on user selection of a sampling area 46 
around each city centre. Here we present an automated, efficient method that uses many (54) 47 
sampling areas. When tested on 19 cities in South and Southeast Asia, annual NOx emissions 48 
are obtained for all 19 cities compared to about half the selected cities when using a single 49 
sampling area. With this updated approach, we estimate total NOx emissions in 2019 that range 50 
from 23 kilotonnes for Yangon and Bangalore to almost 10-times more (181 kilotonnes) for 51 
Dhaka. The greater success of our updated approach also helps us identify that the accuracy of 52 
emissions derivation from satellite observations should be further improved by accounting for 53 
the influence of spatial and seasonal variability in NOx photochemistry.  54 

 55 

1 Introduction 56 

Nitrogen oxides (NOx ≡ NO2 + NO) react to form particulate nitrate and tropospheric 57 
ozone and deposit to sensitive habitats (Luo et al., 2019; Sillman, 1999), thus degrading air 58 
quality, altering climate, and adversely affecting human health and the environment (Grulke & 59 
Heath, 2020; Lelieveld et al., 2015; Yue et al., 2017; Marais et al., 2023). Controls targeting 60 
anthropogenic sources of NOx have been extensively implemented in cities in Europe, the US 61 
and China (Curier et al., 2014; de Foy et al., 2016; Silvern et al., 2019). In cities in other parts 62 
of the world, particularly South and Southeast Asia, NOx is increasing rapidly due to fast 63 
economic development and limited or absent air quality policies (Vohra et al., 2021; 2022). 64 
Vohra et al. (2022) used 14 years of satellite observations of NO2 from the Ozone Monitoring 65 
Instrument (OMI) to infer increases of ~1-14 % a-1 in surface NO2 pollution in almost all rapidly 66 
developing large cities in South and Southeast Asia. Only in Jakarta did NO2 decline due to 67 
emission controls applied to vehicles (Vohra et al., 2022). Population projections suggest that, 68 
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by 2100, one-fifth of the world’s most populous cities will be in Southeast Asia (Hoornweg & 69 
Pope, 2017), necessitating reliable and up-to-date NOx emissions estimates for assessing the 70 
impact of this growth on urban air quality and for informing air quality policies.  71 

Bottom-up inventories provide estimates of anthropogenic NOx emissions, but publicly 72 
available versions for South and Southeast Asia do not adequately represent contemporary 73 
local conditions, as these are derived using outdated activity data, are resource-intensive to 74 
produce so lag the present day, are at spatial resolutions that are coarser than many cities in the 75 
region, and data needed to compile the inventories do not exist for many countries (Kurokawa 76 
& Ohara, 2020). The two most used bottom-up inventories for these regions are the Regional 77 
Emission inventory in Asia (REAS) (Kurokawa & Ohara, 2020) and the inventory known as 78 
MIX, a mosaic of REAS and other regional inventories (Li et al., 2017). REAS and MIX are 79 
at ~25 km resolution, MIX only covers 2 years of data, and the most recent years are 2015 for 80 
REAS and 2010 for MIX. Still, REAS and inventories used to create MIX are routinely 81 
incorporated in global inventories such as the Community Emissions Data System (CEDSGBD-82 
MAPS) (McDuffie et al., 2020), and Hemispheric Transport of Air Pollution (HTAP) (Crippa et 83 
al., 2023). 84 

Independent and contemporary estimates of city NOx emissions can be derived with 85 
satellite observations of tropospheric NO2 vertical column densities (VCDs) without the need 86 
for resource-intensive computer models. A method first proposed by Beirle et al. (2011) 87 
involves selecting isolated cities and treating these as large point sources of NOx. In this 88 
approach, individual satellite pixels within a target domain centred on a city centre were split 89 
into eight major wind directions to resolve the city plume in each direction. A mathematical 90 
function was then fit to the plume to account for its Gaussian shape and exponential decay of 91 
NO2. This fit, referred to as an Exponential Modified Gaussian (EMG), yields parameters that 92 
are then used to estimate NOx emissions. It also yields an effective lifetime of NOx for the city 93 
plume that is dominated by dispersion for the windy conditions sampled. As dispersion 94 
dominates, the derived lifetime is much shorter than the chemical lifetime of NOx that includes 95 
conversion to nitric acid (HNO3) or organic nitrates (de Foy et al., 2014; Laughner & Cohen, 96 
2019) and, to a lesser extent, dry deposition of NO2 (Zhang et al., 2012). Beirle et al. (2011) 97 
used OMI observations of NO2 to derive NOx emissions for eight global megacities. The Beirle 98 
et al. (2011) approach required many (four) years of OMI data to achieve distinct plumes in 99 
each wind direction.  100 

Valin et al. (2013) expanded on the approach developed by Beirle et al. (2011) by 101 
demonstrating that all satellite data can instead be aligned along a single upwind-downwind 102 
direction relative to the city centre. This approach reduced the number of observations needed 103 
to distribute the data by wind direction and so extended application to a greater number of 104 
geographically isolated cities over shorter sampling periods. Wind rotation of OMI 105 
observations and the EMG fit have since been used to calculate city NOx emissions 106 
predominantly in the US (de Foy et al., 2014; Goldberg et al., 2019a; Lu et al., 2015) and for 107 
select cities worldwide (Goldberg et al., 2021). Following the 2017 launch of the higher spatial 108 
resolution TROPOspheric Monitoring Instrument (TROPOMI), the wind rotation, EMG fit, 109 
and related approaches have been extended to smaller isolated cities and shorter sampling 110 
periods than was possible with OMI. Applications include cities in western Europe (Lorente et 111 
al., 2019; Pope et al., 2022), China (Wu et al., 2021), the US (Goldberg et al., 2019b), and 112 
worldwide (Lange et al., 2022), as well as investigating changes in NOx emissions due to 113 
COVID-19 lockdown measures in the New York Metropolitan Area (Tzortziou et al., 2022) 114 
and for select cities in India, Argentina, and Spain (Lange et al., 2022). So far, the wind rotation 115 
and EMG fit has only been applied to 5-13 cities in South and Southeast Asia as part of global 116 
studies (Goldberg et al., 2021; Lange et al., 2022). 117 



 4 

Even though there has been substantial development and use of the EMG fit, it still 118 
requires that a user define a sampling area around the city that effectively captures the wind 119 
rotated plume. The area selected varies with city size and plume length (Lu et al., 2015; 120 
Goldberg et al., 2019a; Lange et al., 2022). This approach often yields no or poor EMG fits 121 
and non-physical best-fit parameters (Laughner & Cohen, 2019), decreasing the likelihood of 122 
deriving top-down emissions. Selecting appropriate city-specific areas for the wide-ranging 123 
city sizes in South and Southeast Asia is also time consuming and not standardized.  124 

Here we develop a near-automated and efficient EMG fitting routine for deriving 125 
annual city NOx emissions, demonstrate the utility of this automation by applying it to 126 
TROPOMI NO2 observations over isolated cities in South and Southeast Asia with wide-127 
ranging city sizes, compare our top-down emissions to past studies and a global bottom-up 128 
inventory, and exploit the greater success of our updated sampling to identify opportunities to 129 
further develop the EMG fit approach. 130 

 131 

2 Materials and Methods 132 

2.1 TROPOMI NO2 and City Selection 133 

We use Level 2 TROPOMI NO2 tropospheric column VCDs for 2019 from the 134 
Sentinel-5P Products Algorithm Laboratory (S5P-PAL) portal (https://data-portal.s5p-135 
pal.com/; last acquired 30 January 2022). These data have been retrieved with a consistent 136 
algorithm (version 02.03.01) and corrected for a low bias in NO2 over polluted scenes (Eskes 137 
et al., 2021). TROPOMI achieves daily global coverage with a swath width of 2600 km, an 138 
equator crossing time of 13:30 local solar time (LST), and a nadir pixel resolution that increased 139 
on 5 August 2019 from 7 km × 3.5 km to 5.5 km × 3.5 km. We use cloud-free, high-quality 140 
data identified with a quality flag ³ 0.75 (van Geffen et al., 2021).  141 

To identify isolated cities appropriate for top-down estimate of NOx emissions, we first 142 
oversample TROPOMI NO2 to obtain high-resolution gridded annual means (0.05° × 0.05°; 143 
~6 km latitude × ~5 km longitude) by weighting areas of overlap between the satellite pixels 144 
and cells on a fixed latitude-longitude grid using tessellation (Sun et al., 2018). We use the 145 
resultant gridded TROPOMI NO2 shown in Figure 1 to manually select 19 cities that are 146 
isolated hotspots. The 19 selected cities are Karachi, Islamabad, and Lahore in Pakistan; Kabul 147 
in Afghanistan; Ahmedabad, Mumbai, Delhi, Bangalore, Chennai, and Kolkata in India; 148 
Colombo in Sri Lanka; Dhaka in Bangladesh; Yangon in Myanmar; Bangkok in Thailand; 149 
Kuala Lumpur in Malaysia; the sovereign city Singapore; Ho Chi Minh City in Vietnam; 150 
Jakarta in Indonesia; and Manila in the Philippines. Other hotspots in Figure 1 are either not 151 
cities, such as the coal-fired power plants concentrated in eastern India, or are not isolated, such 152 
as Hanoi, Haiphong and Nam Dinh in northern Vietnam. 153 

 154 
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 155 
Figure 1. Annual mean TROPOMI tropospheric NO2 VCDs over South and Southeast Asia in 156 
2019. Maps show South (left) and Southeast (right) Asia TROPOMI NO2 oversampled to 0.05° 157 
× 0.05°. The 19 selected cities, numbered from east to west, are Karachi (1), Islamabad (5), 158 
and Lahore (6) in Pakistan; Kabul (2) in Afghanistan; Ahmedabad (3), Mumbai (4), Delhi (7), 159 
Bangalore (8), Chennai (10), and Kolkata (11) in India; Colombo (9) in Sri Lanka; Dhaka (12) 160 
in Bangladesh; Yangon (13) in Myanmar; Bangkok (14) in Thailand; Kuala Lumpur (15) in 161 
Malaysia; the sovereign city Singapore (16); Ho Chi Minh City (17) in Vietnam; Jakarta (18) 162 
in Indonesia; and Manila in the Philippines (19). 163 

 164 

2.2 Wind Rotation and EMG Fit 165 

Figure 2 illustrates the major steps involved in the wind rotation and EMG fit to derive 166 
annual NOx emissions for Singapore. The wind fields we use to calculate wind direction and 167 
speed to retain TROPOMI NO2 observations under windy conditions are the fifth generation 168 
European ReAnalysis (ERA5) 3D hourly u and v wind components 169 
(https://cds.climate.copernicus.eu/cdsapp#!/home; last acquired 18 March 2022) provided at 170 
0.25° × 0.25° resolution. At each TROPOMI NO2 pixel, we compute collocated mean ERA5 171 
wind speeds and directions 30 min around 13:30 LST, the TROPOMI overpass time, in the 172 
lowest 5 layers (³ 900 hPa) to capture dispersion of mixed-layer near-surface NO2 plumes. 173 
Within a 4° × 4° domain around each city centre, we isolate TROPOMI pixels with coincident 174 
wind speeds > 2 m s-1, the threshold typically used for windy conditions (Beirle et al., 2011; 175 
Pope et al., 2022). We rotate each TROPOMI NO2 pixel by the angle of its wind direction, 176 
preserving the distance of the pixel from the city centre. This aligns all pixels along the same 177 
“upwind-downwind” direction that in our work is from north to south (Figure 2(a)). After wind 178 
rotating all pixels in a year (as in Figure 2), we grid pixels onto a uniform 0.05° × 0.05° grid 179 
using simple point-in-box averaging (Figure 2(a)) and fill empty grid cells (grey squares in 180 
Figure 2(a)) using nearest-neighbour interpolation to reduce low biases in the steps that follow.  181 

Next, the 2D map in Figure 2(b) is converted to 1D line densities by summing all grid 182 
cells in the across-wind (east-to-west) direction in 0.05° upwind-downwind (north-to-south) 183 
increments. In the standard approach, a single area smaller than the 4° × 4° domain is used, 184 
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defined by the distance upwind, downwind, and across-wind of the city centre. Instead of using 185 
a single area, we define multiple areas that encompass the range of sizes typically used in past 186 
studies (Goldberg et al., 2021; Lange et al., 2022; Laughner & Cohen, 2019). These, defined 187 
as distances from the city centre, are 0.5°, 0.75°, and 1° upwind, 0.5°, 0.75°, 1.0°, 1.25°, 1.5°, 188 
1.75°, 2.0° downwind, and 0.5°, 0.75°, and 1.0° across-wind, with the requirement that the 189 
distance downwind of the city centre is ³ the distance upwind to capture the extent of the city 190 
plume. This yields 54 areas and associated line densities. The sizes of the smallest and largest 191 
areas sampled and the across-wind 0.05° increments summed to obtain line densities in the 192 
smallest area sampled are shown in Figure 2(b).  193 

The EMG model we use to fit to the observed 1D line densities is the Laughner & 194 
Cohen (2019) formulation: 195 

𝐹(𝑥|𝑎, 𝑥!, 𝜇" , 𝜎" , 𝐵) = 	
#
$"!

exp 0%"
"!
+ &"#

$"!#
− "

"!
3 erfc 0− '

√$
7")%"
&"

− &"
"!
83 + 𝐵   (1), 196 

where x is the distance of each line density upwind and downwind of the city centre (Figure 197 
2(c)) and a, x0, µx, σx and B are best-fit parameters. Of these, a is total NO2 in the plume (in 198 
moles), x0 is the e-folding distance or length scale of NO2 decay (in km), µx is the location of 199 
the apparent source relative to the city centre (in km) or the peak of the Gaussian fit that in 200 
Figure 2(c) is located ~20 km downwind or south of the city centre, σx is the Gaussian 201 
smoothing length scale (in km) that is ~2.355 ´ the Full Width at Half Maximum (FWHM), 202 
and B is background NO2 (in moles m-1).  203 

We use initial guesses for the best-fit parameters in Equation (1) that are similar to those 204 
from Laughner & Cohen (2019), but our fitting procedure differs. Laughner & Cohen (2019) 205 
used a non-linear interior point minimization algorithm (the fmincon function in MATLAB) to 206 
optimize model parameters with 10 iterations per line density. Instead, we perform the fit with 207 
the scipy.optimize.curve_fit module from SciPy Python package version 1.7.3 and iterate on 208 
the fit until the difference in fitting parameters between the current and previous iteration is 209 
negligible (< 0.001%) for at most 10 iterations. Fit convergence is usually achieved after 3 210 
iterations. Only good-quality fits are retained, identified with goodness-of-fits (R2) > 0.8, as in 211 
Laughner & Cohen (2019). We further screen for physically implausible best-fit parameters 212 
using criteria similar to Laughner & Cohen (2019): a is positive, x0 is at least 1.6 km 213 
(approximately 1/e of the grid resolution), µx is within the sampling area, the emission width 214 
is less than the e-folding distance (σx < x0), background NO2 is positive and less than the 215 
maximum line density value, and the e-folding distance occurs between the plume centre and 216 
the edge of the sampling area. We introduce an additional requirement to ensure that x0 is within 217 
the sampling area (x0 < length of sampling area downwind of the city centre). 218 

The Singapore example in Figure 2 is an ideal city, as all 54 EMG fits are successful. 219 
Figure 2(c) shows that the observed line densities are most sensitive to the across-wind length, 220 
as this determines the amount of NO2 summed to yield each line density. We will demonstrate 221 
in Section 3 that for many of the cities in Figure 1 a large number of EMG fits fail to meet the 222 
conditions for success, necessitating as many as 54 fits.  223 

The successful EMG fits are used to calculate effective NOx lifetimes (𝜏*+"; reported 224 
in h) and midday NOx emissions (𝐸*+"; in moles s-1): 225 

𝜏*+" =
"!
,

            (2) 226 

𝐸*+" = 𝛾 × #
-$%"

           (3), 227 
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where w is the sampling area mean wind speed (in m s-1) and γ is the unitless molar ratio of 228 
[NOx]/[NO2] to convert moles NO2 to moles NOx. The up to 54 individual estimates of 𝜏*+" 229 
and 𝐸*+" are averaged to obtain values for each city.  230 

 231 

 232 

 233 
Figure 2. Illustration of major steps in the wind rotation and EMG fit to derive annual NOx 234 
emissions for Singapore. The main steps in each panel are wind rotate and grid windy scene 235 
TROPOMI NO2 pixels to 0.05° × 0.05° (a), fill data gaps (b), and fit the EMG function (Eq. 236 
(1)) (solid lines) to observed line densities (filled circles) (c). In (b), black rectangles show the 237 
extent of the largest and smallest sampling areas and dashed lines in the smallest area show the 238 
0.05° increments used to calculate the line densities in (c). All 54 successful EMG fits, 18 lines 239 
for each of the three across-wind lengths, are shown in (c). Values in (c) give the mean and 240 
standard deviation of the city NOx emissions (Eq. (3)), effective NOx lifetime (Eq. (2)), and 241 
sampling area ERA5 wind speed. The goodness-of-fit (R2) is ≥ 0.99 for all fits in (c). 242 

 243 

We use the same [NOx]/[NO2] = 1.32 value as Beirle et al. (2011) and subsequent 244 
studies to represent rapid cycling between NO and NO2. Liu et al. (2022) determined with 245 
synthetic experiments that city NOx emissions are relatively unaffected by variability in 246 
[NOx]/[NO2], but that study was for US cities. Surface measurements aid in determining 247 
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suitability of [NOx]/[NO2] = 1.32, but these are limited to cities in India and have data quality 248 
issues (Vohra et al., 2021). Instead, we use the GEOS-Chem model to assess suitability of the 249 
1.32 value. We simulate the model in 2019 and sample the lowest model layer around the 250 
TROPOMI overpass time. We use output from a coarse and finer resolution version of GEOS-251 
Chem to also test sensitivity of this ratio to model resolution, especially given many of these 252 
cities are coastal (Figure 1). We use the classical configuration of the model that operates on a 253 
single computational node, called GEOS-Chem Classic (GCClassic), and the high-254 
performance model configuration (GCHP) that is a parallelized across multiple computational 255 
nodes to enable finer resolution global simulations (Eastham et al., 2018). GCClassic is version 256 
13.3.4 (https://doi.org/10.5281/zenodo.5764874) run on a fixed 2° × 2.5° global grid and 257 
GCHP is version 13.4.1 (https://doi.org/10.5281/zenodo.6564711) run on a C360 global grid 258 
(~25 km ́  ~31 km). GCClassic and GCHP use the same vertical grid and chemical mechanism. 259 
For GCClassic, grid squares that overlap with each city are sampled, whereas for GCHP, we 260 
use city sampling extents determined from a combination of administrative and geographic 261 
boundary shapefiles and Google Maps (Figure S1). Midday sampling is at 12:00 to 15:00 LST 262 
from GCClassic and 13:00 to 14:00 LST from GCHP. At midday, NOx is in photochemical 263 
steady state, so the relative abundance of NO and NO2 is insensitive to the extent of the 264 
sampling window around midday (Potts et al., 2021).  265 

We calculate uncertainties in the NOx emissions by adding individual errors in 266 
quadrature. These include best-fit parameters x0 and a, sampling area mean wind speed w, the 267 
TROPOMI NO2 observations, and [NOx]/[NO2]. We use the relative standard deviation from 268 
all successful EMG fits to calculate city-specific errors in x0 and a. For w, we consider errors 269 
due to the choice of spatial and temporal sampling and the threshold used for windy conditions. 270 
We use the Beirle et al. (2011) estimated 10% error in temporal sampling choice and 5% error 271 
due to vertical sampling choice. We conduct our own tests of the sensitivity to threshold and 272 
spatial sampling choice. For [NOx]/[NO2] we assess whether the 10% error attributed to this 273 
variable by Beirle et al. (2011) is appropriate by quantifying the percent deviation of GCClassic 274 
and GCHP [NOx]/[NO2] from 1.32. Beirle et al. (2011) applied a 30% error to OMI that is also 275 
appropriate for TROPOMI. Even though uncertainties in TROPOMI slant columns (NO2 along 276 
the viewing path) are much less than those from OMI (van Geffen et al., 2020), the air mass 277 
factor used to convert slant columns to VCDs remains the largest contributor to errors in NO2 278 
VCDs and is similar for OMI and TROPOMI (van Geffen et al., 2021). 279 

2.3 Bottom-up Anthropogenic Emissions 280 

We compare our top-down estimates to anthropogenic NOx emissions from the widely 281 
used bottom-up HTAP inventory version 3 (HTAP_v3) (Crippa et al., 2023). HTAP_v3 has 282 
high enough spatial resolution (0.1° × 0.1°) to resolve cities selected in Figure 1. The most 283 
recent year is 2018, achieved by extending emissions from the regional REAS inventory ending 284 
in 2015 to the year 2018 with trends from the Emissions Database for Global Atmospheric 285 
Research (EDGAR) inventory. The same sampling boundaries as GCHP are used (Section 2.2; 286 
Figure S1). The HTAP_v3 NOx emissions include contributions from aviation, transport (road, 287 
rail, pipeline, inland waters), shipping, energy, industry, and residential sectors. 288 

Cities targeted can be influenced by non-anthropogenic NOx sources, such as open 289 
burning of biomass (Marvin et al., 2021) and natural sources such as soils (Weng et al., 2020) 290 
and lightning (Miyazaki et al., 2014). We assess suitability of comparing our top-down 291 
emissions to anthropogenic bottom-up emissions only by determining the percent contribution 292 
of anthropogenic emissions to total NOx emissions. To do this, we simulate total NOx emissions 293 
with the Harmonized Emissions Component (HEMCO) standalone model version 3.0.0 294 
(https://zenodo.org/records/4984639; last accessed 20 March 2022) (Lin et al., 2021) and 295 

https://doi.org/10.5281/zenodo.5764874
https://zenodo.org/records/4984639
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sample the same spatial extent as GCHP and HTAP_v3 (Figure S1). HEMCO is run at a spatial 296 
resolution of 0.25° × 0.3125° (~ 28 km latitude × ~ 33 km longitude). HEMCO calculates open 297 
biomass burning emissions using the Global Fire Emissions Database with small fires 298 
(GFED4s) inventory (Randerson et al., 2017) and reads in and processes lightning and soil NOx 299 
from offline emissions at the same resolution as HEMCO (Murray et al., 2012; Weng et al., 300 
2020).  301 

Bottom-up emissions from HTAP_v3 are 24-h means, whereas top-down estimates 302 
derived using TROPOMI are representative of midday emissions. Goldberg et al. (2021) 303 
multiplied satellite-derived midday NOx emissions by 0.77 to convert midday top-down NOx 304 
emissions to 24-h means for comparison to bottom-up inventories. This value was inferred 305 
from bottom-up emissions estimates for the Netherlands, so may not be suitable for the selected 306 
cities in South and Southeast Asia. The hourly scaling factors used by HEMCO for the chosen 307 
cities range from 0.70 to 1.16. These are for the year 2000 and are extrapolations of values for 308 
conditions in Europe, so may not be suitable for the year and cities targeted in this study. Given 309 
this, we do not scale top-down emissions and instead discuss whether differences in averaging 310 
times contribute to discrepancies between top-down and bottom-up emissions estimates.  311 

 312 

3 Results and Discussion 313 

3.1 Wind Rotation and EMG Fit Metrics 314 

Isolating windy condition (> 2 m s-1) satellite pixels removes 8-34% of all 2019 quality- 315 
and cloud-screened TROPOMI NO2 pixels for most cities in Figure 1. Cities with greater data 316 
loss are Lahore (43% data loss), Kabul (58%) and Islamabad (63%). No spatial data gap filling 317 
(Section 2.2, Figure 2) is needed within the areas sampled, due to the high sampling frequency 318 
of TROPOMI. If only a single domain size is selected, annual EMG fits meet all criteria for 319 
success for 7 to 12 of the 19 cities in Figure 1, depending on the sampling area chosen. Using 320 
our extended method, we successfully derive annual NOx emissions for all 19 cities, due to the 321 
enhanced probability of obtaining at least one successful EMG fit.  322 

Figure shows the number of successful EMG fits (orange bars) range from 3 (Kabul) to 323 
all 54 (Singapore). Singapore, Dhaka, Jakarta, Karachi, Manila, and Mumbai are least impacted 324 
by the choice of sampling area. The 6 cities in Figure 3 with < 20 fits are most likely to fail if 325 
only a single sampling area is used. For all retained EMG fits, differences between observed 326 
and fitted NO2 line densities, the fit residuals, are negligible. The most common causes for a 327 
failed EMG fit rank as: background NO2 (B in Equation (1)) > maximum NO2 line density (36% 328 
of all fits conducted), R2 £ 0.8 (24%), emission width > e-folding distance (19%), total plume 329 
NO2 (a in Equation (1)) < 0 (13%), and e-folding distance > the downwind length of the 330 
sampling area (12%). Multiple causes can co-occur in a single fit, so cumulative percentages 331 
exceed 100%. 332 

We also test sensitivity of top-down NOx emissions to the choice of wind speed 333 
threshold and horizontal sampling extent to attribute an error to these. For this, we apply a 334 
stricter wind speed threshold of 3 m s-1 and test the difference in NOx emissions if instead of 335 
filtering for windy conditions using pixel-mean wind fields, we calculate a sampling-area mean 336 
wind speed to filter for windy conditions as in Goldberg et al. (2019a). We apply these 337 
conditions to a mid-sized sampling area of 0.75° upwind, 1.5° downwind, and ±0.75° across-338 
wind. Variability in NOx emissions for cities with successful EMG fits for all 4 wind sampling 339 
conditions is at most 10% (Figure S2). Given these results, we attribute a 10% error to the 340 
choice of horizontal sampling and to the wind speed threshold. 341 
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GCClassic (coarse resolution) annual mean [NOx]/[NO2] for the target cities ranges 342 
from 1.25 (Dhaka) to 1.41 (Kabul). The range in ratios from GCHP (finer resolution) is wider 343 
at 1.24 (Ahmedabad) to 1.64 (Kolkata). The difference in ratios between the coarse and fine 344 
resolution models is typically ±10%, except for a few cities with ratios from the fine resolution 345 
model that exceed the coarse resolution model by 14% for Singapore, 16% for Lahore, 23% 346 
for Dhaka, and 23% for Kolkata. This is because the fine resolution model better resolves the 347 
city plume that includes a greater proportion of NOx as NO from fresh emission sources. As 348 
the difference between the model city ratios and the 1.32 value is ±10% for most cities, we use 349 
the same 10% error for [NOx]/[NO2] as Beirle et al. (2011).  350 

 351 

 352 
Figure 3. Successful EMG fits and top-down NOx emissions for the cities targeted in this study. 353 
Bars are emissions (green) and the corresponding number of successful fits (orange). Black 354 
error lines are NOx emission standard deviations for all successful fits. The orange dashed line 355 
at 54 indicates the maximum possible EMG fits. Emissions multiplied by ~1.45 yields 356 
emissions in Gg NO2 a-1.  357 

 358 

3.2 Top-Down NOx Emissions 359 

Green bars in Figure 3 show the mean annual top-down NOx emissions for all cities 360 
(values are in Table S1). These range from ~16 mol s-1 for Bangalore and Yangon to ~125 mol 361 
s-1 for Dhaka. The range in the total mass of NOx emitted for these cities, assuming the midday 362 
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emission rate is reasonably representative of the 24-h emission rate, is 23-181 Gg NOx as NO2. 363 
Emissions for most cities are < 50 mol s-1 (<73 Gg NOx as NO2 a-1). Cities with emissions 364 
between 50-100 mol s-1 (73-145 Gg NOx as NO2 a-1) include Karachi, Delhi, and Jakarta and > 365 
100 mol s-1 (> 145 Gg NOx as NO2 a-1) include Bangkok, Singapore, and Dhaka. Emission 366 
rates for Bangkok, Dhaka and Singapore are comparable to the range of top-down emissions 367 
estimated for large, polluted cities in China using the EMG approach (Wu et al., 2021). The 368 
effective lifetimes for the cities in Figure 1 (shown in Figure S3) range from 1.2 h for Colombo 369 
to 6.3 h for Kuala Lumpur. Variability in effective lifetimes depends most strongly on the 370 
downwind extent of the plume. The Pearson’s correlation coefficient, R, between city mean 371 
effective lifetimes and x0 values is 0.90.   372 

For the target cities, the relative standard deviations of annual NOx emissions (black 373 
error lines in Figure 3) range from just 1% for Bangalore to 27% for Kuala Lumpur. This is far 374 
less than the equivalent Gaussian fit uncertainty of 10-50% estimated by Beirle et al. (2011) 375 
for a single sampling area. The relatively large variability in Kuala Lumpur NOx emissions is 376 
because the smaller EMG sampling areas do not fully encompass the elongated wind rotated 377 
city NO2 plume, causing a low bias in NOx emissions for the smaller areas sampled. The effect 378 
of this is dampened by the almost 30 successful fits used to obtain mean NOx emissions for this 379 
city. The relative standard deviations of the NOx lifetimes (Figure S3) range from 3% for 380 
Bangalore to 37% for Chennai. The relative standard deviations of other parameters are ~6% 381 
for wind speeds (Figure S4), 4% (Bangalore) to 38% (Chennai) for x0, and 4% (Kabul and 382 
Bangalore) to 37% (Bangkok) for a.  383 

The overall uncertainty in annual NOx emissions we obtain by adding all error 384 
contributions in quadrature ranges from 32% for Bangalore and Yangon to 55% for Bangkok. 385 
Values for all cities are in Table S1. The TROPOMI NO2 VCDs make the largest contribution 386 
to the overall uncertainty. The higher-end of our uncertainty estimates is similar to the typical 387 
~50% uncertainty reported in past studies (Beirle et al., 2011; Verstraeten et al., 2018; Goldberg 388 
et al., 2021). We use our overall uncertainties in the comparison of our top-down emissions to 389 
values from the literature and from HTAP in the sections that follows. 390 

 391 

3.3 Comparison to Top-Down Estimates from Past Studies 392 

To assess our approach, we compare in Figure 4 our annual NOx emissions to values 393 
from past studies that used similar sampling time periods and a single sampling area. These 394 
include multiyear (2017-2019) mean emissions from Goldberg et al. (2021) obtained using the 395 
OMI sensor and emissions from Lange et al. (2022) obtained with select days of TROPOMI 396 
data from 2018 to 2020. Goldberg et al. (2021) estimated emissions for 10 of the 19 cities in 397 
our study. These we read from their Figure S10 for Karachi, Figure S11 for 4 cities in India, 398 
and Figure S13 for 5 cities in Southeast Asia and divide by the 0.77 midday to 24-h scaling 399 
factor used in that study. Emissions are reported by Lange et al. (2022) for 5 of the 19 cities in 400 
our study. Based on the regression statistics in Figure 4, our emissions are typically ~26% more 401 
than estimates from these past studies. Exceptions are Mumbai, Ahmedabad, and Chennai that 402 
in our study are 16-29% less than Goldberg et al. (2021). Lange et al. (2022) used an earlier 403 
version of the TROPOMI data product that has a known low bias in NO2 VCDs over very 404 
polluted scenes (van Geffen et al., 2022). Differences in TROPOMI data products are the likely 405 
cause for our higher Delhi (by 27%) and Singapore (by 18%) emissions. Relatively small error 406 
estimates from Lange et al. (2022) are because they only propagate error contributions from 407 
the wind speed data and the EMG fit. 408 

 409 
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 410 
Figure 4. Comparison of our and past top-down NOx emissions. Symbols compare our 411 
emissions to those from Goldberg et al. (2021) (red) and Lange et al. (2022) (blue). Error bars 412 
are overall uncertainties for our study (Section 2.2, Table S1), the same 53% uncertainty 413 
applied to all cities by Goldberg et al. (2021) and the city-specific uncertainties for Lange et al. 414 
(2022). Lines are the Theil regression fit (solid black) and 1:1 relationship (dashed grey). Inset 415 
text gives the regression statistics and Pearson’s correlation coefficient (R). Arrows and inset 416 
text for Dhaka give the error values that extend beyond the plotting range. 417 

 418 

Discrepancies between Goldberg et al. (2021) and our emissions are not as 419 
straightforward to diagnose, as Goldberg et al. (2021) use NO2 VCDs from a different sensor 420 
(OMI) and apply a systematic 37% increase to NOx emissions to correct for a low bias in OMI 421 
attributed to the coarse resolution a priori used in the NO2 VCDs retrieval. Sampling area 422 
choice may also be a factor. For example, the smallest of our 54 areas yields NOx emissions of 423 
102 mol s-1 for Singapore that is 10 mol s-1 less than the mean of all EMG fits. Goldberg et al. 424 
(2021) used year-round OMI data for all cities except Delhi and Karachi. As these cities are 425 
north of 25°N, only May-September observations were used by Goldberg et al. (2021). We find 426 
that Delhi and Karachi mean May-September TROPOMI NO2 VCDs in 2019 averaged within 427 
the 4° ´ 4° domain selected for each city (Figure 2(a)-(b)) are 11-12% less than those in 428 
October-April, due to the shorter photochemical lifetime of NOx in the warmer months. Open 429 
biomass burning emissions also influence seasonality in the TROPOMI NO2 VCDs, but the 430 
EMG fit accounts for this by distinguishing background NO2 (B in Equation (1)) from NO2 in 431 
the city plume (a in Equation (1)).  432 

We find that if we apply the EMG fit to individual months for Delhi and Karachi, all 433 
54 EMG fits fail for Delhi in July-August and yield spurious results in September due to large 434 
data loss resulting from persistent clouds during the monsoon season. All 12 months are 435 
retained for Karachi, Singapore and Manila. November-April mean values of a are 21% more 436 
than in May-October for Karachi, 9% more for Singapore, and 39% more for Manila. This 437 
suggests that using NO2 VCDs for a portion of the year may yield systematic biases in 438 
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emissions that may not reflect seasonality in the underlying activities affecting the emissions. 439 
Larger wintertime than summertime emissions have also been reported in the global study of 440 
Lange et al. (2022). They quantified summer-to-winter emission ratios of ~0.5 for Colombo 441 
and Delhi. The top-down emissions calculation (Equation (3)) does not fully account for 442 
seasonality in photochemistry. The derived effective NOx lifetimes used to calculate NOx 443 
emissions (Equation (2)) are mostly influenced by dispersion. As a result, the effective lifetimes 444 
are much shorter than the expected chemical lifetimes of NOx (de Foy et al., 2014). In the 445 
synthetic experiment scenarios tested by de Foy et al. (2014), the EMG fit applied to wind 446 
rotated data yielded an effective lifetime of 4 h for a 12-h chemical lifetime scenario. According 447 
to Shah et al. (2020), the chemical lifetime of NOx for central-eastern China centred at ~35°N, 448 
the northerly portion of our domain, ranges from ~6 h in summer to ~24 h in winter. None of 449 
the monthly effective lifetimes for our target cities reproduces this seasonality and the longest 450 
lifetime is 13.3±3.7 h for Yangon in November. The implication is that the size of absolute 451 
emissions derived with sub-annual satellite data may be biased, but should have negligible 452 
effect if used to quantify relative trends, as in Goldberg et al. (2021) and Laughner & Cohen 453 
(2019), for example. 454 

 455 

3.4 Comparison to Bottom-up Emissions 456 

Figure 5 compares annual top-down and bottom-up NOx emissions. According to our 457 
HEMCO simulations, anthropogenic sources account for most (>87%) annual NOx emissions. 458 
The relative differences between our top-down estimates and the bottom-up inventory are 459 
within 50% for Mumbai (1%), Bangkok (2%), Chennai (9%), Ahmedabad (11%), Kolkata 460 
(21%), Singapore (21%), Bangalore (32%), Manila (35%), and Kuala Lumpur (46%). A 50-461 
100% difference occurs for Ho Chi Minh City (53%), Jakarta (54%), Delhi (64%), and 462 
Colombo (91%). Even greater relative differences occur for Karachi (2.1 times), Islamabad 463 
(2.1 times), Lahore (2.4 times), Yangon (3.3 times), Dhaka (6.9 times), and Kabul (11-fold). 464 
The largest absolute discrepancies are for Dhaka and Jakarta. Bottom-up emissions are 107 465 
mol s-1 less than the top-down values for Dhaka and 78 mol s-1 more for Jakarta. On a mass 466 
basis, this is equivalent to a 155 Gg NOx as NO2 underestimate for Dhaka and a 113 Gg NOx 467 
as NO2 overestimate for Jakarta.  468 

The different years used (2018 for HTAP, 2019 for TROPOMI) should at most account 469 
for a 14% difference in emissions, based on the size of annual trends inferred by Vohra et al. 470 
(2022) using long-term observations of OMI NO2 VCDs over large and fast-growing cities in 471 
South and Southeast Asia. Vohra et al. (2022) identified that emission inventories do not 472 
capture the steep decline in NOx emissions in Jakarta attributed to national policies targeting 473 
vehicles. In addition to misrepresenting annual changes in underlying activities, the emission 474 
factors are mostly informed by studies in China and Japan (Kurokawa & Ohara, 2020). The 475 
bottom-up and top-down emissions differences for many cities also exceed the ±30% 476 
difference that results from the choice of bottom-up emissions grid sampling and the ±30% 477 
difference from the timing of the top-down (midday) and bottom-up (24-h) estimates inferred 478 
by Goldberg et al. (2021). 479 

Apparent in Figure 5 is a latitudinal pattern in the discrepancies. Top-down emissions 480 
are greater than bottom-up emissions for cities to the north and vice versa for cities to the south, 481 
so that in general top-down emissions exceed bottom-up emissions in South Asia and vice 482 
versa in Southeast Asia. NOx chemical loss varies with latitude, due to variability in the amount 483 
of sunlight available to form hydroxyl and peroxy radicals required to form HNO3 and organic 484 
nitrates, the main daytime chemical loss pathway for NOx. This latitudinal pattern is likely 485 
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because the EMG fit also does not fully account for spatial variability in NOx photochemistry, 486 
imparting a bias in the top-down emissions. The size of this bias will depend on the relative 487 
contribution of NOx chemical loss to total loss in the wind rotated plume.  488 

 489 

 490 

 491 
Figure 5. Comparison of annual top-down and bottom-up NOx emissions for target cities. Data 492 
are coloured by city centre latitude and split into top-down NOx emissions < 40 mol s-1 (a) and 493 
³ 40 mol s-1 (b). Error bars are the overall uncertainty in top-down emissions estimates. Grey 494 
lines indicate 1:1 agreement (solid) and ±50% difference (dashed). The bottom-up emissions 495 
sampling extent of each city is in Figure S1. Data used to generate the figure are in Table S1. 496 

 497 

4 Conclusions 498 

City nitrogen oxides (NOx) emissions can be derived with a now well-established 499 
approach using satellite observations of nitrogen dioxide (NO2), wind rotation and a Gaussian 500 
fit to the city plume. Issues with this approach are that the choice of sampling area around the 501 
city centre is not standardized and so is prone to subjective area selection and the Gaussian fit 502 
often fails or yields non-physical best-fit parameters. Here we address these issues by applying 503 
54 sampling areas to isolated cities. We test our method with TROPOspheric Monitoring 504 
Instrument (TROPOMI) NO2 observations for 2019 over 19 large, isolated cities in South and 505 
Southeast Asia that lack contemporary, publicly available bottom-up emissions estimates.  506 

Annual NOx emissions, obtained for all 19 cities, are < 73 Gg NOx as NO2 a-1 for most 507 
cities, between 73-145 Gg NOx as NO2 a-1 for Karachi, Delhi, and Jakarta and > 145 Gg NOx 508 
as NO2 a-1 for Bangkok, Dhaka, and Singapore. The overall uncertainty in the annual emissions 509 
is 30-60%. Our emissions estimates are in general ~27% more than past studies that use a single 510 
sampling area, due to differences in satellite data products and months targeted. The latter we 511 
suggest may lead to biases, as the top-down emissions estimate does not properly account for 512 
seasonality in photochemical loss of NOx. Relative differences between our top-down estimates 513 
and a widely used bottom-up inventory are < 50% for 9 of the 19 cities, within 50-100% for 514 
Ho Chi Minh City, Jakarta, Delhi, and Colombo, and much greater for Karachi (2.1 times), 515 
Islamabad (2.1 times), Lahore (2.4 times), Yangon (3.3 times), Dhaka (6.9 times), and Kabul 516 
(11-fold). There is a latitudinal dependence of the size of these discrepancies that we suggest 517 
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is because the top-down approach also does not properly account for spatial variability in the 518 
chemical lifetime of NOx.  519 

The increased success of deriving NOx emissions with our updated approach enables 520 
us to identify that further development is needed to account for time and space variability in 521 
the chemical lifetime of NOx to fully exploit the top-down approach to interrogate seasonality 522 
in emissions, to validate bottom-up emissions, to exploit hourly observations from 523 
geostationary instruments, and to inform air quality regulation.  524 
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Table S1: Annual top-down NOx emissions and effective lifetimes, sampling area mean wind 21 
speeds, and bottom-up NOx emissions for cities in South and Southeast Asia 22 

City (Country) a 
Top-down NOx 

emissions 
[mol s-1] b 

NOx lifetimes  
[h] b,c 

Wind speeds  
[m s-1] d 

Bottom-up NOx 
emissions 
[mol s-1] e 

1. Karachi (Pakistan) 52.9 ± 18.7 3.1 ± 0.6 5.6 ± 0.1 24.7 

2. Kabul (Afghanistan) 18.8 ± 6.1 1.5 ± 0.3 2.8 ± 0 1.8 

3. Ahmedabad (India) 21.7 ± 9.2 3.8 ± 0.8 4.3 ± 0.1 19.5 

4. Mumbai (India) 45.6 ± 16.5 2.9 ± 0.6 4.2 ± 0.1 45.3 

5. Islamabad (Pakistan) 21.7 ± 8.4 2.2 ± 0.5 3.0 ± 0 10.6 

6. Lahore (Pakistan) 33.4 ± 11.9 3.0 ± 0.5 3.4 ± 0 14.0 

7. Delhi (India) 89.0 ± 31.9 2.5 ± 0.5 4.3 ± 0 54.4 

8. Bangalore (India) 15.5 ± 5.0 3.5 ± 0.5 3.7 ± 0 22.9 

9. Colombo (Sri Lanka) 20.7 ± 7.6 1.2 ± 0.3 5.7 ± 0.2  10.9 

10. Chennai (India) 25.3 ± 13.6 4.9 ± 2.0 5.2 ± 0 27.9 

11. Kolkata (India) 42.5 ± 15.8 2.7 ± 0.5 4.1 ± 0 35.1 

12. Dhaka (Bangladesh) 124.8 ± 41.1 2.6 ± 0.4 3.8 ± 0 18.2 

13. Yangon (Myanmar) 16.1 ± 5.2 2.1 ± 0.3 3.6 ± 0 4.9 

14. Bangkok (Thailand) 102.3 ± 55.9 2.5 ± 0.7 4.4 ± 0 104.4 

15. Kuala Lumpur (Malaysia) 41.4 ± 22.0 6.3 ± 1.9 3.7 ± 0.1 76.3 

16. Singapore  112.1 ± 37.7 2.4 ± 0.4 5.1 ± 0.1 141.1 

17. Ho Chi Minh City (Vietnam) 25.2 ± 11.3 4.9 ± 1.4 4.9 ± 0.3 16.4 

18. Jakarta (Indonesia) 65.8 ± 32.5 3.3 ± 1.1 4.2 ± 0.2 144.2 

19. Manila (Philippines) 40.5 ± 17.4 3.3 ± 0.7 6.1 ± 0.2 62.5 
a Numbered according to labels in Figure 1. 23 
b Errors in emissions and lifetimes calculated by adding individual errors in quadrature (see Section 2.2 for details). 24 
c Effective lifetime, as loss is dominated by dispersion. 25 
d Calculated using ERA5 reanalysis midday hourly wind fields (see Section 2.2 for details). 26 
e HTAP version 3 anthropogenic emissions inventory 24-h emission rates (see Section 2.3 for details).  27 
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 28 

Figure S1. Sampling areas of bottom-up emissions for target cities in South and Southeast Asia. 29 
Hatching identifies the sampling extent for each city. City and sampling boundaries are determined 30 
using the Database of Global Administrative Areas (GADM) (https://gadm.org/; last accessed 17 31 
March 2023) and Google Maps for all cities and the Humanitarian Data Exchange 32 
(https://data.humdata.org/; last accessed 17 March 2023) to map Laguna de Bay bordering Manila. 33 
Background maps are from © Google Maps, 2023.  34 
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 35 

Figure S2. Sensitivity of annual top-down NOx emissions to wind speed selection. Wind speeds 36 
tested are individual pixels with speeds > 2 m s-1 (red) and > 3 m s-1 (yellow), and sampling area 37 
(1.5° downwind, 0.75° upwind, ±0.75° across-wind) mean speeds > 2 m s-1 (green) and > 3 m s-1 38 
(blue). Only cities with successful EMG fits for all wind speed selections are shown.  39 
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 40 

Figure S3. Annual effective NOx lifetimes from all successful EMG fits for target cities in South 41 
and Southeast Asia. Red bars are the means of NO2 lifetimes and black error lines are the standard 42 
deviations from all successful EMG fits.  43 
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 44 

Figure S4. Annual mean wind speeds for target cities in South and Southeast Asia. Yellow bars 45 
are the sampling area mean wind speeds and black error lines are the standard deviations from all 46 
successful annual EMG fits. 47 


