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Abstract

Machine learning-based image super-resolution is a robust approach for obtaining detailed bathymetric maps. However, in

machine learning using supervised data, the dissimilarity in the features of training and target datasets degrades super-resolution

performance. This study proposes a two-step method to generate training data with features similar to those of the target

data using image transformation and composition. The super-resolution model trained via the proposed method on the Central

Okinawa Trough data was applied to the bathymetry data around Okinotorishima Islands. The method improved the root mean

squared error by up to 14.3% compared to conventional approaches, thus demonstrating the potential of combining artificial

data generation with machine learning for super-resolution bathymetry mapping of the entire ocean floor.
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 9 

Key Points: 10 

• Adaptive data augmentation improved bathymetric super-resolution, achieving RMSE 11 

reduction of up to 14.3% in a finer mapping mesh. 12 

• The two-step data augmentation method overcomes feature dissimilarity limitations in 13 

supervised machine learning for enhanced map details. 14 

• The proposed method enables application of image super-resolution to data-scarce areas, 15 

thus facilitating bathymetric research. 16 

  17 
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Abstract 18 

Machine learning-based image super-resolution is a robust approach for obtaining detailed 19 

bathymetric maps. However, in machine learning using supervised data, the dissimilarity in the 20 

features of training and target datasets degrades super-resolution performance. This study 21 

proposes a two-step method to generate training data with features similar to those of the target 22 

data using image transformation and composition. The super-resolution model trained via the 23 

proposed method on the Central Okinawa Trough data was applied to the bathymetry data 24 

around Okinotorishima Islands. The method improved the root mean squared error by up to 25 

14.3% compared to conventional approaches, thus demonstrating the potential of combining 26 

artificial data generation with machine learning for super-resolution bathymetry mapping of the 27 

entire ocean floor. 28 

 29 

Plain Language Summary 30 

Mapping the ocean floor in high detail is crucial for research and conservation, but traditional 31 

methods can be expensive and limited. This study tackled a key challenge in using machine 32 

learning to create detailed seabed maps: the mismatch between training data and real-world 33 

conditions. We developed a new method that "invents" training data similar to the target area by 34 

cleverly manipulating existing data. This allowed us to create maps with twice the resolution of 35 

previous methods, even when starting with limited data. This breakthrough opens the door to 36 

creating highly detailed maps of underwater features anywhere in the world, aiding scientists in 37 

understanding and protecting our precious oceans. 38 

 39 

1 Introduction 40 

High-resolution seafloor bathymetric maps are essential for geomorphology, physical 41 

oceanography, and marine biodiversity studies as well as for resource management and disaster 42 

prevention. A recent report highlighted that only about 24.9% of the entire seafloor has been 43 

mapped in detail using acoustic surveys (https://seabed2030.org/2023/05/02/hsh-prince-albert-ii-44 

of-monaco-announces-a-quarter-of-the-ocean-now-mapped/). Obtaining an accurate global 45 

bathymetric map is one of the most important scientific challenges being addressed through the 46 

ongoing international project “The Nippon Foundation-GEBCO Seabed 2030”, aimed at 47 

collecting 100% of detailed seafloor topographic maps by 2030 (Mayer et al., 2018).  48 
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Acoustic bathymetry is costly and time consuming; therefore, obtaining complete global 49 

seabed maps by 2030 with this method alone would not be realistic. Supplementing acoustic 50 

observations with a machine-learning-based super-resolution technique could be a viable 51 

approach (e.g. Lepcha et al., 2023). Improving low-resolution bathymetry data with numerical 52 

methods could be instrumental for achieving the goals of Seabed 2030. In the past, mathematical 53 

interpolation methods such as splines (Briggs, 1974; Nock et al., 2019) and geostatistical 54 

methods (Deutsch and Journel, 1998; Chilès and Delfiner, 2012), have been used. Machine-55 

learning-based approaches have also been attempted, including super-resolution methods based 56 

on neural networks (Koike et al., 2002; Koike and Matsuda, 2003) and sparse coding (Yang et 57 

al., 2010; Yutani et al., 2022). In recent years, several researchers utilized deep convolutional 58 

neural networks and proposed super-resolution methods for bathymetric mapping (Sonogashira 59 

et al., 2020; Hidaka et al., 2021; Li et al., 2022; Cai et al., 2023). Deep learning-based super-60 

resolution methods have attracted attention because of their enhanced accuracy compared to 61 

conventional methods and have been used in geophysics research fields (e.g. Yasuda et al. 2022; 62 

Kuehn et al. 2023; Liu et al. 2024). 63 

However, the approach using supervised machine learning sometimes degrades 64 

performance for the data with features different from those of a training dataset. Therefore, when 65 

a super-resolution model trained with the data from one area is applied to another ocean area, the 66 

performance degradation might be inevitable. Data augmentation artificially generates new data 67 

by modifying existing data through geometric transformations and color adjustments to 68 

compensate for the lack of training data in machine learning (Shorten and Khoshgoftaar, 2019). 69 

These methods have effectively improved accuracy in many cases when training data are limited. 70 

However, while data augmentation generates new data, it often suffers from limited feature 71 

diversity, hindering performance in real-world scenarios with unseen features. 72 

Therefore, in this study, we attempted to improve super-resolution performance by 73 

artificially generating data with features similar to those of a target test area. This artificial data 74 

generation was achieved by combining two types of bathymetric maps with different features. To 75 

validate the effectiveness of the proposed method, we used bathymetric data from the Central 76 

Okinawa Trough as training data and performed 4-fold super-resolution from a 50-m to 12.5-m 77 

mesh on data around Okinotorishima Islands, which had different features. The validity of the 78 
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proposed method was confirmed by comparing the super-resolution results with those obtained 79 

using several data augmentation methods. 80 

 81 

2 Materials 82 

We designed a case study to demonstrate the effectiveness of the proposed super-resolution 83 

method, using bathymetry data from two different oceanographic regions: the target dataset for 84 

model validation from the Okinotorishima area and the training dataset for model development 85 

from the Okinawa Trough. 86 

 87 

2.1 Bathymetric map around Okinotorishima Islands for target data 88 

Okinotorishima Islands are the southernmost of Japan's islands, located 1,700 km south 89 

of Tokyo. The Ministry of Land, Infrastructure, Transport and Tourism, the Ministry of 90 

Economy, Trade and Industry (MILT), the Ministry of Agriculture, Forestry and Fisheries 91 

(MAFF), and the Tokyo Metropolitan Government (TMG) have continuously worked together to 92 

understand the unique biodiversity and conserve marine resources of Okinotorishima Islands, 93 

since the islands are remote and isolated. The Geological Survey of Japan conducted dredging on 94 

the slopes of the islands recovering islands' base igneous rocks and overlying limestone samples 95 

in 1989. The bathymetric data for the surrounding area was published by the Japan Coast Guard 96 

Hydrographic Department (1991) as a 1:50,000 bathymetric map developed from geophysical 97 

surveys in 1991. 98 

 From August 14th to 25th, 2022, a bathymetric survey was conducted aboard research 99 

vessel Kaiyo Maru No. 2 (Kaiyo Engineering Co., Ltd.) using a multibeam echosounder 100 

(MBES). A 10-m mesh bathymetric mapping survey was conducted for the island areas 101 

shallower than 2,000 m. For the areas with depths ranging from 950 to 1,450 m, autonomous 102 

underwater vehicle (AUV) observations were conducted on three lines on the northern slopes of 103 

the islands. The obtained 3D point cloud data was converted to 100-m mesh and 25-m mesh 104 
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grids through integration and correction processes. The Okinotorishima Islands are surrounded 105 

by steep slopes, as seen in the bathymetric map in Figure 1 (a). 106 

 107 

Figure 1. Bathymetric maps used in this study. Data around (a) the Okinotorishima Islands for 108 

training the super-resolution model and (b) the Mid-Okinawa Trough for evaluating the model 109 

performance.  110 

 111 

2.2 Bathymetric map of the Okinawa Trough for training data 112 

We used the bathymetry data from the Mid-Okinawa Trough as the training dataset. The 113 

Central Okinawa Trough, shown in Figure 1 (b), is known as an important research area rich in 114 

geological resources; previous surveys have revealed several submarine volcanoes and high 115 

hydrothermal activity areas (Kasaya et al., 2015; Nakamura et al., 2015).  116 

The data were obtained from a MBES survey in 2014. Integration and correction 117 

processes were performed on the obtained bathymetric point cloud data, which were interpolated 118 

into 100-m and 25-m grids (Kasaya et al., 2020). In the study by Hidaka et al. (2021) and Yutani 119 

et al. (2022), the high-resolution data after super-resolution were obtained from a 100-m mesh, 120 

whereas in the current study, the mesh size was set to 50 m to match the resolution of the target 121 

data. 122 

 123 

3 Methods 124 

3.1 Super-resolution using a deep neural network 125 

The Efficient Sub-Pixel Convolutional Neural Network (ESPCN), a deep neural network 126 

architecture described by Shi et al. (2016), was trained to achieve a 4-fold increase in resolution. 127 

To increase the resolution of the bathymetric map four-fold within an area of approximately 800 128 
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square meters, the size of the input and output layer of the super-resolution model was 16×16 129 

and 64×64 pixels, respectively. 130 

Spatial patterns are extracted by applying several convolution operations to the input low-131 

resolution image. A sub-pixel convolution layer, which performs inverse convolution 132 

(deconvolution) before the output layer, is placed to expand the image to the target resolution. 133 

Generally, the deconvolution process to increase the resolution may cause lattice noise, but 134 

ESPCN overcomes this issue by the operation called Pixel Shuffle. Compared with other deep 135 

learning-based super-resolution architectures, such as a SRCNN (Dong et al., 2014), FSRCNN 136 

(Dong et al., 2016), SRGAN (Ledig et al., 2017), and ESRGAN (Wang et al., 2019), ESPCN 137 

offers a well-balanced trade-off between accuracy, learning stability, and speed. Thus, the 138 

ESPCN model was employed in this study, but the proposed method can be applied to other 139 

super-resolution network architectures. 140 

In this work, we evaluated super-resolution results using two common metrics, root mean 141 

squared error (RMSE) and peak signal-to-noise ratio (PSNR), using Equation (1). 142 

𝑃𝑆𝑁𝑅 = 10･log10

𝑀𝐴𝑋𝐼
2

𝑀𝑆𝐸
  (1) 143 

where, MAXI is the maximum value that the pixel value can take and MSE is the mean squared 144 

error. 145 

In this study, pixel values were normalized to the range of 0 to 1, where MAXI = 1. While 146 

PSNR is a suitable metric for evaluating the quality of bathymetric images overall, it cannot 147 

accurately capture areas with sharp changes in depth. Therefore, in this study, we also used 148 

RMSE, which is an evaluation index generally used in machine learning. The RMSE is the 149 
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square root of the MSE, which is the square of an error between the true value and super-150 

resolution result at each pixel averaged over the entire image, calculated using Equation (2). 151 

𝑅𝑀𝑆𝐸 = √ 
1

𝑚𝑛
∑ ∑(𝑥𝑖,𝑗 −  𝑦𝑖,𝑗)

2
𝑛

𝑗=1 

𝑚

𝑖=1

  (2) 152 

where, i and j are the pixel positions, m and n are the image width and height, x is the super-153 

resolution image (output image), and y is the high-resolution image (ground truth image). 154 

 155 

3.2 Adaptive data augmentation 156 

We propose an adaptive data augmentation method specifically designed for super-157 

resolution of target data with characteristics different from those of training data. Using a two-158 

step process of data augmentation and sampling, we generated training data similar to the target 159 

data (Figure 2). Data augmentation increases the amount of training data and reduces inference 160 

errors by transforming existing data (Shorten and Khoshgoftaar, 2019). The proposed method 161 

combines multiple data augmentation methods: image flipping, rotation, and mixup for diverse 162 

training samples. 163 

 164 

Figure 2. Conceptual diagram of adaptive data augmentation. 165 

 166 

Image flipping and rotation increase the number of data frames by applying geometric 167 

transformations while maintaining the characteristics of the original image. Image flipping can 168 
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be vertical (upside down) or horizontal (mirror image). By applying the horizontal flip to the 169 

result of the vertical flip, four images are generated from a single source image. Image rotation 170 

transforms the source image into a different image by rotating it to an arbitrary angle. In our 171 

study, new images were generated by rotating the original image from 30 to 330 degrees in 172 

increments of 30. The original image, designated as zero-degree rotation, and 180 degree rotation 173 

were excluded because of overlap with the vertical and horizontal flipping. The missing wedges 174 

due to rotation were filled by reflection from the original image. By applying rotation to the 175 

flipping result, one original image was replicated 40 times. These methods of geometrical 176 

transformation were used by Sonogashira et al. (2020) to artificially increase the training dataset. 177 

They have also been used in natural science fields, such as meteorological and medical imaging, 178 

to improve accuracy (Matsuoka et al., 2021; Kalaivani et al., 2023). 179 

Image flipping and rotation only changes the orientation of the image, not topographic 180 

parameters such as slope or gradient, but mixup represents a data augmentation method that 181 

generates new data from two different images (Zhang et al., 2018). In this study, mixup was 182 

applied to the flipped-and-rotated results to artificially change topographic quantities. The mixup 183 

is mathematically represented by Equations (3) and (4). 184 

�̃� = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗 (3)

�̃� = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑗 (4)
 185 

were, xi and xj indicate a low-resolution image randomly sampled from data where some target 186 

physical quantity is lower and higher than the median of the training data, respectively (similarly, 187 

yi and yj indicate a high-resolution image); a parameter, 𝜆 ∈ [0, 1], determines the ratio of mixing 188 

two different types of data; �̃� and �̃� are the low- and high-resolution images after mixup, 189 

respectively.  190 

Next, the data generated by flipping and rotation were divided into two groups, bounded 191 

by an appropriate threshold of a targeted physical quantity. By sampling data from both groups 192 

one at a time and applying a mixup with appropriate weights λ, new pairs of high-resolution �̃� 193 

and low-resolution �̃� images were obtained. 194 

By sampling from flipped and mixed-up images, we generated training data with features 195 

similar to those of the test dataset. Here, we aimed for an ideal training set with an n-times higher 196 

frequency distribution compared to the test data. We randomly selected samples from the mixed-197 

up data that fell within n times the target data’s frequency distribution. This ensured that these 198 
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samples closely resembled the test data; dissimilar samples were discarded. This selection 199 

process continued until all augmented data were explored, resulting in a training set closely 200 

matching the target frequency distribution. 201 

 202 

4 Results and Discussion 203 

 4.1 Training super-resolution model using adaptive data augmentation 204 

The proposed method was applied to the bathymetry data of the Okinawa Trough to 205 

adaptively generate training data with features similar to the bathymetry data of Okinotorishima 206 

Islands. The mean slope gradient (MSG), which indicates the average of slope gradient within an 207 

arbitrary region, was selected as the target variable. The slope gradient (SG) is defined as the 208 

mean elevation of neighboring eight grids with each grid in the image as follows (Equations 5 209 

and 6).  210 

𝑆𝑥  =  
𝐻𝑖+1,𝑗−1 + 𝐻𝑖,𝑗−1 + 𝐻𝑖−1,𝑗−1 − (𝐻𝑖+1,𝑗+1 + 𝐻𝑖,𝑗+1 + 𝐻𝑖−1,𝑗+1)

6𝐷𝑥
  (5) 211 

𝑆𝑦  =  
𝐻𝑖+1,𝑗−1 + 𝐻𝑖+,𝑗 + 𝐻𝑖+1,𝑗+1 − (𝐻𝑖−1,𝑗−1 + 𝐻𝑖−1,𝑗 + 𝐻𝑖−1,𝑗+1)

6𝐷𝑦
  (6) 212 

𝑆𝐺 =  √𝑆𝑥
2 + 𝑆𝑦

2  (7) 213 

where, 𝑯𝒊,𝒋 is the water depth at position (𝒊, 𝒋); i and j are the index number in the x- and y-214 

direction in 2-dimensional space; and 𝑫𝒙 and 𝑫𝒚 are the distances between the grids in the x and 215 

y directions, respectively.  216 

In this study, we defined MSG as the average amount of seabed SG within an 800 m2 217 

area (256×256 grids for high resolution and 64×64 grids for low resolution), which represented 218 

the basic unit in both training and testing. Research has shown that super-resolution accuracy 219 

decreases as terrain SG increases (Hidaka et al., 2021). 220 

First, we separated the bathymetry image of the Okinawa Trough into small regions. The 221 

number of grids for the small-area images was 64×64 grids for high resolution and 16×16 grids 222 

for low resolution, each with 11,053 images. Next, we proceeded with data augmentation by 223 
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flipping and rotating original images. The number of images at this point was 154,742, which is 224 

14 times the amount of the original data. 225 

Examples of images produced by mixup are shown in Figure 3 (a). In the first row, one 226 

image was selected from each of the groups with large and small MSG, and mixup was applied 227 

(weight λ = 0.3) to the image with the largest slope. The MSG values of the large and small 228 

MSG groups were 0.359 and 0.009, respectively; the tilt of the generated image was 0.108. A 229 

histogram of the data generated by the adaptive mixup for each MSG is shown in Figure 3 (b). 230 

Image flipping and rotating simply increases the amount of original training data, which is not 231 
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sufficient for the data with a large MSG. However, the combination with mixup succeeded in 232 

increasing the amount of data with a large MSG. 233 

 234 

Figure 3. Data augmentation results using adaptive mixup. (a) Resultant images and numbers of 235 

images (b) before and (c) after adaptive mixup, where MSG is the mean slope gradient of the 236 

image. 237 

 238 

To validate the effectiveness of the proposed method, we trained the super-resolution 239 

model on three different training datasets, as shown in Figure 3 (c), and compared the results. 240 

The first training set included original data and the second set included the flipped-and-rotated 241 

data, sampled as close as possible to the histogram of the target data. The third dataset was 242 
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sampled from a mixup data, as close as possible to the histogram of the target data. Both data 243 

augmentation methods were applied to double the original data for fair comparison. 244 

 245 

4.2 Performance evaluation 246 

We evaluated the super-resolution model trained with three different datasets on 247 

Okinotorishima Islands data. Figure 4 shows the PSNR and RMSE of the MSG for each output 248 

image. The proposed method model surpassed the original model for most MSG ranges (0.1–0.3) 249 

with adaptively increased data. For example, the proposed method achieved a mean PSNR of 250 

57.94 dB for MSG 0.2–0.22, compared to the original model’s 57.50 dB. In the range of MSG 251 

greater than 0.14, where the amount of data generated by the proposed method exceeded the 252 

original data, the RMSE improved by 14.3% (RMSE of the flip + rotation model improved by 253 

7.2%). Although the target dataset was small, the RMSE also improved by 33.0% in the MSG 254 

range of 0.06–0.08, where the effect of adaptive data augmentation was minimal. In cases of 255 

MSG less than 0.38, the accuracy of the proposed method was equal to or higher than that of the 256 

original; however, for MSG exceeding 0.38 (the maximum value), the adaptive model showed a 257 

lower accuracy than the original, in terms of both PSNR and RMSE. While this range has a 258 
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minor target data impact on the overall area, it should be noted when processing steep-slope 259 

topographic data. 260 

 261 
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Figure 4. The super-resolution performance of (a) RMSE and (b) PSNR applied to the 262 

Okinotorishima Islands bathymetry data. Comparisons between three models trained using 263 

original, flipped-and-rotated, and adapted data. 264 

 265 

A spatial comparison of the super-resolution performance of the original and adaptive 266 

models is shown in Fig. 5. Figure 5 (a) illustrates the effect of subtracting the PSNR of the 267 

proposed model from the PSNR of the original model. The results are positive when the adaptive 268 

model is superior and negative when it is inferior. Figure 5 (b) shows the distribution of the MSG 269 

in a region with 256 grid squares, centered on each grid. The original model showed a better 270 

PSNR than the adaptive model, especially in the vicinity of the island, where the seabed was 271 

steep, with MSG exceeding 0.4. However, away from the island, the adaptive model 272 
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outperformed the original model in the areas with gradual MSG less than 0.4; both models 273 

showed a similar accuracy in areas where the MSG exceeded 0.4.  274 

 275 
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Figure 5. Comparison of the spatial distribution of super-resolution performance (PSNR) 276 

between the original model and the proposed method. (a) Difference in PSNR between original 277 

and adaptive models and (b) spatial distribution of the mean slope gradient. 278 

 279 

4.3 Limitations and future work 280 

The proposed adaptive mixup method relies on existing bathymetry data, limiting its 281 

ability to generate data for all features. For example, the maximum MSG generated in this case 282 

study was 0.3 (Figs. 3 (b) and (c)), with no data above that range. This lack of data likely 283 

contributed to the performance limitations in regions with a higher MSG, where artificially 284 

generated data were not sufficient. In the area with an MSG range of 0.22–0.28, there was no 285 

advantage of the proposed method, despite the sufficient amount of data. This may be due to a 286 

lack of data for values above 0.28, which may have affected the super-resolution performance in 287 

that range. Similarly, the lower accuracy of the original model for low MSG values (0.04–0.12) 288 

might be due to its specialization for flat terrain. It is important to analyze the similarities of the 289 

features between the target data and the optimal training data to achieve the best performance. 290 

In theory, it is possible to intentionally generate characteristic data by using extremely 291 

large values as weights during mixup or by scaling data up or down vertically or horizontally. 292 

However, in such cases, the geomorphological validity of the data may be lost. Our future work 293 

will explore generating characteristic data using methods such as generative adversarial networks 294 

(GANs) or data augmentation with geomorphological constraints, while ensuring data validity. 295 

 296 

5 Conclusions 297 

This study introduced an adaptive machine learning method that applies the super-298 

resolution model to a seabed area with characteristics different from those of the training data. 299 

The proposed method, involving a two-stage augmented training data generation, demonstrated 300 

improved super-resolution accuracy compared to the original model. However, its application is 301 

currently limited to terrains that can be effectively generated based on real data. We are actively 302 

exploring methods of data generation independent of real data to extend the applicability of this 303 

method to any terrain globally. 304 
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Key Points: 10 
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• The proposed method enables application of image super-resolution to data-scarce areas, 15 

thus facilitating bathymetric research. 16 

  17 

mailto:daisuke@jamstec.go.jp)


manuscript submitted to Earth and Space Science 

 

Abstract 18 

Machine learning-based image super-resolution is a robust approach for obtaining detailed 19 

bathymetric maps. However, in machine learning using supervised data, the dissimilarity in the 20 

features of training and target datasets degrades super-resolution performance. This study 21 

proposes a two-step method to generate training data with features similar to those of the target 22 

data using image transformation and composition. The super-resolution model trained via the 23 

proposed method on the Central Okinawa Trough data was applied to the bathymetry data 24 

around Okinotorishima Islands. The method improved the root mean squared error by up to 25 

14.3% compared to conventional approaches, thus demonstrating the potential of combining 26 

artificial data generation with machine learning for super-resolution bathymetry mapping of the 27 

entire ocean floor. 28 

 29 

Plain Language Summary 30 

Mapping the ocean floor in high detail is crucial for research and conservation, but traditional 31 

methods can be expensive and limited. This study tackled a key challenge in using machine 32 

learning to create detailed seabed maps: the mismatch between training data and real-world 33 

conditions. We developed a new method that "invents" training data similar to the target area by 34 

cleverly manipulating existing data. This allowed us to create maps with twice the resolution of 35 

previous methods, even when starting with limited data. This breakthrough opens the door to 36 

creating highly detailed maps of underwater features anywhere in the world, aiding scientists in 37 

understanding and protecting our precious oceans. 38 

 39 

1 Introduction 40 

High-resolution seafloor bathymetric maps are essential for geomorphology, physical 41 

oceanography, and marine biodiversity studies as well as for resource management and disaster 42 

prevention. A recent report highlighted that only about 24.9% of the entire seafloor has been 43 

mapped in detail using acoustic surveys (https://seabed2030.org/2023/05/02/hsh-prince-albert-ii-44 

of-monaco-announces-a-quarter-of-the-ocean-now-mapped/). Obtaining an accurate global 45 

bathymetric map is one of the most important scientific challenges being addressed through the 46 

ongoing international project “The Nippon Foundation-GEBCO Seabed 2030”, aimed at 47 

collecting 100% of detailed seafloor topographic maps by 2030 (Mayer et al., 2018).  48 
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Acoustic bathymetry is costly and time consuming; therefore, obtaining complete global 49 

seabed maps by 2030 with this method alone would not be realistic. Supplementing acoustic 50 

observations with a machine-learning-based super-resolution technique could be a viable 51 

approach (e.g. Lepcha et al., 2023). Improving low-resolution bathymetry data with numerical 52 

methods could be instrumental for achieving the goals of Seabed 2030. In the past, mathematical 53 

interpolation methods such as splines (Briggs, 1974; Nock et al., 2019) and geostatistical 54 

methods (Deutsch and Journel, 1998; Chilès and Delfiner, 2012), have been used. Machine-55 

learning-based approaches have also been attempted, including super-resolution methods based 56 

on neural networks (Koike et al., 2002; Koike and Matsuda, 2003) and sparse coding (Yang et 57 

al., 2010; Yutani et al., 2022). In recent years, several researchers utilized deep convolutional 58 

neural networks and proposed super-resolution methods for bathymetric mapping (Sonogashira 59 

et al., 2020; Hidaka et al., 2021; Li et al., 2022; Cai et al., 2023). Deep learning-based super-60 

resolution methods have attracted attention because of their enhanced accuracy compared to 61 

conventional methods and have been used in geophysics research fields (e.g. Yasuda et al. 2022; 62 

Kuehn et al. 2023; Liu et al. 2024). 63 

However, the approach using supervised machine learning sometimes degrades 64 

performance for the data with features different from those of a training dataset. Therefore, when 65 

a super-resolution model trained with the data from one area is applied to another ocean area, the 66 

performance degradation might be inevitable. Data augmentation artificially generates new data 67 

by modifying existing data through geometric transformations and color adjustments to 68 

compensate for the lack of training data in machine learning (Shorten and Khoshgoftaar, 2019). 69 

These methods have effectively improved accuracy in many cases when training data are limited. 70 

However, while data augmentation generates new data, it often suffers from limited feature 71 

diversity, hindering performance in real-world scenarios with unseen features. 72 

Therefore, in this study, we attempted to improve super-resolution performance by 73 

artificially generating data with features similar to those of a target test area. This artificial data 74 

generation was achieved by combining two types of bathymetric maps with different features. To 75 

validate the effectiveness of the proposed method, we used bathymetric data from the Central 76 

Okinawa Trough as training data and performed 4-fold super-resolution from a 50-m to 12.5-m 77 

mesh on data around Okinotorishima Islands, which had different features. The validity of the 78 
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proposed method was confirmed by comparing the super-resolution results with those obtained 79 

using several data augmentation methods. 80 

 81 

2 Materials 82 

We designed a case study to demonstrate the effectiveness of the proposed super-resolution 83 

method, using bathymetry data from two different oceanographic regions: the target dataset for 84 

model validation from the Okinotorishima area and the training dataset for model development 85 

from the Okinawa Trough. 86 

 87 

2.1 Bathymetric map around Okinotorishima Islands for target data 88 

Okinotorishima Islands are the southernmost of Japan's islands, located 1,700 km south 89 

of Tokyo. The Ministry of Land, Infrastructure, Transport and Tourism, the Ministry of 90 

Economy, Trade and Industry (MILT), the Ministry of Agriculture, Forestry and Fisheries 91 

(MAFF), and the Tokyo Metropolitan Government (TMG) have continuously worked together to 92 

understand the unique biodiversity and conserve marine resources of Okinotorishima Islands, 93 

since the islands are remote and isolated. The Geological Survey of Japan conducted dredging on 94 

the slopes of the islands recovering islands' base igneous rocks and overlying limestone samples 95 

in 1989. The bathymetric data for the surrounding area was published by the Japan Coast Guard 96 

Hydrographic Department (1991) as a 1:50,000 bathymetric map developed from geophysical 97 

surveys in 1991. 98 

 From August 14th to 25th, 2022, a bathymetric survey was conducted aboard research 99 

vessel Kaiyo Maru No. 2 (Kaiyo Engineering Co., Ltd.) using a multibeam echosounder 100 

(MBES). A 10-m mesh bathymetric mapping survey was conducted for the island areas 101 

shallower than 2,000 m. For the areas with depths ranging from 950 to 1,450 m, autonomous 102 

underwater vehicle (AUV) observations were conducted on three lines on the northern slopes of 103 

the islands. The obtained 3D point cloud data was converted to 100-m mesh and 25-m mesh 104 
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grids through integration and correction processes. The Okinotorishima Islands are surrounded 105 

by steep slopes, as seen in the bathymetric map in Figure 1 (a). 106 

 107 

Figure 1. Bathymetric maps used in this study. Data around (a) the Okinotorishima Islands for 108 

training the super-resolution model and (b) the Mid-Okinawa Trough for evaluating the model 109 

performance.  110 

 111 

2.2 Bathymetric map of the Okinawa Trough for training data 112 

We used the bathymetry data from the Mid-Okinawa Trough as the training dataset. The 113 

Central Okinawa Trough, shown in Figure 1 (b), is known as an important research area rich in 114 

geological resources; previous surveys have revealed several submarine volcanoes and high 115 

hydrothermal activity areas (Kasaya et al., 2015; Nakamura et al., 2015).  116 

The data were obtained from a MBES survey in 2014. Integration and correction 117 

processes were performed on the obtained bathymetric point cloud data, which were interpolated 118 

into 100-m and 25-m grids (Kasaya et al., 2020). In the study by Hidaka et al. (2021) and Yutani 119 

et al. (2022), the high-resolution data after super-resolution were obtained from a 100-m mesh, 120 

whereas in the current study, the mesh size was set to 50 m to match the resolution of the target 121 

data. 122 

 123 

3 Methods 124 

3.1 Super-resolution using a deep neural network 125 

The Efficient Sub-Pixel Convolutional Neural Network (ESPCN), a deep neural network 126 

architecture described by Shi et al. (2016), was trained to achieve a 4-fold increase in resolution. 127 

To increase the resolution of the bathymetric map four-fold within an area of approximately 800 128 
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square meters, the size of the input and output layer of the super-resolution model was 16×16 129 

and 64×64 pixels, respectively. 130 

Spatial patterns are extracted by applying several convolution operations to the input low-131 

resolution image. A sub-pixel convolution layer, which performs inverse convolution 132 

(deconvolution) before the output layer, is placed to expand the image to the target resolution. 133 

Generally, the deconvolution process to increase the resolution may cause lattice noise, but 134 

ESPCN overcomes this issue by the operation called Pixel Shuffle. Compared with other deep 135 

learning-based super-resolution architectures, such as a SRCNN (Dong et al., 2014), FSRCNN 136 

(Dong et al., 2016), SRGAN (Ledig et al., 2017), and ESRGAN (Wang et al., 2019), ESPCN 137 

offers a well-balanced trade-off between accuracy, learning stability, and speed. Thus, the 138 

ESPCN model was employed in this study, but the proposed method can be applied to other 139 

super-resolution network architectures. 140 

In this work, we evaluated super-resolution results using two common metrics, root mean 141 

squared error (RMSE) and peak signal-to-noise ratio (PSNR), using Equation (1). 142 

𝑃𝑆𝑁𝑅 = 10･log10

𝑀𝐴𝑋𝐼
2

𝑀𝑆𝐸
  (1) 143 

where, MAXI is the maximum value that the pixel value can take and MSE is the mean squared 144 

error. 145 

In this study, pixel values were normalized to the range of 0 to 1, where MAXI = 1. While 146 

PSNR is a suitable metric for evaluating the quality of bathymetric images overall, it cannot 147 

accurately capture areas with sharp changes in depth. Therefore, in this study, we also used 148 

RMSE, which is an evaluation index generally used in machine learning. The RMSE is the 149 
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square root of the MSE, which is the square of an error between the true value and super-150 

resolution result at each pixel averaged over the entire image, calculated using Equation (2). 151 

𝑅𝑀𝑆𝐸 = √ 
1

𝑚𝑛
∑ ∑(𝑥𝑖,𝑗 −  𝑦𝑖,𝑗)

2
𝑛

𝑗=1 

𝑚

𝑖=1

  (2) 152 

where, i and j are the pixel positions, m and n are the image width and height, x is the super-153 

resolution image (output image), and y is the high-resolution image (ground truth image). 154 

 155 

3.2 Adaptive data augmentation 156 

We propose an adaptive data augmentation method specifically designed for super-157 

resolution of target data with characteristics different from those of training data. Using a two-158 

step process of data augmentation and sampling, we generated training data similar to the target 159 

data (Figure 2). Data augmentation increases the amount of training data and reduces inference 160 

errors by transforming existing data (Shorten and Khoshgoftaar, 2019). The proposed method 161 

combines multiple data augmentation methods: image flipping, rotation, and mixup for diverse 162 

training samples. 163 

 164 

Figure 2. Conceptual diagram of adaptive data augmentation. 165 

 166 

Image flipping and rotation increase the number of data frames by applying geometric 167 

transformations while maintaining the characteristics of the original image. Image flipping can 168 
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be vertical (upside down) or horizontal (mirror image). By applying the horizontal flip to the 169 

result of the vertical flip, four images are generated from a single source image. Image rotation 170 

transforms the source image into a different image by rotating it to an arbitrary angle. In our 171 

study, new images were generated by rotating the original image from 30 to 330 degrees in 172 

increments of 30. The original image, designated as zero-degree rotation, and 180 degree rotation 173 

were excluded because of overlap with the vertical and horizontal flipping. The missing wedges 174 

due to rotation were filled by reflection from the original image. By applying rotation to the 175 

flipping result, one original image was replicated 40 times. These methods of geometrical 176 

transformation were used by Sonogashira et al. (2020) to artificially increase the training dataset. 177 

They have also been used in natural science fields, such as meteorological and medical imaging, 178 

to improve accuracy (Matsuoka et al., 2021; Kalaivani et al., 2023). 179 

Image flipping and rotation only changes the orientation of the image, not topographic 180 

parameters such as slope or gradient, but mixup represents a data augmentation method that 181 

generates new data from two different images (Zhang et al., 2018). In this study, mixup was 182 

applied to the flipped-and-rotated results to artificially change topographic quantities. The mixup 183 

is mathematically represented by Equations (3) and (4). 184 

�̃� = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗 (3)

�̃� = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑗 (4)
 185 

were, xi and xj indicate a low-resolution image randomly sampled from data where some target 186 

physical quantity is lower and higher than the median of the training data, respectively (similarly, 187 

yi and yj indicate a high-resolution image); a parameter, 𝜆 ∈ [0, 1], determines the ratio of mixing 188 

two different types of data; �̃� and �̃� are the low- and high-resolution images after mixup, 189 

respectively.  190 

Next, the data generated by flipping and rotation were divided into two groups, bounded 191 

by an appropriate threshold of a targeted physical quantity. By sampling data from both groups 192 

one at a time and applying a mixup with appropriate weights λ, new pairs of high-resolution �̃� 193 

and low-resolution �̃� images were obtained. 194 

By sampling from flipped and mixed-up images, we generated training data with features 195 

similar to those of the test dataset. Here, we aimed for an ideal training set with an n-times higher 196 

frequency distribution compared to the test data. We randomly selected samples from the mixed-197 

up data that fell within n times the target data’s frequency distribution. This ensured that these 198 
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samples closely resembled the test data; dissimilar samples were discarded. This selection 199 

process continued until all augmented data were explored, resulting in a training set closely 200 

matching the target frequency distribution. 201 

 202 

4 Results and Discussion 203 

 4.1 Training super-resolution model using adaptive data augmentation 204 

The proposed method was applied to the bathymetry data of the Okinawa Trough to 205 

adaptively generate training data with features similar to the bathymetry data of Okinotorishima 206 

Islands. The mean slope gradient (MSG), which indicates the average of slope gradient within an 207 

arbitrary region, was selected as the target variable. The slope gradient (SG) is defined as the 208 

mean elevation of neighboring eight grids with each grid in the image as follows (Equations 5 209 

and 6).  210 

𝑆𝑥  =  
𝐻𝑖+1,𝑗−1 + 𝐻𝑖,𝑗−1 + 𝐻𝑖−1,𝑗−1 − (𝐻𝑖+1,𝑗+1 + 𝐻𝑖,𝑗+1 + 𝐻𝑖−1,𝑗+1)

6𝐷𝑥
  (5) 211 

𝑆𝑦  =  
𝐻𝑖+1,𝑗−1 + 𝐻𝑖+,𝑗 + 𝐻𝑖+1,𝑗+1 − (𝐻𝑖−1,𝑗−1 + 𝐻𝑖−1,𝑗 + 𝐻𝑖−1,𝑗+1)

6𝐷𝑦
  (6) 212 

𝑆𝐺 =  √𝑆𝑥
2 + 𝑆𝑦

2  (7) 213 

where, 𝑯𝒊,𝒋 is the water depth at position (𝒊, 𝒋); i and j are the index number in the x- and y-214 

direction in 2-dimensional space; and 𝑫𝒙 and 𝑫𝒚 are the distances between the grids in the x and 215 

y directions, respectively.  216 

In this study, we defined MSG as the average amount of seabed SG within an 800 m2 217 

area (256×256 grids for high resolution and 64×64 grids for low resolution), which represented 218 

the basic unit in both training and testing. Research has shown that super-resolution accuracy 219 

decreases as terrain SG increases (Hidaka et al., 2021). 220 

First, we separated the bathymetry image of the Okinawa Trough into small regions. The 221 

number of grids for the small-area images was 64×64 grids for high resolution and 16×16 grids 222 

for low resolution, each with 11,053 images. Next, we proceeded with data augmentation by 223 
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flipping and rotating original images. The number of images at this point was 154,742, which is 224 

14 times the amount of the original data. 225 

Examples of images produced by mixup are shown in Figure 3 (a). In the first row, one 226 

image was selected from each of the groups with large and small MSG, and mixup was applied 227 

(weight λ = 0.3) to the image with the largest slope. The MSG values of the large and small 228 

MSG groups were 0.359 and 0.009, respectively; the tilt of the generated image was 0.108. A 229 

histogram of the data generated by the adaptive mixup for each MSG is shown in Figure 3 (b). 230 

Image flipping and rotating simply increases the amount of original training data, which is not 231 
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sufficient for the data with a large MSG. However, the combination with mixup succeeded in 232 

increasing the amount of data with a large MSG. 233 

 234 

Figure 3. Data augmentation results using adaptive mixup. (a) Resultant images and numbers of 235 

images (b) before and (c) after adaptive mixup, where MSG is the mean slope gradient of the 236 

image. 237 

 238 

To validate the effectiveness of the proposed method, we trained the super-resolution 239 

model on three different training datasets, as shown in Figure 3 (c), and compared the results. 240 

The first training set included original data and the second set included the flipped-and-rotated 241 

data, sampled as close as possible to the histogram of the target data. The third dataset was 242 
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sampled from a mixup data, as close as possible to the histogram of the target data. Both data 243 

augmentation methods were applied to double the original data for fair comparison. 244 

 245 

4.2 Performance evaluation 246 

We evaluated the super-resolution model trained with three different datasets on 247 

Okinotorishima Islands data. Figure 4 shows the PSNR and RMSE of the MSG for each output 248 

image. The proposed method model surpassed the original model for most MSG ranges (0.1–0.3) 249 

with adaptively increased data. For example, the proposed method achieved a mean PSNR of 250 

57.94 dB for MSG 0.2–0.22, compared to the original model’s 57.50 dB. In the range of MSG 251 

greater than 0.14, where the amount of data generated by the proposed method exceeded the 252 

original data, the RMSE improved by 14.3% (RMSE of the flip + rotation model improved by 253 

7.2%). Although the target dataset was small, the RMSE also improved by 33.0% in the MSG 254 

range of 0.06–0.08, where the effect of adaptive data augmentation was minimal. In cases of 255 

MSG less than 0.38, the accuracy of the proposed method was equal to or higher than that of the 256 

original; however, for MSG exceeding 0.38 (the maximum value), the adaptive model showed a 257 

lower accuracy than the original, in terms of both PSNR and RMSE. While this range has a 258 
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minor target data impact on the overall area, it should be noted when processing steep-slope 259 

topographic data. 260 

 261 
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Figure 4. The super-resolution performance of (a) RMSE and (b) PSNR applied to the 262 

Okinotorishima Islands bathymetry data. Comparisons between three models trained using 263 

original, flipped-and-rotated, and adapted data. 264 

 265 

A spatial comparison of the super-resolution performance of the original and adaptive 266 

models is shown in Fig. 5. Figure 5 (a) illustrates the effect of subtracting the PSNR of the 267 

proposed model from the PSNR of the original model. The results are positive when the adaptive 268 

model is superior and negative when it is inferior. Figure 5 (b) shows the distribution of the MSG 269 

in a region with 256 grid squares, centered on each grid. The original model showed a better 270 

PSNR than the adaptive model, especially in the vicinity of the island, where the seabed was 271 

steep, with MSG exceeding 0.4. However, away from the island, the adaptive model 272 
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outperformed the original model in the areas with gradual MSG less than 0.4; both models 273 

showed a similar accuracy in areas where the MSG exceeded 0.4.  274 

 275 
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Figure 5. Comparison of the spatial distribution of super-resolution performance (PSNR) 276 

between the original model and the proposed method. (a) Difference in PSNR between original 277 

and adaptive models and (b) spatial distribution of the mean slope gradient. 278 

 279 

4.3 Limitations and future work 280 

The proposed adaptive mixup method relies on existing bathymetry data, limiting its 281 

ability to generate data for all features. For example, the maximum MSG generated in this case 282 

study was 0.3 (Figs. 3 (b) and (c)), with no data above that range. This lack of data likely 283 

contributed to the performance limitations in regions with a higher MSG, where artificially 284 

generated data were not sufficient. In the area with an MSG range of 0.22–0.28, there was no 285 

advantage of the proposed method, despite the sufficient amount of data. This may be due to a 286 

lack of data for values above 0.28, which may have affected the super-resolution performance in 287 

that range. Similarly, the lower accuracy of the original model for low MSG values (0.04–0.12) 288 

might be due to its specialization for flat terrain. It is important to analyze the similarities of the 289 

features between the target data and the optimal training data to achieve the best performance. 290 

In theory, it is possible to intentionally generate characteristic data by using extremely 291 

large values as weights during mixup or by scaling data up or down vertically or horizontally. 292 

However, in such cases, the geomorphological validity of the data may be lost. Our future work 293 

will explore generating characteristic data using methods such as generative adversarial networks 294 

(GANs) or data augmentation with geomorphological constraints, while ensuring data validity. 295 

 296 

5 Conclusions 297 

This study introduced an adaptive machine learning method that applies the super-298 

resolution model to a seabed area with characteristics different from those of the training data. 299 

The proposed method, involving a two-stage augmented training data generation, demonstrated 300 

improved super-resolution accuracy compared to the original model. However, its application is 301 

currently limited to terrains that can be effectively generated based on real data. We are actively 302 

exploring methods of data generation independent of real data to extend the applicability of this 303 

method to any terrain globally. 304 
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