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Abstract

This study evaluates convective cell properties and their relationships with convective and stratiform rainfall within a season-long

convection-permitting simulation over central Argentina using measurements from the RELAMPAGO-CACTI field campaign.

While the simulation reproduces the total observed rainfall, it underestimates stratiform rainfall by 46% and overestimates

convective rainfall by 43%. As Convective Available Potential Energy (CAPE) increases, the overestimation of convective

rainfall decreases, but the underestimation of stratiform rainfall increases such that the high bias in the contribution of convective

rainfall to total rainfall remains approximately constant at 26% across all CAPE conditions. Overestimated convective rainfall

arises from the simulation generating 2.6 times more convective cells than observed despite similar observed and simulated cell

growth processes, with relatively wide cells contributing most to excessive convective rainfall. Relatively shallow cells, typically

reaching heights of 4–7 km, contribute most to the cell number bias. This bias increases as CAPE decreases, potentially because

cells and their updrafts become narrower and more under-resolved as CAPE decreases. The gross overproduction of shallow

cells leads to overly efficient precipitation and inadequate detrainment of ice aloft, thereby diminishing the formation of robust

stratiform rainfall regions. Decreasing the model’s horizontal grid spacing from 3 to 1 or 0.333 km for representative low and

high CAPE cases results in minimal change to the cell number and depth biases, while the stratiform and convective rainfall

biases also fail to improve. This suggests that improving prediction of deep convective system growth depends on factors beyond

solely increasing model resolution.
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Key Points: 11 

 A convection-permitting simulation overestimates the convective contribution to total 12 

rainfall, while underestimating stratiform rainfall. 13 

 A large excess of simulated shallow convective cells increases as instability decreases, 14 

contributing to the stratiform rainfall bias. 15 

 Increasing model resolution does not improve convective cell and convective-stratiform 16 

rainfall partitioning biases.  17 
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Abstract 18 

This study evaluates convective cell properties and their relationships with convective and 19 

stratiform rainfall within a season-long convection-permitting simulation over central Argentina 20 

using measurements from the RELAMPAGO-CACTI field campaign. While the simulation 21 

reproduces the total observed rainfall, it underestimates stratiform rainfall by 46% and 22 

overestimates convective rainfall by 43%. As Convective Available Potential Energy (CAPE) 23 

increases, the overestimation of convective rainfall decreases, but the underestimation of 24 

stratiform rainfall increases such that the high bias in the contribution of convective rainfall to 25 

total rainfall remains approximately constant at 26% across all CAPE conditions. Overestimated 26 

convective rainfall arises from the simulation generating 2.6 times more convective cells than 27 

observed despite similar observed and simulated cell growth processes, with relatively wide cells 28 

contributing most to excessive convective rainfall. Relatively shallow cells, typically reaching 29 

heights of 4–7 km, contribute most to the cell number bias. This bias increases as CAPE 30 

decreases, potentially because cells and their updrafts become narrower and more under-resolved 31 

as CAPE decreases. The gross overproduction of shallow cells may lead to inadequate 32 

detrainment of ice aloft, thereby diminishing the formation of robust stratiform rainfall regions. 33 

Decreasing the model’s horizontal grid spacing from 3 to 1 or 0.333 km for representative low 34 

and high CAPE cases results in minimal change to the cell number and depth biases, while the 35 

stratiform and convective rainfall biases also fail to improve. This suggests that improving 36 

prediction of deep convective system growth depends on factors beyond solely increasing model 37 

resolution. 38 

Plain Language Summary 39 

The ability of a storm-resolving weather model to predict rainfall over central Argentina was 40 

evaluated with data from a field campaign. Although the model accurately predicted the total 41 

amount of rain, it produced far too much relatively heavy rainfall and not enough light rainfall. 42 

The overestimation of intense rainfall increased as the atmosphere became less favorable for 43 

intense storms, which correlated with far too many predicted storm cells, especially ones that 44 

were relatively shallow. The excessive frequency of storm cells prevented the formation of 45 

widespread lighter rainfall that was much more frequent in observations. Increasing the spatial 46 

resolution of the model to better resolve storm circulations did not improve predictions, 47 

suggesting model representation of storm precipitation formation and growth processes requires 48 

improvement beyond model resolution to better predict storm rainfall intensities. 49 

1 Introduction 50 

Organized convective clouds critically impact weather (e.g., extreme precipitation and 51 

severe winds) and climate (e.g., synoptic waves, intra-seasonal to seasonal oscillations, and 52 

decadal teleconnections) through redistributing atmospheric heat, moisture, and momentum 53 

(Houze, 2004). Convective regions correspond to net latent heating at nearly all heights, while 54 

stratiform regions correspond to net heating in the upper troposphere and net cooling in the lower 55 

troposphere (e.g., Schumacher et al., 2004; Liu et al., 2015) with a dependence on the height of 56 

condensate transport from convective regions (Han et al., 2019). Relatively greater stratiform 57 

contributions to total latent heating integrated in time and space elevates tropical large-scale 58 

circulation responses and wave propagation from the tropics to extratropics (e.g., Schumacher et 59 

al., 2004). Accurate representation of convective-stratiform partitioning by area and precipitation 60 
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as a function of system life cycle and ambient environmental conditions is crucial for weather 61 

and climate prediction. 62 

Weather and climate models have difficulties reproducing observed convective-stratiform 63 

partitioning. General circulation models (GCMs) used for long-range climate prediction and 64 

global weather models are too coarse to resolve convective-scale processes such that convection 65 

parameterizations are needed. However, most sub-grid scale convection parameterizations do not 66 

attempt to represent stratiform regions or mesoscale organization. Stratiform precipitation is left 67 

to grid scale processes (e.g., Pan & Randall, 1998) or parameterized by semi-empirical relations 68 

(e.g., Donner, 1993; Donner et al., 2001; Yang et al., 2013). Higher resolution convection-69 

permitting models (CPMs) with usually 4 km or less horizontal grid spacing explicitly allow 70 

convection, can resolve mesoscale circulations, and are often able to reproduce observed rainfall 71 

totals (e.g., Prein et al., 2013). Nevertheless, CPMs often fail to reproduce observed convective-72 

stratiform area and rainfall partitioning, underestimating the areal coverage and volume of 73 

stratiform precipitation while overestimating the areal coverage and volume of convective 74 

rainfall (e.g., Varble et al., 2011, 2014a-b; Caine et al., 2013; Hagos et al., 2014; Fan et al., 2017; 75 

Feng et al., 2018, 2023b; Zhang et al., 2021). 76 

Model convective cell biases likely contribute to convective-stratiform partitioning 77 

biases. Atmospheric circulation boundaries (e.g., fronts, dry lines, terrain flows, boundary layer 78 

rolls, cold pool outflows) spatially aggregate convective cells with modulation by vertical wind 79 

shear (e.g., Rotunno et al., 1988; Mulholland et al., 2018). Larger and aggregated convective 80 

cells have reduced evaporation associated with dry air entrainment (e.g., Jeevanjee & Zhou, 81 

2022) and convective updraft merging (Glenn & Krueger, 2017) that may impact precipitation 82 

efficiency. These processes may have biased representation in CPMs. Past model evaluations 83 

suggest that CPMs overproduce the number of deep convective cores containing heavy rainfall 84 

(Yun et al., 2020) while reproducing the number and total rainfall of MCSs (Prein et al., 2017; 85 

Zhang et al., 2021). CPMs with kilometer-scale grid spacing also underestimate dry air 86 

entrainment (e.g., Bryan & Morrison, 2012) and produce overly wide convective updrafts and 87 

downdrafts (e.g., Varble et al., 2020).  88 

Convective updrafts horizontally detrain heat, moisture, momentum, and condensate to 89 

promote stratiform anvil growth (Houze, 2004). Mesoscale updrafts and downdrafts associated 90 

with mid-level inflow in a sheared environment can promote stratiform rainfall enhancement 91 

(e.g., Chen & Frank, 1993), but condensate transport is still the primary source for stratiform 92 

growth (Gamache & Houze, 1983). Under-resolved and overly wide and strong convective 93 

updrafts in km-scale models with excessive riming (e.g., Varble et al., 2014a; Fan et al., 2017; 94 

Stanford et al., 2017) may produce insufficient ice detrainment to stratiform regions which limits 95 

stratiform precipitation (Varble et al., 2014b; Han et al., 2019). Thus, CPM-overestimated 96 

convective contribution to rainfall might stem from coupled dynamical and microphysical 97 

processes. 98 

The sensitivity of simulated convective cells and updrafts to model resolution has been 99 

investigated in many previous case studies using idealized and real case simulations (e.g., Petch 100 

et al., 2002; Bryan et al., 2003; Craig & Dörnbrack, 2008; Lebo & Morrison, 2015; Stanford et 101 

al., 2020; Wang et al., 2022). Bryan & Morrison (2012) found that convective rainfall and cell 102 

depth in a mid-latitude, continental squall line decreased as horizontal grid spacing decreased 103 

from 4 km to 250 m, partially because convective updrafts entrained more mid-tropospheric dry 104 

air as resolution increased, though such changes are not systematic across all environments (e.g., 105 
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Bryan et al., 2003; Morrison et al., 2015). Others have found that convective cell area decreases 106 

and convective cell number increases moving from 3-km to finer grid spacing with lesser 107 

changes for grid spacing below 200-250 m (Lebo & Morrison, 2015; Nicol et al., 2015; Stanford 108 

et al., 2024). Convective updraft strength increases moving from 4-km to 1-km grid spacing 109 

owing to decreasing vertical pressure gradient forces as updraft width decreases (Stein et al., 110 

2015; Morrison, 2016). Further decreases in grid spacing to 250-m or less can result in weaker 111 

updrafts owing to increasing buoyancy dilution from dry air entrainment effects (e.g., Wang et 112 

al., 2020). These convective draft differences can also modulate vertical transport of zonal 113 

momentum that affects the convective system’s evolution (Varble et al., 2020). 114 

With regional weather and climate models already being run with 3–4 km grid spacing 115 

(e.g., Casaretto et al., 2021; Dowell et al., 2022), there is an urgent need to understand CPM 116 

biases and their causes to guide model improvement. This study leverages a warm season CPM 117 

simulation, several case-focused simulations with grid spacing varying from 3 to 0.333 km, and 118 

measurements collected from the Remote sensing of Electrification, Lightning, And 119 

Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO; Nesbitt et 120 

al., 2021) and Clouds, Aerosols, and Complex Terrain Interactions (CACTI; Varble et al., 2021) 121 

field campaigns. A primary objective is to use convective cell tracks to evaluate simulated 122 

convective cell growth including its contribution to convective and stratiform precipitation, as 123 

well as its sensitivity to convective instability and model resolution. 124 

The remaining sections are organized as follows: Section 2 introduces the model setup, 125 

observed and simulated datasets, and methods for identifying and tracking convective and 126 

stratiform objects. Section 3 presents evaluation of domain-total convective and stratiform 127 

rainfall and their interactions. Section 4 analyzes simulated convective cell biases. Section 5 128 

investigates convective updraft property contributions to cell biases. Section 6 focuses on the 129 

sensitivity of cell biases to model resolution. Finally, discussion and conclusions are presented in 130 

Section 7. 131 

2 Data and Methodology 132 

2.1 Observations 133 

Our analyses focus on the Sierras de Córdoba (SDC) range (the mountain range cutting 134 

through d2 and d3 in Figure 1) in central Argentina, which is offset ~400 km east of the Andes. 135 

This region is moistened by the northerly South American low-level jet (Salio et al., 2002, 2007; 136 

Sasaki et al., 2022, 2024; Vera et al., 2006) under the influence of synoptic troughs (Piersante et 137 

al., 2021; Rocque & Rasmussen, 2022) and a surface low pressure in the lee of the Andes 138 

(Seluchi et al., 2003) that build convective instability beneath inversions and steep lapse rates 139 

caused by westerly flow over the Andes (Rasmussen & Houze, 2011, 2016; Ribeiro & Bosart, 140 

2018; Schumacher et al., 2021). This meteorological setup interacts with the mountainous terrain 141 

to produce frequent deep convection initiation (Nelson et al., 2021, 2022; Marquis et al., 2021, 142 

2023), rapid growth (Mulholland et al., 2018; Feng et al., 2022), and organization (Mulholland et 143 

al., 2019; Trapp et al., 2020; Singh et al., 2022) of deep convection, making it a prime location to 144 

study deep convective cloud processes. This led to the RELAMPAGO (Nesbitt et al. 2021) and 145 

CACTI (Varble et al. 2021) field campaigns being conducted in this area between October 2018 146 

and April 2019. 147 
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 148 
Figure 1. Model domains for conducting the multiscale simulations. The red dot represents the 149 

radar and radiosonde location with 20-, 50-, 80-, and 110-km radar range rings in black. 150 

About 20 km east of the primary SDC north-south ridgeline, a ground-based C-Band 151 

Scanning Atmospheric Radiation Measurement (ARM) Precipitation Radar (CSAPR2) was 152 

operated. From October 2018 through February 2019 (Varble et al., 2021), the CSAPR2 153 

collected plan projection indicator (PPI) volume scans every 15 minutes with elevation varying 154 

from 0.5° and 33° (Hardin et al., 2018). CSAPR2 did not collect PPI volumes from 27 December 155 

2018
 
to 20 January 2019, 9 February to 23 February 2019, and after 3 March 2019 due to 156 

operational interruptions. Non-meteorological and second-trip echoes are removed using the 157 

Taranis radar processing package (Hardin et al., 2020). Rain rates are retrieved using quality 158 

controlled CSAPR2 reflectivity, differential reflectivity, and specific differential phase 159 

measurements for points without likely hail contamination, following Bringi & Chandrasekar 160 

(2001). These retrievals were then re-gridded to Cartesian coordinates with 500-m horizontal and 161 

vertical grid spacing using the Python ARM Radar Toolkit (Helmus & Collis, 2016). 162 

The processed CSAPR2 dataset is used to analyze convective-stratiform rainfall 163 

partitioning and convective cell life cycles. Every 15-minute Top-Of-Atmosphere (TOA) 164 

infrared (IR) brightness temperature (Tb) measurement at 2-km grid spacing (Smith and Thieman 165 

2019) from Geostationary Operational Environmental Satellite 16 (GOES-16) is matched to 166 

radar-tracked convective cells (see section 2.3 for tracking details). Environmental conditions are 167 

derived from the Interpolated Sonde (INTERPSONDE) product (Fairless & Giangrande, 2018). 168 

INTERPSONDE temporally interpolates radiosondes with scaling of the moisture profiles to 169 

continuous precipitable water measurements collected by a microwave radiometer. Inputted 170 

radiosondes were launched every 3 to 4 hours at the CSAPR2 site between 12 and 00 UTC (9–21 171 

LT). These sounding derived parameters are matched in time with each convective cell’s 172 

initiation time. 173 

2.2 Simulations 174 

A convection-permitting simulation covering 15 October 2018 to 30 April 2019 was 175 

conducted using the Weather Research and Forecasting (WRF: Skamarock & Klemp, 2019) 176 
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model version 4.1.1 with 15-minute output that matches the observed radar volume frequency. 177 

Its domain (d2) is shown in Figure 1. The simulation is performed at 3-km horizontal grid 178 

spacing with 80 vertical levels preferentially stacked below 5-km altitude but with all layer 179 

thicknesses less than 500 m. Microphysical processes are parameterized using the Thompson 180 

aerosol aware scheme (Thompson & Eidhammer, 2014), planetary boundary layer (PBL) 181 

processes are parameterized using the Mellor-Yamada Nakanishi Niino (Nakanishi & Niino, 182 

2006, 2009) eddy diffusivity mass flux scheme, the surface layer is parameterized by the Eta 183 

similarity scheme (Janjic, 2002), and radiation is parameterized by the RRTMG shortwave and 184 

longwave schemes (Iacono et al., 2008). This model setup is very similar to the operational High 185 

Resolution Rapid Refresh (HRRR) model (Dowell et al., 2022). Rainfall is computed at 2.5 km 186 

above mean sea level (AMSL) consistent with observations for comparisons to avoid ground 187 

clutter and variable lowest radar beam heights with range while remaining below the melting 188 

level. Contributions of graupel and hail to precipitation are ignored in simulations to be 189 

consistent with radar retrievals. 190 

Table 1. Case Study Simulation Time Periods 191 

Simulation Domains Analysis 

Periods 

d1 Restart d2 

Initialization 

d3 

Initialization 

Low CAPE 3 km d1 00–12Z, 26 

Nov 

12Z, 25 Nov N/A N/A 

Low CAPE 1 km d1, d2 00–12Z, 26 

Nov 

12Z, 25 Nov 12:15Z, 25 

Nov 

N/A 

Low CAPE 333 m d1, d2, d3 00–12Z, 26 

Nov 

12Z, 25 Nov 12:15Z, 25 

Nov 

18:15Z, 25 

Nov 

High CAPE 3 km d1 16Z, 10 Nov 

– 6Z, 11 Nov 

12Z, 09 Nov N/A N/A 

High CAPE 1 km d1, d2 16Z, 10 Nov 

– 6Z, 11 Nov 

12Z, 09 Nov 4:15Z, 10 

Nov 

N/A 

High CAPE 333 m d1, d2, d3 16Z, 10 Nov 

– 6Z, 11 Nov 

12Z, 09 Nov 4:15Z, 10 

Nov 

10:15Z, 10 

Nov 

Higher resolution simulations for two convective cases are conducted with innermost 192 

domain horizontal grid spacings of 1 and 0.333 km, respectively (Fig. 2). As described in Table 193 

1, case study simulations that include the higher resolution domains are run for two separate 194 

periods representing low CAPE conditions (< 300 J kg
-1

) and high CAPE conditions (> 1000 J 195 

kg
-1

). In each period, there are 3 simulations performed, one with only d1, a second with d2 196 

nested into d1, and a third with d3 nested into d2 and d1. Two-way nesting is employed. These 197 

simulations are restarted from the seasonal simulation using a 12 UTC (9 LT) restart file prior to 198 

the start of the event. The nested inner domains (d2 and d3) are delayed in their starts and 199 

allowed to spin up for 11.75 hours and 5.75 hours, respectively. Exact restart, initiation, and 200 

analysis times are listed in Table 1. The total simulated hours including model spin up are 24 201 

hours for the 3 low CAPE period runs and 30 hours for the 3 high CAPE period runs. The full 202 

CSAPR2 coverage area (110 km range) is encapsulated by d3 (Fig. S1). All 3 domains have the 203 

same vertical levels and physics parameterizations used in the seasonal run, except that the 204 
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planetary boundary layer scheme is turned off in d3, where diffusion is computed using a 205 

prognostic equation for the 1.5-order turbulent kinetic energy closure (Bretherton & Park, 2009). 206 

2.3 Convective Cell Tracking 207 

Observed and simulated convective cells are consistently tracked using the open-source 208 

PyFLEXTRKR algorithm (Feng et al., 2023a) applied to 15-minute composite (column 209 

maximum) reflectivity maps derived from the WRF simulations and the CSAPR2 observations. 210 

The melting layer was designed to avoid cell identifications associated with high melting level 211 

reflectivity (Feng et al., 2022). The CSAPR2 reflectivity measurements at native 500-m grid 212 

spacing, and the higher resolution simulations with 0.333-km and 1-km horizontal grid spacing, 213 

are conservatively coarsened to 3-km horizontal grid spacing by averaging reflectivity in linear 214 

units (mm
6
 m

-3
) and then converting to log10 (dBZ) units. Terrain blockage of CSAPR2 radar 215 

beams is analyzed with a digital elevation map using the wradlib (Heistermann et al., 2013) 216 

Python package. The same beam blockage mask is applied to the WRF output to have consistent 217 

observing volumes with measurements. Dates and times in which the CSAPR2 did not obtain 218 

PPI volumes were also removed in the WRF dataset.  219 

Following the method in Steiner et al. (1995), the tracking algorithm identifies convective 220 

cores using the horizontal texture of composite reflectivity by defining the peakedness of each 221 

point, which is the difference between each grid point reflectivity (𝑍𝑔𝑟𝑖𝑑) and the surrounding 222 

background reflectivity (𝑍𝑏𝑘𝑔). 𝑍𝑏𝑘𝑔 is defined using averaged values within a 13.5-km radius 223 

from each 3-km spacing grid point. A grid point is classified as a convective core if the 224 

reflectivity peakedness (𝑍𝑔𝑟𝑖𝑑 − 𝑍𝑏𝑘𝑔) is higher than the reflectivity-dependent threshold equal 225 

to 10𝑐𝑜𝑠⁡(𝜋𝑍𝑏𝑘𝑔/120) or if 𝑍𝑔𝑟𝑖𝑑 exceeds 55 dBZ. To avoid over-segmentation, identified 226 

convective cores are further expanded with a 𝑍𝑏𝑘𝑔-dependent dilation radius (𝑅𝑐𝑜𝑟𝑒) defined by 227 

Equation 1 where Rcore has units of km and Zbkg has units of dBZ: 228 

𝑅𝑐𝑜𝑟𝑒 = 𝑚𝑖𝑛 [𝑚𝑎𝑥 (3 + 0.5 ⌈
𝑍𝑏𝑘𝑔 − 25

5
⌉ , 3) , 5]⁡⁡⁡⁡⁡(1) 

5 km is set as the maximum dilation radius to avoid grouping of too many convective 229 

cores into one object. Core grid points adjoining one another are merged into individual core 230 

objects. Core objects are then horizontally expanded 1 km at a time until they reach another 231 

object or 7 km distance from the core. When they meet another object, they are not merged with 232 

it. This expanded mask around cores encapsulates cells and is applied to track cells more easily 233 

via overlap between the time gap of 15 min. Examples of identified convective cell masks in 234 

observations and the 3-km simulation are shown with black contours in Figure S1. These 235 

convective cells are tracked based on their spatial overlapping masks exceeding 30% between 236 

consecutive timesteps, producing track trajectories like those shown by black lines in Figure S1. 237 

Convective cell advection is estimated using the cross-correlation of reflectivity between 238 

consecutive timesteps and applied to increase the overlapping cell masks between timesteps. The 239 

minimum core area for tracking after dilation is 5 pixels with an area of 45 km
2
. Additional 240 

tracking details are described in Feng et al. (2022). A convective cell is identified as a merger if 241 

it is initially isolated but sufficiently overlaps with another larger cell at the next timestep. 242 

Similarly, a split is a convective cell sufficiently overlapping with a larger cell 1 timestep prior to 243 

being isolated. 244 
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In addition to cell tracking for 3-km horizontal grid spacing, a similar algorithm is 245 

applied to the CSAPR2 500-m, WRF 1-km, and WRF 0.333-km native grids for obtaining 246 

higher-resolution cell tracks. To adapt the tracking to finer grid spacings, the 1-km cell tracking 247 

uses a similar core dilation radius as described by Equation 1 but with an adjusted minimum 248 

dilation from 3 km to 2 km. The 0.5-km and 0.333-km cell tracking use 1-km minimum core 249 

dilation with a minimum core area adjusted from 45 to 13 km
2
. The radius of the region for 250 

computing background reflectivity is also reduced from 13.5 km to 11 km in 1-km and 0.333-km 251 

settings. In addition, the core expansion into a cell mask is limited to 5 km in these higher 252 

resolution runs. 253 

All convective cell statistics are computed within their cell masks. Cell areas are defined 254 

by the area within the cell masks (black contours in Figure S1) where the composite reflectivity 255 

is greater than 10 dBZ. Echo Top Height (ETH) is estimated for each convective cell using the 256 

highest altitude where reflectivity exceeds 10 dBZ within the convective cell masks. Convective 257 

area and ETH are calculated throughout the lifecycle of convective cell tracks. Cell track 258 

initiation times are matched with the INTERPSONDE and simulated observing site vertical 259 

profile derived environmental conditions at that time. We focus on the most unstable CAPE 260 

(MUCAPE, simplified as CAPE hereafter), which is the CAPE associated with the parcel lifted 261 

from the level with the maximum equivalent potential temperature in the lower troposphere. The 262 

time evolution of CAPE at the CSAPR2 radar location is well reproduced by the season-long 263 

simulation, as shown in Zhang et al. (2021). Convective and stratiform rainfall are retrieved from 264 

the 2.5-km altitude simulated and CSAPR2 derived rain rates with convective rainfall defined as 265 

rain rates within convective cell masks and the rain rates outside convective cell masks defined 266 

as stratiform rainfall. 267 

3 Simulated Rainfall Evaluation 268 

The temporal evolution of WRF-simulated rainfall in d3 follows that of observed rainfall 269 

estimated from the CSAPR2 radar (Figure S2a), with perhaps a few subtle distinctions. The 270 

cumulative rainfall is slightly underestimated by the simulation (Figure S2b) but within the 271 

~15% underestimation that is within the uncertainty expected from blended polarimetric C-band 272 

radar rain retrievals in past studies (e.g., Cifelli et al., 2011; Giangrande et al., 2014). The 273 

simulation also reproduces the general month-to-month variations in rainfall (Figure 2a). 274 

However, dividing the total rainfall into convective and stratiform contributions highlights more 275 

significant model biases. The WRF simulation overestimates the convective rainfall by 43% 276 

(Figure 2b) while underestimating the stratiform rainfall by 46% (Figure 2c). Thus, the simulated 277 

convective to stratiform rainfall volume ratio (66%) is much greater than observed (38%). 278 

The simulated convective and stratiform rainfall biases are sensitive to CAPE conditions 279 

(Figure 3). The simulated overestimation of convective rainfall decreases as CAPE increases 280 

(Figure 3a), while simulated underestimation of stratiform rainfall increases (Figure 3b). Total 281 

rainfall is well predicted in low CAPE conditions but becomes increasingly underpredicted as 282 

CAPE increases (blue line in Figure 3c). Interestingly, bias in the ratio of convective to total 283 

rainfall is not sensitive to CAPE with simulations overestimating the convective contribution by 284 

24–28% (orange line in Figure 3c). These values reflect a similar shift to more convective 285 

rainfall as CAPE increases in both simulations and observations; however, the simulations have 286 

much greater contributions to total rainfall from convective regions for all CAPE conditions. 287 
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 288 
Figure 2. Volume of (a) total, (b) convective, and (c) stratiform rainfall, as well as (d) 289 

convective/stratiform rainfall ratio by month with totals over all times shown in the legends. 290 

 291 
Figure 3. (a) Convective and (b) stratiform rainfall in observations and simulations with model 292 

relative biases as a function of CAPE. (c) Total rainfall relative biases and convective 293 

contribution to total rainfall absolute biases conditioned by CAPE. 294 

Stratiform rainfall volume generally increases with convective rainfall volume (Fig. S3). 295 

Their correlation coefficients are between 0.66 and 0.91 depending on CAPE conditions and 296 

whether observations or simulations are considered. The correlation coefficients in observations 297 

(Figure S3a, c) are lower than those in WRF (Figure S3b, d) because observed stratiform rainfall 298 

has a large range when convective rainfall is less than 10,000 mm km
2
 with some very large 299 

values that are not reproduced in WRF. Even neglecting those values, the observed linear 300 

regression slopes are greater than simulated suggesting the model requires more convective 301 

rainfall than is observed to yield a similar amount of stratiform rainfall. The regression slopes in 302 
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higher CAPE conditions are also less than those in lower CAPE conditions by about a factor of 303 

2, meaning high CAPE storms tend to form less stratiform rainfall than low CAPE storms for a 304 

given amount of convective rainfall. This effect is captured by the simulation and might relate to 305 

more intense updrafts in higher CAPE conditions that produce more fast-falling rimed ice, less 306 

snow detrainment, and higher altitude anvils that accentuate sublimation relative to lower CAPE 307 

conditions. All these processes would slow the development of robust stratiform precipitation, 308 

and such processes may be exaggerated in the simulations relative to the observations. 309 

 310 
Figure 4. Stratiform and convective rainfall volume in the 4 hours leading up to the peak rainfall 311 

volume in the domain at time 0 for peak volumes that exceed 2000 mm km
2
. (a–b) Observed and 312 

(c–d) simulated time series are shown for (a, c) low and (b, d) high CAPE conditions. Medians 313 

and means are represented by circles and horizontal lines, respectively. Interquartile and 5th to 314 

95th ranges are shown by the bars and vertical lines, respectively. 315 

The correlation between convective and stratiform rainfall can also be tracked in time to 316 

assess convective and stratiform interactions. The simulation produces a similar number of 317 

rainfall volume peaks > 2000 mm km
2
 to observed in lower CAPE conditions (56 vs. 60; Figure 318 

4a, c) but underestimates the number of peaks in higher CAPE conditions (19 vs. 32; Figure 4b, 319 

d). For lower CAPE, observed stratiform rainfall is always greater than convective rainfall and 320 

grows at a faster rate than convective rainfall within 2 hours of peak total rainfall (Figure 4a). In 321 

contrast, the simulated stratiform rain volume remains lower than the convective rain volume 322 

with a growth rate that is similar or even slightly lesser than the convective growth rate (Figure 323 

4b). Higher CAPE, on the other hand, facilitates more rapid convective growth than stratiform 324 

growth in observations. The simulation reproduces this effect but with much greater convective 325 

precipitation and much lesser stratiform precipitation (Figure 4b, d). This again demonstrates that 326 

the simulation can qualitatively capture the response of convective-stratiform rainfall ratio to 327 

CAPE but is unable to predict its absolute magnitude across CAPE conditions with a bias that is 328 

present throughout the entire growth stage of MCSs. 329 
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 330 
Figure 5. Cumulative (a) small, (b) medium, and (c) large convective cell rainfall volumes for 331 

observations and WRF with relative biases in WRF, conditioned by CAPE. 332 

To assess how convective cells contribute to WRF overproduced convective rainfall, 333 

Figure 5 shows convective rainfall separated by small (< 300 km
2
), medium (300–550 km

2
), and 334 

large (> 550 km
2
) cells and simulated biases relative to observations. Rainfall produced by small 335 

cells is overestimated by the model in low CAPE conditions and underestimated in medium and 336 

high CAPE conditions. Medium-sized cell rainfall is overestimated by the model in low and 337 

medium CAPE and underestimated in high CAPE. Finally, large cell rainfall is overestimated by 338 

the model in all CAPE conditions. For all cell sizes, the observed convective rainfall increases as 339 

CAPE increases. However, this is only true for large cells in simulations, and simulated small 340 

cell rainfall decreases as CAPE increases. In low CAPE scenarios, all cell sizes contribute to 341 

overestimated convective rainfall, whereas in medium and high CAPE scenarios, the larger cells 342 

produce overestimated total convective rainfall. Furthermore, model bias increases as cell sizes 343 

grow. Clearly, cell properties change differently as a function of CAPE in observations and the 344 

simulation. Simulated convective cell biases are further evaluated in Section 4 to reveal potential 345 

causes of this difference. 346 

4 Simulated Convective Cell Evaluation 347 

 348 
Figure 6. Spatial occurrence (color fills) and propagation (vector) of (a) observed and (b) 349 

simulated convective cell tracks. The Z score is the domain-normalized number of cell hours at a 350 

point. Grey contours represent the 1-km terrain height AMSL. 351 

There are 5,662 observed and 14,299 simulated convective cells that are tracked; thus, the 352 

model produces ~2.5 times more cells than are observed. An overestimation of cell number in 3-353 
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4 km horizontal grid spacing models with the Thompson scheme including HRRR has been 354 

noted previously (Clark et al., 2014; Duda and Turner, 2021, 2023), though such a large bias is 355 

not seen for the number of convective systems using reflectivity-based objects (e.g., Grim et al., 356 

2021). 2,355 observed and 6,016 simulated convective cells initiate and grow (by reflectivity 357 

area) within the domain, and these are used in further analyses. The simulation reproduces the 358 

spatial distribution of these cells, with the highest frequency centered over the SDC range just 359 

east of the highest ridgeline (Figure 6). The eastward propagation of these cells is also captured 360 

by the simulation, suggesting that it reasonably captures the processes controlling the 361 

spatiotemporal distribution of moist convection despite more numerous cells that may thus be the 362 

result of convective scale processes. 363 

 364 
Figure 7. Probability distributions of convective cell (a) lifecycle-maximum reflectivity, (b) 10-365 

dBZ ETH, (c) lifetime, and (d) propagation speed. Red and blue dashed vertical lines represent 366 

the mean values in observations and simulations, respectively. 367 

The simulation also generally captures the peak probabilities of convective cell maximum 368 

reflectivity, lifetime, and propagation speed (Figure 7a, c, and d), though with a slight bias 369 

toward greater values. The greater occurrence of simulated reflectivities exceeding 60 dBZ could 370 

be related to the observed reflectivities being C-band in which large hydrometeors such as hail 371 

can produce non-Rayleigh scattering, whereas WRF reflectivities are estimated assuming purely 372 

Rayleigh scattering. The reflectivity difference is unsurprising based on previous studies (e.g., 373 

Varble et al. 2011). Differences between observation and simulation mean values are more 374 

substantial for ETH (Figure 7b). The model greatly overestimates the probability of shallow 375 



Manuscript submitted to Journal of Geophysical Research: Atmospheres 

 

convective cells (ETH = 2.5–7.5 km) and underestimates the probability of deep convection 376 

(maximum ETH > 7.5 km). Part of this difference is due to non-uniform beam filling and 377 

extrapolation artifacts in the Cartesian gridding of observations that results in an ETH high bias. 378 

The high bias in simulated cell number is most apparent in low CAPE conditions for all 379 

cell areas and decreases as CAPE increases (Figure 8). However, the model produces more 380 

numerous convective cells across all CAPE conditions for all convective cell areas. The cell 381 

number bias also increases with the cell area in low CAPE conditions. However, in high CAPE 382 

conditions, the WRF overestimation of cell number decreases from small to medium area cells 383 

and increases from medium to large cells. This indicates potentially different process controls on 384 

cell size distributions in high CAPE relative to low CAPE conditions. 385 

In addition to convective cell number, the convective cell area differences between the 386 

simulation and observations vary by CAPE. Simulated convective cell areas are larger than 387 

observed in low-medium CAPE conditions but the probability of large convective cells in high 388 

CAPE conditions is underestimated (Figure S4). Recall that the model overestimation of total 389 

convective rainfall decreases with CAPE, partially a result of the model overestimation of 390 

convective cell number decreasing with CAPE (particularly for large cells that produce the 391 

heaviest rainfall). The change in convective rainfall volume biases as cell area changes also far 392 

exceeds the change in convective cell number biases (Figure 5 vs. Figure 8). 393 

 394 
Figure 8. Observed and simulated (a) small, (b) medium, and (c) large convective cell track 395 

numbers and WRF biases relative to observed, conditioned by CAPE. 396 

Given the differences in observed and simulated cell properties, convective cell net 397 

growth is explored for the lifecycle growth period between the cell initiation and the lifecycle 398 

maximum cell area times. Net growth during this lifecycle period is controlled by convective cell 399 

expanding, shrinking, merging, and splitting processes, which are quantified and evaluated in 400 

Figure 9. Merging and splitting areas are the cell area difference between the two consecutive 401 

timesteps over which merging or splitting occurs and includes the potential shrinking and 402 

expansion during that period. Since a pure split is uncommon in both the observations and 403 

simulation, splits are combined with splits plus mergers occurring at the same time into the 404 

“other” category. 405 

The mean and interquartile range values of the simulated small cell net growth are greater 406 

than observed. Observed and simulated cell expansion contributions to cell growth are both near 407 

100% on average, with fewer contributions from shrinking, merging, and splitting. This indicates 408 

that small cell expansion growth dominates the observation-simulation net growth difference. 409 

However, medium area cell growth (Figure 9b) is underestimated by the model. Simulated 410 
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medium area cell shrinking is slightly underestimated and the simulated merging is slightly 411 

greater than observed, but these are not able to counteract the dominant control of cell expansion, 412 

which is greater in observations. The mean and median simulated large cell net growth and 413 

expansion are similar to observed (Figure 9c), which is the result of combined overestimated 414 

expansion and underestimated merging in the simulation. Thus, despite differences in observed 415 

and simulated cell numbers, areas, and contributions to rainfall, there are limited differences in 416 

cell area growth lifecycles. 417 

 418 
Figure 9. Observed (red) and simulated (blue) convective cell area net growth with contributions 419 

from cell expansion, merging, shrinking, and other (splitting, splitting plus merging) during the 420 

growth period between initiation and lifetime-maximum area across all CAPE conditions. Means 421 

and medians are represented by circles and horizontal lines, respectively. Interquartile and 5th to 422 

95th ranges are shown by bars and vertical lines, respectively. 423 

5 Physical Controls on Convective Cell Biases 424 

Convective updraft area is calculated throughout each individual convective cell lifecycle 425 

in the simulation. Updraft regions are defined as having vertical velocity greater than 2 m s
-1

 and 426 
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radar reflectivity greater than 10 dBZ within the identified convective cell footprints. Figure 10 427 

shows that the lifecycle- and column-maximum convective updraft area positively correlates 428 

with the lifecycle-maximum aggregated convective cell area with a linear correlation coefficient 429 

higher than 0.9 (r = 0.85–0.96 for 200,000 times of random bootstrapping), indicating a robust 430 

positive correlation. The maximum convective cell area reached is usually twice the column-431 

maximum updraft area reached during a cell’s lifecycle, though this ratio is sensitive to the 432 

definition of the updraft and cell area. 433 

 434 
Figure 10. Lifecycle-maximum convective cell area as a function of lifecycle- and column-435 

maximum updraft area. The color fill shows cell area probabilities conditioned on maximum 436 

updraft area, i.e., within each maximum updraft area bin. 437 

Relationships of the lifecycle-maximum convective cell circle-equivalent diameter 438 

(2√𝐴𝑟𝑒𝑎/𝜋) with the lifecycle-maximum 10-dBZ radar reflectivity ETH and lifecycle-minimum 439 

TOA IR Tb can inform potential observed and simulated updraft differences. In Figure 11, the 440 

highest observed ETHs reach 22 km, which is higher than those simulated, which reach 18 km, 441 

consistent with Figure 7b. The simulated linear regression slope between cell diameter and ETH 442 

(0.38) is lower than observed (0.52), indicating cells reach greater depths for a given cell area in 443 

observations as compared to the simulation. 444 

Due to Cartesian gridding artifacts, non-uniform radar beam filling, and sidelobe 445 

contamination, the ETH estimated from ground-based radar measurements tends to be biased 446 

high (e.g., Lakshmanan et al., 2013), which likely contributes to the model-observation ETH 447 

difference. The TOA IR Tb measured by GOES-16 is re-gridded to WRF 3-km grids for 448 

comparison with simulated TOA IR Tb empirically derived from the simulated outgoing 449 

longwave radiation, following the approach in (Yang & Slingo, 2001). Higher TOA IR Tb 450 

indicates that the cloud top has more outgoing longwave radiation, which corresponds to a lower, 451 

warmer cloud top. The simulated lifecycle-minimum TOA IR Tb range of values agrees with that 452 
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observed, but the absolute value of the regression slope in the simulation is slightly less steep 453 

than observed (Figure 11c–d). That means for a given cell diameter, the simulation is more likely 454 

to have a lower cloud top than observed. This agrees with the radar ETH bias as a function of cell 455 

diameter, but with a much smaller difference, suggesting that a significant portion but not all the 456 

radar ETH difference is a retrieval artifact. 457 

These relationships of convective updraft and cell properties suggest that convective cell 458 

area is a good qualitative proxy for updraft area and depth in the simulation. Although updraft 459 

properties are not directly retrievable from observations, it is physically plausible that observed 460 

cell area and depth also scale with updraft area (though potentially with a different slope). It is 461 

also plausible that the widest, deepest updrafts exist in relatively high CAPE conditions. This 462 

suggests that updraft widths would be least resolved in simulated low CAPE conditions, which is 463 

indeed where the largest model biases are found. 464 

 465 
Figure 11. Observed and simulated (a–b) lifecycle-maximum 10-dBZ radar reflectivity ETH and 466 

(c–d) lifecycle-minimum TOA IR Tb as functions of lifecycle-maximum convective cell 467 

diameter. The color fill shows ETH and TOA IR Tb probabilities conditioned on maximum cell 468 

diameter. The ordinary least square fit lines are shown in black, and the r value represents the 469 

Pearson linear correlation coefficient. 470 

Excessive numbers of shallow cells in the simulation bring the average cell depth down 471 

for a given cell width, which may negatively impact stratiform rainfall formation. Convective 472 

cells that do not reach well above the freezing level likely have limited ice detrainment that is 473 

critical to the formation of stratiform anvil regions, and the simulation has excessive numbers of 474 

these cells. It is also possible that the deep cells in the simulation fail to detrain vapor-grown ice 475 
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in sufficient amounts over sufficient height layers to adequately grow precipitating stratiform 476 

regions as highlighted in previous studies (Varble et al. 2014b, Han et al. 2019). In this scenario, 477 

underproduced stratiform precipitation in the simulation results in less extensive atmospheric 478 

stabilization caused by its upper-level latent heating over lower-level latent cooling. Such a 479 

process would leave more atmospheric instability to be consumed by additional convective cells. 480 

Thus, there could exist a positive feedback between the convective cell and stratiform biases, and 481 

such interactions deserve further investigation in the future. 482 

Additional possible causes for excessive numbers of shallow convective cells are biased 483 

dynamical and/or microphysical processes. Focusing on possible dynamical biases, convective 484 

updrafts are severely under-resolved for 3-km horizontal model grid spacing, resulting in wider 485 

simulated updrafts than those in the real world. For relatively shallow cells with small areal 486 

coverage, updrafts are thinnest and thus potentially the most biased too wide, which could 487 

suppress entrainment dilution but enhance opposing vertical pressure gradients. The minimum 488 

resolved wavelength by WRF is approximately 7 times the grid spacing (Skamarock, 2004). 489 

Thus, despite explicit convection, this simulation at 3-km grid spacing only fully resolves a half 490 

wavelength feature like a convective updraft if it is 10.5 km or more wide, corresponding to a 491 

circular convective updraft area of 87 km
2
 and a cell area that is typically twice the updraft area 492 

(174 km
2
). This is substantially wider than most convective updrafts measured by aircraft (e.g., 493 

(Warner & McNamara, 1984; Lucas et al., 1994; Anderson et al., 2005) and radar wind profilers 494 

(e.g., Wang et al., 2020). Indeed, more than 2/3 of convective cell areas defined on a 500-m 495 

spaced grid are smaller than the minimum resolvable areal threshold (174 km
2
) at 3-km grid 496 

spacing (Figure S5). This could result in a shift of energy from unresolvable small cells into 497 

larger resolvable cell sizes in the simulation, possibly contributing to the previously discussed 498 

model biases. 499 

6 Bias Sensitivity to Model Resolution 500 

To test how increased model resolution affects simulated convective cell and convective-501 

stratiform partitioning biases, low and high CAPE events were chosen (Table 1) and simulated 502 

with nested 1- and 0.333-km horizontal grid spacing domains to compare with the 3-km grid 503 

spacing results (see Section 2.2 for details). Observations were also analyzed on a 500-m 504 

horizontal grid in addition to the 3-km grid. All results in this section apply to the individual low 505 

and high CAPE events, though 3-km results are generally consistent with the season-long 506 

simulation results. 507 

 In the low CAPE case (black dots in Figure 12), convective rain volumes are 508 

overestimated by more than 84% in all 3 simulations (Figure 12b). The simulated convective rain 509 

volumes in the 3-km and 1-km runs are similar, but the 0.333-km run produces about 25% more 510 

convective rainfall than coarser simulations (Figure 12a). Figure 12c–d shows that the 3-km run 511 

accurately predicts the stratiform rainfall, but the 1-km and 0.333-km runs underestimate it by 24 512 

and 46%, respectively. In Figure 12e–f, 1-km and 0.333-km convective and stratiform biases 513 

offset to produce total rainfall that is similar to observed in the low CAPE case while the 3-km 514 

run overestimates rainfall by 26%. In Figure 12g–h, simulated cell numbers are nearly double 515 

those observed for all resolutions with the 1-km experiment producing the most numerous 516 

convective cells. 517 

In contrast to the low CAPE case, the high CAPE case’s convective rainfall is simulated 518 

accurately in the 3-km run but underestimated by ~30% in the 1-km and 0.333-km simulations 519 
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(Figure 12a-b). Stratiform rainfall is greatly underestimated by the simulations, a bias that 520 

increases from –54% to –86% as horizontal grid spacing decreases from 3 to 0.333 km and is 521 

much worse than the low CAPE stratiform rainfall bias. The stratiform underproduction leads to 522 

total rainfall being underestimated by all simulations with 1-km and 0.333-km runs producing 523 

only half of what was observed due to additional contributions from underpredicted convective 524 

rainfall (Figure 12c-d). Simulated convective cell numbers are about double those observed for 525 

all model resolutions, similar to the low CAPE case (Figure 12g–h). 526 

 527 
Figure 12. Rainfall and cell number statistics for 3-, 1-, and 0.333-km horizontal grid spacing 528 

simulations and 3-km horizontal grid spacing observations with biases relative to observations 529 

for the low and high CAPE events. 530 

The convective contribution to total rainfall (Figure 12i–j) is also biased high for all 531 

simulations and increases as resolution increases for both low and high CAPE cases. Overall, 532 

stratiform rainfall biases and their biased contribution to total rainfall worsen as the model grid 533 

spacing decreases in these convective cases. This suggests that effectively reducing the 534 
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stratiform bias cannot be achieved solely via increasing the model’s resolution, pointing to 535 

physics parameterization contributions that require further evaluation. Additionally, some biases 536 

do not monotonically change with model resolution and vary between low and high CAPE cases, 537 

which agrees with some past studies (e.g., Bryan et al., 2003; Prein et al., 2021). 538 

 539 
Figure 13. Probability distributions of convective cell areas for the (a) low and (b) high CAPE 540 

events for full resolution datasets (not averaged to 3-km grid spacing) except for the 0.333-km 541 

run that is averaged to 500 m to match 500-m observations. The vertical dashed lines represent 542 

the approximate minimum resolvable cell area in WRF with 3-km horizontal grid spacing.  543 

Convective cell properties also vary substantially by resolution. In the low CAPE event, 544 

the 3-km run significantly underestimates the probability of convective cells at sizes smaller than 545 

80 km
2 

(Figure 13a; 1.9 on the log10 scale). The 1-km run produces many more cells that are 546 

smaller than the 3-km run’s effective resolution, but still with cell areas shifted slightly larger 547 

than observed. The 0.333-km run agrees best with the observed distribution, indicating that 548 

decreasing model grid spacing below 500 m may be required to adequately resolve the cell area 549 

distribution in some conditions. Kolmogorov-Smirnov (KS) testing of differences between 550 

observed and simulated cell area distributions further demonstrates that p values increase as 551 

model resolution increases from 5×10
–13

 to 0.007 and 0.05 for 3-, 1-, and 0.333-km runs, 552 

respectively. Thus, at a 5% level, 3-km and 1-km runs significantly differ from observations 553 

while the simulated area distribution in the 0.333-km run does not. In the high CAPE event, the 554 

observed convective cells are larger than those in the low CAPE case (Figure 13). More 555 

convective cells in the 3-km simulation are shifted to the right side of the dashed line and better 556 
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resolved in these conditions as compared to the low CAPE event. The 3-km run also better 557 

agrees with the observed cell area distribution for this high CAPE event (p value = 0.1) than the 558 

1-km and 0.333-km runs (p values of 0.001 and 0.0001, respectively). The simulated updraft 559 

width distribution differences (Figure S6) largely follow the cell area distribution differences in 560 

Figure 13, showing that updrafts become better resolved with increasing resolution with cell 561 

areas being a decent proxy for updraft area. However, all resolutions fail to reproduce the notable 562 

shift from small to large cell sizes that is observed with increasing CAPE (Figure 13a–b) without 563 

universal improvement of cell areas with resolution across both low and high CAPE conditions. 564 

Despite shifts to smaller cell and updraft areas as model resolution increases, Figure S7 565 

shows that convective cell depth is greatly underestimated across all resolutions in both low and 566 

high CAPE conditions. Thus, all simulations, regardless of resolution, produce more numerous 567 

shallow cells than observed that dominate the PDFs, with the caveat that a portion of the 568 

difference is also due to high biased ETHs in observations. In both low and high CAPE events, 569 

simulated shallow cell echo tops peak between 4 and 7 km AMSL. The excessive number of 570 

these relatively shallow cells amplify convective rainfall with little contribution to stratiform 571 

rainfall growth. Collectively, the model resolution sensitivity tests suggest that insufficient 572 

model resolution is not the primary cause for convective cell area, depth, and stratiform growth 573 

biases. This suggests that physics parameterizations such as the microphysics scheme’s control 574 

on precipitation formation and growth are potentially primary contributors to cell number, cell 575 

depth, and convective-stratiform partitioning biases. 576 

7 Conclusions 577 

This study evaluated the accuracy of convective cell and system growth in a season-long 578 

convection-permitting WRF simulation with 3-km horizontal grid spacing using RELAMPAGO-579 

CACTI field campaign measurements. Observed and simulated cells were analogously defined 580 

and tracked with results assessed in the context of atmospheric instability as represented by 581 

CAPE, which was found to modulate model biases. 582 

The simulation reproduced the observed total rainfall in low CAPE conditions and only 583 

slightly underestimated it in high CAPE conditions. However, when separating rainfall into 584 

convective and stratiform components, large biases were found, including: 585 

 Convective rainfall was overestimated by 43% in the simulation, a bias that decreased 586 

with CAPE. However, simulated stratiform rainfall was underestimated by 46%, a bias 587 

that increased with CAPE. 588 

 Stratiform rainfall increased with convective rainfall, but the simulation required about 589 

double the convective rainfall to produce a similar amount of stratiform rainfall as that 590 

observed. 591 

 The large model overestimation of the convective contribution to total rainfall remained 592 

approximately constant at 26% through all CAPE conditions. 593 

Convective and stratiform rainfall partitioning biases were related to the model 594 

representation of convective cell number, area, depth, and growth characteristics, producing the 595 

following results: 596 

 The simulation contained 2.6 times the number of cells that were observed, primarily 597 

through the production of excessive numbers of relatively shallow cells (4-7-km cell 598 
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tops). The model required a wider convective cell to reach the same convective depth as 599 

observed. 600 

 The overproduction of simulated cells increases as CAPE decreases, potentially because 601 

these conditions are anticipated to result in more numerous shallow and narrow updrafts 602 

as compared to high CAPE conditions. The cell number overestimation also increases as 603 

cell area increased in low CAPE conditions, but the overestimation does not 604 

systematically change with cell area in high CAPE conditions. 605 

 Relatively large cells contributed the most to convective rainfall biases, with 606 

contributions increasing as CAPE decreased. Despite this, cell growth processes via 607 

expansion, shrinking, merging, and splitting show limited differences between 608 

observations and the simulation. 609 

Finally, possible controls of model resolution upon simulated convective cell biases were 610 

investigated in simulations of representative cases containing low and high CAPE conditions 611 

using 3-km, 1-km, and 0.333-km horizontal grid spacing. Simulated convective cell area was 612 

proportional to updraft area, indicating that radar reflectivity observations may be able to inform 613 

updraft width. A large proportion of convective cell areas defined using 500-m grid spacing 614 

radar observations were not fully resolvable with 3-km horizontal grid spacing in WRF, with 615 

small area cells that reached depths of less than 7 km being the worst resolved. Comparing 616 

analogous cell precipitation characteristics across model resolutions resulted in the following 617 

conclusions: 618 

 The high cell number bias noted in the 3-km simulation was not mitigated by increasing 619 

model grid resolution. 620 

 Despite better spatially resolving convective updrafts and cells, increasing model 621 

resolution amplified the simulated underestimation of stratiform rainfall and the 622 

overestimation of convective contribution to total rainfall. 623 

 Total rainfall and cell areas during the low CAPE event were best captured by the 0.333-624 

km run. However, these properties were best captured by the 3-km run during the high 625 

CAPE event. 626 

This study implies that substantial convective cell and system rainfall biases can exist in 627 

continental convection-permitting simulations with settings commonly used in regional weather 628 

and climate modeling with strong modulation by environmental instability. Increasing model 629 

resolution by an order of magnitude neither reduces excessive numbers of precipitating 630 

congestus clouds nor decreases ratios of convective to stratiform precipitation, suggesting that 631 

improving prediction of deep convective system growth depends on factors beyond solely 632 

increasing model resolution. Following findings in past studies, a potentially substantial 633 

contributor to biases is the cloud microphysics parameterization that may promote too efficient 634 

precipitation formation and growth in congestus clouds with excessive supercooled liquid and 635 

riming in mixed phase clouds, which would strongly modulate convective cell identification and 636 

convective-stratiform precipitation partitioning. Further work is required to assess how well 637 

these findings correspond to other model setups with different environmental conditions. In 638 

addition, research is required to assess the speculated physical pathways by which convective 639 

cell and stratiform rainfall biases emerge such that they can be mitigated. 640 
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https://github.com/zhixiaozhang/cacti_cell_tracking_config. The radar measurements, satellite 657 

retrievals, and raw model output are large datasets that can be accessed by contacting the 658 

authors. 659 
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