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Abstract

As seismic data collection continues to grow, advanced automated processing techniques for robust phase identification and

event detection are becoming increasingly important. However, the performance, benefits, and limitations of different automated

detection approaches have not been fully evaluated. Our study examines how the performance of conventional techniques,

including the Short-Term Average/Long-Term Average (STA/LTA) method and cross-correlation approaches, compares to

that of various deep learning models. We also evaluate the added benefits that transfer learning may provide to machine

learning applications. Each detection approach has been applied to three years of seismic data recorded by stations in East

Antarctica. Our results emphasize that the most appropriate detection approach depends on the data attributes and the study

objectives. STA/LTA is well-suited for applications that require rapid results even if there is a greater likelihood for false

positive detections, and correlation-based techniques work well for identifying events with a high degree of waveform similarity.

Deep learning models offer the most adaptability if dealing with a range of seismic sources and noise, and their performance

can be enhanced with transfer learning, if the detection parameters are fine-tuned to ensure the accuracy and reliability of the

generated catalog. Our results in East Antarctic provide new insight into polar seismicity, highlighting both cryospheric and

tectonic events, and demonstrate how automated event detection approaches can be optimized to investigate seismic activity

in challenging environments.
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Key Points: 10 

• Deep learning models, enhanced by transfer learning, adapt well to varied seismic 11 

sources.  12 

• Automated detection approaches offer insights into both cryospheric and tectonic events 13 

in Antarctica. 14 

• Even in regions with limited station coverage, automated detection approaches can help 15 

us develop more complete seismicity catalogs. 16 

  17 
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Abstract 18 

As seismic data collection continues to grow, advanced automated processing techniques 19 

for robust phase identification and event detection are becoming increasingly important. 20 

However, the performance, benefits, and limitations of different automated detection approaches 21 

have not been fully evaluated. Our study examines how the performance of conventional 22 

techniques, including the Short-Term Average/Long-Term Average (STA/LTA) method and 23 

cross-correlation approaches, compares to that of various deep learning models. We also evaluate 24 

the added benefits that transfer learning may provide to machine learning applications. Each 25 

detection approach has been applied to three years of seismic data recorded by stations in East 26 

Antarctica. Our results emphasize that the most appropriate detection approach depends on the 27 

data attributes and the study objectives. STA/LTA is well-suited for applications that require 28 

rapid results even if there is a greater likelihood for false positive detections, and correlation-29 

based techniques work well for identifying events with a high degree of waveform similarity. 30 

Deep learning models offer the most adaptability if dealing with a range of seismic sources and 31 

noise, and their performance can be enhanced with transfer learning, if the detection parameters 32 

are fine-tuned to ensure the accuracy and reliability of the generated catalog. Our results in East 33 

Antarctic provide new insight into polar seismicity, highlighting both cryospheric and tectonic 34 

events, and demonstrate how automated event detection approaches can be optimized to 35 

investigate seismic activity in challenging environments. 36 

 37 

 38 

  39 



manuscript submitted to Journal of Geophysical Research: Machine Learning and Computation 

 3 

Plain Language Summary 40 

Given the large quantity of seismic data recorded for geologic investigations, the manual 41 

identification of earthquake arrivals is becoming less feasible, and automated detection 42 

approaches are becoming increasingly important. However, the benefits and limitations of 43 

different detection techniques have not been fully evaluated. We examine a range of automated 44 

detection approaches, applied to data recorded by seismic stations in Antarctica, to assess the 45 

performance of each method. Additionally, an approach called transfer learning is examined to 46 

determine if it can improve the accuracy and reliability of the automated detections. Our results 47 

highlight new seismic events in Antarctica, providing insights into both geologic processes and 48 

ice-sheet behavior.   49 

 50 

  51 
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1. Introduction 52 

The accurate creation of earthquake catalogs for seismotectonic interpretation requires 53 

robust seismic phase identification, event association, and event detection; however, with the 54 

ever-increasing availability of seismic data, manual processing by human analysts is becoming 55 

less feasible. As such, automated processing techniques are becoming increasingly important. 56 

Some event detection techniques, such as the Short-Term Average/Long-Term Average 57 

(STA/LTA) method (Allen, 1978; Earle & Shearer, 1994), use relatively simple algorithms and 58 

provide rapid results without the need for extensive data pre-processing. Waveform based cross-59 

correlation approaches, such as the matched filter (MF) technique (Gibbons & Ringdal, 2006; 60 

Peng & Zhao, 2009; Shelly et al., 2007), can also be applied to STA/LTA generated earthquake 61 

catalogs to identify new, closely located events with similar focal mechanisms to those in the 62 

initial catalog. However, STA/LTA may not perform well for low signal-to-noise ratio (SNR) 63 

data, and cross-correlation based approaches can sometimes generate spatially biased event 64 

catalogs (Herrmann & Marzocchi, 2021; Schaff & Beroza, 2004; Yoon et al., 2015). The 65 

shortcomings of these methods can also sometimes result in impulsive transient signals or distant 66 

regional/teleseismic signals being erroneously identified as local earthquakes (e.g., Meng et al., 67 

2012). In some cases, these challenges can be overcome using phase association algorithms, 68 

which analyze triggers from multiple stations to determine whether any combination displays 69 

arrival time sequences that align with characteristic seismic event patterns (Myers et al., 2007).  70 

In recent years, advancements in machine learning techniques, coupled with the 71 

democratization of open-source software, have provided more sophisticated methods to 72 

automatically detect seismic events. In particular, convolutional neural networks (CNN), which 73 

perform a sequence of convolution, resampling, and non-linear transformations on raw 74 

waveform data, have shown promising results (Perol et al., 2018; Ross et al., 2018; Wu et al., 75 
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2018; Zhou et al., 2019; Zhu et al., 2019) when compared to more traditional techniques (Earle 76 

& Shearer, 1994; Gibbons & Ringdal, 2006; Peng & Zhao, 2009; Shelly et al., 2007).  CNN 77 

pickers are designed to provide the added advantage of identifying body wave phases on three-78 

component seismograms, thereby simplifying earthquake association and relocation. However, 79 

machine learning algorithms are complex, computationally demanding, and typically require 80 

optimization to avoid false-positive event detections.  81 

To date, only a few studies have evaluated the performance of different automated 82 

detection approaches with respect to one another or have attempted to combine detection 83 

techniques to achieve the best possible outcome (Münchmeyer et al., 2022; Neves et al., 2024; Si 84 

et al., 2024; Woollam et al., 2022; Yuan et al., 2023). Further, most of these previous studies 85 

have typically only examined select model pairs based on one or a few training datasets (e.g., 86 

Han et al., 2023; Jiang et al., 2021; Perol et al., 2018; Vaezi & Van der Baan, 2015), and they 87 

largely focus on small magnitude, tectonic-related seismic events. Here, we compare the benefits 88 

and limitations of the STA/LTA technique (Earle & Shearer, 1994), the cross-correlation-based 89 

MF approach (Peng & Zhao, 2009), and a suite of deep learning models, including 90 

EQTransformer (EQT, Mousavi et al., 2020), PhaseNet (Zhu & Beroza, 2019), BasicPhaseAE 91 

(Woollam et al., 2019), and the Generalized Phase Detection (GPD) model (Ross et al., 2018). 92 

We also update the deep learning models with additional training data derived from this project, 93 

a process known as transfer learning. Despite the potential for transfer learning to enhance model 94 

adaptability and efficiency (Chai et al., 2020; Lapins et al., 2021), particularly in data-scarce 95 

environments, its adoption in seismic studies has not been as rapid or as extensive as in other 96 

domains of deep learning research. This gap presents an opportunity to investigate the full 97 

capabilities of transfer learning in automatic event detection. We test the performance of the 98 
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updated versus original deep-learning models using a range of metrics that evaluate each of their 99 

abilities to accurately determine the onset time of phase arrivals, to reliably classify phases as P- 100 

or S-waves, and to identify events while minimizing the number of false positives. These 101 

techniques are applied to a unique set of waveforms that contain a mixture of tectonic earthquake 102 

signals and seismic events generated by glacial movement (e.g., icequakes). Collectively, our 103 

evaluation allows us to assess the efficacy of each algorithm when applied to a complex dataset.  104 

 105 

2. Data and Methods  106 

Broadband seismic deployments across the Antarctic continent have dramatically 107 

increased over the past several decades (e.g., Anandakrishnan et al., 2000; Anthony et al., 2015; 108 

Hansen et al., 2015; Heeszel et al., 2013; Pyle et al., 2010), providing a valuable and challenging 109 

test dataset for automatic event detection. Seismic events in Antarctica are not only associated 110 

with tectonic sources (e.g., Lough et al., 2013, 2018; Rowe et al., 2000) but are also caused by 111 

other natural phenomena, such as iceberg calving signals (e.g., Chen et al., 2011; Riel et al., 112 

2021; Winberry et al., 2020; Zoet et al., 2012) or ice-stream slip (e.g., Guerin et al., 2021; 113 

Hudson et al., 2023; Nettles & Ekström, 2010; Winberry et al., 2014; Walter et al., 2011, 2015), 114 

which are collectively classified as icequakes. Our study focuses on a subset of seismic data 115 

recorded by 19 stations deployed in the Victoria Land region of East Antarctica (Fig. 1), which 116 

provide continuous seismic recordings for several years. Most of these stations (15) were part of 117 

the Transantarctic Mountains Northern Network (TAMNNET), which operated between 2012-118 

2015 (Hansen, 2012; Hansen et al., 2015); however, we also incorporated data from two 119 

additional networks (ER, GT; Fig. 1; ASL/USGS, 1993). This dataset allows us to provide 120 

unique constraints on polar seismic activity and to evaluate automated event detection 121 

performance in a region with limited station coverage. 122 
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 123 

 124 

 125 

Figure 1. Map highlighting the examined seismic stations in Victoria Land, East Antarctica. Red 126 

triangles denote TAMNNET stations (Hansen et al., 2015), and orange triangles denote stations 127 

from other networks. Station names are also provided. The location of the main map in relation 128 

to the rest of Antarctica is highlighted in the inset on the lower left. 129 

 130 

We developed a comprehensive workflow to assess the performance of different 131 

automated event detection techniques (Fig. 2). The continuous waveforms recorded by the East 132 

Antarctic stations (Fig. 1) were used to develop three starting catalogs, based on the STA/LTA, 133 

MF, and EQT machine learning approaches, respectively. Each catalog was then used to fine-134 

tune a series of deep learning models via transfer learning, and their performance was evaluated 135 

with various metrics. The fine-tuned detection approach that worked best for our Antarctic 136 

dataset was then applied to update the three catalogs, and the events were relocated using a 137 

uniform velocity model. Each analysis step is described in detail in the following sections.  138 

 139 
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 140 

 141 

Figure 2. Flowchart summarizing the different automated seismic detection techniques 142 

examined in our study and the associated analysis steps.  143 

 144 

3. Automated Detection Approaches  145 

 As shown in Figure 2, three different automated event detection approaches were 146 

initially evaluated by our study, including the STA/LTA method, the MF technique, and a 147 

machine learning-based approach using the EQT algorithm. The following subsections highlight 148 

the contributions and limitations of each approach as they are applied to our East Antarctic 149 

dataset (Fig. 1).  150 

3.1. STA/LTA Method (SL Catalog) 151 

 The STA/LTA method (Allen, 1978; Earle & Shearer, 1994) detects high-frequency 152 

events in continuous data by identifying signals that have a mean energy ratio above some 153 
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specified threshold. The STA window contains the dominant frequency of the events the 154 

algorithm aims to detect, while the LTA window contains mostly background noise, which 155 

should exceed the period of the lowest frequency seismic signal of interest (Trnkoczy, 2009). In 156 

continuous data, a trigger is declared when the STA/LTA ratio at any sample point surpasses a 157 

pre-defined threshold, indicating that an event is possibly occurring (Allen, 1978; Baer & 158 

Kradolfer, 1987). The algorithm remains in this triggered state until the ratio decreases below a 159 

specified trigger-release threshold (Fig. 3). One of the strengths of the STA/LTA method is that 160 

it does not require any prior knowledge about an event’s waveform nor its source (Yoon et al., 161 

2015); however, it does have limitations. For instance, S-waves may not be accurately detected if 162 

they arrive within the P-wave coda, and this can be problematic because S-waves are important 163 

when trying to determine the depth and origin time for an earthquake. The STA/LTA method is 164 

also highly sensitive to the level of noise in the data, and it may not perform well with dense 165 

earthquake sequences and/or emergent arrivals (Schaff & Beroza, 2004).  166 

For our study, we designated short-term and long-term window lengths of 0.5 and 8.0 s, 167 

respectively. We also set the SNR trigger and trigger-release thresholds to 5 and 2.5, respectively 168 

(Fig. 3). Detections were associated with the Antelope dbgrassoc association module (BRTT, 169 

2011), using a pre-computed travel-time grid based on the IASP91 reference velocity model 170 

(Kennett & Engdahl, 1991), and events were declared if they were recorded by at least four 171 

stations. Between 2012-2014, 560 events were detected using the STA/LTA approach and 172 

automatic association, thereby forming our SL catalog (Fig. 2). The data were then bandpass 173 

filtered between 2-5 Hz to highlight the signals of interest, and all phase arrivals were manually 174 

reviewed and adjusted, as needed. These additional processing steps allowed us to refine our SL 175 

catalog of high-quality events with well-determined phase arrivals. 176 
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 177 

 178 

 179 

Figure 3. Example illustrating STA/LTA detection thresholds. The upper panel shows an event 180 

waveform that was detected by the STA/LTA approach, and the lower panel shows the 181 

STA/LTA ratio for the triggered event. Pink lines denote the trigger threshold (5) and trigger 182 

time; blue lines denote the trigger release threshold (2.5) and corresponding time. 183 

 184 

3.2. Matched Filter Approach (MF Catalog)  185 

 The MF technique, also known as template matching or network-based waveform cross-186 

correlation (Gibbons & Ringdal, 2006; Peng & Zhao, 2009; Shelly et al., 2007), provides another 187 

approach to automatically detect seismic arrivals, which is based on waveform similarity. Pre-188 

defined template waveforms are cross-correlated with continuous data over successive windows, 189 

and signals exceeding a specified correlation threshold are identified as detections (Fig. 4). 190 

Generally, the MF approach performs better than the STA/LTA method (Sect. 3.1) when dealing 191 

with low SNR data. However, since the template events are often manually determined, the MF 192 

method can be time consuming during its initial stages when building the template catalog (if 193 

one does not already exist from a regional seismic network or other source). Furthermore, since 194 

the approach relies on waveform similarity, seismic signals that differ significantly from the 195 
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template events may go undetected, leading to an incomplete catalog (Cianetti et al., 2021; Li et 196 

al., 2018; Yoon et al., 2015).   197 

 198 

 199 

Figure 4. (A) Mean cross-correlation coefficients (CCC) determined by matching a template 200 

event, which occurred at 06:13:14 on 2012-12-08, against a full day (2012-12-08) of continuous 201 

data. Dots denote detections whose CCC values exceed the detection threshold, which is twelve 202 

times the MAD (red dashed line). The orange dot marks the detected event shown in panel (B). 203 

(B) Examples illustrating waveform cross-correlation. Template waveforms (red) are plotted on 204 

top of the continuous data (black), highlighting detected events from the MF approach. Station 205 

names and components are indicated on the right. Amplitudes have been normalized so their 206 

absolute maximum values are equal to one. This was done to better illustrate the waveform 207 

comparisons. 208 

 209 

Using EQcorrscan (Chamberlain et al., 2018), all identified events in the SL catalog were 210 

treated as template events (Fig. 2), which were cross-correlated with the bandpass filtered (2-5 211 

Hz) continuous data to identify additional seismic signals (Fig. 4). This bandpass was chosen 212 
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based on close examination of the template coda, the density of seismic stations in the region, as 213 

well as our prior experience working with Antarctic data, where higher frequency information 214 

can become scattered by the ice sheet (Bentley & Kohnen, 1976) and thus incoherent when 215 

attempting template matching. Each template event was defined by the portion of the waveform 216 

0.5 s before the event’s P-wave arrival and 6 s after its S-wave arrival (Peng et al., 2014). The 217 

templates were shifted by 0.025 s (1 sample) increments through the continuous waveforms, and 218 

correlation coefficients were computed for each increment. Mean correlation coefficients were 219 

then determined by stacking the coefficient values across all stations and components (Fig. 4). 220 

The relative quality of each cross-correlated, matched waveform was evaluated using the median 221 

absolute deviation (MAD; Shelly et al., 2007), which is a measure of dispersion calculated as the 222 

median of the absolute difference between each data point for the mean correlation coefficient. 223 

The MAD value helps to estimate the variability in data distribution due to uncorrelated noise, 224 

thereby providing a robust measure to identify outliers. For a normally distributed dataset, the 225 

standard deviation is 1.4826 times the MAD (Hampel, 1974). Due to the noisy nature of real 226 

seismic data and the relatively long-period bandpass chosen for this project, a conservative 227 

threshold of 12 times the MAD was chosen, and signals that exceed this MAD value are 228 

identified as positive event detections (Fig. 4; e.g., Skoumal et al., 2015; Yao et al., 2021).  229 

A time domain, phase-pick SNR threshold was also applied to further ensure robust 230 

detections. For a given phase, the SNR was calculated by taking the maximum amplitude of the 231 

signal window and dividing it by the root-mean-square of the noise window. The noise windows 232 

start 6 s before the phase of interest, and both the signal and noise windows had lengths of 5.5 s 233 

(Fig. S1 in Supporting Information). The SNR threshold was subsequently determined by 234 

comparing the pick-specific SNR values obtained from all detected picks for each seismic event. 235 
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This additional processing step is not only important for robust event detections, but it also helps 236 

to remove unwanted signals, such as teleseismic events that originate from distant earthquakes. 237 

Sometimes teleseismic signals can be mistakenly detected in MF catalogs for local events, and 238 

this can adversely affect the accuracy of local event detections because teleseismic events have 239 

unique seismic waves and frequency contents (Waldhauser & Schaff, 2007). We determined that 240 

maintaining a SNR greater than 2.0 for both the P and S picks (Fig. S1 in Supporting 241 

Information) effectively helps to limit the influence of teleseismic events and reduces the number 242 

of false detections. With the MAD and SNR criteria applied, our MF catalog includes 4,577 local 243 

events (Fig. 2).  244 

3.3. Machine Learning Approach (ML Catalog)  245 

In addition to the STA/LTA and the MF techniques, we also utilized EQT, a machine 246 

learning-based signal detector and phase picker that was trained on a diverse seismic dataset 247 

(Mousavi et al., 2020). Further details about EQT and its architecture are provided in Section 4.1. 248 

We implemented the EQT picker within the easyQuake Python package (Walter et al., 2021) to 249 

identify P- and S-wave picks within the continuous data. The easyQuake associator, which is a 250 

modified version of PhasePApy (Chen & Holland, 2016), was used to aggregate pick 251 

information and declare event detections. Probability thresholds of 0.1, 0.1, and 0.3 were 252 

specified for the P-wave picks, S-wave picks, and event detections, respectively. In total, 1,728 253 

events were detected in the East Antarctic dataset, which compose our initial machine learning 254 

(ML) catalog (Fig. 2). It should be noted that this catalog is distinguished from those derived 255 

from transfer-learning in later sections because it was generated using phase picks that were 256 

based on the original model and parameters specified by Mousavi et al. (2020).  257 

4. Transfer Learning  258 
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Each of the catalogs described in Sections 3.1-3.3 were used in a transfer learning process 259 

to adapt a series of pre-trained deep learning models. Instead of retraining an entire model from 260 

scratch with randomly initialized parameters or different model architecture, a strategy called 261 

fine-tuning is employed, where the original model and its architecture serve as the starting point, 262 

and training continues with newly added data, thereby refining the model (Pan & Yang, 2010). 263 

Transfer learning not only leads to better model performance, but it also overcomes some of the 264 

limitations of traditional models that assume training and testing datasets are independent and are 265 

identically distributed (Tan et al., 2018).  266 

The effectiveness of transfer learning has been proven in various fields (Long et al., 267 

2013, 2015; Pan et al., 2011), and while its adoption within the field of seismology has been 268 

relatively limited so far, the technique demonstrates promising potential. For instance, Zhu et al. 269 

(2019) used a CNN-based Phase-Identification Classifier (CPIC), which was initially trained on 270 

a dataset with 30,146 labeled phases from the aftershock sequences of the 2008 MW 7.9 271 

Wenchuan earthquake, to develop a more complete aftershock catalog for the same area. 272 

Additionally, when fine-tuned on a smaller dataset from Oklahoma, the CPIC achieved 97% 273 

accuracy. This study highlights the potential for transfer learning applications to identify events 274 

in regions with no or few labeled phases. In a different study, Chai et al. (2020) enhanced the 275 

capabilities of the PhaseNet model (Zhu & Beroza, 2019), which was originally trained on data 276 

from regional seismic networks, to efficiently handle microseismic data from South Dakota. 277 

About 3,600 three-component seismograms and associated manual picks were used in the 278 

transfer learning process, and the performance of the retrained model exceeded that of the 279 

original PhaseNet model by over 10% in terms of precision and recall (see Sect. 4.3). Compared 280 
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to human expert detections, 32% fewer P-wave picks were made, but the fine-tuned model 281 

identified 48% more S-wave picks.   282 

We implemented our transfer learning process with Seisbench, a toolbox for machine 283 

learning in seismology (Ho, 2024; Münchmeyer et al. 2022; Woollam et al., 2022). Various deep 284 

learning model architectures were utilized, including PhaseNet (Zhu & Beroza, 2019), 285 

BasicPhaseAE (Woollam et al., 2019), GPD (Ross et al., 2018), and EQT (Mousavi et al., 2020), 286 

which are more fully described in Section 4.1. These models were selected given their distinct 287 

yet interrelated approaches to seismic signal processing. Additionally, these models share a 288 

common approach in terms of pre-processing the seismic data. Regardless of their specific 289 

architectures or use cases, they all rely on uniformly sampled data, typically at 100 Hz. If the 290 

original data has a different sampling rate, it is resampled to ensure uniformity. The data 291 

windows used by these models vary in length, but they all incorporate multiple types of seismic 292 

signals, including P-waves, S-waves, and noise, within their respective networks.  293 

4.1 Deep Learning Models  294 

The PhaseNet CNN (Zhu & Beroza, 2019) was developed as a U-Net architecture, which 295 

functions as an encoder-decoder mechanism that pulls significant features from input data and 296 

subsequently expands them to generate predictions of equivalent size outputs (Ronneberger et 297 

al., 2015). While the U-Net was initially created for a broad range of image processing 298 

applications, this approach has been adapted for earthquake phase detection. Three-component 299 

seismograms are sampled using 30 s windows that include both P- and S-wave arrivals, and these 300 

samples serve as the input for PhaseNet. The waveform data are then processed through an 301 

iterative down-sampling and up-sampling procedure. During down-sampling, the encoder 302 

reduces the dimensionality of the raw seismic data and extracts essential features associated with 303 
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the seismic phase arrivals. The condensed information provided by the encoder is then increased 304 

in dimensionality through up-sampling by the decoder, which converts the information into 305 

detailed probability distributions for P-waves, S-waves, and noise at each point in time 306 

(Goodfellow et al., 2016; Zhu & Beroza, 2019). For seismic applications, PhaseNet was 307 

originally trained and evaluated using 779,514 waveforms containing labeled P- and S-wave 308 

arrivals from local earthquakes recorded in northern California (Zhu & Beroza, 2019).  309 

BasicPhaseAE, which is another U-Net-like CNN phase detector, employs three 6 s input 310 

windows, with each window sampling an individual component (Woollam et al., 2019). The 311 

structure of BasicPhaseAE is similar to PhaseNet, but it differs in a few aspects. BasicPhaseAE 312 

uses smaller filter sizes and omits convolutions without stride, which refers to the step size that 313 

the filter matrix moves across the input matrix during the convolution process. In addition, 314 

BasicPhaseAE lacks residual connections, which are essentially shortcuts or bypass routes that 315 

enable the gradient to be back-propagated directly to earlier layers (Woollam et al., 2019; 316 

Münchmeyer et al., 2022). The input data, which consists of labels or classes of seismic data 317 

(e.g., P-waves, S-waves, noise), undergo several transformations. Convolutional operations first 318 

extract the characteristic features for each class. During training, the model uses a designated 6 s 319 

window of data that is then divided into sequential sub-windows, each 0.4 s in length. The sub-320 

windows are randomly shuffled to prevent the CNN from learning irrelevant temporal patterns. 321 

Extracted features then undergo multiple resampling stages, with a rectified linear unit activation 322 

function applied at each stage. The final architecture comprises three convolutional layers and 323 

three up-sampling layers. The network ultimately determines the probability of a P-wave, S-324 

wave, or noise for every time sample in the input window. BasicPhaseAE was initially trained 325 
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and evaluated using 11,000 waveforms from earthquakes located within the Iquique region in 326 

northern Chile (Woollam et al., 2019).  327 

The GPD model is a phase identification CNN with six layers, including four convolution 328 

layers and two fully connected layers (Ross et al., 2018). Rectified linear units serve as the 329 

activation function for each layer, and batch normalization is applied throughout. GPD operates 330 

on a short 4 s input window that advances five samples (0.05 s) after each prediction to create a 331 

new, slightly overlapped 4 s window for the next prediction (Münchmeyer et al., 2022). Each 332 

advanced window is then classified as a P-wave arrival, S-wave arrival, or noise. The GPD 333 

model was originally trained and evaluated using 4.5 million three-component seismic records, 334 

evenly distributed amongst P- and S-wave seismograms and noise (Ross et al., 2018). Using a 335 

multi-class cross-entropy loss for training, the GPD model has been shown to effectively detect 336 

and identify seismic phases in various datasets (Münchmeyer et al., 2022; Woollam et al., 2022).  337 

EQT is a model designed for simultaneous seismic event detection, phase identification, 338 

and onset timing determination. This model was originally trained on a portion of the STEAD 339 

dataset (Mousavi et al., 2019), a global collection of 1.2 million hand-labeled earthquake and 340 

noise waveforms. EQT operates on 60 s windows of three-component seismic data. Its 341 

architecture comprises a deep encoder and three separate decoders, and it integrates convolution, 342 

long short-term memory (LSTM) units, residual connections, and attention mechanisms 343 

(Mousavi et al., 2020). The encoder processes the seismic data into high-level contextual 344 

representations, while the decoders convert these representations into probability sequences for 345 

events as well as for P- and S-wave detections. LSTM, which resembles human auditory memory 346 

processing, and attention mechanisms, which simulate selective focusing in high-resolution 347 

areas, work in tandem to enhance the model's performance (Gers et al., 1999). The attention 348 
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mechanisms function on two levels: global for earthquake events and local for phases within 349 

those events. During training, EQT employs data augmentation techniques, such as adding 350 

Gaussian noise, introducing gaps, and removing channels, which are implemented to enhance the 351 

model's robustness, teaching it how to handle various real-world data imperfections and 352 

irregularities. This helps to improve its overall performance and generalization ability (Mousavi 353 

et al., 2020).  354 

Each of the above models has a different level of complexity, adaptability, and suitability 355 

for seismic datasets. For example, since BasicPhaseAE lacks residual connections, which are 356 

shortcuts that skip one or more layers to help train deep neural networks, its learning efficiency 357 

may be lower compared to PhaseNet (Münchmeyer et al., 2022). Compared to EQT, GPD is 358 

much slower, but it requires less memory. Further, the sophisticated EQT architecture and its 359 

comprehensive functionality may require more computational resources for complex analyses. 360 

We evaluate the performance of each model in relation to one another using our East Antarctic 361 

catalogs described in Sections 3.1-3.3, but it should be emphasized that the most suitable model 362 

for a given investigation depends on the type of data, the available processing time, and the 363 

computational resources available. We did not evaluate the relative computational performance 364 

of the specific algorithms in this study.  365 

4.2 Applying Transfer Learning to the East Antarctic Catalogs  366 

Each of the pre-trained models described in the previous section were fine-tuned via 367 

transfer learning using each of the event catalogs (Sects. 3.1-3.3). The SL, MF, and ML catalogs 368 

contain a total of 1,536, 13,731, and 5,388 waveform segments, respectively. The metadata for 369 

each catalog were assembled into a QuakeML-formatted file, and we also developed HDF5-370 

formatted files by combining the event metadata with the waveforms, similar to the STEAD 371 
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dataset format (Mousavi et al., 2019), for inclusion into Seisbench (Ho, 2024; Woollam et al., 372 

2022). Each catalog was divided into a training subset, which is composed of 70% of the data, a 373 

validation subset, which contains 15% of the data, and a testing subset, which includes the 374 

remaining 15% of the data. The training subset was used to adjust the model’s weights and 375 

biases during the transfer learning process, while the validation subset was used to fine-tune the 376 

model’s hyperparameters. The validation subset was also essential in determining which model 377 

iteration performed the best, using the parameters described in Section 4.3. Once the optimal 378 

model configuration was identified based on the validation subset's results, the updated model 379 

was then evaluated on the testing subset. The final, reported results (Section 5) are based on this 380 

evaluation of the testing subset, thereby ensuring an unbiased assessment of each models’ 381 

performance on unseen data.  382 

Using the Münchmeyer et al. (2022) data augmentation techniques within SeisBench 383 

(Woollam et al., 2022), we built training pipelines, which are a series of steps that prepare and 384 

transform the waveform data for model training. Since our waveforms are long compared to each 385 

aforementioned model input length, a two-step approach was employed for window selection. 386 

First, for two-thirds of the training subset, windows were selected to ensure that they contained 387 

at least one labeled pick. For the remaining one-third, the windows were randomly selected from 388 

the entire waveform, and they may or may not include labeled picks. This approach guarantees 389 

that the training subsets are not overwhelmed by noise samples, which is particularly important 390 

for models with short input windows (e.g., PhaseNet, BasicPhaseAE, GPD). The same approach 391 

was also applied to the validation subset.  392 

Additionally, as part of the transfer learning process for each catalog, we employed the 393 

Adam optimizer (Kingma & Ba, 2014), which efficiently updates the model parameters to 394 
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minimize the error between predicted and actual values. A corresponding learning rate of 0.001 395 

was selected, which controls the magnitude of changes made to the model parameters during 396 

updates and ensures a steady convergence without overshooting (i.e., where the model might 397 

skip over the optimal parameters). Further, a batch size of 256 was used in the optimizer, which 398 

means that 256 training samples were processed together during each iteration. This helps to 399 

balance computational efficiency and the quality of the model's gradient estimation (Coleman et 400 

al., 2017; Smith, 2018). Early stopping was also employed to obtain an optimal model. This 401 

strategy halts the training when the validation loss (a measure of prediction error) throughout the 402 

entire training subset fails to improve after ten successive cycles (epochs).  403 

4.3. Evaluating Model Performance  404 

To evaluate each fine-tuned, deep learning model’s ability to differentiate between 405 

seismic events and noise, we adopted the approach of Münchmeyer et al. (2022). First, a 30 s 406 

window of a random seismic waveform from either the validation or testing subset is analyzed to 407 

determine if it contains an event onset (i.e., a first arriving seismic wave). Noise samples are also 408 

extracted from the window using labeled noise traces, if present. Otherwise, the noise sample is 409 

defined based on the presence or absence of P-wave and S-wave arrivals. That is, windows 410 

containing neither P- nor S-wave arrivals are labeled as noise, while those with either or both are 411 

labeled as an event. The event and noise labels were used as “ground truth” to compare with our 412 

models’ predictions.  413 

A variety of metrics are used to evaluate the performance of each model. First, to assess a 414 

model’s ability to accurately identify event onsets while minimizing false positives, we 415 

examined the receiver operating characteristics (ROC), the area under the curve (AUC), and the 416 

F1 score. The ROC describes the true and false positive rates across all possible detection 417 
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thresholds, allowing for different trade-offs between these rates, depending on the application 418 

scenario (Fawcett, 2006). For example, in early earthquake warning systems, a high true positive 419 

rate is important to ensure timely alerts, even if it means getting some false alarms (Meier et al., 420 

2020). Alternatively, in a tomography research setting, where detection precision might be 421 

prioritized, reducing false positives could be more important, even if it means potentially missing 422 

some weaker seismic events. The AUC is a single value that defines the area under the ROC 423 

curve. It quantifies the overall ability of the model to distinguish between positive and negative 424 

classes. An AUC of one indicates a perfect model, meaning the model can identify all events 425 

correctly without any false positives. Conversely, an AUC of 0.5 represents a random model 426 

(Hanley & McNeil, 1982). The F1 score is the harmonic mean of the precision (i.e., the number 427 

of correct detections among all detections) and recall (i.e., the number of detections among all 428 

possible detections). It serves as a combined measure of the model's sensitivity and specificity. 429 

As part of the transfer learning process, the AUC value is selected to optimize the F1 score, 430 

thereby fine-tuning the model to achieve an optimal trade-off between the false positive rate and 431 

the true positive rate.  432 

In order to measure each model’s binary classification performance, we used the 433 

Matthews Correlation Coefficient (MCC). It is ambiguous to assign P and S phases as positive 434 

and negative classes, and the MCC is insensitive to class assignment (Chicco & Jurman, 2020; 435 

Matthews, 1975; Münchmeyer et al., 2022). We analyzed 10 s windows containing exactly one 436 

phase arrival to determine if that arrival is a P- or an S-wave. The MCC is calculated as the 437 

correlation coefficient of the confusion matrix, and its value ranges from -1 (total disagreement) 438 

to 1 (full agreement). Even in cases of class imbalance, the MCC provides an appropriate 439 

measure for binary classification performance (Münchmeyer et al., 2022; Powers, 2011). Further, 440 
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the MCC value was selected to optimize the phase threshold, which is used to calibrate the P- 441 

and S-wave pick probability thresholds. The pick probability indicates the likelihood of a 442 

specific data point corresponding to a seismic phase arrival (i.e., a P- or an S-wave signal), where 443 

a higher probability directly correlates with a heightened level of confidence from the model 444 

regarding the presence of an arrival at the identified data point. For the P pick threshold, we 445 

multiplied the detection threshold by the square root of the phase threshold. This adjustment 446 

enhances the P-wave detection sensitivity and improves identification of these arrivals. For the S 447 

pick threshold, we adopted a more conservative approach, dividing the detection threshold by the 448 

square root of the phase threshold. This approach was taken to minimize the risk of false 449 

positives. 450 

Finally, we evaluated each model’s ability to accurately determine the onset time of 451 

phase arrivals within a given catalog. Using the same 10 s window used for the MCC 452 

assessment, we calculated the pick residuals, which are the differences between the transfer-453 

learning-based pick times and the labeled pick times from the validation subset. The residual 454 

distribution is analyzed using both the root-mean-square error (RMSE) and the mean absolute 455 

error (MAE). Lower values of RMSE and MAE indicate greater accuracy in predicting the phase 456 

arrival onset times. Together, these provide a comprehensive evaluation given their different 457 

performance, with RMSE being sensitive to outliers and MAE being less sensitive to them 458 

(Willmott & Matsuura, 2005).  459 

 460 

5. Results of Transfer Learning   461 

The performance metrics (Sect. 4.3) used to evaluate the four deep learning models (Sect. 462 

4.1) applied to each catalog (Sects. 3.1-3.3) elucidate the effects of transfer learning, and these 463 
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metrics are summarized in Tables 1-3. Generally, transfer learning has a positive effect on all 464 

models, as is evident from the AUC metrics, for example. The most dramatic change was 465 

observed for the ML catalog and the BasicPhaseAE model, where the AUC increased from 0.45 466 

to 0.81. That said, even models like GPD that already had a high AUC value (0.87) saw an 467 

increase (0.90). These results highlight the benefits of transfer learning. However, it is important 468 

to consider how each model defines an event detection. For instance, EQT needs both P- and S-469 

wave labels to declare a detection within the seismogram time series (data from other stations is 470 

commonly aggregated during event association, discussed later), while GPD and PhaseNet do 471 

not. For scenarios where datasets might lack certain labels, such as in our SL and MF catalogs, 472 

this could lead to reduced performance, as reflected in the metric results. It is worth noting that 473 

our results are qualitatively comparable to those made by Münchmeyer et al. (2022) for the 474 

ETHZ dataset (Woollam et al., 2022), where some P- or S-wave labels were missing.  475 

The RMSE and MAE metrics were reduced for both P and S picks across all catalogs, 476 

again indicating improved performance from the fine-tuning and transfer learning. Among all the 477 

models, EQT had the lowest of these metrics, indicating it had the highest pick accuracy. 478 

However, GPD also displayed significant improvements in RMSE and MAE and closely 479 

followed EQT across all catalogs (Tables 1-3). As for the MCC metrics, where higher values 480 

indicate better classification performance, every model exhibited a MCC rise following transfer 481 

learning. Comparing the three catalogs (Tables 1-3), the P and S picks are notably better 482 

classified in the ML catalog for all models, followed by the SL and then the MF catalog. These 483 

variations might be due to discrepancies in P- and S-wave labeling consistency across the 484 

catalogs. For example, the starting ML catalog was exclusively generated using EQT, perhaps 485 

leading to higher pick consistency and, as a result, lower RMSE and MAE values. As a result, 486 
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variations in performance across the three catalogs reveal that the efficiency of transfer learning 487 

also depends on the consistency and quality of the training subset.  488 

Figure 5 shows an example of the pick probabilities for different deep learning models 489 

when applied to continuous data. EQT, GPD, and PhaseNet all have improved pick probabilities 490 

after transfer learning. The BasicPhaseAE pick probabilities did not increase post-transfer 491 

learning, and this could be due to the shorter input windows used by this model, together with its 492 

shorter filters and missing residual connections (Münchmeyer et al., 2022).  493 

  494 
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Table 1. Fine-tuned metric results before (left columns) and after (right columns) transfer 495 

learning was applied to the ML catalog. AUC: Area under the Curve; RMSE: root-mean-square 496 

error; MAE: mean absolute error; MCC: Matthews Correlation Coefficient.  497 

Model  AUC  P picks 
RMSE  

S picks 
RMSE  

 P picks 
MAE  

 S picks 
MAE  

MCC  

PhaseNet  0.7  0.8  3.0  2.1  3.0  2.3  2.2  1.4  2.2  1.5  0.3  0.6  

BasicPhaseAE  0.4  0.7  3.2  2.3  3.0  2.5  2.5  1.6  2.3  1.7  0.3  0.5  

GPD  0.8  0.8  2.2  1.8  2.3  2.1  1.5  1.2  1.6  1.4  0.6  0.8  

EQTransformer  0.7  0.7  3.4  1.8  3.0  1.8  2.4  1.1  2.1  1.1  0.6  0.9  

  498 

Table 2. Fine-tuned metric results before (left columns) and after (right columns) transfer 499 

learning was applied to the MF catalog. Columns are the same as in Table 1.  500 

Model  AUC  P picks 
RMSE  

S picks 
RMSE  

 P picks 
MAE  

 S picks 
MAE  

MCC  

PhaseNet  0.7  0.9  2.8  1.1  2.4  1.2  1.8  0.5  1.6  0.6  0.3  0.7  

BasicPhaseAE  0.4  0.8  3.2  1.1  2.8  1.3  2.5  0.6  2.0  0.7  0.3  0.7  

GPD  0.8  0.9  1.2  0.6  1.3  0.8  0.6  0.3  0.7  0.4  0.7  0.9  

EQTransformer  0.8  0.9  2.7  0.6  2.2  0.5  1.6  0.3  1.2  0.2  0.7  1.0  

  501 

Table 3. Fine-tuned metric results before (left columns) and after (right columns) transfer 502 

learning was applied to the SL catalog. Columns are the same as in Tables 1 and 2.  503 

Model  AUC  P picks 
RMSE  

S picks 
RMSE  

 P picks 
MAE  

 S picks 
MAE  

MCC  

PhaseNet  0.7  0.8  2.0  1.4  2.4  2.0  1.2  0.8  1.6  1.2  0.4  0.8  

BasicPhaseAE  0.4  0.7  2.8  1.7  2.7  2.2  2.0  1.0  1.9  1.4  0.4  0.7  

GPD  0.8  0.9  1.4  0.9  2.0  2.0  0.8  0.6  1.3  1.2  0.8  0.9  

EQTransformer  0.8  0.8  2.7  0.9  2.3  1.9  1.6  0.5  1.4  1.1  0.7  1.0  

 504 
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 505 

 506 

Figure 5. (A) Sample of the continuous Antarctic data recorded by station LEON (Fig. 1), and 507 

corresponding pick probabilities for (B) EQT, (C) PhaseNet, (D) GPD, and (E) BasicPhaseAE 508 

(BPAE). For each model, the top and bottom panels show the pick probabilities before and after 509 

transfer learning, respectively (note that the vertical scales can vary by panel). Blue lines 510 

correspond to P-waves, and orange lines correspond to S-waves. For EQT, the green lines show 511 

the detection probability.  512 

 513 

 514 

6. Model Assessment  515 

6.1 Benefits and Limitations of Each Automated Event Detection Approach  516 

Each automated event detection approach has its benefits and limitations, and the choice 517 

of which approach to use depends on the objective of the study and the characteristics of the 518 

dataset. The STA/LTA method stands out given its minimal pre-processing requirements, 519 

straightforward algorithm, and low computational demands, making this technique efficient and 520 
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readily applicable. Notably, the approach can also identify low magnitude earthquakes if the data 521 

has sufficiently high quality (Fig. 6). However, as noted in Section 3.1, STA/LTA can struggle to 522 

identify emergent or low SNR arrivals (Schaff & Beroza, 2004; Yoon et al., 2015), which can 523 

make this technique more prone to errors, including an increased risks of false positive 524 

detections and/or detection failures (Kato et al., 2012). This limitation is partly due to the nature 525 

of the STA and LTA window lengths, which are not adjusted during the detection process 526 

(Trnkoczy, 2009) and hence restrict the method’s ability to adapt to varying seismic signal 527 

characteristics. Figure S2 in the Supporting Information shows several examples of missed 528 

detections that resulted from the STA/LTA inflexibility. Given its performance, STA/LTA is 529 

likely suitable for real-time seismic event detection applications, particularly in situations where 530 

an existing, trained model is not available. This method is applicable for systems such as 531 

earthquake early warning and volcanic monitoring, which require rapid results. It is important to 532 

note that in these scenarios, the immediate availability of results may be prioritized, even if it 533 

means accepting a higher likelihood of false positive detections for lower magnitude events (e.g., 534 

Kumar et al., 2018; Li et al., 2016; Meier et al., 2020; Tepp, 2018).  535 

The MF approach detects events with high precision, particularly if the events have a 536 

high degree of waveform similarity.  However, developing a comprehensive set of template 537 

events can be time consuming, and the need to compare each of those templates to the 538 

continuous data can be computationally demanding (Liu et al., 2020; Meng et al., 2012). Further, 539 

since the MF technique is heavily dependent on the pre-defined templates, it is susceptible to 540 

missing events that diverge from recognized patterns (Gardonio et al., 2019; Kato & Nakagawa, 541 

2014; Peng & Zhao, 2009; Ross et al., 2018). Several examples of such missed events are shown 542 

in Figure S3 in the Supporting Information. Automatic event detection with this method is best-543 
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suited to environments where the seismic events are self-similar, such as volcanic-related seismic 544 

swarms (e.g., Tan et al., 2023; Whidden et al., 2023; Wimez & Frank, 2022) and repeating stick-545 

slip activity beneath glaciers (e.g., Helmstetter, 2022; Lucas et al., 2023; Ma et al., 2020).  546 

Deep learning event detection techniques can help to address some of the problems faced 547 

by the STA/LTA and the MF approaches. Since deep learning models can be trained to recognize 548 

intricate seismic patterns, this approach has a greater degree of adaptability across a range of 549 

seismic signals and noise. Our analysis also illustrates how deep learning model performance can 550 

be further enhanced via transfer learning, where pre-trained models are adapted to recognize the 551 

characteristics of unique seismic sources (Chai et al., 2020; Liao et al., 2021). That said, deep 552 

learning approaches, with or without transfer learning, have their own set of challenges. ML 553 

methods are generally computationally intensive and do not provide rapid results (García et al., 554 

2022; Zhu et al., 2022). Their performance is strongly linked to the quality and volume of their 555 

training subsets, and the oft-cited ‘black box’ nature of ML makes its decision-making processes 556 

ambiguous (Gonzalez Garibay et al., 2023). The effectiveness of transfer learning depends on 557 

whether the pre-trained model is relevant to the target dataset. If there is a mismatch between the 558 

source and target architecture, there is a risk of negative transfer, where the pre-trained model 559 

may fail to effectively adapt to the new task (Civilini et al., 2021; Zhou et al., 2021). Careful 560 

fine-tuning of the pre-trained model is needed to ensure its applicability to the specific seismic 561 

context, and this requires a certain level of understanding regarding the model’s architecture. All 562 

that said, seismic event catalogs based on ML models typically have a greater magnitude of 563 

completeness (i.e., the minimum magnitude above which all events have been detected) 564 

compared to those generated by other approaches (Fig. 6; e.g., Ma & Chen, 2022; Reynen & 565 

Audet, 2017; Ross et al., 2018), Therefore, if a given study requires robust, extensive seismic 566 
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constraints, the additional computational resources and complexity of ML algorithms are worth 567 

the investment.  568 

 569 

Figure 6. Histogram summarizing the number of events in each catalog after transfer learning 570 

was applied, along with their corresponding local magnitude estimates. Light grey bars represent 571 

the SL catalog, medium grey bars denote the ML catalog, and dark grey bars correspond to the 572 

MF catalog.  573 

 574 

6.2 Preferred ML model for East Antarctica  575 

The metrics discussed in Sections 4.3 and 5 provide important information regarding the 576 

most applicable model for a given seismic study. For our East Antarctic investigation, we 577 

prioritized thorough seismic event detection. While it is important to identify events accurately 578 

and precisely, the limited seismic station coverage in our study region (Fig. 1) emphasizes the 579 

need to develop an event catalog that is as complete as possible. As such, our ideal model is one 580 

that strikes a balance between sensitivity and accuracy, and our extensive analyses indicate that 581 

the fine-tuned GPD model is an optimal choice. While EQT displays somewhat better pick 582 

accuracy, as indicated by its RMSE and MAE values, its ability to distinguish between positive 583 

and negative classes (AUC score) lags behind GPD (Tables 1-3). The trained GPD model’s high 584 

AUC score emphasizes that this model robustly distinguishes true events from noise. That is, 585 

events with low SNR, potentially overlooked by other models and methods, are identified by 586 
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GPD. Furthermore, the inherent variability of seismic data demands a model that performs 587 

consistently, and the GPD model displays consistent performance across all three examined 588 

catalogs, both before and after transfer learning is applied (Tables 1-3). This indicates that the 589 

GPD model is highly adaptable, regardless of the data's origin.  590 

 591 

7. Application  592 

7.1 GPD Results for Each Catalog  593 

We applied the fine-tuned (transfer-learned) GPD model to the full suite of East Antarctic 594 

data (2012-2015; Fig. 1), running three versions of the GPD detection algorithm concurrently, 595 

corresponding to our SL, MF, and ML catalogs. As noted in Section 5, each model generates 596 

pick probabilities for the designated P- and S-wave arrivals (Fig. 5). Picks with probabilities 597 

below a specified threshold (Table 4) are discarded. These thresholds are essential for reducing 598 

the number of spurious picks, thereby enhancing the accuracy and reliability of the detected 599 

seismic events, and the thresholds ultimately control the number of event identifications. Table 4 600 

summarizes the corresponding pick probability thresholds used to determine qualifying P- and S-601 

waves. These thresholds have led to the identification of new seismic events post-transfer 602 

learning. Specifically, after transfer learning, the number of new events in the SL, ML, and MF 603 

catalogs is 618, 372, and 201, respectively.  604 

 605 

Table 4. P- and S-wave pick probability thresholds for the three transfer-learned catalogs. A P- 606 

or S-wave pick is declared if the probability exceeds the specified threshold.  607 

 608 

Catalog  P Threshold  S Threshold  

ML  0.68  0.81  

MF  0.42  0.51  

SL  0.51  0.60  

 609 
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 610 

Figure 7. Cumulative number of events included in each catalog after transfer learning was 611 

applied. The light grey line corresponds to the SL catalog, the dark grey line corresponds to the 612 

MF catalog, and the medium grey line corresponds to the ML catalog.  Arrows denote time 613 

periods where an increased number of events are observed. 614 

 615 

All three catalogs display an increase in the number of events around May 2013 and May 616 

2014 (Fig. 7). These time periods correlate with seasonal changes in Antarctica as the austral 617 

winter sets in. Tensile stresses in the ice sheet can be influenced by temperature, and this can 618 

impact the formation of crevasses (Harper et al., 1998; Holdsworth, 1969). Specifically, when 619 

temperatures drop, the surface layers of the ice sheet can become substantially colder than the 620 

underlying firn, and this temperature gradient subjects the colder, more brittle surface layers to 621 

an increase in tensile stress. Consequently, new crevasses may form and propagate along the ice 622 

sheet surface (Nath & Vaughan, 2003), thereby leading to an increased number of icequakes. 623 

This may explain the increase in detected events at these particular time intervals (Fig. 7). Local 624 

magnitudes (ML) were also computed for the SL, ML, and MF catalog events (Fig. 6), though we 625 

note that the magnitudes were determined using amplitude attenuation parameters developed for 626 

southern California (Hutton & Boore, 1987).  While not specific to our study region, these 627 

parameters do not impact our assessment since our goal was to simply determine relative event 628 
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magnitudes rather than to make any interpretations of absolute magnitude. As shown in Figure 6, 629 

all three techniques effectively detect low magnitude (ML ≤ 3) seismic events, though the ML 630 

technique detects a higher number of signals with magnitudes below two.  631 

 632 

7.2 Event Relocations  633 

After the fine-tuned GPD model was applied to the full East Antarctic dataset, as 634 

described in Section 7.1, the events from each of the updated catalogs were relocated using the  635 

NonLinLoc software package (Lomax et al., 2000). An equal differential-time likelihood 636 

function and the Oct-Tree sampling approach were used to compute the maximum likelihood 637 

hypocenters, based on the corresponding probability density functions (PDFs; Lomax et al., 638 

2000; Zhou, 1994).  We also utilized a modified version of the crustal velocity model (Fig. S4 in 639 

Supporting Information) from Pyle et al. (2010), which was developed for a nearby region in 640 

East Antarctica. Only earthquakes with at least four P- and S-wave arrival times were relocated. 641 

Additionally, to account for any possible bias in the procedure, we performed a second inversion 642 

using the average arrival-time residuals at each station (Lomax et al., 2009), thereby leading to 643 

better constrained event locations.  644 

 For each event relocation, the average horizontal and vertical uncertainties of the 645 

confidence ellipsoid, which are estimated by the PDFs, were used to determine the volume of the 646 

68% confidence ellipse. This, in turn, was used to determine the average uncertainty (Re) of each 647 

event location (Lomax et al., 2000). The relocated events in each catalog were then grouped 648 

based on their uncertainty thresholds. The best constrained event locations (Group A) had Re ≤ 5 649 

km. Groups B, C, and D had progressively higher Re values (Group B: 5 < Re ≤ 10 km; Group C: 650 

10 < Re ≤ 20 km; Group D: Re ≥ 20 km), indicating less well-constrained locations. The number 651 
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of events in each quality group is provided in Table S1 in the Supporting Information. Figure 8 652 

highlights event locations that had Re ≤ 10 km (i.e., Groups A and B) within each catalog, and 653 

events from all groups are shown in Figure S5 in the Supporting Information.  654 

Many of the detected events in all three catalogs are situated near David Glacier (Fig. 8). 655 

Shallow events (< 5 km) in this region are consistent with those identified in previous studies 656 

(e.g., Bannister & Kennett, 2002; Danesi et al., 2007, 2022; Zoet et al., 2012; 2013), which have 657 

been attributed to stick-slip behavior at the base of the ice sheet. However, all three catalogs also 658 

show deeper events (> 10 km) beneath the David Glacier region as well, which could be 659 

associated with solid Earth processes. For example, movement and mass redistribution within the 660 

East Antarctic ice sheet may induce stress changes in the underlying lithosphere, creating the 661 

deep-seated events highlighted in our catalogs (Lund, 2015; Steffen, 2013; Steffen et al., 2020). 662 

All three event catalogs also show notable seismicity beneath Victoria Land, in the 663 

northeastern portion of the study region (Fig. 8). The prevalence of event detections in this area 664 

may reflect some degree of spatial bias given the locations of the stations available for this study 665 

(Fig. 1). The TAMNNET stations, in particular, provide somewhat better coverage in this region; 666 

therefore, nearby events may more likely meet the enforced minimum number of P- and S-wave 667 

arrivals needed for relocation. That said, the Victoria Land event cluster (Fig. 8) is concentrated 668 

near several other glaciers that move across the Transantarctic Mountains and towards the Ross 669 

Sea, including the Campbell, Priestley, and Aviator Glaciers. The best located events in this 670 

cluster are relatively shallow and therefore may reflect ice-bed processes, similar to those 671 

suggested for David Glacier further to the south. Deeper events are also seen beneath this region, 672 

down to about 25-50 km, which are more likely associated with tectonic processes, such as 673 

faulting (e.g., Pisarska-Jamrozy et al., 2018), or with crustal deformation driven by cryospheric 674 
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fluctuations (e.g., Stewart et al., 2000). Further investigations would be needed to evaluate the 675 

sources of the seismic events beneath David Glacier and Victoria Land, but the automatically 676 

identified events from our analyses provide some insight into the complex relationship between 677 

the solid Earth structure and the Antarctic ice sheet.     678 

 679 
Figure 8. Seismic event relocations from NonLinLoc for quality Group A and B events. From 680 

left to right: SL catalog, MF catalog, and ML catalog. Blue circles denote events that were 681 

detected by the corresponding original technique (i.e., STA/LTA, template matching, EQT 682 

machine learning). Green circles denote new events detected by transfer learning. Red triangles 683 

indicate TAMNNET stations, and orange triangles denote other stations. Abbreviations denote 684 

key locations including David Glacier (D), Campbell, Priestly, and Aviator Glaciers (C,P,A), and 685 

Mount Erebus (E).  686 

 687 

It is also worth noting the cluster of seismic events near Mount Erebus, which was 688 

uniquely identified by the ML catalog (Fig. 8). Some prior studies that have also recognized 689 

seismicity in this region attribute the events to small magnitude icequake sources near the 690 

volcano’s summit (Chaput et al., 2015; Li et al., 2021; Podolskiy & Walter, 2016). Other 691 

investigations have attributed the Mount Erebus seismicity to volcanic activity within its shallow 692 

magmatic system (e.g., Aster et al., 2008; Hansen & Schmandt, 2015; Kaminuma, 1987; Rowe et 693 

al., 1998, 2000). The absence of the Mount Erebus event cluster in the SL and MF catalogs 694 
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underscores the effectiveness of deep learning techniques in seismic detection, particularly in 695 

elucidating events with a range of sources.  696 

8. Conclusions  697 

Our study has evaluated the benefits and limitations of different automated seismic event 698 

detection methods, and our results emphasize that the most appropriate approach depends on the 699 

specific attributes of the examined data as well as the objectives of a given study. The STA/LTA 700 

method is well-suited for real-time event detection applications that require rapid results, even if 701 

there is a higher likelihood for false detections. The MF technique works well for environments 702 

that generate seismic events with a high degree of waveform similarity. Deep learning models 703 

offer the most adaptability if dealing with a range of seismic sources and noise, and their 704 

performance can be enhanced with transfer learning, which provides an effective approach to 705 

adapt pre-trained models for unique datasets.  706 

For our East Antarctic investigation, the fine-tuned GPD model, characterized by its high 707 

AUC score, reliable picking accuracy, and consistent performance across the examined catalogs, 708 

emerged as the most robust, providing new insights into seismic sources in the region. Event 709 

relocations based on the fine-tuned catalogs offer new insights into potential seismic sources, 710 

including both shallow cryospheric and deeper tectonic processes. Arguably, the most 711 

comprehensive seismic event catalog would be one created by integrating the results from each 712 

of the applied detection methods; however, the separate results highlight the performance of each 713 

approach. Our findings have expanded seismic event detections in East Antarctica, including the 714 

identification of previously unrecognized seismicity, and these results underscore the potential 715 

for automated event detection approaches to enhance our understanding of seismic activity even 716 

in areas with limited station coverage.  717 
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Key Points: 10 

• Deep learning models, enhanced by transfer learning, adapt well to varied seismic 11 

sources.  12 

• Automated detection approaches offer insights into both cryospheric and tectonic events 13 

in Antarctica. 14 

• Even in regions with limited station coverage, automated detection approaches can help 15 

us develop more complete seismicity catalogs. 16 

  17 
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Abstract 18 

As seismic data collection continues to grow, advanced automated processing techniques 19 

for robust phase identification and event detection are becoming increasingly important. 20 

However, the performance, benefits, and limitations of different automated detection approaches 21 

have not been fully evaluated. Our study examines how the performance of conventional 22 

techniques, including the Short-Term Average/Long-Term Average (STA/LTA) method and 23 

cross-correlation approaches, compares to that of various deep learning models. We also evaluate 24 

the added benefits that transfer learning may provide to machine learning applications. Each 25 

detection approach has been applied to three years of seismic data recorded by stations in East 26 

Antarctica. Our results emphasize that the most appropriate detection approach depends on the 27 

data attributes and the study objectives. STA/LTA is well-suited for applications that require 28 

rapid results even if there is a greater likelihood for false positive detections, and correlation-29 

based techniques work well for identifying events with a high degree of waveform similarity. 30 

Deep learning models offer the most adaptability if dealing with a range of seismic sources and 31 

noise, and their performance can be enhanced with transfer learning, if the detection parameters 32 

are fine-tuned to ensure the accuracy and reliability of the generated catalog. Our results in East 33 

Antarctic provide new insight into polar seismicity, highlighting both cryospheric and tectonic 34 

events, and demonstrate how automated event detection approaches can be optimized to 35 

investigate seismic activity in challenging environments. 36 

 37 

 38 

  39 
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Plain Language Summary 40 

Given the large quantity of seismic data recorded for geologic investigations, the manual 41 

identification of earthquake arrivals is becoming less feasible, and automated detection 42 

approaches are becoming increasingly important. However, the benefits and limitations of 43 

different detection techniques have not been fully evaluated. We examine a range of automated 44 

detection approaches, applied to data recorded by seismic stations in Antarctica, to assess the 45 

performance of each method. Additionally, an approach called transfer learning is examined to 46 

determine if it can improve the accuracy and reliability of the automated detections. Our results 47 

highlight new seismic events in Antarctica, providing insights into both geologic processes and 48 

ice-sheet behavior.   49 

 50 

  51 
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1. Introduction 52 

The accurate creation of earthquake catalogs for seismotectonic interpretation requires 53 

robust seismic phase identification, event association, and event detection; however, with the 54 

ever-increasing availability of seismic data, manual processing by human analysts is becoming 55 

less feasible. As such, automated processing techniques are becoming increasingly important. 56 

Some event detection techniques, such as the Short-Term Average/Long-Term Average 57 

(STA/LTA) method (Allen, 1978; Earle & Shearer, 1994), use relatively simple algorithms and 58 

provide rapid results without the need for extensive data pre-processing. Waveform based cross-59 

correlation approaches, such as the matched filter (MF) technique (Gibbons & Ringdal, 2006; 60 

Peng & Zhao, 2009; Shelly et al., 2007), can also be applied to STA/LTA generated earthquake 61 

catalogs to identify new, closely located events with similar focal mechanisms to those in the 62 

initial catalog. However, STA/LTA may not perform well for low signal-to-noise ratio (SNR) 63 

data, and cross-correlation based approaches can sometimes generate spatially biased event 64 

catalogs (Herrmann & Marzocchi, 2021; Schaff & Beroza, 2004; Yoon et al., 2015). The 65 

shortcomings of these methods can also sometimes result in impulsive transient signals or distant 66 

regional/teleseismic signals being erroneously identified as local earthquakes (e.g., Meng et al., 67 

2012). In some cases, these challenges can be overcome using phase association algorithms, 68 

which analyze triggers from multiple stations to determine whether any combination displays 69 

arrival time sequences that align with characteristic seismic event patterns (Myers et al., 2007).  70 

In recent years, advancements in machine learning techniques, coupled with the 71 

democratization of open-source software, have provided more sophisticated methods to 72 

automatically detect seismic events. In particular, convolutional neural networks (CNN), which 73 

perform a sequence of convolution, resampling, and non-linear transformations on raw 74 

waveform data, have shown promising results (Perol et al., 2018; Ross et al., 2018; Wu et al., 75 
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2018; Zhou et al., 2019; Zhu et al., 2019) when compared to more traditional techniques (Earle 76 

& Shearer, 1994; Gibbons & Ringdal, 2006; Peng & Zhao, 2009; Shelly et al., 2007).  CNN 77 

pickers are designed to provide the added advantage of identifying body wave phases on three-78 

component seismograms, thereby simplifying earthquake association and relocation. However, 79 

machine learning algorithms are complex, computationally demanding, and typically require 80 

optimization to avoid false-positive event detections.  81 

To date, only a few studies have evaluated the performance of different automated 82 

detection approaches with respect to one another or have attempted to combine detection 83 

techniques to achieve the best possible outcome (Münchmeyer et al., 2022; Neves et al., 2024; Si 84 

et al., 2024; Woollam et al., 2022; Yuan et al., 2023). Further, most of these previous studies 85 

have typically only examined select model pairs based on one or a few training datasets (e.g., 86 

Han et al., 2023; Jiang et al., 2021; Perol et al., 2018; Vaezi & Van der Baan, 2015), and they 87 

largely focus on small magnitude, tectonic-related seismic events. Here, we compare the benefits 88 

and limitations of the STA/LTA technique (Earle & Shearer, 1994), the cross-correlation-based 89 

MF approach (Peng & Zhao, 2009), and a suite of deep learning models, including 90 

EQTransformer (EQT, Mousavi et al., 2020), PhaseNet (Zhu & Beroza, 2019), BasicPhaseAE 91 

(Woollam et al., 2019), and the Generalized Phase Detection (GPD) model (Ross et al., 2018). 92 

We also update the deep learning models with additional training data derived from this project, 93 

a process known as transfer learning. Despite the potential for transfer learning to enhance model 94 

adaptability and efficiency (Chai et al., 2020; Lapins et al., 2021), particularly in data-scarce 95 

environments, its adoption in seismic studies has not been as rapid or as extensive as in other 96 

domains of deep learning research. This gap presents an opportunity to investigate the full 97 

capabilities of transfer learning in automatic event detection. We test the performance of the 98 
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updated versus original deep-learning models using a range of metrics that evaluate each of their 99 

abilities to accurately determine the onset time of phase arrivals, to reliably classify phases as P- 100 

or S-waves, and to identify events while minimizing the number of false positives. These 101 

techniques are applied to a unique set of waveforms that contain a mixture of tectonic earthquake 102 

signals and seismic events generated by glacial movement (e.g., icequakes). Collectively, our 103 

evaluation allows us to assess the efficacy of each algorithm when applied to a complex dataset.  104 

 105 

2. Data and Methods  106 

Broadband seismic deployments across the Antarctic continent have dramatically 107 

increased over the past several decades (e.g., Anandakrishnan et al., 2000; Anthony et al., 2015; 108 

Hansen et al., 2015; Heeszel et al., 2013; Pyle et al., 2010), providing a valuable and challenging 109 

test dataset for automatic event detection. Seismic events in Antarctica are not only associated 110 

with tectonic sources (e.g., Lough et al., 2013, 2018; Rowe et al., 2000) but are also caused by 111 

other natural phenomena, such as iceberg calving signals (e.g., Chen et al., 2011; Riel et al., 112 

2021; Winberry et al., 2020; Zoet et al., 2012) or ice-stream slip (e.g., Guerin et al., 2021; 113 

Hudson et al., 2023; Nettles & Ekström, 2010; Winberry et al., 2014; Walter et al., 2011, 2015), 114 

which are collectively classified as icequakes. Our study focuses on a subset of seismic data 115 

recorded by 19 stations deployed in the Victoria Land region of East Antarctica (Fig. 1), which 116 

provide continuous seismic recordings for several years. Most of these stations (15) were part of 117 

the Transantarctic Mountains Northern Network (TAMNNET), which operated between 2012-118 

2015 (Hansen, 2012; Hansen et al., 2015); however, we also incorporated data from two 119 

additional networks (ER, GT; Fig. 1; ASL/USGS, 1993). This dataset allows us to provide 120 

unique constraints on polar seismic activity and to evaluate automated event detection 121 

performance in a region with limited station coverage. 122 
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 123 

 124 

 125 

Figure 1. Map highlighting the examined seismic stations in Victoria Land, East Antarctica. Red 126 

triangles denote TAMNNET stations (Hansen et al., 2015), and orange triangles denote stations 127 

from other networks. Station names are also provided. The location of the main map in relation 128 

to the rest of Antarctica is highlighted in the inset on the lower left. 129 

 130 

We developed a comprehensive workflow to assess the performance of different 131 

automated event detection techniques (Fig. 2). The continuous waveforms recorded by the East 132 

Antarctic stations (Fig. 1) were used to develop three starting catalogs, based on the STA/LTA, 133 

MF, and EQT machine learning approaches, respectively. Each catalog was then used to fine-134 

tune a series of deep learning models via transfer learning, and their performance was evaluated 135 

with various metrics. The fine-tuned detection approach that worked best for our Antarctic 136 

dataset was then applied to update the three catalogs, and the events were relocated using a 137 

uniform velocity model. Each analysis step is described in detail in the following sections.  138 

 139 
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 140 

 141 

Figure 2. Flowchart summarizing the different automated seismic detection techniques 142 

examined in our study and the associated analysis steps.  143 

 144 

3. Automated Detection Approaches  145 

 As shown in Figure 2, three different automated event detection approaches were 146 

initially evaluated by our study, including the STA/LTA method, the MF technique, and a 147 

machine learning-based approach using the EQT algorithm. The following subsections highlight 148 

the contributions and limitations of each approach as they are applied to our East Antarctic 149 

dataset (Fig. 1).  150 

3.1. STA/LTA Method (SL Catalog) 151 

 The STA/LTA method (Allen, 1978; Earle & Shearer, 1994) detects high-frequency 152 

events in continuous data by identifying signals that have a mean energy ratio above some 153 
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specified threshold. The STA window contains the dominant frequency of the events the 154 

algorithm aims to detect, while the LTA window contains mostly background noise, which 155 

should exceed the period of the lowest frequency seismic signal of interest (Trnkoczy, 2009). In 156 

continuous data, a trigger is declared when the STA/LTA ratio at any sample point surpasses a 157 

pre-defined threshold, indicating that an event is possibly occurring (Allen, 1978; Baer & 158 

Kradolfer, 1987). The algorithm remains in this triggered state until the ratio decreases below a 159 

specified trigger-release threshold (Fig. 3). One of the strengths of the STA/LTA method is that 160 

it does not require any prior knowledge about an event’s waveform nor its source (Yoon et al., 161 

2015); however, it does have limitations. For instance, S-waves may not be accurately detected if 162 

they arrive within the P-wave coda, and this can be problematic because S-waves are important 163 

when trying to determine the depth and origin time for an earthquake. The STA/LTA method is 164 

also highly sensitive to the level of noise in the data, and it may not perform well with dense 165 

earthquake sequences and/or emergent arrivals (Schaff & Beroza, 2004).  166 

For our study, we designated short-term and long-term window lengths of 0.5 and 8.0 s, 167 

respectively. We also set the SNR trigger and trigger-release thresholds to 5 and 2.5, respectively 168 

(Fig. 3). Detections were associated with the Antelope dbgrassoc association module (BRTT, 169 

2011), using a pre-computed travel-time grid based on the IASP91 reference velocity model 170 

(Kennett & Engdahl, 1991), and events were declared if they were recorded by at least four 171 

stations. Between 2012-2014, 560 events were detected using the STA/LTA approach and 172 

automatic association, thereby forming our SL catalog (Fig. 2). The data were then bandpass 173 

filtered between 2-5 Hz to highlight the signals of interest, and all phase arrivals were manually 174 

reviewed and adjusted, as needed. These additional processing steps allowed us to refine our SL 175 

catalog of high-quality events with well-determined phase arrivals. 176 
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 178 

 179 

Figure 3. Example illustrating STA/LTA detection thresholds. The upper panel shows an event 180 

waveform that was detected by the STA/LTA approach, and the lower panel shows the 181 

STA/LTA ratio for the triggered event. Pink lines denote the trigger threshold (5) and trigger 182 

time; blue lines denote the trigger release threshold (2.5) and corresponding time. 183 

 184 

3.2. Matched Filter Approach (MF Catalog)  185 

 The MF technique, also known as template matching or network-based waveform cross-186 

correlation (Gibbons & Ringdal, 2006; Peng & Zhao, 2009; Shelly et al., 2007), provides another 187 

approach to automatically detect seismic arrivals, which is based on waveform similarity. Pre-188 

defined template waveforms are cross-correlated with continuous data over successive windows, 189 

and signals exceeding a specified correlation threshold are identified as detections (Fig. 4). 190 

Generally, the MF approach performs better than the STA/LTA method (Sect. 3.1) when dealing 191 

with low SNR data. However, since the template events are often manually determined, the MF 192 

method can be time consuming during its initial stages when building the template catalog (if 193 

one does not already exist from a regional seismic network or other source). Furthermore, since 194 

the approach relies on waveform similarity, seismic signals that differ significantly from the 195 
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template events may go undetected, leading to an incomplete catalog (Cianetti et al., 2021; Li et 196 

al., 2018; Yoon et al., 2015).   197 

 198 

 199 

Figure 4. (A) Mean cross-correlation coefficients (CCC) determined by matching a template 200 

event, which occurred at 06:13:14 on 2012-12-08, against a full day (2012-12-08) of continuous 201 

data. Dots denote detections whose CCC values exceed the detection threshold, which is twelve 202 

times the MAD (red dashed line). The orange dot marks the detected event shown in panel (B). 203 

(B) Examples illustrating waveform cross-correlation. Template waveforms (red) are plotted on 204 

top of the continuous data (black), highlighting detected events from the MF approach. Station 205 

names and components are indicated on the right. Amplitudes have been normalized so their 206 

absolute maximum values are equal to one. This was done to better illustrate the waveform 207 

comparisons. 208 

 209 

Using EQcorrscan (Chamberlain et al., 2018), all identified events in the SL catalog were 210 

treated as template events (Fig. 2), which were cross-correlated with the bandpass filtered (2-5 211 

Hz) continuous data to identify additional seismic signals (Fig. 4). This bandpass was chosen 212 
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based on close examination of the template coda, the density of seismic stations in the region, as 213 

well as our prior experience working with Antarctic data, where higher frequency information 214 

can become scattered by the ice sheet (Bentley & Kohnen, 1976) and thus incoherent when 215 

attempting template matching. Each template event was defined by the portion of the waveform 216 

0.5 s before the event’s P-wave arrival and 6 s after its S-wave arrival (Peng et al., 2014). The 217 

templates were shifted by 0.025 s (1 sample) increments through the continuous waveforms, and 218 

correlation coefficients were computed for each increment. Mean correlation coefficients were 219 

then determined by stacking the coefficient values across all stations and components (Fig. 4). 220 

The relative quality of each cross-correlated, matched waveform was evaluated using the median 221 

absolute deviation (MAD; Shelly et al., 2007), which is a measure of dispersion calculated as the 222 

median of the absolute difference between each data point for the mean correlation coefficient. 223 

The MAD value helps to estimate the variability in data distribution due to uncorrelated noise, 224 

thereby providing a robust measure to identify outliers. For a normally distributed dataset, the 225 

standard deviation is 1.4826 times the MAD (Hampel, 1974). Due to the noisy nature of real 226 

seismic data and the relatively long-period bandpass chosen for this project, a conservative 227 

threshold of 12 times the MAD was chosen, and signals that exceed this MAD value are 228 

identified as positive event detections (Fig. 4; e.g., Skoumal et al., 2015; Yao et al., 2021).  229 

A time domain, phase-pick SNR threshold was also applied to further ensure robust 230 

detections. For a given phase, the SNR was calculated by taking the maximum amplitude of the 231 

signal window and dividing it by the root-mean-square of the noise window. The noise windows 232 

start 6 s before the phase of interest, and both the signal and noise windows had lengths of 5.5 s 233 

(Fig. S1 in Supporting Information). The SNR threshold was subsequently determined by 234 

comparing the pick-specific SNR values obtained from all detected picks for each seismic event. 235 
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This additional processing step is not only important for robust event detections, but it also helps 236 

to remove unwanted signals, such as teleseismic events that originate from distant earthquakes. 237 

Sometimes teleseismic signals can be mistakenly detected in MF catalogs for local events, and 238 

this can adversely affect the accuracy of local event detections because teleseismic events have 239 

unique seismic waves and frequency contents (Waldhauser & Schaff, 2007). We determined that 240 

maintaining a SNR greater than 2.0 for both the P and S picks (Fig. S1 in Supporting 241 

Information) effectively helps to limit the influence of teleseismic events and reduces the number 242 

of false detections. With the MAD and SNR criteria applied, our MF catalog includes 4,577 local 243 

events (Fig. 2).  244 

3.3. Machine Learning Approach (ML Catalog)  245 

In addition to the STA/LTA and the MF techniques, we also utilized EQT, a machine 246 

learning-based signal detector and phase picker that was trained on a diverse seismic dataset 247 

(Mousavi et al., 2020). Further details about EQT and its architecture are provided in Section 4.1. 248 

We implemented the EQT picker within the easyQuake Python package (Walter et al., 2021) to 249 

identify P- and S-wave picks within the continuous data. The easyQuake associator, which is a 250 

modified version of PhasePApy (Chen & Holland, 2016), was used to aggregate pick 251 

information and declare event detections. Probability thresholds of 0.1, 0.1, and 0.3 were 252 

specified for the P-wave picks, S-wave picks, and event detections, respectively. In total, 1,728 253 

events were detected in the East Antarctic dataset, which compose our initial machine learning 254 

(ML) catalog (Fig. 2). It should be noted that this catalog is distinguished from those derived 255 

from transfer-learning in later sections because it was generated using phase picks that were 256 

based on the original model and parameters specified by Mousavi et al. (2020).  257 

4. Transfer Learning  258 



manuscript submitted to Journal of Geophysical Research: Machine Learning and Computation 

 14 

Each of the catalogs described in Sections 3.1-3.3 were used in a transfer learning process 259 

to adapt a series of pre-trained deep learning models. Instead of retraining an entire model from 260 

scratch with randomly initialized parameters or different model architecture, a strategy called 261 

fine-tuning is employed, where the original model and its architecture serve as the starting point, 262 

and training continues with newly added data, thereby refining the model (Pan & Yang, 2010). 263 

Transfer learning not only leads to better model performance, but it also overcomes some of the 264 

limitations of traditional models that assume training and testing datasets are independent and are 265 

identically distributed (Tan et al., 2018).  266 

The effectiveness of transfer learning has been proven in various fields (Long et al., 267 

2013, 2015; Pan et al., 2011), and while its adoption within the field of seismology has been 268 

relatively limited so far, the technique demonstrates promising potential. For instance, Zhu et al. 269 

(2019) used a CNN-based Phase-Identification Classifier (CPIC), which was initially trained on 270 

a dataset with 30,146 labeled phases from the aftershock sequences of the 2008 MW 7.9 271 

Wenchuan earthquake, to develop a more complete aftershock catalog for the same area. 272 

Additionally, when fine-tuned on a smaller dataset from Oklahoma, the CPIC achieved 97% 273 

accuracy. This study highlights the potential for transfer learning applications to identify events 274 

in regions with no or few labeled phases. In a different study, Chai et al. (2020) enhanced the 275 

capabilities of the PhaseNet model (Zhu & Beroza, 2019), which was originally trained on data 276 

from regional seismic networks, to efficiently handle microseismic data from South Dakota. 277 

About 3,600 three-component seismograms and associated manual picks were used in the 278 

transfer learning process, and the performance of the retrained model exceeded that of the 279 

original PhaseNet model by over 10% in terms of precision and recall (see Sect. 4.3). Compared 280 
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to human expert detections, 32% fewer P-wave picks were made, but the fine-tuned model 281 

identified 48% more S-wave picks.   282 

We implemented our transfer learning process with Seisbench, a toolbox for machine 283 

learning in seismology (Ho, 2024; Münchmeyer et al. 2022; Woollam et al., 2022). Various deep 284 

learning model architectures were utilized, including PhaseNet (Zhu & Beroza, 2019), 285 

BasicPhaseAE (Woollam et al., 2019), GPD (Ross et al., 2018), and EQT (Mousavi et al., 2020), 286 

which are more fully described in Section 4.1. These models were selected given their distinct 287 

yet interrelated approaches to seismic signal processing. Additionally, these models share a 288 

common approach in terms of pre-processing the seismic data. Regardless of their specific 289 

architectures or use cases, they all rely on uniformly sampled data, typically at 100 Hz. If the 290 

original data has a different sampling rate, it is resampled to ensure uniformity. The data 291 

windows used by these models vary in length, but they all incorporate multiple types of seismic 292 

signals, including P-waves, S-waves, and noise, within their respective networks.  293 

4.1 Deep Learning Models  294 

The PhaseNet CNN (Zhu & Beroza, 2019) was developed as a U-Net architecture, which 295 

functions as an encoder-decoder mechanism that pulls significant features from input data and 296 

subsequently expands them to generate predictions of equivalent size outputs (Ronneberger et 297 

al., 2015). While the U-Net was initially created for a broad range of image processing 298 

applications, this approach has been adapted for earthquake phase detection. Three-component 299 

seismograms are sampled using 30 s windows that include both P- and S-wave arrivals, and these 300 

samples serve as the input for PhaseNet. The waveform data are then processed through an 301 

iterative down-sampling and up-sampling procedure. During down-sampling, the encoder 302 

reduces the dimensionality of the raw seismic data and extracts essential features associated with 303 
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the seismic phase arrivals. The condensed information provided by the encoder is then increased 304 

in dimensionality through up-sampling by the decoder, which converts the information into 305 

detailed probability distributions for P-waves, S-waves, and noise at each point in time 306 

(Goodfellow et al., 2016; Zhu & Beroza, 2019). For seismic applications, PhaseNet was 307 

originally trained and evaluated using 779,514 waveforms containing labeled P- and S-wave 308 

arrivals from local earthquakes recorded in northern California (Zhu & Beroza, 2019).  309 

BasicPhaseAE, which is another U-Net-like CNN phase detector, employs three 6 s input 310 

windows, with each window sampling an individual component (Woollam et al., 2019). The 311 

structure of BasicPhaseAE is similar to PhaseNet, but it differs in a few aspects. BasicPhaseAE 312 

uses smaller filter sizes and omits convolutions without stride, which refers to the step size that 313 

the filter matrix moves across the input matrix during the convolution process. In addition, 314 

BasicPhaseAE lacks residual connections, which are essentially shortcuts or bypass routes that 315 

enable the gradient to be back-propagated directly to earlier layers (Woollam et al., 2019; 316 

Münchmeyer et al., 2022). The input data, which consists of labels or classes of seismic data 317 

(e.g., P-waves, S-waves, noise), undergo several transformations. Convolutional operations first 318 

extract the characteristic features for each class. During training, the model uses a designated 6 s 319 

window of data that is then divided into sequential sub-windows, each 0.4 s in length. The sub-320 

windows are randomly shuffled to prevent the CNN from learning irrelevant temporal patterns. 321 

Extracted features then undergo multiple resampling stages, with a rectified linear unit activation 322 

function applied at each stage. The final architecture comprises three convolutional layers and 323 

three up-sampling layers. The network ultimately determines the probability of a P-wave, S-324 

wave, or noise for every time sample in the input window. BasicPhaseAE was initially trained 325 
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and evaluated using 11,000 waveforms from earthquakes located within the Iquique region in 326 

northern Chile (Woollam et al., 2019).  327 

The GPD model is a phase identification CNN with six layers, including four convolution 328 

layers and two fully connected layers (Ross et al., 2018). Rectified linear units serve as the 329 

activation function for each layer, and batch normalization is applied throughout. GPD operates 330 

on a short 4 s input window that advances five samples (0.05 s) after each prediction to create a 331 

new, slightly overlapped 4 s window for the next prediction (Münchmeyer et al., 2022). Each 332 

advanced window is then classified as a P-wave arrival, S-wave arrival, or noise. The GPD 333 

model was originally trained and evaluated using 4.5 million three-component seismic records, 334 

evenly distributed amongst P- and S-wave seismograms and noise (Ross et al., 2018). Using a 335 

multi-class cross-entropy loss for training, the GPD model has been shown to effectively detect 336 

and identify seismic phases in various datasets (Münchmeyer et al., 2022; Woollam et al., 2022).  337 

EQT is a model designed for simultaneous seismic event detection, phase identification, 338 

and onset timing determination. This model was originally trained on a portion of the STEAD 339 

dataset (Mousavi et al., 2019), a global collection of 1.2 million hand-labeled earthquake and 340 

noise waveforms. EQT operates on 60 s windows of three-component seismic data. Its 341 

architecture comprises a deep encoder and three separate decoders, and it integrates convolution, 342 

long short-term memory (LSTM) units, residual connections, and attention mechanisms 343 

(Mousavi et al., 2020). The encoder processes the seismic data into high-level contextual 344 

representations, while the decoders convert these representations into probability sequences for 345 

events as well as for P- and S-wave detections. LSTM, which resembles human auditory memory 346 

processing, and attention mechanisms, which simulate selective focusing in high-resolution 347 

areas, work in tandem to enhance the model's performance (Gers et al., 1999). The attention 348 
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mechanisms function on two levels: global for earthquake events and local for phases within 349 

those events. During training, EQT employs data augmentation techniques, such as adding 350 

Gaussian noise, introducing gaps, and removing channels, which are implemented to enhance the 351 

model's robustness, teaching it how to handle various real-world data imperfections and 352 

irregularities. This helps to improve its overall performance and generalization ability (Mousavi 353 

et al., 2020).  354 

Each of the above models has a different level of complexity, adaptability, and suitability 355 

for seismic datasets. For example, since BasicPhaseAE lacks residual connections, which are 356 

shortcuts that skip one or more layers to help train deep neural networks, its learning efficiency 357 

may be lower compared to PhaseNet (Münchmeyer et al., 2022). Compared to EQT, GPD is 358 

much slower, but it requires less memory. Further, the sophisticated EQT architecture and its 359 

comprehensive functionality may require more computational resources for complex analyses. 360 

We evaluate the performance of each model in relation to one another using our East Antarctic 361 

catalogs described in Sections 3.1-3.3, but it should be emphasized that the most suitable model 362 

for a given investigation depends on the type of data, the available processing time, and the 363 

computational resources available. We did not evaluate the relative computational performance 364 

of the specific algorithms in this study.  365 

4.2 Applying Transfer Learning to the East Antarctic Catalogs  366 

Each of the pre-trained models described in the previous section were fine-tuned via 367 

transfer learning using each of the event catalogs (Sects. 3.1-3.3). The SL, MF, and ML catalogs 368 

contain a total of 1,536, 13,731, and 5,388 waveform segments, respectively. The metadata for 369 

each catalog were assembled into a QuakeML-formatted file, and we also developed HDF5-370 

formatted files by combining the event metadata with the waveforms, similar to the STEAD 371 
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dataset format (Mousavi et al., 2019), for inclusion into Seisbench (Ho, 2024; Woollam et al., 372 

2022). Each catalog was divided into a training subset, which is composed of 70% of the data, a 373 

validation subset, which contains 15% of the data, and a testing subset, which includes the 374 

remaining 15% of the data. The training subset was used to adjust the model’s weights and 375 

biases during the transfer learning process, while the validation subset was used to fine-tune the 376 

model’s hyperparameters. The validation subset was also essential in determining which model 377 

iteration performed the best, using the parameters described in Section 4.3. Once the optimal 378 

model configuration was identified based on the validation subset's results, the updated model 379 

was then evaluated on the testing subset. The final, reported results (Section 5) are based on this 380 

evaluation of the testing subset, thereby ensuring an unbiased assessment of each models’ 381 

performance on unseen data.  382 

Using the Münchmeyer et al. (2022) data augmentation techniques within SeisBench 383 

(Woollam et al., 2022), we built training pipelines, which are a series of steps that prepare and 384 

transform the waveform data for model training. Since our waveforms are long compared to each 385 

aforementioned model input length, a two-step approach was employed for window selection. 386 

First, for two-thirds of the training subset, windows were selected to ensure that they contained 387 

at least one labeled pick. For the remaining one-third, the windows were randomly selected from 388 

the entire waveform, and they may or may not include labeled picks. This approach guarantees 389 

that the training subsets are not overwhelmed by noise samples, which is particularly important 390 

for models with short input windows (e.g., PhaseNet, BasicPhaseAE, GPD). The same approach 391 

was also applied to the validation subset.  392 

Additionally, as part of the transfer learning process for each catalog, we employed the 393 

Adam optimizer (Kingma & Ba, 2014), which efficiently updates the model parameters to 394 
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minimize the error between predicted and actual values. A corresponding learning rate of 0.001 395 

was selected, which controls the magnitude of changes made to the model parameters during 396 

updates and ensures a steady convergence without overshooting (i.e., where the model might 397 

skip over the optimal parameters). Further, a batch size of 256 was used in the optimizer, which 398 

means that 256 training samples were processed together during each iteration. This helps to 399 

balance computational efficiency and the quality of the model's gradient estimation (Coleman et 400 

al., 2017; Smith, 2018). Early stopping was also employed to obtain an optimal model. This 401 

strategy halts the training when the validation loss (a measure of prediction error) throughout the 402 

entire training subset fails to improve after ten successive cycles (epochs).  403 

4.3. Evaluating Model Performance  404 

To evaluate each fine-tuned, deep learning model’s ability to differentiate between 405 

seismic events and noise, we adopted the approach of Münchmeyer et al. (2022). First, a 30 s 406 

window of a random seismic waveform from either the validation or testing subset is analyzed to 407 

determine if it contains an event onset (i.e., a first arriving seismic wave). Noise samples are also 408 

extracted from the window using labeled noise traces, if present. Otherwise, the noise sample is 409 

defined based on the presence or absence of P-wave and S-wave arrivals. That is, windows 410 

containing neither P- nor S-wave arrivals are labeled as noise, while those with either or both are 411 

labeled as an event. The event and noise labels were used as “ground truth” to compare with our 412 

models’ predictions.  413 

A variety of metrics are used to evaluate the performance of each model. First, to assess a 414 

model’s ability to accurately identify event onsets while minimizing false positives, we 415 

examined the receiver operating characteristics (ROC), the area under the curve (AUC), and the 416 

F1 score. The ROC describes the true and false positive rates across all possible detection 417 
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thresholds, allowing for different trade-offs between these rates, depending on the application 418 

scenario (Fawcett, 2006). For example, in early earthquake warning systems, a high true positive 419 

rate is important to ensure timely alerts, even if it means getting some false alarms (Meier et al., 420 

2020). Alternatively, in a tomography research setting, where detection precision might be 421 

prioritized, reducing false positives could be more important, even if it means potentially missing 422 

some weaker seismic events. The AUC is a single value that defines the area under the ROC 423 

curve. It quantifies the overall ability of the model to distinguish between positive and negative 424 

classes. An AUC of one indicates a perfect model, meaning the model can identify all events 425 

correctly without any false positives. Conversely, an AUC of 0.5 represents a random model 426 

(Hanley & McNeil, 1982). The F1 score is the harmonic mean of the precision (i.e., the number 427 

of correct detections among all detections) and recall (i.e., the number of detections among all 428 

possible detections). It serves as a combined measure of the model's sensitivity and specificity. 429 

As part of the transfer learning process, the AUC value is selected to optimize the F1 score, 430 

thereby fine-tuning the model to achieve an optimal trade-off between the false positive rate and 431 

the true positive rate.  432 

In order to measure each model’s binary classification performance, we used the 433 

Matthews Correlation Coefficient (MCC). It is ambiguous to assign P and S phases as positive 434 

and negative classes, and the MCC is insensitive to class assignment (Chicco & Jurman, 2020; 435 

Matthews, 1975; Münchmeyer et al., 2022). We analyzed 10 s windows containing exactly one 436 

phase arrival to determine if that arrival is a P- or an S-wave. The MCC is calculated as the 437 

correlation coefficient of the confusion matrix, and its value ranges from -1 (total disagreement) 438 

to 1 (full agreement). Even in cases of class imbalance, the MCC provides an appropriate 439 

measure for binary classification performance (Münchmeyer et al., 2022; Powers, 2011). Further, 440 
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the MCC value was selected to optimize the phase threshold, which is used to calibrate the P- 441 

and S-wave pick probability thresholds. The pick probability indicates the likelihood of a 442 

specific data point corresponding to a seismic phase arrival (i.e., a P- or an S-wave signal), where 443 

a higher probability directly correlates with a heightened level of confidence from the model 444 

regarding the presence of an arrival at the identified data point. For the P pick threshold, we 445 

multiplied the detection threshold by the square root of the phase threshold. This adjustment 446 

enhances the P-wave detection sensitivity and improves identification of these arrivals. For the S 447 

pick threshold, we adopted a more conservative approach, dividing the detection threshold by the 448 

square root of the phase threshold. This approach was taken to minimize the risk of false 449 

positives. 450 

Finally, we evaluated each model’s ability to accurately determine the onset time of 451 

phase arrivals within a given catalog. Using the same 10 s window used for the MCC 452 

assessment, we calculated the pick residuals, which are the differences between the transfer-453 

learning-based pick times and the labeled pick times from the validation subset. The residual 454 

distribution is analyzed using both the root-mean-square error (RMSE) and the mean absolute 455 

error (MAE). Lower values of RMSE and MAE indicate greater accuracy in predicting the phase 456 

arrival onset times. Together, these provide a comprehensive evaluation given their different 457 

performance, with RMSE being sensitive to outliers and MAE being less sensitive to them 458 

(Willmott & Matsuura, 2005).  459 

 460 

5. Results of Transfer Learning   461 

The performance metrics (Sect. 4.3) used to evaluate the four deep learning models (Sect. 462 

4.1) applied to each catalog (Sects. 3.1-3.3) elucidate the effects of transfer learning, and these 463 
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metrics are summarized in Tables 1-3. Generally, transfer learning has a positive effect on all 464 

models, as is evident from the AUC metrics, for example. The most dramatic change was 465 

observed for the ML catalog and the BasicPhaseAE model, where the AUC increased from 0.45 466 

to 0.81. That said, even models like GPD that already had a high AUC value (0.87) saw an 467 

increase (0.90). These results highlight the benefits of transfer learning. However, it is important 468 

to consider how each model defines an event detection. For instance, EQT needs both P- and S-469 

wave labels to declare a detection within the seismogram time series (data from other stations is 470 

commonly aggregated during event association, discussed later), while GPD and PhaseNet do 471 

not. For scenarios where datasets might lack certain labels, such as in our SL and MF catalogs, 472 

this could lead to reduced performance, as reflected in the metric results. It is worth noting that 473 

our results are qualitatively comparable to those made by Münchmeyer et al. (2022) for the 474 

ETHZ dataset (Woollam et al., 2022), where some P- or S-wave labels were missing.  475 

The RMSE and MAE metrics were reduced for both P and S picks across all catalogs, 476 

again indicating improved performance from the fine-tuning and transfer learning. Among all the 477 

models, EQT had the lowest of these metrics, indicating it had the highest pick accuracy. 478 

However, GPD also displayed significant improvements in RMSE and MAE and closely 479 

followed EQT across all catalogs (Tables 1-3). As for the MCC metrics, where higher values 480 

indicate better classification performance, every model exhibited a MCC rise following transfer 481 

learning. Comparing the three catalogs (Tables 1-3), the P and S picks are notably better 482 

classified in the ML catalog for all models, followed by the SL and then the MF catalog. These 483 

variations might be due to discrepancies in P- and S-wave labeling consistency across the 484 

catalogs. For example, the starting ML catalog was exclusively generated using EQT, perhaps 485 

leading to higher pick consistency and, as a result, lower RMSE and MAE values. As a result, 486 
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variations in performance across the three catalogs reveal that the efficiency of transfer learning 487 

also depends on the consistency and quality of the training subset.  488 

Figure 5 shows an example of the pick probabilities for different deep learning models 489 

when applied to continuous data. EQT, GPD, and PhaseNet all have improved pick probabilities 490 

after transfer learning. The BasicPhaseAE pick probabilities did not increase post-transfer 491 

learning, and this could be due to the shorter input windows used by this model, together with its 492 

shorter filters and missing residual connections (Münchmeyer et al., 2022).  493 

  494 
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Table 1. Fine-tuned metric results before (left columns) and after (right columns) transfer 495 

learning was applied to the ML catalog. AUC: Area under the Curve; RMSE: root-mean-square 496 

error; MAE: mean absolute error; MCC: Matthews Correlation Coefficient.  497 

Model  AUC  P picks 
RMSE  

S picks 
RMSE  

 P picks 
MAE  

 S picks 
MAE  

MCC  

PhaseNet  0.7  0.8  3.0  2.1  3.0  2.3  2.2  1.4  2.2  1.5  0.3  0.6  

BasicPhaseAE  0.4  0.7  3.2  2.3  3.0  2.5  2.5  1.6  2.3  1.7  0.3  0.5  

GPD  0.8  0.8  2.2  1.8  2.3  2.1  1.5  1.2  1.6  1.4  0.6  0.8  

EQTransformer  0.7  0.7  3.4  1.8  3.0  1.8  2.4  1.1  2.1  1.1  0.6  0.9  

  498 

Table 2. Fine-tuned metric results before (left columns) and after (right columns) transfer 499 

learning was applied to the MF catalog. Columns are the same as in Table 1.  500 

Model  AUC  P picks 
RMSE  

S picks 
RMSE  

 P picks 
MAE  

 S picks 
MAE  

MCC  

PhaseNet  0.7  0.9  2.8  1.1  2.4  1.2  1.8  0.5  1.6  0.6  0.3  0.7  

BasicPhaseAE  0.4  0.8  3.2  1.1  2.8  1.3  2.5  0.6  2.0  0.7  0.3  0.7  

GPD  0.8  0.9  1.2  0.6  1.3  0.8  0.6  0.3  0.7  0.4  0.7  0.9  

EQTransformer  0.8  0.9  2.7  0.6  2.2  0.5  1.6  0.3  1.2  0.2  0.7  1.0  

  501 

Table 3. Fine-tuned metric results before (left columns) and after (right columns) transfer 502 

learning was applied to the SL catalog. Columns are the same as in Tables 1 and 2.  503 

Model  AUC  P picks 
RMSE  

S picks 
RMSE  

 P picks 
MAE  

 S picks 
MAE  

MCC  

PhaseNet  0.7  0.8  2.0  1.4  2.4  2.0  1.2  0.8  1.6  1.2  0.4  0.8  

BasicPhaseAE  0.4  0.7  2.8  1.7  2.7  2.2  2.0  1.0  1.9  1.4  0.4  0.7  

GPD  0.8  0.9  1.4  0.9  2.0  2.0  0.8  0.6  1.3  1.2  0.8  0.9  

EQTransformer  0.8  0.8  2.7  0.9  2.3  1.9  1.6  0.5  1.4  1.1  0.7  1.0  

 504 
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 505 

 506 

Figure 5. (A) Sample of the continuous Antarctic data recorded by station LEON (Fig. 1), and 507 

corresponding pick probabilities for (B) EQT, (C) PhaseNet, (D) GPD, and (E) BasicPhaseAE 508 

(BPAE). For each model, the top and bottom panels show the pick probabilities before and after 509 

transfer learning, respectively (note that the vertical scales can vary by panel). Blue lines 510 

correspond to P-waves, and orange lines correspond to S-waves. For EQT, the green lines show 511 

the detection probability.  512 

 513 

 514 

6. Model Assessment  515 

6.1 Benefits and Limitations of Each Automated Event Detection Approach  516 

Each automated event detection approach has its benefits and limitations, and the choice 517 

of which approach to use depends on the objective of the study and the characteristics of the 518 

dataset. The STA/LTA method stands out given its minimal pre-processing requirements, 519 

straightforward algorithm, and low computational demands, making this technique efficient and 520 
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readily applicable. Notably, the approach can also identify low magnitude earthquakes if the data 521 

has sufficiently high quality (Fig. 6). However, as noted in Section 3.1, STA/LTA can struggle to 522 

identify emergent or low SNR arrivals (Schaff & Beroza, 2004; Yoon et al., 2015), which can 523 

make this technique more prone to errors, including an increased risks of false positive 524 

detections and/or detection failures (Kato et al., 2012). This limitation is partly due to the nature 525 

of the STA and LTA window lengths, which are not adjusted during the detection process 526 

(Trnkoczy, 2009) and hence restrict the method’s ability to adapt to varying seismic signal 527 

characteristics. Figure S2 in the Supporting Information shows several examples of missed 528 

detections that resulted from the STA/LTA inflexibility. Given its performance, STA/LTA is 529 

likely suitable for real-time seismic event detection applications, particularly in situations where 530 

an existing, trained model is not available. This method is applicable for systems such as 531 

earthquake early warning and volcanic monitoring, which require rapid results. It is important to 532 

note that in these scenarios, the immediate availability of results may be prioritized, even if it 533 

means accepting a higher likelihood of false positive detections for lower magnitude events (e.g., 534 

Kumar et al., 2018; Li et al., 2016; Meier et al., 2020; Tepp, 2018).  535 

The MF approach detects events with high precision, particularly if the events have a 536 

high degree of waveform similarity.  However, developing a comprehensive set of template 537 

events can be time consuming, and the need to compare each of those templates to the 538 

continuous data can be computationally demanding (Liu et al., 2020; Meng et al., 2012). Further, 539 

since the MF technique is heavily dependent on the pre-defined templates, it is susceptible to 540 

missing events that diverge from recognized patterns (Gardonio et al., 2019; Kato & Nakagawa, 541 

2014; Peng & Zhao, 2009; Ross et al., 2018). Several examples of such missed events are shown 542 

in Figure S3 in the Supporting Information. Automatic event detection with this method is best-543 
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suited to environments where the seismic events are self-similar, such as volcanic-related seismic 544 

swarms (e.g., Tan et al., 2023; Whidden et al., 2023; Wimez & Frank, 2022) and repeating stick-545 

slip activity beneath glaciers (e.g., Helmstetter, 2022; Lucas et al., 2023; Ma et al., 2020).  546 

Deep learning event detection techniques can help to address some of the problems faced 547 

by the STA/LTA and the MF approaches. Since deep learning models can be trained to recognize 548 

intricate seismic patterns, this approach has a greater degree of adaptability across a range of 549 

seismic signals and noise. Our analysis also illustrates how deep learning model performance can 550 

be further enhanced via transfer learning, where pre-trained models are adapted to recognize the 551 

characteristics of unique seismic sources (Chai et al., 2020; Liao et al., 2021). That said, deep 552 

learning approaches, with or without transfer learning, have their own set of challenges. ML 553 

methods are generally computationally intensive and do not provide rapid results (García et al., 554 

2022; Zhu et al., 2022). Their performance is strongly linked to the quality and volume of their 555 

training subsets, and the oft-cited ‘black box’ nature of ML makes its decision-making processes 556 

ambiguous (Gonzalez Garibay et al., 2023). The effectiveness of transfer learning depends on 557 

whether the pre-trained model is relevant to the target dataset. If there is a mismatch between the 558 

source and target architecture, there is a risk of negative transfer, where the pre-trained model 559 

may fail to effectively adapt to the new task (Civilini et al., 2021; Zhou et al., 2021). Careful 560 

fine-tuning of the pre-trained model is needed to ensure its applicability to the specific seismic 561 

context, and this requires a certain level of understanding regarding the model’s architecture. All 562 

that said, seismic event catalogs based on ML models typically have a greater magnitude of 563 

completeness (i.e., the minimum magnitude above which all events have been detected) 564 

compared to those generated by other approaches (Fig. 6; e.g., Ma & Chen, 2022; Reynen & 565 

Audet, 2017; Ross et al., 2018), Therefore, if a given study requires robust, extensive seismic 566 
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constraints, the additional computational resources and complexity of ML algorithms are worth 567 

the investment.  568 

 569 

Figure 6. Histogram summarizing the number of events in each catalog after transfer learning 570 

was applied, along with their corresponding local magnitude estimates. Light grey bars represent 571 

the SL catalog, medium grey bars denote the ML catalog, and dark grey bars correspond to the 572 

MF catalog.  573 

 574 

6.2 Preferred ML model for East Antarctica  575 

The metrics discussed in Sections 4.3 and 5 provide important information regarding the 576 

most applicable model for a given seismic study. For our East Antarctic investigation, we 577 

prioritized thorough seismic event detection. While it is important to identify events accurately 578 

and precisely, the limited seismic station coverage in our study region (Fig. 1) emphasizes the 579 

need to develop an event catalog that is as complete as possible. As such, our ideal model is one 580 

that strikes a balance between sensitivity and accuracy, and our extensive analyses indicate that 581 

the fine-tuned GPD model is an optimal choice. While EQT displays somewhat better pick 582 

accuracy, as indicated by its RMSE and MAE values, its ability to distinguish between positive 583 

and negative classes (AUC score) lags behind GPD (Tables 1-3). The trained GPD model’s high 584 

AUC score emphasizes that this model robustly distinguishes true events from noise. That is, 585 

events with low SNR, potentially overlooked by other models and methods, are identified by 586 
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GPD. Furthermore, the inherent variability of seismic data demands a model that performs 587 

consistently, and the GPD model displays consistent performance across all three examined 588 

catalogs, both before and after transfer learning is applied (Tables 1-3). This indicates that the 589 

GPD model is highly adaptable, regardless of the data's origin.  590 

 591 

7. Application  592 

7.1 GPD Results for Each Catalog  593 

We applied the fine-tuned (transfer-learned) GPD model to the full suite of East Antarctic 594 

data (2012-2015; Fig. 1), running three versions of the GPD detection algorithm concurrently, 595 

corresponding to our SL, MF, and ML catalogs. As noted in Section 5, each model generates 596 

pick probabilities for the designated P- and S-wave arrivals (Fig. 5). Picks with probabilities 597 

below a specified threshold (Table 4) are discarded. These thresholds are essential for reducing 598 

the number of spurious picks, thereby enhancing the accuracy and reliability of the detected 599 

seismic events, and the thresholds ultimately control the number of event identifications. Table 4 600 

summarizes the corresponding pick probability thresholds used to determine qualifying P- and S-601 

waves. These thresholds have led to the identification of new seismic events post-transfer 602 

learning. Specifically, after transfer learning, the number of new events in the SL, ML, and MF 603 

catalogs is 618, 372, and 201, respectively.  604 

 605 

Table 4. P- and S-wave pick probability thresholds for the three transfer-learned catalogs. A P- 606 

or S-wave pick is declared if the probability exceeds the specified threshold.  607 

 608 

Catalog  P Threshold  S Threshold  

ML  0.68  0.81  

MF  0.42  0.51  

SL  0.51  0.60  

 609 
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 610 

Figure 7. Cumulative number of events included in each catalog after transfer learning was 611 

applied. The light grey line corresponds to the SL catalog, the dark grey line corresponds to the 612 

MF catalog, and the medium grey line corresponds to the ML catalog.  Arrows denote time 613 

periods where an increased number of events are observed. 614 

 615 

All three catalogs display an increase in the number of events around May 2013 and May 616 

2014 (Fig. 7). These time periods correlate with seasonal changes in Antarctica as the austral 617 

winter sets in. Tensile stresses in the ice sheet can be influenced by temperature, and this can 618 

impact the formation of crevasses (Harper et al., 1998; Holdsworth, 1969). Specifically, when 619 

temperatures drop, the surface layers of the ice sheet can become substantially colder than the 620 

underlying firn, and this temperature gradient subjects the colder, more brittle surface layers to 621 

an increase in tensile stress. Consequently, new crevasses may form and propagate along the ice 622 

sheet surface (Nath & Vaughan, 2003), thereby leading to an increased number of icequakes. 623 

This may explain the increase in detected events at these particular time intervals (Fig. 7). Local 624 

magnitudes (ML) were also computed for the SL, ML, and MF catalog events (Fig. 6), though we 625 

note that the magnitudes were determined using amplitude attenuation parameters developed for 626 

southern California (Hutton & Boore, 1987).  While not specific to our study region, these 627 

parameters do not impact our assessment since our goal was to simply determine relative event 628 
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magnitudes rather than to make any interpretations of absolute magnitude. As shown in Figure 6, 629 

all three techniques effectively detect low magnitude (ML ≤ 3) seismic events, though the ML 630 

technique detects a higher number of signals with magnitudes below two.  631 

 632 

7.2 Event Relocations  633 

After the fine-tuned GPD model was applied to the full East Antarctic dataset, as 634 

described in Section 7.1, the events from each of the updated catalogs were relocated using the  635 

NonLinLoc software package (Lomax et al., 2000). An equal differential-time likelihood 636 

function and the Oct-Tree sampling approach were used to compute the maximum likelihood 637 

hypocenters, based on the corresponding probability density functions (PDFs; Lomax et al., 638 

2000; Zhou, 1994).  We also utilized a modified version of the crustal velocity model (Fig. S4 in 639 

Supporting Information) from Pyle et al. (2010), which was developed for a nearby region in 640 

East Antarctica. Only earthquakes with at least four P- and S-wave arrival times were relocated. 641 

Additionally, to account for any possible bias in the procedure, we performed a second inversion 642 

using the average arrival-time residuals at each station (Lomax et al., 2009), thereby leading to 643 

better constrained event locations.  644 

 For each event relocation, the average horizontal and vertical uncertainties of the 645 

confidence ellipsoid, which are estimated by the PDFs, were used to determine the volume of the 646 

68% confidence ellipse. This, in turn, was used to determine the average uncertainty (Re) of each 647 

event location (Lomax et al., 2000). The relocated events in each catalog were then grouped 648 

based on their uncertainty thresholds. The best constrained event locations (Group A) had Re ≤ 5 649 

km. Groups B, C, and D had progressively higher Re values (Group B: 5 < Re ≤ 10 km; Group C: 650 

10 < Re ≤ 20 km; Group D: Re ≥ 20 km), indicating less well-constrained locations. The number 651 
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of events in each quality group is provided in Table S1 in the Supporting Information. Figure 8 652 

highlights event locations that had Re ≤ 10 km (i.e., Groups A and B) within each catalog, and 653 

events from all groups are shown in Figure S5 in the Supporting Information.  654 

Many of the detected events in all three catalogs are situated near David Glacier (Fig. 8). 655 

Shallow events (< 5 km) in this region are consistent with those identified in previous studies 656 

(e.g., Bannister & Kennett, 2002; Danesi et al., 2007, 2022; Zoet et al., 2012; 2013), which have 657 

been attributed to stick-slip behavior at the base of the ice sheet. However, all three catalogs also 658 

show deeper events (> 10 km) beneath the David Glacier region as well, which could be 659 

associated with solid Earth processes. For example, movement and mass redistribution within the 660 

East Antarctic ice sheet may induce stress changes in the underlying lithosphere, creating the 661 

deep-seated events highlighted in our catalogs (Lund, 2015; Steffen, 2013; Steffen et al., 2020). 662 

All three event catalogs also show notable seismicity beneath Victoria Land, in the 663 

northeastern portion of the study region (Fig. 8). The prevalence of event detections in this area 664 

may reflect some degree of spatial bias given the locations of the stations available for this study 665 

(Fig. 1). The TAMNNET stations, in particular, provide somewhat better coverage in this region; 666 

therefore, nearby events may more likely meet the enforced minimum number of P- and S-wave 667 

arrivals needed for relocation. That said, the Victoria Land event cluster (Fig. 8) is concentrated 668 

near several other glaciers that move across the Transantarctic Mountains and towards the Ross 669 

Sea, including the Campbell, Priestley, and Aviator Glaciers. The best located events in this 670 

cluster are relatively shallow and therefore may reflect ice-bed processes, similar to those 671 

suggested for David Glacier further to the south. Deeper events are also seen beneath this region, 672 

down to about 25-50 km, which are more likely associated with tectonic processes, such as 673 

faulting (e.g., Pisarska-Jamrozy et al., 2018), or with crustal deformation driven by cryospheric 674 
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fluctuations (e.g., Stewart et al., 2000). Further investigations would be needed to evaluate the 675 

sources of the seismic events beneath David Glacier and Victoria Land, but the automatically 676 

identified events from our analyses provide some insight into the complex relationship between 677 

the solid Earth structure and the Antarctic ice sheet.     678 

 679 
Figure 8. Seismic event relocations from NonLinLoc for quality Group A and B events. From 680 

left to right: SL catalog, MF catalog, and ML catalog. Blue circles denote events that were 681 

detected by the corresponding original technique (i.e., STA/LTA, template matching, EQT 682 

machine learning). Green circles denote new events detected by transfer learning. Red triangles 683 

indicate TAMNNET stations, and orange triangles denote other stations. Abbreviations denote 684 

key locations including David Glacier (D), Campbell, Priestly, and Aviator Glaciers (C,P,A), and 685 

Mount Erebus (E).  686 

 687 

It is also worth noting the cluster of seismic events near Mount Erebus, which was 688 

uniquely identified by the ML catalog (Fig. 8). Some prior studies that have also recognized 689 

seismicity in this region attribute the events to small magnitude icequake sources near the 690 

volcano’s summit (Chaput et al., 2015; Li et al., 2021; Podolskiy & Walter, 2016). Other 691 

investigations have attributed the Mount Erebus seismicity to volcanic activity within its shallow 692 

magmatic system (e.g., Aster et al., 2008; Hansen & Schmandt, 2015; Kaminuma, 1987; Rowe et 693 

al., 1998, 2000). The absence of the Mount Erebus event cluster in the SL and MF catalogs 694 
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underscores the effectiveness of deep learning techniques in seismic detection, particularly in 695 

elucidating events with a range of sources.  696 

8. Conclusions  697 

Our study has evaluated the benefits and limitations of different automated seismic event 698 

detection methods, and our results emphasize that the most appropriate approach depends on the 699 

specific attributes of the examined data as well as the objectives of a given study. The STA/LTA 700 

method is well-suited for real-time event detection applications that require rapid results, even if 701 

there is a higher likelihood for false detections. The MF technique works well for environments 702 

that generate seismic events with a high degree of waveform similarity. Deep learning models 703 

offer the most adaptability if dealing with a range of seismic sources and noise, and their 704 

performance can be enhanced with transfer learning, which provides an effective approach to 705 

adapt pre-trained models for unique datasets.  706 

For our East Antarctic investigation, the fine-tuned GPD model, characterized by its high 707 

AUC score, reliable picking accuracy, and consistent performance across the examined catalogs, 708 

emerged as the most robust, providing new insights into seismic sources in the region. Event 709 

relocations based on the fine-tuned catalogs offer new insights into potential seismic sources, 710 

including both shallow cryospheric and deeper tectonic processes. Arguably, the most 711 

comprehensive seismic event catalog would be one created by integrating the results from each 712 

of the applied detection methods; however, the separate results highlight the performance of each 713 

approach. Our findings have expanded seismic event detections in East Antarctica, including the 714 

identification of previously unrecognized seismicity, and these results underscore the potential 715 

for automated event detection approaches to enhance our understanding of seismic activity even 716 

in areas with limited station coverage.  717 
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Introduction  

This supporting information provides several supplemental figures, which complement the 

discussion in the main text.  These include our SNR threshold analysis for the MF approach, 

example events that were identified once transfer learning was applied, the velocity model used 

in our event relocation, and maps of all relocated events, regardless of their uncertainty 

thresholds. Additionally, a table summarizing the number of relocated events is provided. 

 

 



 
 

 

 

 
 

Figure S1. (left) Example three-component data from station RKST (Fig. 1) with the P- and S-

wave arrivals from a December 26, 2012 event marked by vertical dashed lines. Green and yellow 

boxes highlight the portion of the waveform used to define the SNR noise and signal windows, 

respectively. (right) Scatter plots showing the pick-specific SNR values for all events in the initial 

MF catalog. Horizontal dashed lines mark the selected SNR of 2.0 applied to both our P- and S-

wave picks. The x-axis just reflects the index (identification) numbers associated with each pick. 

 

  



 
 

Figure S2. Four example events that were not identified by the STA/LTA technique and hence 

were not included in the initial SL catalog; however, once transfer learning was applied, the 

events were detected by the fine-tuned GPD model. The fixed STA and LTA window lengths 

prevented the method from detecting these seismic signals. In each panel, the blue and orange 

lines mark the P- and S-wave picks, respectively, and station names are listed on the right. Only 

vertical channel records are shown for simplicity. 

  



 
 

Figure S3. Four example events that were not identified by the MF approach and hence were 

not included in the initial MF catalog; however, once transfer learning was applied, the events 

were detected by the fine-tuned GPD model. The events were missed prior to transfer learning 

because they did not sufficiently correlate with any of the MF template events. Panels are 

plotted in the same fashion as in Figure S2. 

  



 

 

 
 

Figure S4. Seismic velocity model used to determine NonLinLoc relocations. S-wave velocity (VS) 

is indicated by the red line, and P-wave velocity (VP) is indicated by the blue line. 

  



 
 

Figure S5. Seismic event relocations from NonLinLoc after the fine-tuned GPD model was 

applied to each catalog. From left to right: SL catalog, MF catalog, and ML catalog. Circles 

denote event locations, which are color-coded by their Re group assignments. Blue: group A; 

green: group B; orange: group C; no fill: group D. See Table S1 for further details. TAMNNET 

stations are denoted by red triangles, and other stations are denoted by orange triangles. 

 

  



Table S1. The number of events (in parentheses) within each Quality Group for each catalog 

after relocation. Group A and B events are plotted in Figure 8, and all events are plotted in 

Figure S5. 

 

Catalog  Quality Group 

 

Updated ML Catalog 

 

A (332) 

B (568) 

C (506) 

D (691) 

 

Updated MF Catalog 

A (593) 

B (961) 

C (707) 

  D (1300) 

 

Updated IN Catalog 

 

A (196) 

B (266) 

C (176) 

D (403) 
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