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Abstract

The gravitational settling of organic particles from the surface to the deep ocean is an important export pathway and one of

the largest components of the marine biological carbon pump (BCP). The strength and efficiency of the gravitational pump is

often measured using metrics reliant on reference depths and empirical formulations that parameterize the relationship between

depth and flux or concentration. Here, BGC-Argo profiles were used to identify the isolume where POC concentration starts to

decline, revealing attenuation trends below this isolume that are remarkably consistent across the global ocean. We developed

a semi-mechanistic approach that uses observations from the first optical depth to predict POC concentration from the surface

ocean to the base of the mesopelagic (1000 m), allowing assessments of spatial and temporal variability in BCP efficiencies. We

find that rates of POC attenuation are high in areas of high biomass and low in areas of low biomass, supporting the view that

bloom events sometimes result in a relatively weak deep biological pump characterized by low transfer efficiency to the base

of the mesopelagic. Our isolume-based attenuation model was applied to satellite data to yield the first remote sensing-based

estimate of integrated global POC stock of 3.02 Pg C for the upper 1000 m, with 1.27 Pg C of this global carbon stock located

above the reference isolume where POC begins to attenuate.
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Abstract 16 

The gravitational settling of organic particles from the surface to the deep ocean is an important 17 

export pathway and one of the largest components of the marine biological carbon pump (BCP). 18 

The strength and efficiency of the gravitational pump is often measured using metrics reliant on 19 

reference depths and empirical formulations that parameterize the relationship between depth and 20 

flux or concentration. Here, BGC-Argo profiles were used to identify the isolume where POC 21 

concentration starts to decline, revealing attenuation trends below this isolume that are remarkably 22 

consistent across the global ocean. We developed a semi-mechanistic approach that uses 23 

observations from the first optical depth to predict POC concentration from the surface ocean to 24 

the base of the mesopelagic (1000 m), allowing assessments of spatial and temporal variability in 25 

BCP efficiencies. We find that rates of POC attenuation are high in areas of high biomass and low 26 

in areas of low biomass, supporting the view that bloom events sometimes result in a relatively 27 

weak deep biological pump characterized by low transfer efficiency to the base of the mesopelagic. 28 

Our isolume-based attenuation model was applied to satellite data to yield the first remote sensing-29 

based estimate of integrated global POC stock of 3.02 Pg C for the upper 1000 m, with 1.27 Pg C 30 

of this global carbon stock located above the reference isolume where POC begins to attenuate. 31 

1. Introduction 32 

The biological carbon pump (BCP) is a collection of biological and physical processes that 33 

facilitate carbon sequestration in the deep ocean. Active transfer pathways can be physically (e.g. 34 

subduction) or biologically (e.g. mesopelagic migrators) mediated and are collectively termed 35 

particle-injection pumps (Boyd et al., 2019). The biological gravitational pump (BGP) represents 36 

the amount of organic carbon that is passively transferred from sunlit surface waters to the ocean 37 

interior through particle sinking and is strongly influenced by the complexity of upper ocean 38 

food webs (Siegel et al., 2014; Boyd et al., 2019). Particulate organic carbon (POC) is produced 39 

by phytoplankton in the sunlit epipelagic at rates that vary spatially and temporally depending on 40 

light and nutrient availability (Westberry et al., 2023). Near the base of the epipelagic zone, 41 

sunlight has been sufficiently attenuated that phytoplankton growth and particle production is 42 

outweighed by losses through remineralization and grazing, leading to decreases in POC 43 

concentration and flux (Henson et al., 2012). Further remineralization of sinking particles occurs 44 

through the mesopelagic (~200 – 1000 m), resulting in a distinct vertical attenuation profile that 45 



 

 

can be measured using a variety of in situ approaches ranging from traps and pumps to sensors 46 

on autonomous vehicles (Baker et al., 2020; Briggs et al., 2020). These field observations are 47 

often combined with empirical formulations (e.g. the “Martin Curve”) to estimate vertical POC 48 

profiles and calculate attenuation metrics that reflect the strength and efficiency of the BGP 49 

(Martin et al., 1987; Buesseler and Boyd, 2009).  50 

The relative change in POC concentration or flux between two depth horizons can be used to 51 

calculate the transfer efficiency from the surface to the deep ocean (Buesseler et al., 2020). A 52 

lower transfer efficiency indicates faster attenuation through depth and vice versa, but the 53 

mechanisms that control BGP efficiencies are not fully understood and are a subject of debate 54 

(Armstrong et al., 2001; Lam et al., 2011; Henson et al., 2019). The efficiency of vertical 55 

transfer controls the fate of carbon fixed at the surface, dictating whether it is partitioned into 56 

short or long-term storage pools. The transfer of carbon out of the primary production zone to the 57 

upper mesopelagic (often termed export flux) is typically viewed as short-term storage and often 58 

results in the removal of carbon from the atmosphere on timescales that span months to decades 59 

(DeVries and Weber, 2017). Long-term marine carbon storage is defined as carbon removal from 60 

the atmosphere for timescales of centuries to millennia and is estimated to occur when carbon is 61 

transported below 1000 m (IPCC 2007). The relative change in POC flux or concentration 62 

between the base of the euphotic zone and the base of the mesopelagic is referred to as flux 63 

attenuation (Passow and Carlson, 2012). The efficiency of flux attenuation varies in time and 64 

space, but it is generally observed that more than 90% of export flux is lost before the 1000 m 65 

depth threshold for long-term sequestration (Nelson et al., 2002; Marsay et al., 2015).  66 

Given the importance of the BCP in modulating Earth’s biogeochemical cycles, it is critical to 67 

improve our understanding of marine carbon sequestration pathways to better predict how they 68 

will change in response to climate variability (Henson et al., 2019). Satellite remote sensing is a 69 

powerful tool for monitoring marine carbon stocks at global scales, but is currently limited to 70 

surface observations (Brewin et al., 2023; but see Behrenfeld et al., 2023). In situ sampling 71 

campaigns and autonomous platforms are more significantly constrained in horizontal spatial 72 

resolution, but can be used to provide detailed insight into regional sub-surface carbon cycling 73 

dynamics (Dall’Olmo et al., 2016; Boyd et al., 2019; Briggs et al., 2020). Creating an effective 74 

framework to quantify important BCP processes at a global scale requires in situ observations of 75 

spatial and temporal resolution comparable to satellite data, thereby enabling effective 76 



 

 

extrapolation of surface satellite data to depth. To this end, a multifaceted approach is desirable 77 

that involves the integration of data from ship-based observations and autonomous underwater 78 

vehicles, satellite remote sensing, and numerical modeling, but programs of such scale are costly 79 

and therefore rare (Siegel et al., 2016; Brewin et al., 2021). As a result, there have been limited 80 

efforts to combine multi-platform observations and assess global-scale, vertically-resolved 81 

profiles of POC. To address this gap, we utilized profiling Biogeochemical-Argo (BGC-Argo) 82 

data to: (i) determine an isolume-based reference depth for the point where POC concentration 83 

begins to decline; and (ii) formulate a concentration-dependent algorithm to define attenuation 84 

trends through the water column. This semi-mechanistic approach can be used with remotely 85 

detectable properties of the first optical depth to predict POC concentrations from the surface 86 

layer to the base of the mesopelagic zone and assess spatial and temporal variations in BGP 87 

efficiencies at regional to global scales.  88 

2. Data and Methods 89 
2.1. Float Data and Derived Proxies  90 

We used data collected by an array of 603 floats deployed at different times between 2010 and 91 

2023 across several regions of the global ocean (Figure 1). Each float was equipped with a 92 

conductivity-temperature-depth sensor (SBE 41N, Seabird Scientific) and a combination bio-93 

optical sensor (ECOTRIPLET, FLBB, MCOMS, Seabird‐WetLABS). In total, these floats 94 

acquired 51,322 vertical profiles (0 – 2000 m) of salinity, temperature, pressure, chlorophyll 95 

fluorescence, and the angular scattering function at 700 nm. The raw data from each sensor were 96 

calibrated according to manufacturer guidelines by the ARGO data management team before 97 

undergoing quality control following the adjustment procedures described in Johnson et al. 98 

(2017). Chlorophyll fluorescence is then converted to chlorophyll concentration (Chl) using a 99 

linear calibration slope provided by the sensor manufacturer while backscattering is derived from 100 

the angular scattering function at 700 nm. Values of backscattering are then converted to the 101 

backscattering coefficient of particles (bbp_float) by removing the scattering function of seawater 102 

using local salinity and temperature data (Zhang et al., 2009). All processed data products were 103 

downloaded from ARGO Global Data Assembly Center servers in September 2023 using the 104 

BGC-Argo-R toolbox (Cornec et al., 2021). Data flagged as poor quality were removed, along 105 

with outliers (> 98.5th percentile), before profiles were interpolated to 1 m vertical resolution 106 

through the upper 1000 m. Mixed layer depth (MLD) was calculated for each float profile as the 107 



 

 

depth where density was ≥ 0.03 kg m−3 than the density at 10 m (de Boyer Montégut et al., 108 

2004). 109 

 110 

Figure 1. The global distribution of all float profiles (n = 51,322) used in this study that were collected as 111 
part of the BGC-Argo program between 2010 and 2023. Red squares show the location of sites analyzed 112 
for interannual variability.    113 

Profiles of bbp_float were smoothed with a 7-point median filter (Briggs et al., 2011) before being 114 

used to estimate particulate organic carbon (POCfloat) though depth (z) following the methods 115 

described in Gali et al. (2022): 116 

POCfloat(z) = bbp_float ∙  𝑎𝑎, if z  ≤  MLD Equation (1a) 

and 
POCfloat(z) = bbp_float ∙  12100 + (𝑎𝑎 − 12100 ) ∙  e−0.00657 ∙ (z−MLD),  
if z  >  MLD, 

Equation (1b) 

where a = 43,256 mg C m-3 and is the average POC/bbp(700) ratio in the euphotic zone calculated 117 

using regression coefficients from several previous studies [see Table A1 in Gali et al., (2022)].  118 

Fluorescence derived measurements of Chl were corrected for daytime non-photochemical 119 

quenching (NPQ) following Xing et al. (2012). The average Chl in the first optical depth (OD1) 120 

was then used to calculate the diffuse attenuation coefficient at 490 nm [𝑘𝑘d(490); units = m−1] 121 

following Morel & Maritorena (2001): 122 



 

 

𝑘𝑘d(490) = 0.0166 + 0.07242 ∙ Chl0.68955. Equation (2) 

Values of 𝑘𝑘d(490) were converted to the diffuse attenuation coefficient for Photosynthetically 123 

Available Radiation (PAR), 𝑘𝑘PAR , following Morel et al. (2007): 124 

𝑘𝑘PAR =  0.0864 + 0.884 · 𝑘𝑘d(490) −  0.00137 · [𝑘𝑘d(490)]−1, if MLD ≤
 [𝑘𝑘d(490)]−1 
and 

Equation (3a) 
 

𝑘𝑘PAR =  0.0665 + 0.874 · 𝑘𝑘d(490) −  0.00121 ·  [𝑘𝑘d(490)]−1 , if MLD >
 [𝑘𝑘d(490)]−1. 

Equation (3b) 

This approach accounts for changes in spectral irradiance through depth and the subsequent 125 

impact on estimations of light attenuation. It assumes that for a homogenously mixed surface 126 

layer, attenuation coefficients for individual wavelengths in the blue-green domain (e.g. λi ~ 443, 127 

λi ~ 490, and λi ~ 510 nm) are only weakly dependent on the depth of that layer because these 128 

medium wavelengths typically penetrate deeper into the water column. In contrast, diffuse 129 

attenuation coefficients for the full visible spectrum (e.g. kPAR) must account for the 130 

polychromatic nature of PAR and the rapid attenuation of longer wavelengths, which narrows the 131 

PAR domain at depth. As such, for a given 𝑘𝑘d(490), kPAR will decrease significantly with mixed 132 

layer depth, thus warranting different relationships for shallow, homogenous layers (Equation 133 

3a) and deeply mixed waters (3b). 134 

Finally, the 0.1% light depth (Ez0.1) was calculated using 𝑘𝑘PAR: 135 

Ez0.1 =  −ln(0.001 ) / 𝑘𝑘PAR. Equation (4) 

2.2. Satellite Data and Derived Proxies 136 

Ocean color products from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua 137 

satellite used for this analysis included 9 km resolution, 8-day Chl (OCI algorithm), bbp at 443 138 

nm [bbp_sat(443)], derived from the Generalized Inherent Optical Property algorithm (Werdell et 139 

al., 2013), the diffuse attenuation coefficient [kd_sat(490)], and incident PAR (PAR0). Values of 140 

bbp_sat(443) were converted to 700 nm using a power law model of the particulate backscattering 141 

coefficient spectral dependency with an exponent of -1 (Morel and Maritorena, 2001) to make 142 

them comparable with bbp_float: 143 



 

 

bbbp_sat(700) =    bbbp_sat(443) ∙  �
700
443

�
−1

 Equation (5) 

Global estimates of MLD were calculated from salinity, temperature, and pressure data 144 

converted to density (sigma-theta) and based on daily, multi-layer products from the HYbrid 145 

Coordinate Ocean Model (HYCOM). Net primary production (NPP) for the MODIS Aqua 146 

record was estimated using the absorption-based productivity model of Silsbe et al. (2016). NPP 147 

and MLD data are available at https://sites.science.oregonstate.edu/ocean.productivity/index.php. 148 

Satellite based estimates of POC (POCsat) were calculated following Equations 1a and 1b (i.e., 149 

replacing bbp_float with bbp_sat). Similarly, 𝑘𝑘PAR_sat values were calculated using kd_sat(490) and 150 

equations 3a and 3b.  151 

2.3. Estimating the particle compensation depth 152 

To determine an ecologically relevant reference depth corresponding to the point at which POC 153 

begins attenuating in the upper ocean, we first identified the absolute light level where POC 154 

losses to remineralization and grazing outweigh accumulation through primary production in the 155 

epipelagic zone (this isolume is henceforth referred to as the particle compensation depth, PCD). 156 

A smoothing function and a local maximum filter were first applied to each BGC-Argo profile of 157 

POCfloat to detect sub-surface peaks in POC concentration (Supp. Figure 1). The depth of the 158 

largest peak (zpeak) below the mixed layer, but above the euphotic depth (defined here as the 0.01 159 

mol d-1 isolume), was considered the PCD. For profiles where the MLD was deeper than the 160 

euphotic depth, zpeak was defined as the base of the MLD. The absolute photon flux at the PCD 161 

was then calculated as:  162 

PARPCD =    PAR0 ∙    𝑒𝑒�𝑘𝑘PAR ∙   zpeak�. Equation (6) 

Estimates of PARPCD showed a unimodal distribution with a positive skew (Supp. Figure 2), so a 163 

square root transformation was applied before the median (0.427 mol d-1, Inter Quartile Range = 164 

0.09-1.37) was taken as the global isolume for the PCD. Estimates of PAR0 and kPAR were then 165 

used to calculate the PCD for all profiles in the global dataset using this isolume: 166 

𝑧𝑧PCD =   −ln �0.427
PAR0

 � / 𝑘𝑘PAR. Equation (7) 

For equation 7, the PCD was defined as MLD when zPCD ≤ MLD.  167 

https://sites.science.oregonstate.edu/ocean.productivity/index.php


 

 

2.4. Assessing attenuation trends in POC below the PCD 168 

Profiles of POCfloat  (e.g., Figure 2a) were used to investigate the spatial and temporal variability 169 

in attenuation trends below the PCD. First, POCfloat  data from depths shallower than the PCD 170 

were removed from all profiles in the global dataset. The remaining data of each profile were 171 

then adjusted such that the PCD depth = 0 m (e.g. znorm = z - zPCD; Figure 2b) before being fitted 172 

to a cumulative distribution function (i.e. stretched exponential model). The coefficients from all 173 

model fits were used to parameterize an algorithm to predict POC concentration below the PCD, 174 

as described in the following section. 175 

 176 

Figure 2. Regionally averaged vertical profiles of (a) particulate organic carbon derived from float 177 
observations of particulate backscatter (POCfloat), (b) POCfloat versus depth after removing data shallower 178 
than the particle compensation depth (PCD) and then normalizing each profile to zero depth at the PCD, 179 
and (c) data from panel b normalized to the maximum value of POCfloat at the PCD. The regional bins are 180 
NPAC = North Pacific, NATL= North Atlantic, CPAC = Central Pacific, CATL = Central Atlantic, SPAC 181 
= South Pacific, SATL = South Atlantic, SO = Southern Ocean, IO = Indian Ocean, and MED = 182 
Mediterranean. 183 

2.5. Modeling particulate organic carbon concentration and attenuation trends 184 

Using the coefficients from the model fits described in section 2.4, together with surface 185 

estimates of bbp, we developed an isolume-based model to predict POC concentration through the 186 

water column at 1m resolution. The first step of the approach calculates POC from the surface to 187 

the PCD using Equations 1a and 1b, and the average bbp value over the first optical depth 188 



 

 

[bbp(OD1)], with the assumption that bbp(OD1) is vertically constant from the surface to the 189 

PCD. Estimates of POC below the PCD are then calculated as follows: 190 

POC (z)  =    POCPCD ∙    𝑒𝑒
−�znorm𝑐𝑐1

�
𝑐𝑐2

 ,  
Equation (8) 

where POC at the PCD (POCPCD) is calculated using Equations 1a or 1b and bbp(OD1) when z = 191 

zPCD, 𝑐𝑐2 = 0.325, and 𝑐𝑐1 is a concentration dependent scaling parameter calculated as: 192 

𝑐𝑐1 =  19 +  450.29 ∙   𝑒𝑒−0.0708  ∙  POCPCD . Equation (9) 

For comparison to the isolume-based attenuation model developed here, depth resolved POC 193 

concentrations were also estimated using a modified version of the ‘Martin Curve’ (hereafter 194 

referred to as the B20 method) where POC values at the 0.1% light depth (POCEz0.1) are fitted to 195 

a power law function following the approach described in Buesseler et al. (2020): 196 

POCB20(z) =  POCEz0.1  ∙   �
𝑧𝑧

Ez0.1
�
−𝑏𝑏

,  Equation (10) 

where b is the power law exponent of 0.858, and POCEz0.1is calculated using Equation 1b when z 197 

= Ez0.1 or Equation 1a if MLD > Ez0.1. 198 

Depth-resolved POC estimates from the isolume-based POC attenuation model (Equations 8 & 199 

9) and the B20 method (Equation 10) were used to calculate attenuation metrics to assess the 200 

strength and efficiency of the biological carbon pump. One of these metrics was a concentration 201 

ratio (𝜆𝜆100) which describes the change in POC between the PCD and the upper mesopelagic and 202 

is comparable to the transfer efficiency parameter derived from particle flux measurements: 203 

𝜆𝜆100 =   
POCPCD+100

POCPCD
  , Equation (11) 

where POCPCD+100 is the POC concentration 100 m below the PCD reference depth. The second 204 

attenuation metric evaluated is comparable to the flux attenuation coefficient and was calculated 205 

as the difference in POC concentration between the PCD and the base of the mesopelagic 206 

(𝜆𝜆1000): 207 

𝜆𝜆1000 =   
POC1000
POCPCD

 , Equation (12) 



 

 

where POC1000 is the POC concentration at 1000 m. It is important to note that the 208 

concentration‐based attenuation metrics defined here are analogous but not equivalent to 209 

traditional flux‐based metrics. We nonetheless use similar terminology to emphasize the 210 

parallels, in keeping with previous studies (Lam et al., 2011; Rosengard et al., 2015). 211 

Finally, global and regional depth-resolved POC were estimated using the isolume-based 212 

attenuation model (Equations 8 and 9) and the B20 method (Equation 10) with satellite retrievals 213 

of PAR, kPAR, bbp, and MLD. In addition, two sites were selected to assess the interannual 214 

variability in high latitude areas of the Northeast Atlantic (49°N, 16.5°W) and the subarctic 215 

North Pacific (50oN, 145oW).  216 

3. Results 217 

3.1. Estimations of Depth Resolved POC  218 

Regionally averaged profiles of POCfloat  from the particle compensation depth (PCD) down to 219 

1000 m showed a two-fold range in POC concentration at the point of attenuation (Figure 2b). 220 

When these data are normalized to the POC concentration at the PCD, a consistent exponential 221 

decay profile is revealed with varying degrees of vertical compression (Figure 2c). Regions with 222 

the lowest POC concentration at the PCD (e.g. Central Pacific and Central Atlantic) typically 223 

have the most “stretched” profile, reflecting a slower rate of carbon attenuation. In contrast, high 224 

latitude regions (e.g. Southern Ocean and North Atlantic) where POC concentration is high at 225 

the PCD have steeper, more compressed profiles. The isolume-based attenuation model (red lines 226 

in Figure 3) effectively reproduces float-measured POC profiles (black lines in Figure 3) for all 227 

regions of the global ocean across all seasons (r2 = 0.98, RMSE = 1.319; Figure 5). In 228 

comparison, the B20 method struggled to capture seasonal trends in attenuation profiles across 229 

all regions and underestimated the rate of attenuation leading to overestimates of POC through 230 

the mesopelagic (Supp. Figure 3).  231 



 

 

232 
Figure 3. Seasonal variability in particulate organic carbon (POC) profiles across the global ocean. Depth 233 
resolved POC are derived from float profiles of particulate backscatter (POCfloat, black line) and the 234 
isolume-based attenuation model approach (red line) following normalization to the POCfloat 235 
concentration at one optical depth. The regional bins are NPAC = North Pacific, NATL= North Atlantic, 236 
CPAC = Central Pacific, CATL = Central Atlantic, SPAC = South Pacific, SATL = South Atlantic, SO = 237 
Southern Ocean, IO = Indian Ocean, and MED = Mediterranean. 238 

Values of POC estimated using the isolume-based attenuation model and the B20 method were 239 

integrated over the top 250 m, 500 m, and 1000 m of the water column to quantify upper ocean 240 

carbon stocks. Integrated stocks predicted using the isolume-based model were averaged by 241 

region and month and showed excellent agreement with float-based observations over all depth 242 

horizons (Figure 4a). Comparisons between the isolume model and float observations averaged 243 

at finer resolution reveal the approach still performs well across all depth horizons (Figure 4b). 244 

The B20 method also showed a strong correlation with regionally averaged float observations 245 

but the slope of the regression ranged from 1.58 - 2.3, highlighting the overestimation of POC at 246 

depth due to the inability of the method to capture the correct attenuation gradient (Figure 4c).     247 



 

 

 248 
Figure 4. Particulate organic carbon (POC) values from float profiles of particulate backscatter versus 249 
model predictions integrated over the top 250m, 500m, and 1000m of the water column (left to right). (a) 250 
POC estimated using the isolume-based attenuation model and averaged by region and month (n = 108), 251 
(b) a bivariate histogram showing POC estimated using the isolume-based attenuation model averaged by 252 
float, year, region and month (n = 13,020), and (c) POC estimated using the modified Martin (B20) method 253 
and averaged by region and month (n = 108). Note the change in axis range between each plot. Color 254 
scheme for regions in (a) and (c) follows that of Figure 2. 255 

3.2. Global Observations of POC Attenuation Metrics 256 

Comparisons between float and model estimates of 𝜆𝜆100 and 𝜆𝜆1000 showed the isolume-based 257 

attenuation model performed well across the nine global ocean regions of the float database 258 

(Figure 5). Float-based measurements of POC attenuation through the upper mesopelagic reveal 259 

extensive global variability, with values ranging from ~10% to 75% (Figure 5a). Estimates of 260 

𝜆𝜆100 and 𝜆𝜆1000 from the isolume-based model are generally within 10% of the float values, with 261 

slight overestimations in the Central Pacific and Central Atlantic (Figure 5). In contrast, the B20 262 



 

 

method significantly overestimates λ100 in all regions due to the underestimation of POC 263 

attenuation through depth. The two different approaches are closer in performance when 264 

predicting λ1000, which ranged from ~3 to 20% when calculated using float observations (Figure 265 

5b). 266 

 267 

Figure 5. Values of the POC concentration gradient between the particle compensation depth (PCD) and 268 
(a) 100m below the PCD (λ100), and (b) 1000 m (λ1000). The estimates were made using monthly float 269 
observations (white boxes), the new isolume-based attenuation approach (grey boxes), and the modified 270 
Martin approach (B20 method; black boxes). The regional bins are the same as described in Figure 3. Note 271 
changing y-axis scales, values are unitless. 272 

Satellite-based estimates of POC differed significantly between the PCD and the Ez0.1, 273 

sometimes resulting in a 60% reduction in concentration between the two depth horizons (Figure 274 

6). Global-scale attenuation metrics calculated using satellite retrievals with the B20 method and 275 

the new isolume-based attenuation model differed substantially, with the former yielding values 276 

over three-fold higher in some parts of the ocean (Figure 6i; Supp. Figure 4h-i). The isolume-277 

based attenuation model showed more muted variability in λ100 estimates with most values 278 

falling between ~15-40 % (Figure 6g), and the highest efficiencies were found in the South 279 

Pacific gyre where light penetrates deepest and surface POC concentrations are incredibly low 280 

(Figure 6). High production areas, particularly areas with shallow mixed layers and high surface 281 

POC concentrations, typically had lower concentration ratios reflecting higher rates of 282 

remineralization and lower efficiencies of transfer from the surface to the mesopelagic. Annual 283 

averages of λ1000 largely mirrored the spatial dynamics of the λ100 estimates and ranged from ~3-284 

15% (Figure 6h).    285 



 

 

 286 

Figure 6. Satellite observations of (a) mixed layer depth (MLD, units = m), (b) the particle compensation depth (PCD, units  = m), (c) the 0.1% 287 
light depth (Ez0.1%, units = m), (d) particulate organic carbon (POC, units mg C m-3) concentration at the surface, (e) POC concentration at the 288 
PCD , (f) POC concentration at Ez0.1%, (g) the POC concentration ratio for the PCD and 100 m below the PCD (𝜆𝜆100) made using the new isolume-289 
based model, (g) the POC concentration ratio for the PCD and 1000 m (𝜆𝜆1000) made using the new isolume-based model, (h) the difference 290 
between λ100 calculated using the modified Martin approach (B20) and the new isolume-based model. 291 



 

 

3.3. Regional Interannual Variability in Carbon Dynamics 292 

Annual cycles of NPP and POC for two Northern Hemisphere subpolar regions were assessed 293 

using satellite climatologies (Figure 7). The highest values of λ100 and λ1000 at both sites occurred 294 

in the winter months (December – February) when surface POC concentration is lowest and 295 

strong advective mixing results in deep mixed layers. Despite the ~3.5-fold change in surface 296 

POC at both sites over the annual cycle the coincident increase in attenuation rates often results 297 

in similar POC concentrations below the euphotic zone (Figure 7a and Figure 7c). Temporal 298 

trends in surface POC concentration and NPP were notably different between the two regions. In 299 

the North Atlantic, the maximum surface POC concentration occurs in spring and corresponds 300 

with high values of NPP associated with the large phytoplankton bloom event characteristic of 301 

this region (Figure 7a-b).  302 

 303 

Figure 7. Climatological annual cycles of carbon stocks and rates at the Porcupine Abyssal Plain (PAP; top 304 
row) site in the Northeast Atlantic and the Ocean Station Papa (OSP; bottom row) site in the sub-arctic 305 
North Pacific, including (a) differences at PAP between surface particulate organic carbon (POC) 306 
concentration (POCsurface; large blue circles) and POC concentration 100 m below the euphotic zone 307 
(POCEz+100; large red circles) which is shown on the secondary axis, (b) net primary production (large blue 308 
circles; NPP) at PAP with the concentration gradient between the particle compensation depth (PCD) and 309 
1000 m (λ1000; large red circles) shown on the secondary axis, (c) differences at OSP between POCsurface 310 



 

 

(large blue circles) and POCEz+100 (large red circles), and (d) values of λ1000 and NPP at OSP. Climatologies 311 
were constructed from weekly (8 day) composites of MODIS data over a 20-year period (2003–2022) 312 
averaged over a 0.5°×0.5° pixel grid centered over the PAP and OSP sites. Small circles represent all 8-day 313 
data from the 20-year study period. 314 

Following this spring peak, POC concentration slowly declines through summer and autumn 315 

(July – November), leading to a corresponding decrease in the rate of POC attenuation and 316 

higher values of λ100 and λ100. In contrast, NPP and surface POC concentration both peak 317 

markedly later in the North Pacific, following a steady increase during spring and summer (April 318 

– August) (Westberry et al., 2016). These peaks are immediately followed by a sharp and 319 

continuous decrease in concentration through autumn (September – November), corresponding 320 

with a lower rate of attenuation and higher concentration ratios. 321 

4. Discussion  322 

Satellite remote sensing is the most effective approach for monitoring marine carbon dynamics at 323 

global scales, but satellite-detected signals are largely restricted to the uppermost layer of the 324 

surface ocean (<1 optical depth) (Brewin et al., 2023). Autonomous in situ platforms are more 325 

restricted in their horizontal spatial resolution but can provide important information on sub-326 

surface carbon-cycling dynamics (Dall’Olmo et al., 2016; Boyd et al., 2019; Briggs et al., 2020). 327 

Thus, surface observations of ocean color must be coupled with in situ observations, as well as 328 

empirical and mechanistic models, to vertically resolve the major reservoirs of marine carbon 329 

pools and understand the fluxes between different pools (Siegel et al., 2016). Marine POC is 330 

estimated to constitute ~80% of the organic matter exported to the deep ocean through the BCP. 331 

POC cycling in the upper 1000 m therefore plays an outsized role in defining the strength and 332 

Table 1. POC stocks for the global ocean integrated over different depth horizons. All values are 
calculated using the full mission composites of MODIS AQUA data over a 20-year period (2003–
2023). Coastal regions were removed from the estimates (see Figure 8). Units are Pg C.  

 PACIFIC ATLANTIC SOUTHERN INDIAN Global 

Surface - PCD 0.48 0.19 0.40 0.12 1.27 

PCD – 500 m 0.50 0.20 0.32 0.13 1.21 

500 m – 1000 m 0.23 0.10 0.12 0.06 0.54 

Total 1.21 0.49 0.84 0.31 3.02 



 

 

efficiency of the BCP and, in turn, is a key factor defining the magnitude of CO2 exchange 333 

between the ocean and atmosphere. Here we introduce an isolume-based attenuation model that 334 

provides the first global estimate of POC stocks in the top 1000 m based on observations from 335 

satellite remote sensing (Figure 8; Table 1). Our method also permits estimation of POC 336 

concentrations through the water column at highly resolved resolution, thereby allowing 337 

calculation of key metrics used to assess the gravitational component of the BCP.  338 

4.1. Predicting vertical POC using satellite observations  339 

Remineralization of carbon through the water column is commonly parameterized as an 340 

empirical function of depth, often referred to as a ‘Martin curve’, which has been revised and 341 

modified in the decades since its origination (Martin et al., 1987; Buesseler and Boyd, 2009, 342 

Buesseler et al., 2020). Two key 343 

considerations in applying the Martin curve 344 

are the choice of reference depth from which 345 

the curve pivots and the value of the power 346 

law exponent that defines the rate of 347 

attenuation. The former is taken as the point 348 

in the water column where POC flux or 349 

concentration begins to decline, while the 350 

latter reflects the intensity of 351 

remineralization through the water column. 352 

Recently, the Ez0.1% light level was proposed 353 

as a mechanistic reference depth (Buesseler 354 

et al., 2020), as opposed to the fixed point at 355 

100 m originally used by Martin et al. 356 

(1987). In their study, Buesseler et al. (2020) 357 

found that the fixed-depth approach 358 

underestimates BCP efficiencies when the 359 

euphotic zone is shallow, and vice versa. 360 

Our results support these findings but 361 

suggest an absolute light level, or isolume, 362 

Figure 8. Global stocks of particulate organic 
carbon (POC) integrated over 1000 m. Input data 
for the new model are mission composites from 
MODIS AQUA at 9km resolution. Coastal 
waters are masked removed from the calculation 
of global stock estimates. Units are mg C m-2.  



 

 

is more suitable than a percentage when predicting the depth where particle losses outweigh 363 

gains (i.e. the PCD).  364 

Despite the assumption that bbp at OD1 will remain constant from the surface to the PCD, the 365 

isolume-based attenuation approach still predicts POC accurately through the upper water 366 

column. This result suggests that for large areas of the global ocean the concentration of POC, 367 

despite significant horizontal variability, is sufficiently homogeneous between the surface ocean 368 

and the PCD to permit extrapolation using observations from the first optical depth. One 369 

exception is the central regions of the Pacific and Atlantic where sub-surface peaks in POC result 370 

in significant variance in surface POC compared to the PCD, resulting in poorer predictions of 371 

attenuation trends. This result is consistent with a previous approach that used an empirical 372 

formulation to extrapolate satellite-derived surface observations of POC to the base of the 373 

euphotic zone (Duforêt-Gaurier et al., 2010). In that study, integrated values of POC were shown 374 

to correlate well with surface values for well-mixed regions but showed a weaker relationship in 375 

stratified regions, particularly where Chl was <0.1 mg m-3, such as oligotrophic regions. The 376 

weaker relationship between POC and Chl in oligotrophic regions was attributed to a deep POC 377 

maximum that coincided with the deep Chl maximum. 378 

In addition to a fixed reference depth, the original Martin Curve formulation also used a value of 379 

0.858 for the power law exponent, as it captured the average attention trends of the available 380 

data. Numerous studies have since shown that a fixed exponent is insufficient if the approach is 381 

to be used at a global scale (Armstrong et al., 2001; Cael and Bisson, 2018). Marsay et al., 382 

(2015) suggested that temperature can be used to explain observed variability in the strength of 383 

vertical POC flux attenuation, while Lam et al., (2011) observed a strong positive correlation 384 

between the POC concentration at the reference depth used in the canonical Martin formulation 385 

and the power law exponent coefficient, b (Lam et al., 2011). The correlation identified by Lam 386 

et al (2011) reflects a decrease in efficiency of the BCP with increasing POC at the point of 387 

attenuation, with the highest rate of attenuation observed in high latitude regions. These results 388 

are consistent with the findings of the current study and are likely a significant factor in the 389 

marked improvement in the isolume-based attenuation model predictions through the 390 

mesopelagic compared to the B20 approach.   391 



 

 

4.2. Defining global BCP efficiencies using the isolume-based attenuation model 392 

The isolume-based attenuation model presented here permits the estimation of POC through the 393 

water column and can be used with satellite observations to assess global BCP efficiencies. Our 394 

results reveal the modified Martin Curve (B20 method) leads to significant overestimates of 395 

depth-resolved POC concentration and BCP efficiencies when using Ez0.1 as a reference depth 396 

and a fixed exponent of 0.858. Other studies have used NPP or other satellite observations (e.g. 397 

phytoplankton biomass or Chl) along with food web models to predict export production and 398 

vertical carbon flux to the deep ocean (Schlitzer, 2002, 2004; Siegel et al., 2014; DeVries and 399 

Weber, 2017). Those studies sought to define carbon flux, rather than concentration, and 400 

provided important steps towards understanding climate driven trends in global carbon dynamics 401 

(Wang et al., 2023). The isolume-based attenuation approach presented here differs from those 402 

carbon export models in design and complexity but may benefit from it’s relative simplicity. For 403 

example, one advantage of the new approach is the availability of all base input variables (e.g. 404 

MLD, kpar, PAR, bbp) from satellite remote sensing and a lack of reliance on derived/modeled 405 

parameters such as primary production, which have been shown to significantly alter some 406 

model outputs depending on NPP model choice (Bisson et al., 2018). These model features, in 407 

combination with its improved ability to estimate BGC efficiencies and POC concentration 408 

through the mesopelagic, provide new avenues to study particle cycling through the water 409 

column (Amaral et al., 2022), the microbial carbon pump (Jiao et al., 2010), and energy budgets 410 

of deep-sea ecosystems that rely on the export of POC from the surface.   411 

4.3. Drivers of variability in vertical POC attenuation  412 

Biogeochemical mechanisms defining the transfer efficiency of POC from the surface to the 413 

deep ocean through gravitational settling remain unclear but are influenced by the local 414 

composition of phytoplankton, bacteria, and zooplankton assemblages (Passow and Carlson, 415 

2012; Turner, 2015). Recent studies show evidence supporting the hypothesis that ecosystem 416 

structure is the primary driver controlling the efficiency of the BGP, rather than other factors 417 

such as the ballasting effect of calcium carbonate and other biogenic minerals (Lam et al., 2011; 418 

Henson et al., 2012; Henson et al., 2012; Rosengard et al., 2015). A common finding across 419 

these studies is that low transfer efficiencies are typically found in high latitude regions that are 420 

often dominated by diatoms, where the proportion of NPP exported from the euphotic zone (i.e. 421 



 

 

export efficiency) is high (Henson et al., 2012). The low transfer efficiency from the surface 422 

ocean into the upper mesopelagic suggests that the POC produced in these conditions is highly 423 

labile and susceptible to remineralization, a conclusion consistent with the parameterization of 424 

the isolume-based attenuation model presented in this study. Regions where permanent or 425 

seasonal stratification give rise to phytoplankton communities dominated by smaller cells and a 426 

strong microbial loop are often characterized by a high mesopelagic transfer efficiency. In situ 427 

observations at these sites show higher POC concentrations deep in the mesopelagic, suggesting 428 

that the organic material exported from the surface is more resistant to remineralization at depth 429 

(Lam et al., 2011). These findings are consistent with the spatial and temporal observations 430 

shown in Figure 6 and Figure 7, where high concentration ratios are generally found in 431 

permanently-stratified, oligotrophic regions while low concentration ratios are found in high 432 

latitude regions. However, we are unable to conclude whether the driver of this relationship is 433 

community composition, as suggested by Lam et al. (2011), due to the absence of taxonomic 434 

data associated with the float observations employed in our study. Our results do suggest, 435 

however, that concentration alone may be the primary driver of attenution rate [noting that while 436 

high biomass events often coincide with a high proportion of diatoms, this is not always the case 437 

(Bolaños et al., 2021)].            438 

4.4. Summary and future directions 439 

Integrating satellite and in situ observations is a powerful and necessary step towards better 440 

comprehension of the ocean’s biological pump. Here, we utilized BGC-Argo profiles to develop 441 

a semi-mechanistic modeling approach that employs observations from satellite remote sensing 442 

to predict POC concentrations from the ocean's surface to the base of the mesopelagic zone. The 443 

work builds on existing literature that has sought to improve empirical formulations commonly 444 

used to predict carbon cycling dynamics in the epipelagic and mesopelagic zones. The PCD 445 

isolume identified in this study offers a systematic reference depth for the point of POC 446 

attenuation which is an important step towards the accurate prediction of attenuation gradients. 447 

The new isolume based attenuation model incorporates a concentration specific scaling factor 448 

which effectively varies the attenuation gradient, with the results supported by previous studies 449 

that have assessed vertical POC distribution using in situ data. When combined, the PCD 450 

isolume and the algorithm for POC attenuation enables the assessment of BGP efficiencies at a 451 



 

 

global scale and the first estimation of global POC standing stock in the upper 1000 m (3.02 Pg 452 

C) made using satellite remote sensing observations. While most efforts to calculate global POC 453 

stocks using remote sensing have so far been limited to the surface layer or euphotic depth our 454 

results are incredibly similar to previous estimates. Stramska (2009) quantified POC stocks over 455 

the top 200 m using remote sensing reflectance and estimated a global average of 2.29 Pg C 456 

which is incredibly close to the prediction from this study (2.32 Pg C for surface to 200 m). A 457 

recent stock assessment over the top 1000 m, made using the Pelagic Interactions Scheme for 458 

Carbon and Ecosystem Studies (PISCES) model, also resulted in a similar value (2.6 Pg C; Galí 459 

et al., 2022) to the predictions derived from our approach over the same depth horizon (3.02 Pg 460 

C; Table 1). 461 

The enhanced ability to predict vertical profiles of POC concentration from space could open 462 

new avenues for investigating the ocean’s carbon sequestration pathways. The inversion of POC 463 

concentration data recently has been shown to provide a unique approach to predicting how 464 

particle cycling rates are impacted by different biogeochemical properties in the upper ocean 465 

(Amaral et al. 2022). Combining the isolume-based attenuation model with tracer-based models 466 

could provide a new approach to predicting particle cycling dynamics in the upper ocean at a 467 

global scale. However, additional steps should also be taken to improve the accuracy of the 468 

method presented in this study. One of the simplifying assumptions in our approach is that bbp at 469 

OD1 is constant to the PCD isolume which permits the calculation of POC concentration at the 470 

point of attenuation. While this assumption may hold for much of the global ocean, subsurface 471 

POC maxima in some areas of the global ocean give rise to inaccuracies in POCPCD that impact 472 

predictions through depth. Significant effort has gone into predicting deep chlorophyll maxima 473 

and a similar effort to estimate the equivalent phenomena for POC will permit greater accuracy 474 

of POC concentration estimates through the mesopelagic. However, the rapid development of 475 

satellite-based lidar may soon offer ocean-observation capabilities through the water column to 476 

multiple optical depths. Other future satellite missions (e.g., NASA’s Plankton, Aerosol, Cloud, 477 

ocean Ecosystem) (Werdell et al., 2019) will also permit the evaluation of phytoplankton 478 

community composition which will help determine the relative impacts of biomass versus 479 

taxonomy on the POC attenuation trends.  480 
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Abstract 16 

The gravitational settling of organic particles from the surface to the deep ocean is an important 17 

export pathway and one of the largest components of the marine biological carbon pump (BCP). 18 

The strength and efficiency of the gravitational pump is often measured using metrics reliant on 19 

reference depths and empirical formulations that parameterize the relationship between depth and 20 

flux or concentration. Here, BGC-Argo profiles were used to identify the isolume where POC 21 

concentration starts to decline, revealing attenuation trends below this isolume that are remarkably 22 

consistent across the global ocean. We developed a semi-mechanistic approach that uses 23 

observations from the first optical depth to predict POC concentration from the surface ocean to 24 

the base of the mesopelagic (1000 m), allowing assessments of spatial and temporal variability in 25 

BCP efficiencies. We find that rates of POC attenuation are high in areas of high biomass and low 26 

in areas of low biomass, supporting the view that bloom events sometimes result in a relatively 27 

weak deep biological pump characterized by low transfer efficiency to the base of the mesopelagic. 28 

Our isolume-based attenuation model was applied to satellite data to yield the first remote sensing-29 

based estimate of integrated global POC stock of 3.02 Pg C for the upper 1000 m, with 1.27 Pg C 30 

of this global carbon stock located above the reference isolume where POC begins to attenuate. 31 

1. Introduction 32 

The biological carbon pump (BCP) is a collection of biological and physical processes that 33 

facilitate carbon sequestration in the deep ocean. Active transfer pathways can be physically (e.g. 34 

subduction) or biologically (e.g. mesopelagic migrators) mediated and are collectively termed 35 

particle-injection pumps (Boyd et al., 2019). The biological gravitational pump (BGP) represents 36 

the amount of organic carbon that is passively transferred from sunlit surface waters to the ocean 37 

interior through particle sinking and is strongly influenced by the complexity of upper ocean 38 

food webs (Siegel et al., 2014; Boyd et al., 2019). Particulate organic carbon (POC) is produced 39 

by phytoplankton in the sunlit epipelagic at rates that vary spatially and temporally depending on 40 

light and nutrient availability (Westberry et al., 2023). Near the base of the epipelagic zone, 41 

sunlight has been sufficiently attenuated that phytoplankton growth and particle production is 42 

outweighed by losses through remineralization and grazing, leading to decreases in POC 43 

concentration and flux (Henson et al., 2012). Further remineralization of sinking particles occurs 44 

through the mesopelagic (~200 – 1000 m), resulting in a distinct vertical attenuation profile that 45 



 

 

can be measured using a variety of in situ approaches ranging from traps and pumps to sensors 46 

on autonomous vehicles (Baker et al., 2020; Briggs et al., 2020). These field observations are 47 

often combined with empirical formulations (e.g. the “Martin Curve”) to estimate vertical POC 48 

profiles and calculate attenuation metrics that reflect the strength and efficiency of the BGP 49 

(Martin et al., 1987; Buesseler and Boyd, 2009).  50 

The relative change in POC concentration or flux between two depth horizons can be used to 51 

calculate the transfer efficiency from the surface to the deep ocean (Buesseler et al., 2020). A 52 

lower transfer efficiency indicates faster attenuation through depth and vice versa, but the 53 

mechanisms that control BGP efficiencies are not fully understood and are a subject of debate 54 

(Armstrong et al., 2001; Lam et al., 2011; Henson et al., 2019). The efficiency of vertical 55 

transfer controls the fate of carbon fixed at the surface, dictating whether it is partitioned into 56 

short or long-term storage pools. The transfer of carbon out of the primary production zone to the 57 

upper mesopelagic (often termed export flux) is typically viewed as short-term storage and often 58 

results in the removal of carbon from the atmosphere on timescales that span months to decades 59 

(DeVries and Weber, 2017). Long-term marine carbon storage is defined as carbon removal from 60 

the atmosphere for timescales of centuries to millennia and is estimated to occur when carbon is 61 

transported below 1000 m (IPCC 2007). The relative change in POC flux or concentration 62 

between the base of the euphotic zone and the base of the mesopelagic is referred to as flux 63 

attenuation (Passow and Carlson, 2012). The efficiency of flux attenuation varies in time and 64 

space, but it is generally observed that more than 90% of export flux is lost before the 1000 m 65 

depth threshold for long-term sequestration (Nelson et al., 2002; Marsay et al., 2015).  66 

Given the importance of the BCP in modulating Earth’s biogeochemical cycles, it is critical to 67 

improve our understanding of marine carbon sequestration pathways to better predict how they 68 

will change in response to climate variability (Henson et al., 2019). Satellite remote sensing is a 69 

powerful tool for monitoring marine carbon stocks at global scales, but is currently limited to 70 

surface observations (Brewin et al., 2023; but see Behrenfeld et al., 2023). In situ sampling 71 

campaigns and autonomous platforms are more significantly constrained in horizontal spatial 72 

resolution, but can be used to provide detailed insight into regional sub-surface carbon cycling 73 

dynamics (Dall’Olmo et al., 2016; Boyd et al., 2019; Briggs et al., 2020). Creating an effective 74 

framework to quantify important BCP processes at a global scale requires in situ observations of 75 

spatial and temporal resolution comparable to satellite data, thereby enabling effective 76 



 

 

extrapolation of surface satellite data to depth. To this end, a multifaceted approach is desirable 77 

that involves the integration of data from ship-based observations and autonomous underwater 78 

vehicles, satellite remote sensing, and numerical modeling, but programs of such scale are costly 79 

and therefore rare (Siegel et al., 2016; Brewin et al., 2021). As a result, there have been limited 80 

efforts to combine multi-platform observations and assess global-scale, vertically-resolved 81 

profiles of POC. To address this gap, we utilized profiling Biogeochemical-Argo (BGC-Argo) 82 

data to: (i) determine an isolume-based reference depth for the point where POC concentration 83 

begins to decline; and (ii) formulate a concentration-dependent algorithm to define attenuation 84 

trends through the water column. This semi-mechanistic approach can be used with remotely 85 

detectable properties of the first optical depth to predict POC concentrations from the surface 86 

layer to the base of the mesopelagic zone and assess spatial and temporal variations in BGP 87 

efficiencies at regional to global scales.  88 

2. Data and Methods 89 
2.1. Float Data and Derived Proxies  90 

We used data collected by an array of 603 floats deployed at different times between 2010 and 91 

2023 across several regions of the global ocean (Figure 1). Each float was equipped with a 92 

conductivity-temperature-depth sensor (SBE 41N, Seabird Scientific) and a combination bio-93 

optical sensor (ECOTRIPLET, FLBB, MCOMS, Seabird‐WetLABS). In total, these floats 94 

acquired 51,322 vertical profiles (0 – 2000 m) of salinity, temperature, pressure, chlorophyll 95 

fluorescence, and the angular scattering function at 700 nm. The raw data from each sensor were 96 

calibrated according to manufacturer guidelines by the ARGO data management team before 97 

undergoing quality control following the adjustment procedures described in Johnson et al. 98 

(2017). Chlorophyll fluorescence is then converted to chlorophyll concentration (Chl) using a 99 

linear calibration slope provided by the sensor manufacturer while backscattering is derived from 100 

the angular scattering function at 700 nm. Values of backscattering are then converted to the 101 

backscattering coefficient of particles (bbp_float) by removing the scattering function of seawater 102 

using local salinity and temperature data (Zhang et al., 2009). All processed data products were 103 

downloaded from ARGO Global Data Assembly Center servers in September 2023 using the 104 

BGC-Argo-R toolbox (Cornec et al., 2021). Data flagged as poor quality were removed, along 105 

with outliers (> 98.5th percentile), before profiles were interpolated to 1 m vertical resolution 106 

through the upper 1000 m. Mixed layer depth (MLD) was calculated for each float profile as the 107 



 

 

depth where density was ≥ 0.03 kg m−3 than the density at 10 m (de Boyer Montégut et al., 108 

2004). 109 

 110 

Figure 1. The global distribution of all float profiles (n = 51,322) used in this study that were collected as 111 
part of the BGC-Argo program between 2010 and 2023. Red squares show the location of sites analyzed 112 
for interannual variability.    113 

Profiles of bbp_float were smoothed with a 7-point median filter (Briggs et al., 2011) before being 114 

used to estimate particulate organic carbon (POCfloat) though depth (z) following the methods 115 

described in Gali et al. (2022): 116 

POCfloat(z) = bbp_float ∙  𝑎𝑎, if z  ≤  MLD Equation (1a) 

and 
POCfloat(z) = bbp_float ∙  12100 + (𝑎𝑎 − 12100 ) ∙  e−0.00657 ∙ (z−MLD),  
if z  >  MLD, 

Equation (1b) 

where a = 43,256 mg C m-3 and is the average POC/bbp(700) ratio in the euphotic zone calculated 117 

using regression coefficients from several previous studies [see Table A1 in Gali et al., (2022)].  118 

Fluorescence derived measurements of Chl were corrected for daytime non-photochemical 119 

quenching (NPQ) following Xing et al. (2012). The average Chl in the first optical depth (OD1) 120 

was then used to calculate the diffuse attenuation coefficient at 490 nm [𝑘𝑘d(490); units = m−1] 121 

following Morel & Maritorena (2001): 122 



 

 

𝑘𝑘d(490) = 0.0166 + 0.07242 ∙ Chl0.68955. Equation (2) 

Values of 𝑘𝑘d(490) were converted to the diffuse attenuation coefficient for Photosynthetically 123 

Available Radiation (PAR), 𝑘𝑘PAR , following Morel et al. (2007): 124 

𝑘𝑘PAR =  0.0864 + 0.884 · 𝑘𝑘d(490) −  0.00137 · [𝑘𝑘d(490)]−1, if MLD ≤
 [𝑘𝑘d(490)]−1 
and 

Equation (3a) 
 

𝑘𝑘PAR =  0.0665 + 0.874 · 𝑘𝑘d(490) −  0.00121 ·  [𝑘𝑘d(490)]−1 , if MLD >
 [𝑘𝑘d(490)]−1. 

Equation (3b) 

This approach accounts for changes in spectral irradiance through depth and the subsequent 125 

impact on estimations of light attenuation. It assumes that for a homogenously mixed surface 126 

layer, attenuation coefficients for individual wavelengths in the blue-green domain (e.g. λi ~ 443, 127 

λi ~ 490, and λi ~ 510 nm) are only weakly dependent on the depth of that layer because these 128 

medium wavelengths typically penetrate deeper into the water column. In contrast, diffuse 129 

attenuation coefficients for the full visible spectrum (e.g. kPAR) must account for the 130 

polychromatic nature of PAR and the rapid attenuation of longer wavelengths, which narrows the 131 

PAR domain at depth. As such, for a given 𝑘𝑘d(490), kPAR will decrease significantly with mixed 132 

layer depth, thus warranting different relationships for shallow, homogenous layers (Equation 133 

3a) and deeply mixed waters (3b). 134 

Finally, the 0.1% light depth (Ez0.1) was calculated using 𝑘𝑘PAR: 135 

Ez0.1 =  −ln(0.001 ) / 𝑘𝑘PAR. Equation (4) 

2.2. Satellite Data and Derived Proxies 136 

Ocean color products from the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua 137 

satellite used for this analysis included 9 km resolution, 8-day Chl (OCI algorithm), bbp at 443 138 

nm [bbp_sat(443)], derived from the Generalized Inherent Optical Property algorithm (Werdell et 139 

al., 2013), the diffuse attenuation coefficient [kd_sat(490)], and incident PAR (PAR0). Values of 140 

bbp_sat(443) were converted to 700 nm using a power law model of the particulate backscattering 141 

coefficient spectral dependency with an exponent of -1 (Morel and Maritorena, 2001) to make 142 

them comparable with bbp_float: 143 



 

 

bbbp_sat(700) =    bbbp_sat(443) ∙  �
700
443

�
−1

 Equation (5) 

Global estimates of MLD were calculated from salinity, temperature, and pressure data 144 

converted to density (sigma-theta) and based on daily, multi-layer products from the HYbrid 145 

Coordinate Ocean Model (HYCOM). Net primary production (NPP) for the MODIS Aqua 146 

record was estimated using the absorption-based productivity model of Silsbe et al. (2016). NPP 147 

and MLD data are available at https://sites.science.oregonstate.edu/ocean.productivity/index.php. 148 

Satellite based estimates of POC (POCsat) were calculated following Equations 1a and 1b (i.e., 149 

replacing bbp_float with bbp_sat). Similarly, 𝑘𝑘PAR_sat values were calculated using kd_sat(490) and 150 

equations 3a and 3b.  151 

2.3. Estimating the particle compensation depth 152 

To determine an ecologically relevant reference depth corresponding to the point at which POC 153 

begins attenuating in the upper ocean, we first identified the absolute light level where POC 154 

losses to remineralization and grazing outweigh accumulation through primary production in the 155 

epipelagic zone (this isolume is henceforth referred to as the particle compensation depth, PCD). 156 

A smoothing function and a local maximum filter were first applied to each BGC-Argo profile of 157 

POCfloat to detect sub-surface peaks in POC concentration (Supp. Figure 1). The depth of the 158 

largest peak (zpeak) below the mixed layer, but above the euphotic depth (defined here as the 0.01 159 

mol d-1 isolume), was considered the PCD. For profiles where the MLD was deeper than the 160 

euphotic depth, zpeak was defined as the base of the MLD. The absolute photon flux at the PCD 161 

was then calculated as:  162 

PARPCD =    PAR0 ∙    𝑒𝑒�𝑘𝑘PAR ∙   zpeak�. Equation (6) 

Estimates of PARPCD showed a unimodal distribution with a positive skew (Supp. Figure 2), so a 163 

square root transformation was applied before the median (0.427 mol d-1, Inter Quartile Range = 164 

0.09-1.37) was taken as the global isolume for the PCD. Estimates of PAR0 and kPAR were then 165 

used to calculate the PCD for all profiles in the global dataset using this isolume: 166 

𝑧𝑧PCD =   −ln �0.427
PAR0

 � / 𝑘𝑘PAR. Equation (7) 

For equation 7, the PCD was defined as MLD when zPCD ≤ MLD.  167 

https://sites.science.oregonstate.edu/ocean.productivity/index.php


 

 

2.4. Assessing attenuation trends in POC below the PCD 168 

Profiles of POCfloat  (e.g., Figure 2a) were used to investigate the spatial and temporal variability 169 

in attenuation trends below the PCD. First, POCfloat  data from depths shallower than the PCD 170 

were removed from all profiles in the global dataset. The remaining data of each profile were 171 

then adjusted such that the PCD depth = 0 m (e.g. znorm = z - zPCD; Figure 2b) before being fitted 172 

to a cumulative distribution function (i.e. stretched exponential model). The coefficients from all 173 

model fits were used to parameterize an algorithm to predict POC concentration below the PCD, 174 

as described in the following section. 175 

 176 

Figure 2. Regionally averaged vertical profiles of (a) particulate organic carbon derived from float 177 
observations of particulate backscatter (POCfloat), (b) POCfloat versus depth after removing data shallower 178 
than the particle compensation depth (PCD) and then normalizing each profile to zero depth at the PCD, 179 
and (c) data from panel b normalized to the maximum value of POCfloat at the PCD. The regional bins are 180 
NPAC = North Pacific, NATL= North Atlantic, CPAC = Central Pacific, CATL = Central Atlantic, SPAC 181 
= South Pacific, SATL = South Atlantic, SO = Southern Ocean, IO = Indian Ocean, and MED = 182 
Mediterranean. 183 

2.5. Modeling particulate organic carbon concentration and attenuation trends 184 

Using the coefficients from the model fits described in section 2.4, together with surface 185 

estimates of bbp, we developed an isolume-based model to predict POC concentration through the 186 

water column at 1m resolution. The first step of the approach calculates POC from the surface to 187 

the PCD using Equations 1a and 1b, and the average bbp value over the first optical depth 188 



 

 

[bbp(OD1)], with the assumption that bbp(OD1) is vertically constant from the surface to the 189 

PCD. Estimates of POC below the PCD are then calculated as follows: 190 

POC (z)  =    POCPCD ∙    𝑒𝑒
−�znorm𝑐𝑐1

�
𝑐𝑐2

 ,  
Equation (8) 

where POC at the PCD (POCPCD) is calculated using Equations 1a or 1b and bbp(OD1) when z = 191 

zPCD, 𝑐𝑐2 = 0.325, and 𝑐𝑐1 is a concentration dependent scaling parameter calculated as: 192 

𝑐𝑐1 =  19 +  450.29 ∙   𝑒𝑒−0.0708  ∙  POCPCD . Equation (9) 

For comparison to the isolume-based attenuation model developed here, depth resolved POC 193 

concentrations were also estimated using a modified version of the ‘Martin Curve’ (hereafter 194 

referred to as the B20 method) where POC values at the 0.1% light depth (POCEz0.1) are fitted to 195 

a power law function following the approach described in Buesseler et al. (2020): 196 

POCB20(z) =  POCEz0.1  ∙   �
𝑧𝑧

Ez0.1
�
−𝑏𝑏

,  Equation (10) 

where b is the power law exponent of 0.858, and POCEz0.1is calculated using Equation 1b when z 197 

= Ez0.1 or Equation 1a if MLD > Ez0.1. 198 

Depth-resolved POC estimates from the isolume-based POC attenuation model (Equations 8 & 199 

9) and the B20 method (Equation 10) were used to calculate attenuation metrics to assess the 200 

strength and efficiency of the biological carbon pump. One of these metrics was a concentration 201 

ratio (𝜆𝜆100) which describes the change in POC between the PCD and the upper mesopelagic and 202 

is comparable to the transfer efficiency parameter derived from particle flux measurements: 203 

𝜆𝜆100 =   
POCPCD+100

POCPCD
  , Equation (11) 

where POCPCD+100 is the POC concentration 100 m below the PCD reference depth. The second 204 

attenuation metric evaluated is comparable to the flux attenuation coefficient and was calculated 205 

as the difference in POC concentration between the PCD and the base of the mesopelagic 206 

(𝜆𝜆1000): 207 

𝜆𝜆1000 =   
POC1000
POCPCD

 , Equation (12) 



 

 

where POC1000 is the POC concentration at 1000 m. It is important to note that the 208 

concentration‐based attenuation metrics defined here are analogous but not equivalent to 209 

traditional flux‐based metrics. We nonetheless use similar terminology to emphasize the 210 

parallels, in keeping with previous studies (Lam et al., 2011; Rosengard et al., 2015). 211 

Finally, global and regional depth-resolved POC were estimated using the isolume-based 212 

attenuation model (Equations 8 and 9) and the B20 method (Equation 10) with satellite retrievals 213 

of PAR, kPAR, bbp, and MLD. In addition, two sites were selected to assess the interannual 214 

variability in high latitude areas of the Northeast Atlantic (49°N, 16.5°W) and the subarctic 215 

North Pacific (50oN, 145oW).  216 

3. Results 217 

3.1. Estimations of Depth Resolved POC  218 

Regionally averaged profiles of POCfloat  from the particle compensation depth (PCD) down to 219 

1000 m showed a two-fold range in POC concentration at the point of attenuation (Figure 2b). 220 

When these data are normalized to the POC concentration at the PCD, a consistent exponential 221 

decay profile is revealed with varying degrees of vertical compression (Figure 2c). Regions with 222 

the lowest POC concentration at the PCD (e.g. Central Pacific and Central Atlantic) typically 223 

have the most “stretched” profile, reflecting a slower rate of carbon attenuation. In contrast, high 224 

latitude regions (e.g. Southern Ocean and North Atlantic) where POC concentration is high at 225 

the PCD have steeper, more compressed profiles. The isolume-based attenuation model (red lines 226 

in Figure 3) effectively reproduces float-measured POC profiles (black lines in Figure 3) for all 227 

regions of the global ocean across all seasons (r2 = 0.98, RMSE = 1.319; Figure 5). In 228 

comparison, the B20 method struggled to capture seasonal trends in attenuation profiles across 229 

all regions and underestimated the rate of attenuation leading to overestimates of POC through 230 

the mesopelagic (Supp. Figure 3).  231 



 

 

232 
Figure 3. Seasonal variability in particulate organic carbon (POC) profiles across the global ocean. Depth 233 
resolved POC are derived from float profiles of particulate backscatter (POCfloat, black line) and the 234 
isolume-based attenuation model approach (red line) following normalization to the POCfloat 235 
concentration at one optical depth. The regional bins are NPAC = North Pacific, NATL= North Atlantic, 236 
CPAC = Central Pacific, CATL = Central Atlantic, SPAC = South Pacific, SATL = South Atlantic, SO = 237 
Southern Ocean, IO = Indian Ocean, and MED = Mediterranean. 238 

Values of POC estimated using the isolume-based attenuation model and the B20 method were 239 

integrated over the top 250 m, 500 m, and 1000 m of the water column to quantify upper ocean 240 

carbon stocks. Integrated stocks predicted using the isolume-based model were averaged by 241 

region and month and showed excellent agreement with float-based observations over all depth 242 

horizons (Figure 4a). Comparisons between the isolume model and float observations averaged 243 

at finer resolution reveal the approach still performs well across all depth horizons (Figure 4b). 244 

The B20 method also showed a strong correlation with regionally averaged float observations 245 

but the slope of the regression ranged from 1.58 - 2.3, highlighting the overestimation of POC at 246 

depth due to the inability of the method to capture the correct attenuation gradient (Figure 4c).     247 



 

 

 248 
Figure 4. Particulate organic carbon (POC) values from float profiles of particulate backscatter versus 249 
model predictions integrated over the top 250m, 500m, and 1000m of the water column (left to right). (a) 250 
POC estimated using the isolume-based attenuation model and averaged by region and month (n = 108), 251 
(b) a bivariate histogram showing POC estimated using the isolume-based attenuation model averaged by 252 
float, year, region and month (n = 13,020), and (c) POC estimated using the modified Martin (B20) method 253 
and averaged by region and month (n = 108). Note the change in axis range between each plot. Color 254 
scheme for regions in (a) and (c) follows that of Figure 2. 255 

3.2. Global Observations of POC Attenuation Metrics 256 

Comparisons between float and model estimates of 𝜆𝜆100 and 𝜆𝜆1000 showed the isolume-based 257 

attenuation model performed well across the nine global ocean regions of the float database 258 

(Figure 5). Float-based measurements of POC attenuation through the upper mesopelagic reveal 259 

extensive global variability, with values ranging from ~10% to 75% (Figure 5a). Estimates of 260 

𝜆𝜆100 and 𝜆𝜆1000 from the isolume-based model are generally within 10% of the float values, with 261 

slight overestimations in the Central Pacific and Central Atlantic (Figure 5). In contrast, the B20 262 



 

 

method significantly overestimates λ100 in all regions due to the underestimation of POC 263 

attenuation through depth. The two different approaches are closer in performance when 264 

predicting λ1000, which ranged from ~3 to 20% when calculated using float observations (Figure 265 

5b). 266 

 267 

Figure 5. Values of the POC concentration gradient between the particle compensation depth (PCD) and 268 
(a) 100m below the PCD (λ100), and (b) 1000 m (λ1000). The estimates were made using monthly float 269 
observations (white boxes), the new isolume-based attenuation approach (grey boxes), and the modified 270 
Martin approach (B20 method; black boxes). The regional bins are the same as described in Figure 3. Note 271 
changing y-axis scales, values are unitless. 272 

Satellite-based estimates of POC differed significantly between the PCD and the Ez0.1, 273 

sometimes resulting in a 60% reduction in concentration between the two depth horizons (Figure 274 

6). Global-scale attenuation metrics calculated using satellite retrievals with the B20 method and 275 

the new isolume-based attenuation model differed substantially, with the former yielding values 276 

over three-fold higher in some parts of the ocean (Figure 6i; Supp. Figure 4h-i). The isolume-277 

based attenuation model showed more muted variability in λ100 estimates with most values 278 

falling between ~15-40 % (Figure 6g), and the highest efficiencies were found in the South 279 

Pacific gyre where light penetrates deepest and surface POC concentrations are incredibly low 280 

(Figure 6). High production areas, particularly areas with shallow mixed layers and high surface 281 

POC concentrations, typically had lower concentration ratios reflecting higher rates of 282 

remineralization and lower efficiencies of transfer from the surface to the mesopelagic. Annual 283 

averages of λ1000 largely mirrored the spatial dynamics of the λ100 estimates and ranged from ~3-284 

15% (Figure 6h).    285 



 

 

 286 

Figure 6. Satellite observations of (a) mixed layer depth (MLD, units = m), (b) the particle compensation depth (PCD, units  = m), (c) the 0.1% 287 
light depth (Ez0.1%, units = m), (d) particulate organic carbon (POC, units mg C m-3) concentration at the surface, (e) POC concentration at the 288 
PCD , (f) POC concentration at Ez0.1%, (g) the POC concentration ratio for the PCD and 100 m below the PCD (𝜆𝜆100) made using the new isolume-289 
based model, (g) the POC concentration ratio for the PCD and 1000 m (𝜆𝜆1000) made using the new isolume-based model, (h) the difference 290 
between λ100 calculated using the modified Martin approach (B20) and the new isolume-based model. 291 



 

 

3.3. Regional Interannual Variability in Carbon Dynamics 292 

Annual cycles of NPP and POC for two Northern Hemisphere subpolar regions were assessed 293 

using satellite climatologies (Figure 7). The highest values of λ100 and λ1000 at both sites occurred 294 

in the winter months (December – February) when surface POC concentration is lowest and 295 

strong advective mixing results in deep mixed layers. Despite the ~3.5-fold change in surface 296 

POC at both sites over the annual cycle the coincident increase in attenuation rates often results 297 

in similar POC concentrations below the euphotic zone (Figure 7a and Figure 7c). Temporal 298 

trends in surface POC concentration and NPP were notably different between the two regions. In 299 

the North Atlantic, the maximum surface POC concentration occurs in spring and corresponds 300 

with high values of NPP associated with the large phytoplankton bloom event characteristic of 301 

this region (Figure 7a-b).  302 

 303 

Figure 7. Climatological annual cycles of carbon stocks and rates at the Porcupine Abyssal Plain (PAP; top 304 
row) site in the Northeast Atlantic and the Ocean Station Papa (OSP; bottom row) site in the sub-arctic 305 
North Pacific, including (a) differences at PAP between surface particulate organic carbon (POC) 306 
concentration (POCsurface; large blue circles) and POC concentration 100 m below the euphotic zone 307 
(POCEz+100; large red circles) which is shown on the secondary axis, (b) net primary production (large blue 308 
circles; NPP) at PAP with the concentration gradient between the particle compensation depth (PCD) and 309 
1000 m (λ1000; large red circles) shown on the secondary axis, (c) differences at OSP between POCsurface 310 



 

 

(large blue circles) and POCEz+100 (large red circles), and (d) values of λ1000 and NPP at OSP. Climatologies 311 
were constructed from weekly (8 day) composites of MODIS data over a 20-year period (2003–2022) 312 
averaged over a 0.5°×0.5° pixel grid centered over the PAP and OSP sites. Small circles represent all 8-day 313 
data from the 20-year study period. 314 

Following this spring peak, POC concentration slowly declines through summer and autumn 315 

(July – November), leading to a corresponding decrease in the rate of POC attenuation and 316 

higher values of λ100 and λ100. In contrast, NPP and surface POC concentration both peak 317 

markedly later in the North Pacific, following a steady increase during spring and summer (April 318 

– August) (Westberry et al., 2016). These peaks are immediately followed by a sharp and 319 

continuous decrease in concentration through autumn (September – November), corresponding 320 

with a lower rate of attenuation and higher concentration ratios. 321 

4. Discussion  322 

Satellite remote sensing is the most effective approach for monitoring marine carbon dynamics at 323 

global scales, but satellite-detected signals are largely restricted to the uppermost layer of the 324 

surface ocean (<1 optical depth) (Brewin et al., 2023). Autonomous in situ platforms are more 325 

restricted in their horizontal spatial resolution but can provide important information on sub-326 

surface carbon-cycling dynamics (Dall’Olmo et al., 2016; Boyd et al., 2019; Briggs et al., 2020). 327 

Thus, surface observations of ocean color must be coupled with in situ observations, as well as 328 

empirical and mechanistic models, to vertically resolve the major reservoirs of marine carbon 329 

pools and understand the fluxes between different pools (Siegel et al., 2016). Marine POC is 330 

estimated to constitute ~80% of the organic matter exported to the deep ocean through the BCP. 331 

POC cycling in the upper 1000 m therefore plays an outsized role in defining the strength and 332 

Table 1. POC stocks for the global ocean integrated over different depth horizons. All values are 
calculated using the full mission composites of MODIS AQUA data over a 20-year period (2003–
2023). Coastal regions were removed from the estimates (see Figure 8). Units are Pg C.  

 PACIFIC ATLANTIC SOUTHERN INDIAN Global 

Surface - PCD 0.48 0.19 0.40 0.12 1.27 

PCD – 500 m 0.50 0.20 0.32 0.13 1.21 

500 m – 1000 m 0.23 0.10 0.12 0.06 0.54 

Total 1.21 0.49 0.84 0.31 3.02 



 

 

efficiency of the BCP and, in turn, is a key factor defining the magnitude of CO2 exchange 333 

between the ocean and atmosphere. Here we introduce an isolume-based attenuation model that 334 

provides the first global estimate of POC stocks in the top 1000 m based on observations from 335 

satellite remote sensing (Figure 8; Table 1). Our method also permits estimation of POC 336 

concentrations through the water column at highly resolved resolution, thereby allowing 337 

calculation of key metrics used to assess the gravitational component of the BCP.  338 

4.1. Predicting vertical POC using satellite observations  339 

Remineralization of carbon through the water column is commonly parameterized as an 340 

empirical function of depth, often referred to as a ‘Martin curve’, which has been revised and 341 

modified in the decades since its origination (Martin et al., 1987; Buesseler and Boyd, 2009, 342 

Buesseler et al., 2020). Two key 343 

considerations in applying the Martin curve 344 

are the choice of reference depth from which 345 

the curve pivots and the value of the power 346 

law exponent that defines the rate of 347 

attenuation. The former is taken as the point 348 

in the water column where POC flux or 349 

concentration begins to decline, while the 350 

latter reflects the intensity of 351 

remineralization through the water column. 352 

Recently, the Ez0.1% light level was proposed 353 

as a mechanistic reference depth (Buesseler 354 

et al., 2020), as opposed to the fixed point at 355 

100 m originally used by Martin et al. 356 

(1987). In their study, Buesseler et al. (2020) 357 

found that the fixed-depth approach 358 

underestimates BCP efficiencies when the 359 

euphotic zone is shallow, and vice versa. 360 

Our results support these findings but 361 

suggest an absolute light level, or isolume, 362 

Figure 8. Global stocks of particulate organic 
carbon (POC) integrated over 1000 m. Input data 
for the new model are mission composites from 
MODIS AQUA at 9km resolution. Coastal 
waters are masked removed from the calculation 
of global stock estimates. Units are mg C m-2.  



 

 

is more suitable than a percentage when predicting the depth where particle losses outweigh 363 

gains (i.e. the PCD).  364 

Despite the assumption that bbp at OD1 will remain constant from the surface to the PCD, the 365 

isolume-based attenuation approach still predicts POC accurately through the upper water 366 

column. This result suggests that for large areas of the global ocean the concentration of POC, 367 

despite significant horizontal variability, is sufficiently homogeneous between the surface ocean 368 

and the PCD to permit extrapolation using observations from the first optical depth. One 369 

exception is the central regions of the Pacific and Atlantic where sub-surface peaks in POC result 370 

in significant variance in surface POC compared to the PCD, resulting in poorer predictions of 371 

attenuation trends. This result is consistent with a previous approach that used an empirical 372 

formulation to extrapolate satellite-derived surface observations of POC to the base of the 373 

euphotic zone (Duforêt-Gaurier et al., 2010). In that study, integrated values of POC were shown 374 

to correlate well with surface values for well-mixed regions but showed a weaker relationship in 375 

stratified regions, particularly where Chl was <0.1 mg m-3, such as oligotrophic regions. The 376 

weaker relationship between POC and Chl in oligotrophic regions was attributed to a deep POC 377 

maximum that coincided with the deep Chl maximum. 378 

In addition to a fixed reference depth, the original Martin Curve formulation also used a value of 379 

0.858 for the power law exponent, as it captured the average attention trends of the available 380 

data. Numerous studies have since shown that a fixed exponent is insufficient if the approach is 381 

to be used at a global scale (Armstrong et al., 2001; Cael and Bisson, 2018). Marsay et al., 382 

(2015) suggested that temperature can be used to explain observed variability in the strength of 383 

vertical POC flux attenuation, while Lam et al., (2011) observed a strong positive correlation 384 

between the POC concentration at the reference depth used in the canonical Martin formulation 385 

and the power law exponent coefficient, b (Lam et al., 2011). The correlation identified by Lam 386 

et al (2011) reflects a decrease in efficiency of the BCP with increasing POC at the point of 387 

attenuation, with the highest rate of attenuation observed in high latitude regions. These results 388 

are consistent with the findings of the current study and are likely a significant factor in the 389 

marked improvement in the isolume-based attenuation model predictions through the 390 

mesopelagic compared to the B20 approach.   391 



 

 

4.2. Defining global BCP efficiencies using the isolume-based attenuation model 392 

The isolume-based attenuation model presented here permits the estimation of POC through the 393 

water column and can be used with satellite observations to assess global BCP efficiencies. Our 394 

results reveal the modified Martin Curve (B20 method) leads to significant overestimates of 395 

depth-resolved POC concentration and BCP efficiencies when using Ez0.1 as a reference depth 396 

and a fixed exponent of 0.858. Other studies have used NPP or other satellite observations (e.g. 397 

phytoplankton biomass or Chl) along with food web models to predict export production and 398 

vertical carbon flux to the deep ocean (Schlitzer, 2002, 2004; Siegel et al., 2014; DeVries and 399 

Weber, 2017). Those studies sought to define carbon flux, rather than concentration, and 400 

provided important steps towards understanding climate driven trends in global carbon dynamics 401 

(Wang et al., 2023). The isolume-based attenuation approach presented here differs from those 402 

carbon export models in design and complexity but may benefit from it’s relative simplicity. For 403 

example, one advantage of the new approach is the availability of all base input variables (e.g. 404 

MLD, kpar, PAR, bbp) from satellite remote sensing and a lack of reliance on derived/modeled 405 

parameters such as primary production, which have been shown to significantly alter some 406 

model outputs depending on NPP model choice (Bisson et al., 2018). These model features, in 407 

combination with its improved ability to estimate BGC efficiencies and POC concentration 408 

through the mesopelagic, provide new avenues to study particle cycling through the water 409 

column (Amaral et al., 2022), the microbial carbon pump (Jiao et al., 2010), and energy budgets 410 

of deep-sea ecosystems that rely on the export of POC from the surface.   411 

4.3. Drivers of variability in vertical POC attenuation  412 

Biogeochemical mechanisms defining the transfer efficiency of POC from the surface to the 413 

deep ocean through gravitational settling remain unclear but are influenced by the local 414 

composition of phytoplankton, bacteria, and zooplankton assemblages (Passow and Carlson, 415 

2012; Turner, 2015). Recent studies show evidence supporting the hypothesis that ecosystem 416 

structure is the primary driver controlling the efficiency of the BGP, rather than other factors 417 

such as the ballasting effect of calcium carbonate and other biogenic minerals (Lam et al., 2011; 418 

Henson et al., 2012; Henson et al., 2012; Rosengard et al., 2015). A common finding across 419 

these studies is that low transfer efficiencies are typically found in high latitude regions that are 420 

often dominated by diatoms, where the proportion of NPP exported from the euphotic zone (i.e. 421 



 

 

export efficiency) is high (Henson et al., 2012). The low transfer efficiency from the surface 422 

ocean into the upper mesopelagic suggests that the POC produced in these conditions is highly 423 

labile and susceptible to remineralization, a conclusion consistent with the parameterization of 424 

the isolume-based attenuation model presented in this study. Regions where permanent or 425 

seasonal stratification give rise to phytoplankton communities dominated by smaller cells and a 426 

strong microbial loop are often characterized by a high mesopelagic transfer efficiency. In situ 427 

observations at these sites show higher POC concentrations deep in the mesopelagic, suggesting 428 

that the organic material exported from the surface is more resistant to remineralization at depth 429 

(Lam et al., 2011). These findings are consistent with the spatial and temporal observations 430 

shown in Figure 6 and Figure 7, where high concentration ratios are generally found in 431 

permanently-stratified, oligotrophic regions while low concentration ratios are found in high 432 

latitude regions. However, we are unable to conclude whether the driver of this relationship is 433 

community composition, as suggested by Lam et al. (2011), due to the absence of taxonomic 434 

data associated with the float observations employed in our study. Our results do suggest, 435 

however, that concentration alone may be the primary driver of attenution rate [noting that while 436 

high biomass events often coincide with a high proportion of diatoms, this is not always the case 437 

(Bolaños et al., 2021)].            438 

4.4. Summary and future directions 439 

Integrating satellite and in situ observations is a powerful and necessary step towards better 440 

comprehension of the ocean’s biological pump. Here, we utilized BGC-Argo profiles to develop 441 

a semi-mechanistic modeling approach that employs observations from satellite remote sensing 442 

to predict POC concentrations from the ocean's surface to the base of the mesopelagic zone. The 443 

work builds on existing literature that has sought to improve empirical formulations commonly 444 

used to predict carbon cycling dynamics in the epipelagic and mesopelagic zones. The PCD 445 

isolume identified in this study offers a systematic reference depth for the point of POC 446 

attenuation which is an important step towards the accurate prediction of attenuation gradients. 447 

The new isolume based attenuation model incorporates a concentration specific scaling factor 448 

which effectively varies the attenuation gradient, with the results supported by previous studies 449 

that have assessed vertical POC distribution using in situ data. When combined, the PCD 450 

isolume and the algorithm for POC attenuation enables the assessment of BGP efficiencies at a 451 



 

 

global scale and the first estimation of global POC standing stock in the upper 1000 m (3.02 Pg 452 

C) made using satellite remote sensing observations. While most efforts to calculate global POC 453 

stocks using remote sensing have so far been limited to the surface layer or euphotic depth our 454 

results are incredibly similar to previous estimates. Stramska (2009) quantified POC stocks over 455 

the top 200 m using remote sensing reflectance and estimated a global average of 2.29 Pg C 456 

which is incredibly close to the prediction from this study (2.32 Pg C for surface to 200 m). A 457 

recent stock assessment over the top 1000 m, made using the Pelagic Interactions Scheme for 458 

Carbon and Ecosystem Studies (PISCES) model, also resulted in a similar value (2.6 Pg C; Galí 459 

et al., 2022) to the predictions derived from our approach over the same depth horizon (3.02 Pg 460 

C; Table 1). 461 

The enhanced ability to predict vertical profiles of POC concentration from space could open 462 

new avenues for investigating the ocean’s carbon sequestration pathways. The inversion of POC 463 

concentration data recently has been shown to provide a unique approach to predicting how 464 

particle cycling rates are impacted by different biogeochemical properties in the upper ocean 465 

(Amaral et al. 2022). Combining the isolume-based attenuation model with tracer-based models 466 

could provide a new approach to predicting particle cycling dynamics in the upper ocean at a 467 

global scale. However, additional steps should also be taken to improve the accuracy of the 468 

method presented in this study. One of the simplifying assumptions in our approach is that bbp at 469 

OD1 is constant to the PCD isolume which permits the calculation of POC concentration at the 470 

point of attenuation. While this assumption may hold for much of the global ocean, subsurface 471 

POC maxima in some areas of the global ocean give rise to inaccuracies in POCPCD that impact 472 

predictions through depth. Significant effort has gone into predicting deep chlorophyll maxima 473 

and a similar effort to estimate the equivalent phenomena for POC will permit greater accuracy 474 

of POC concentration estimates through the mesopelagic. However, the rapid development of 475 

satellite-based lidar may soon offer ocean-observation capabilities through the water column to 476 

multiple optical depths. Other future satellite missions (e.g., NASA’s Plankton, Aerosol, Cloud, 477 

ocean Ecosystem) (Werdell et al., 2019) will also permit the evaluation of phytoplankton 478 

community composition which will help determine the relative impacts of biomass versus 479 

taxonomy on the POC attenuation trends.  480 
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1. Figures 1 

 2 

 3 
Supplementary Figure 1. Profiles of float-based particulate organic carbon (POCfloat) fitted with a 4 
smoothing function (black line) and a local maximum filter to detect sub-surface peaks in POC 5 
concentration. Red circles indicate peak detection and blur circles indicate the POC maximum determined 6 
using this approach.  7 
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Supplementary Figure 2. Frequency histogram of light levels at the depth of the particle compensation 9 
depth (PCD). 10 
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Supplementary Figure 3. Seasonal variability in particulate organic carbon (POC) profiles across the 14 
global ocean. Depth resolved POC are derived from float profiles of particulate backscatter (POCfloat, 15 
black line) and the modified Martin approach (blue line) following normalization to the POCfloat 16 
concentration at one optical depth. The regional bins are NPAC = North Pacific, NATL= North Atlantic, 17 
CPAC = Central Pacific, CATL = Central Atlantic, SPAC = South Pacific, SATL = South Atlantic, SO = 18 
Southern Ocean, IO = Indian Ocean, and MED = Mediterranean. 19 
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Supplementary Figure 4. Satellite observations of (a) mixed layer depth (MLD, units = m), (b) the particle compensation depth (PCD, units  = 22 
m), (c) the 0.1% light depth (Ez0.1%, units = m), (d) particulate organic carbon (POC, units mg C m-3) concentration at the surface, (e) POC 23 
concentration at the PCD , (f) POC concentration at Ez0.1%, (g) the POC concentration ratio for the PCD and 100 m below the PCD (𝜆𝜆100) made 24 
using the modified Martin approach (B20), (g) the POC concentration ratio for the PCD and 1000 m (𝜆𝜆1000) made using the B20 method, (h) the 25 
difference between λ1000 calculated using the B20 method and the new isolume-based model.26 
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