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Abstract

Improved urban greenhouse gas (GHG) flux estimates are crucial for informing policy and mitigation efforts. Atmospheric inver-

sion modelling (AIM) is a widely used technique combining atmospheric measurements of trace gas, meteorological modelling,

and a prior emission map to infer fluxes. Traditionally, AIM relies on mid-afternoon observations due to the well-represented

atmospheric boundary layer in meteorological models. However, confining flux assessement to daytime observations is prob-

lematic for the urban scale, where air masses typically move over a city in a few hours and AIM therefore cannot provide

improved constraints on emissions over the full diurnal cycle. We hypothesized that there are atmospheric conditions beyond

the mid-afternoon under which meteorological models also perform well. We tested this hypothesis using tower-based mea-

surements of CO2 and CH4, wind speed observations, weather model outputs from INFLUX (Indianapolis Flux Experiment),

and a prior emissions map. By categorizing trace gas vertical gradients according to wind speed classes and identifying when

the meteorological model satisfactorily simulates boundary layer depth (BLD), we found that non-afternoon observations can

be assimilated when wind speed is >5 m/s. This condition resulted in small modeled BLD biases (<40%) when compared to

calmer conditions (>100%). For Indianapolis, 37% of the GHG measurements meet this wind speed criterion, almost tripling the

observations retained for AIM. Similar results are expected for windy cities like Auckland, Melbourne, and Boston, potentially

allowing AIM to assimilate up to 60% the total (24-h) observations. Incorporating these observations in AIMs should yield a

more diurnally comprehensive evaluation of urban GHG emissions.
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Key Points: 13 

 Assimilating non-afternoon greenhouse gas observations in atmospheric inversions is 14 

reliable when wind speeds are greater than 5m/s.   15 

 Inclusion of non-afternoon atmospheric observations during windy conditions doubles 16 

the current data assimilation in atmospheric inversions. 17 

 Additional observations in atmospheric inversions have the potential to improve 18 

greenhouse gas emissions estimates.  19 
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Abstract 20 

Improved urban greenhouse gas (GHG) flux estimates are crucial for informing policy and 21 

mitigation efforts. Atmospheric inversion modelling (AIM) is a widely used technique  22 

combining atmospheric measurements of trace gas, meteorological modelling, and a prior 23 

emission map to infer fluxes. Traditionally, AIM relies on mid-afternoon observations due to the 24 

well-represented atmospheric boundary layer in meteorological models. However, confining flux 25 

assessement to daytime observations is problematic for the urban scale, where air masses 26 

typically move over a city in a few hours and AIM therefore cannot provide improved 27 

constraints on emissions over the full diurnal cycle. We hypothesized that there are atmospheric 28 

conditions beyond the mid-afternoon under which meteorological models also perform well. We 29 

tested this hypothesis using tower-based measurements of CO2 and CH4, wind speed 30 

observations, weather model outputs from INFLUX (Indianapolis Flux Experiment), and a prior 31 

emissions map. By categorizing trace gas vertical gradients according to wind speed classes and 32 

identifying when the meteorological model satisfactorily simulates boundary layer depth (BLD), 33 

we found that non-afternoon observations can be assimilated when wind speed is >5 m/s. This 34 

condition resulted in small modeled BLD biases (<40%) when compared to calmer conditions 35 

(>100%). For Indianapolis, 37% of the GHG measurements meet this wind speed criterion, 36 

almost tripling the observations retained for AIM. Similar results are expected for windy cities 37 

like Auckland, Melbourne, and Boston, potentially allowing AIM to assimilate up to 60% the 38 

total (24-h) observations. Incorporating these observations in AIMs should yield a more 39 

diurnally comprehensive evaluation of urban GHG emissions. 40 

 41 

Plain Language Summary 42 

It is crucial to improve greenhouse gas (GHG) emission estimates to inform policy and 43 

mitigation strategies. However, the current model techniques used to estimate such emissions 44 

rely on incorporating only mid-afternoon observations of atmospheric concentrations of GHGs. 45 

For cities, this limits a detailed understanding of emissions during hours of the day when 46 

emissions are the highest, such as the morning rush hours. This constraint is due to the 47 

limitations on how well meteorological models can describe the atmosphere during stable 48 

conditions, such as when calm winds prevail. To understand if there are any atmospheric 49 

conditions when meteorological models have good performance, for non-afternoon hours, we 50 

used atmospheric measurements of carbon dioxide and methane, alongside meteorological model 51 

outputs. We found that observations during non-afternoon hours are suitable for use in models 52 

when wind speed is greater than 5 m/s. This means that it is possible to double the amount of 53 

data that goes into the modeled GHG emission estimates. With this finding, emission estimates 54 

will potentially be improved, leading to a better evaluation of the diurnal cycle of GHG 55 

emissions. 56 

1 Introduction 57 

To ascertain the fulfilment of the Paris Agreement commitments (United Nations, 2015) 58 

and effectively mitigate emissions, we need to quantify emissions at fine scales. Urbanized areas 59 

are responsible for about 75 % of CO2 emissions from global energy use (United Nations Human 60 

Settlements Programme, 2022). Several techniques can be used to estimate emissions from cities. 61 

Bottom-up approaches use emission factors, direct reporting, and activity data to derive emission 62 
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inventories (e.g., Gurney et al., 2012, 2019, 2020; Oda et al., 2018; Keller et al., 2022). Top-63 

down approaches, on the other hand, use atmospheric observations of a trace gas, alongside 64 

atmospheric transport models and optimization methods (e.g., Bayesian atmospheric inversion 65 

modelling or AIM) to infer emission rates.  66 

AIM is widely used to diagnose emission rates at the global (e.g., Konovalov et al., 2006; 67 

McNorton et al., 2022), regional (e.g., Lauvaux et al., 2012; Zhang et al., 2014; Thompson et al., 68 

2015; Alden et al, 2016; Deng et al., 2017; Wang et al., 2020; Barkley et al., 2021; Maasakkers 69 

et al., 2021; Petrescu et al., 2021; Deng et al., 2022) and local scale (e.g., Lauvaux et al., 2013, 70 

2016, 2020; Wu et al., 2015; Turner et al., 2020; Nalini et al., 2022).  In most cases, AIM 71 

assimilates only mid-afternoon observational data (e.g., Lauvaux et al., 2013, 2016; Nalini et al., 72 

2022) since atmospheric transport models have better capability to simulate the convective 73 

atmospheric conditions that are common during the afternoon (Mahrt, 1998), as opposed to 74 

transient conditions as in the sunrise and sunset hours and the stable atmosphere commonly 75 

observed at night. In contrast to continental scale inversions (e.g., Maasakkers et al., 2021) that 76 

have substantial sensitivity to all hours of the day despite utilising only mid-afternoon 77 

observational data, the shorter transit times of air over the city on the order of few hours mean 78 

that city-scale inversions are typically only sensitive to a few hours of the day. This is a 79 

limitation to our capability to fully understand diurnal cycles of urban emissions, and affects 80 

crucial times of the day when anthropogenic emissions are particularly high (e.g., early morning 81 

rush hours). 82 

If an atmospheric transport model makes a small error in simulating the weak mixing 83 

typical of a stable boundary layer, the error in mole fraction caused by atmospheric transport can 84 

be very large. Stable boundary layers (SBL) mostly occur during nighttime hours and have many 85 

underlying physical processes (i.e., sporadic turbulence, internal gravity waves, nocturnal jets, 86 

inertial oscillations, drainage flows, land surface coupling and heterogeneity, orographic 87 

turbulence) that make them complicated to simulate (Stull, 1988; Steeneveld, 2007, 2014). 88 

Similar challenges happen during periods of transition, such as sunrise and sunset hours. As a 89 

consequence of the complex interactions among all the physical processes of the SBL, modeled 90 

variables such as wind speed and air temperature are often significantly biased (Steeneveld, 91 

2014). On the other hand, convective boundary layers (CBL), which are generally fully 92 

developed in the mid-afternoon hours, present buoyancy-generated mixing which homogenizes 93 

vertical gradients (VGs; Schmidt & Schumann, 1989; Bakwin et al., 1998; Davis et al., 2003). 94 

These physical characteristics make the modelling of the CBL (unstable conditions) more 95 

reliable than that of the SBL.  96 

 Thus even though tower-based measurements capture the full diurnal cycle of 97 

greenhouse gas mole fractions, only a fraction of these data are usually included in AIM. Maier 98 

et al. (2022), studied how nighttime observations can be included in AIM for point source 99 

emissions estimates using WRF-STILT (Weather Research and Forecasting – Stochastic Time-100 

Inverted Lagrangian Transport model). Using a volume approach for point source emissions, 101 

instead of the typical surface emissions approach, they could simulate point source fossil fuel 102 

CO2 during nighttime as well as during the daytime. For urban emissions, Lian et al. (2022) 103 

showed an attempt to include morning data in the AIM for emissions estimates during COVID-104 

19 lockdown in Paris. The results showed that fossil fuel estimates, assimilating both morning 105 

and afternoon observations, were lower than when exclusively using afternoon observations. 106 

This difference was explained as being associated with incorrect BLD simulation at the morning 107 
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hours, problems with near-surface vertical mixing, or diurnal cycle of emissions. Thus, using 108 

morning data without a filtering criteria was not considered a reliable approach.  Then, Lian et al. 109 

(2023) used a filtering  approach to guide the use of morning and afternoon observations (08:00 - 110 

17:00 UTC) in AIM. The filtering method includes a wind speed threshold used alongside a CO2, 111 

boundary layer depth, and wind direction model-observation mismatch criteria. The inclusion of 112 

morning data using this method provided a greater uncertainty reduction in morning hour fossil 113 

fuel emission estimates (11 to 16%) when compared to the case of assimilating only afternoon 114 

observations. However, there is no attempt to assimilate evening nor night GHG data in urban 115 

AIM, especially using a criteria that can be widely used, where certain observations, such as the 116 

boundary layer depth, are not available. In the current study, we hypothesize that there are 117 

atmospheric conditions during any non-afternoon hours which are relatively well-mixed and thus 118 

reliably simulated by atmospheric models, and able to be incorporated into AIM. Our goal is to 119 

identify well-mixed atmospheric conditions during non-afternoon hours  and test the validity of 120 

inclusion of this additional data in AIM.  We suggest an approach for filtering observations 121 

based on meteorological conditions rather than time of day, enabling more data to be used in 122 

AIM, using a simplistic approach that avoids the need for complex additional observations.  123 

To uncover the appropriate atmospheric conditions, we use vertical profiles of trace 124 

gases, carbon dioxide (CO2) and methane (CH4), from the Indianapolis FLUX Experiment 125 

(INFLUX) (Davis et al., 2017) to derive vertical GHG mole fraction differences, normalized by 126 

local anthropogenic fossil fuel emissions (Gurney et al., 2012; 2017), as a proxy for atmospheric 127 

vertical mixing.  Vertical mixing in the afternoon is mainly driven by thermal convection 128 

originating from radiative surface heating, which generates thermal turbulence and leads to the 129 

development of a well-mixed (unstable) atmospheric layer (Stull, 1988) with well-mixed GHG 130 

profiles (Bakwin et al., 1998). The height, from bottom to top, of this mixed layer is herein called 131 

boundary layer depth (BLD). During nighttime net radiative cooling at the surface tends to 132 

dampen boundary layer turbulence (Stull, 1988).  Mechanical turbulence is an important driver 133 

of mixing during these hours (Mahrt, 1998; Stull, 1988), thus we examine wind speed to identify 134 

turbulent atmospheric conditions. 135 

We partition the vertical differences into surface wind speed categories, as well as into 136 

turbulent kinetic energy (TKE) categories. The mean wind speed can characterize the 137 

stratification of the stable boundary layer (Mahrt, 1998), and is easily measured. TKE describes 138 

the intensity of  boundary layer turbulence (Stull, 1988), and although it is not commonly 139 

directly measured, it is usually simulated by atmospheric transport models. Nighttime TKE can 140 

be high due to the positive buoyancy in urban areas (Tong et al., 2022). This suggests that there 141 

might be conditions during non-afternoon hours in urban areas when we will find atmospheric 142 

mixing similar to mid-afternoon hours.  Thus, we use these measures of turbulence to identify a 143 

criteria for the use of additional data in AIM. 144 

Further, we evaluate the transport model performance for the criteria found using this 145 

method, to understand whether the well-mixed conditions identified using VGs correspond to the 146 

smallest transport model errors. Thus,  we investigated the model-observation differences in both 147 

wind speed and BLD. We use BLD relative biases to seek the atmospheric conditions that result 148 

in the smallest errors. AIM uses trace gas enhancements over background (i.e., CO2xs) as one of 149 

its inputs, comparing observed-modeled enhancements to arrive at the best solution for 150 

emissions. Thus, we also explored how observed CO2xs compares to forward model outputs 151 

(Deng et al., 2017), using the Hestia inventory as the prior emissions map (Gurney et al., 2012; 152 
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2017), to uncover the atmospheric conditions that lead to the best model-observation agreement. 153 

All the results are confronted with typical mid-afternoon conditions, as a reference for acceptable 154 

model-observation divergences. Lastly, we discuss how much additional data can be assimilated 155 

by AIM through the use of this methodology and how other cities where GHG networks are 156 

available can benefit from this method. 157 

2 Methods 158 

2.1 Indianapolis FLUX Experiment (INFLUX) and period of study 159 

We used measurements of CO2 and CH4 from the Indianapolis Flux Experiment 160 

(INFLUX). The INFLUX observation network is deployed in Indianapolis, Indiana, USA, and is 161 

designed to develop and assess methods for greenhouse gas flux measurements and modelling 162 

(Davis et al., 2017). This network is equipped with Cavity Ring-Down Spectrometers (CRDS; 163 

Picarro, Inc.) and regular discrete flask measurements. As many as 12 telecommunication towers 164 

have been instrumented at any one time since 2010 (Miles et al., 2017a; Richardson et al., 2017; 165 

Lauvaux et al., 2016), recording high-frequency continuous measurements of CO2 (all sites), 166 

CH4, and CO (some sites). At some sites, there are measurements at multiple heights. Hourly 167 

outputs of these measurements are publicly available (Miles et al., 2017a). 168 

Indianapolis is in predominantly flat terrain, isolated from other metropolitan areas. The 169 

city is mostly surrounded by agriculture; and, south of the city, there are forested areas (Figure 170 

1).  The prevailing wind directions in Indianapolis are southerly (more frequent during warm 171 

months) and westerly (more frequent during cold months), with mean wind speeds at 10 mAGL 172 

averaging 3 m/s during the hottest months and 4 m/s during the coldest months. Indianapolis is 173 

characterized by a city-scale circulation dominated by advection, where urban emissions are 174 

transported downwind the city in plumes, with typical ventilation times of a few hours (e.g., 175 

Lauvaux et al., 2016). 176 

For this study, we selected January and February of 2016 to represent the dormant 177 

season, and May, June, and July of 2016 to represent the growing season. The dormant season 178 

was chosen to evaluate the CO2 fluxes, which in these months, are less influenced by biological 179 

sources (Turnbull et al., 2015; Wu et al., 2022), easing the interpretation of CO2 analysis. The 180 

growing season was used to demonstrate the applicability of the method even when biological 181 

CO2 fluxes are significant. The time period was selected to match other concurrent 182 

measurements (e.g., boundary layer depth from Doppler Lidar), explained in Section 2.3.2. 183 

For measurements of CO2 and CH4 mole fractions, we selected INFLUX Site 01 and Site 184 

09 (Figure 1) as background sites for the calculation of enhancements (see Section 2.3.3), since 185 

they are both considered good upwind backgrounds (Miles et al., 2017b). Site 01 is located at 186 

geographical coordinates 39.5805 N and 86.4207 W, and 256 m above sea level (mASL), within 187 

a forested area, southwest of the city. Site 09, 39.8627 N and 85.7448 W, 277 mASL, is in an 188 

agricultural area and situated east/northeast of the city. From these sites, we used the highest 189 

measurement level for the background determination (Section 2.3.3), which are 121 mAGL and 190 

130 mAGL, respectively. We used  measurements at 10 m above ground level (mAGL) and 40 191 

mAGL from Site 02 to obtain the vertical differences (Section 2.2) and enhancements (Section 192 

2.3.3). This site is in a suburban area, surrounded by houses and shops and close to a busy 193 

interstate highway, on the east side of the city (39.7978 N, 86.0183 W, 267 mASL). We used 194 

Halo Photonics Stream Line XR Doppler lidar measurements (Bonin et al., 2018) of boundary 195 

layer depth (Section 2.3.2), obtained from a lidar deployed in the northeast corner of Indianapolis 196 
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(39.8619 N, 86.0043 W, 21 mAGL; Bonin et al., 2018). Measurements of wind speed (Section 197 

2.3.1) were retrieved from an Automated Surface Observation Station (ASOS, data publicly 198 

available at https://mesonet.agron.iastate.edu/) deployed at the Indianapolis International Airport 199 

(39.7333 N, 86.2833 W, 10mAGL). 200 

 201 

 202 
Figure 1. Map with site locations. The tower symbols show the location of INFLUX sites 01, 02, and 09; followed 203 

by the Indianapolis International Airport (data publicly available at https://mesonet.agron.iastate.edu/) and the Halo 204 

Doppler Lidar (Bonin et al., 2018), used for boundary layer depth analysis (Section 2.3.2). The map background 205 

shows the landcover from the 2016 US National Land Cover Database (publicly available at https://www.mrlc.gov/), 206 

and the Interstate highways. 207 

 208 

We grouped the hours of the day into five periods according to the most likely characteristic of 209 

each period (Table 1). 210 

 211 

Table 1. Description of the characteristics of each period of the day evaluated. The table highlights the mid-212 

afternoon hours, which are the typical hours used in city-scale AIM. All times are local standard time = UTC - 5 213 

hours. 214 

Local time 

(LT) 
Name Description 

00:00 – 04:59  Mid-night  Hours when, typically, there is a well-established stable nocturnal boundary 

layer 
05:00 – 08:59  Sunrise/transition Hours when there is a transition from stable boundary layer to the 

development of a convective boundary layer 
09:00 – 11:59  Morning Convective boundary layer is developing 
12:00 – 16:59  Mid-afternoon Convective boundary layer is fully developed; typical hours used in AIM 
17:00 – 20:59  Sunset/Transition Transition from convective boundary layer to stable boundary layer 
21:00 – 23:59  Evening Stable boundary layer is developing. 

 215 

2.2 Proxy for atmospheric vertical mixing 216 

We used vertical gradients (herein defined as VG) of the trace gases (CO2 and CH4) to 217 

determine if the atmospheric vertical mixing during non-afternoon hours is similar to the vertical 218 
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mixing of the same trace gases during mid-afternoon hours. Small vertical differences (where 219 

small is defined by the VG observed in mid-afternoon conditions) can be interpreted as well-220 

mixed conditions (unstable CBL). The opposite, large VG relative to mid-afternoon conditions, 221 

implies limited vertical mixing, and thus a stable atmospheric surface layer. VGs, however, 222 

change with the magnitude of local emission fluxes, which are also variable throughout the day. 223 

Thus, for CO2, we also normalized the VGs by the local, diurnally varying fossil fuel emissions 224 

around each tower, obtained from Hestia data product (Gurney et al., 2012; 2017) (details can be 225 

found in Text S1). There is one major methane source in Indianapolis, a landfill located in the 226 

southwest of the city, and other city wide emissions originate from the natural gas distribution 227 

system (Cambaliza et al., 2015).   These sources might have seasonal variations, but it is not 228 

expected to vary over the diurnal cycle. Thus, it is assumed that CH4 has a constant flux 229 

throughout the day, and a normalization by CH4 flux is not needed, since the magnitude of the 230 

VGs is compared to mid-afternoon hours, cancelling out a constant CH4 flux.  231 

The averaged VG for a period of time (e.g., 00:00 - 04:59, 05:00 - 08:59, 09:00 - 11:59, 232 

12:00 - 16:59, 17:00 - 20:59, 21:00 - 23:59) of a trace gas mole fraction is calculated by the 233 

difference between the top level measurement and the bottom level measurement of the trace gas 234 

at each tower, divided by the top-bottom height difference: 235 

 236 

𝑉𝐺̅̅ ̅̅ [𝑋][𝑡𝑖𝑚𝑒] =
1

𝐻
∑ (

[𝑋(ℎ1)]ℎ𝑜𝑢𝑟−[𝑋(ℎ2)]ℎ𝑜𝑢𝑟

ℎ1−ℎ2
)𝐻

ℎ𝑜𝑢𝑟=1     (1), 237 

 238 

where [𝑋(ℎ1)]ℎ𝑜𝑢𝑟 is the trace gas mole fraction (CO2 or CH4) at height ℎ1, and [𝑋(ℎ2)]ℎ𝑜𝑢𝑟 the 239 

trace gas mole fraction at height ℎ2, both measured at the same hour. Then we averaged the 240 

hourly VG from hour 1 to hour H, over each period of time. We computed the vertical 241 

differences for Site 02, where ℎ1 is the measurement at 40 mAGL and ℎ2 is the measurement at 242 

10 mAGL. 243 

We normalized the  𝑉𝐺̅̅ ̅̅ [𝑋][𝑡𝑖𝑚𝑒] by the averaged vertical gradients during afternoon 244 

hours, 245 

 246 

𝑉𝐺̃[𝑋][𝑡𝑖𝑚𝑒] =
𝑉𝐺̅̅ ̅̅ [𝑋][𝑡𝑖𝑚𝑒]

𝑉𝐺̅̅ ̅̅ [𝑋][𝑎𝑓𝑡𝑒𝑟𝑛𝑜𝑜𝑛]
         (2), 247 

 248 

and then, for CO2 we also normalized by averaged fossil fuel emissions (𝑓𝑓̅̅̅̅
𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠[𝑡𝑖𝑚𝑒]): 249 

 250 

 251 

 252 

 253 

𝑉𝐺̃[𝐶𝑂2][𝑡𝑖𝑚𝑒;𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛] = (
𝑉𝐺̅̅ ̅̅ [𝐶𝑂2][𝑡𝑖𝑚𝑒]

𝑓𝑓̅̅̅̅
𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠[𝑡𝑖𝑚𝑒]

) / (
𝑉𝐺̅̅ ̅̅ [𝐶𝑂2][𝑎𝑓𝑡𝑒𝑟𝑛𝑜𝑜𝑛]

𝑓𝑓̅̅̅̅
𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠[𝑎𝑓𝑡𝑒𝑟𝑛𝑜𝑜𝑛]

)     (3). 254 
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2.3 Determining the tenable atmospheric conditions that lead to inclusion of non-255 

afternoon data 256 

2.3.1 Wind speed and turbulent kinetic energy (TKE) 257 

We used observed wind speed and simulated TKE to determine the tenable conditions for 258 

the inclusion of additional data in AIM. After calculating the 𝑉𝐺̃[𝑋][𝑡𝑖𝑚𝑒], we subsetted these 259 

gradients under different categories of wind speed and TKE to compare to mid-afternoon VGs. 260 

We categorized the 𝑉𝐺̃[𝑋][𝑡𝑖𝑚𝑒] for each time period into six wind speed ranges: <2 m/s, 261 

2-3 m/s, 3-4 m/s, 4-5 m/s, 5-6 m/s, > 6 m/s. We used  hourly-averaged surface (10 mAGL) wind 262 

speed measurements from the Indianapolis International Airport (Figure 1) retrieved from the 263 

ASOS network, through the Iowa Environmental Mesonet (publicly available at 264 

https://mesonet.agron.iastate.edu/). The choice of publicly available data is helpful to test and 265 

expand the method to other cities worldwide. 266 

For TKE we used outputs from 1 km resolution WRF runs for Indianapolis (Deng et al., 267 

2017), extracted at 50 mAGL, providing an alternative criterion that directly represents turbulent 268 

mixing and links the observed VGs to the transport model. Similar to wind speed, for each site, 269 

we calculated the mean VG within a TKE range, in 0.2 m
2
/s

2
 intervals, starting from <1.0 m

2
/s

2
 270 

up to >1.6 m
2
/s

2
; and then, we normalized by fluxes. We note that TKE is a direct measure of the 271 

intensity of atmospheric turbulence, unlike the indirect measure of 10 mAGL wind speed.  TKE 272 

measurements, however, are not as commonly available, but  are computed in many of the 273 

boundary layer parameterizations using numerical weather models such as WRF (Weather 274 

Research and Forecasting) as a step in AIM. 275 

2.3.2 Model-observation differences 276 

We used hourly-averaged BLD retrieved from a Halo Photonics Stream Line XR Doppler 277 

lidar (Bonin et al., 2018; data available online at 278 

https://csl.noaa.gov/groups/csl3/measurements/2016influx/halo/), to compare with WRF 279 

estimates of BLD (Deng et al., 2017; Deng et al., 2020). Modeled BLD was extracted at the 280 

location of the Halo Doppler Lidar (Figure 1). First, we evaluated hourly absolute and fractional 281 

biases between model and observation, averaged for each period of the day, to understand if the 282 

biases during non-afternoon hours were significantly different from the biases from the mid-283 

afternoon hours. Secondly, we looked at the mean absolute error (MAE) and model-observation 284 

bias under the wind speed and TKE classes explained in Section 2.3.1; e.g., calculated the biases 285 

for very stable cases and for relatively well-mixed cases during non-afternoon hours. We 286 

hypothesized that if the fractional model-observation differences are on the same order of 287 

magnitude for both afternoon and non-afternoon hours, then it should be reasonable to 288 

extrapolate the use of such observations in AIM.  289 

For surface wind speed, we calculated model-observation correlation and biases to 290 

determine the weather model capability to reproduce surface wind speed, seeking good 291 

agreement that can justify the use of wind speed as a criterion to determine suitable atmospheric 292 

conditions for the use of data in AIM. 293 

2.3.3 Enhancements over a background 294 

We calculated enhancements over background (or 𝑋𝑥𝑠) for Site 02 (inlet height 40 295 

mAGL) using an upwind site located outside of the urban plume, thus, either Site 01 (inlet height 296 
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121 mAGL) or Site 09 (inlet height 130 mAGL). Site 01 was adopted when air masses were 297 

coming from 180 – 360 degrees, and Site 09, otherwise. The measurements were matched in 298 

time, thus the 𝑋𝑥𝑠 at, for example 13:00 LT, represents the difference between the mole fraction 299 

at Site 02 at 13:00 LT and the mole fraction measured at Site 01 or 09 at 13:00 LT, following the 300 

equation 4:   301 

 302 

𝑋𝑥𝑠 = [𝑋] − [𝑋]𝑏𝑔   (4), 303 

 304 

where  [𝑋] is the observed CO2 mole fraction at Site 02, and the [𝑋]𝑏𝑔  is the mole fraction at the 305 

background site (e.g., 01 or 09). [𝑋] and [𝑋]𝑏𝑔 are measured at the same time.  306 

Modeled 𝑋𝑥𝑠 can be derived from forward models, through the use of influence functions, 307 

also called footprints. An influence function gives us the history information of the airmass that 308 

travels to a receptor (a certain place), arriving at a certain time. In our study, the receptor is our 309 

site location (e.g., Site 02) where we have a trace gas mole fraction measurements. We used a 310 

Lagrangian Particle Dispersion Model (LPDM) and a weather model (WRF) to obtain the 311 

influence function at each site (Uliasz et al., 1994; Deng et al., 2017). The model was set up so 312 

the influence function results in a gridded map of a trace gas concentration per unit mass per unit 313 

time (e.g., ppb/(mol/h)), and it is produced for 72 hours back in time. The domain of the 314 

influence function is 87x87 km
2
, with 1 km

2
 resolution, centered at downtown Indianapolis 315 

(39.7597 N, 86.1472 W). To compute 𝑋𝑥𝑠, we combined the influence function with the Hestia 316 

prior emissions map (Gurney et al., 2012; 2017), which is an emission product based on bottom-317 

up methods, developed for Indianapolis, providing sectorized fossil fuel CO2 (spatial scale of 318 

individual buildings, road segments, and industrial/electricity production facilities) at fine 319 

temporal resolution (1 hour). We computed the modeled enhancements of CO2, [𝑋]𝑥𝑠_𝑚, at a 320 

given observation point, i, using: 321 

 322 

[𝑋]𝑥𝑠_𝑚 = 𝐻𝑖𝑥   (5),   323 

 324 

where 𝐻𝑖 is the influence function at a given site i computed using WRF and LPDM, and 𝑥 is the 325 

emission map. Here we assumed that emissions from Hestia (Gurney et al., 2012; 2017) at night 326 

are as well known as during the day, and if observation-model differences are the same order of 327 

magnitude as in mid-afternoon, we suggest that AIM can be used during these periods with 328 

reliability similar to that of the mid-afternoon hours. 329 

To demonstrate whether 𝑋𝑥𝑠 are dominated by transport errors, we compared observed 330 

enhancements to vertical differences of a trace gas ([𝑋]𝑑𝑖𝑓𝑓 =  [𝑋]ℎ1
− [𝑋]ℎ2

). If 𝑋𝑥𝑠 are greater 331 

or very close to the vertical differences, then the modeled enhancements are not dominated by 332 

transport errors. 333 

2.4 Replicability for growing season 334 

During the growing season, the fluxes of CO2 are more complex. The spring and summer 335 

in Indianapolis have intense biological activity (e.g., Turnbull et al., 2015), with agricultural and 336 

natural vegetation adding CO2 fluxes from photosynthesis and respiration to the anthropogenic 337 

emissions. The analyses for  𝑉𝐺̅̅ ̅̅ [𝐶𝑂2] can be repeated if the vertical mixing is normalized 338 

𝑉𝐺̅̅ ̅̅ [𝐶𝑂2] by the total fluxes (fossil fuel and biogenic), to remove the strong dependence of the 339 

VGs on local fluxes. In the absence of biogenic fluxes, we applied the method to the growing 340 
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season (May, June, and July of 2016) using the normalized 𝑉𝐺̅̅ ̅̅ [𝐶𝑂2] only by estimated 341 

anthropogenic fossil fuel fluxes (as in equation 2) and the 𝑉𝐺̅̅ ̅̅ [𝐶𝐻4], which is not influenced by 342 

biogenic fluxes, to test how wind speed filtering of our observations performs outside the 343 

dormant season. Thus, exactly the same method applied for the dormant season. We evaluated 344 

whether seasonality of wind speed and boundary layer depth, and the absence of known biogenic 345 

fluxes would impact the method and alter the criteria.   346 

3 Results and discussion 347 

3.1 Atmospheric conditions suitable for the use of non-afternoon measurements in 348 

atmospheric inversions during the dormant season 349 

𝑉𝐺̃[𝑋][𝑡𝑖𝑚𝑒] categorized according to observed wind speed,  showed a clear pattern 350 

indicating that the smallest VGs occur during windy conditions (Figure 2 a,b).  For wind speeds 351 

<3m/s, the 𝑉𝐺̃[𝐶𝑂2][𝑡𝑖𝑚𝑒] is up to 30 times larger than those observed in the mid-afternoon and 352 

the 𝑉𝐺̃[𝐶𝐻4][𝑡𝑖𝑚𝑒] up to 100 times larger than the mid-afternoon. As the wind speed increases, 353 

the VGs become closer to mid-afternoon mixing conditions. When wind speed is higher than 5 354 

m/s, the vertical mole fraction gradient does not exceed 2.5 times the mid-afternoon gradients, 355 

and for specific times of the day (e.g., 09:00 – 11:59 LT), it is even smaller than the mid-356 

afternoon VGs (Figure 2 a). Similar behavior is seen for  𝑉𝐺̃[𝐶𝐻4][𝑡𝑖𝑚𝑒] (Figure 2 b).  357 

Splitting the 𝑉𝐺̃[𝑋][𝑡𝑖𝑚𝑒] using simulated turbulent kinetic energy (TKE), however, 358 

showed averaged VGs more evenly distributed across different TKE ranges, thus a less 359 

prominent pattern than the one observed when using wind speed (Figure 2 c,d). Morning hours 360 

(09:00 – 11:59 LT), however, are consistently similar to mid-afternoon for any TKE value, but 361 

for other hours of the day, TKE >1.6 m
2
/s

2
 showed 𝑉𝐺̃[𝐶𝑂2][𝑡𝑖𝑚𝑒] and 𝑉𝐺̃[𝐶𝐻4][𝑡𝑖𝑚𝑒] 362 

comparable to mid-afternoon hours (about 2.5 times the averaged VGs of mid-afternoon hours), 363 

making this value a recommended cut-off. However, this less prominent pattern observed for 364 

TKE versus wind speed suggests that TKE is a less straightforward criterion to determine 365 

suitable conditions for inclusion of additional data in AIM. We note that, in urban areas, positive 366 

buoyancy may be observed even for nighttime, opposite to what is seen in other landscapes 367 

(Tong et al., 2022).  368 

The transport model generally underestimates the observed surface wind speed, but has a 369 

strong correlation at all hours of the day during the dormant season. The lowest r
2
 (0.80) is found 370 

for the period between 05:00 - 08:00 LT, while the highest r
2
 (0.90) was found during the late 371 

morning hours (09:00 - 11:00 LT) , indicating good model performance for this variable (Figure 372 

S1). Thus, wind speed is  a straightforward variable to determine the inclusion of additional data 373 

in AIM, given that the model and observations have good agreement and showed to be a good 374 

proxy for atmospheric stability. For this reason, the following results will be focused on the use 375 

of wind speed as the variable to determine a criterion for suitable atmospheric conditions for 376 

inclusion of data in AIM.   377 

 378 
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379 
Figure 2. Mean vertical gradients normalized by the mid-afternoon (12:00 to 16:59 local time) vertical gradients 380 

(𝑉𝐺̃[𝑋][𝑡𝑖𝑚𝑒]) and categorized according to observed wind speed (from Indianapolis International Airport) and 381 

modeled turbulent kinetic energy (TKE), for different time periods of the day, for January and February 2016. (a) 382 

Wind speed and normalized vertical gradients of CO2; (b) wind speed and normalized vertical gradients of CH4; (c) 383 

turbulent kinetic energy and normalized vertical gradients of CO2; (d) turbulent kinetic energy and normalized 384 

vertical gradients of CH4. The black dashed line represents the size of the mid-afternoon VG, while the red dashed 385 

line represents 2.5 times the size of the mid-afternoon VG. Figures are limited to 10 times the mid-afternoon VG for 386 

better visualization. Note that, in this figure, the vertical gradients of CO2 are not normalized by fossil fuel emissions 387 

(which is done in Figure 3). 388 

 389 

A similar pattern was also observed using the absolute VGs for both species, and the 390 

smallest gradients occur during the mid-afternoon hours, when the atmosphere is well-mixed, 391 

independent of the wind speed (Figure S2). These mid-afternoon VGs typically range from -0.02 392 

to -0.06 ppm/m of CO2 and from -0.04 up to -0.40 ppb/m of CH4. For calm winds (<2 m/s), VGs 393 

are the largest in magnitude for hours between 00:00 – 08:59 LT and 17:00 – 23:59 LT. This 394 

overall pattern is not surprising since mechanical turbulence is a function of wind speed, and 395 

increased turbulence will decrease the mole fraction VGs. In the mid-afternoon hours, e.g., 12:00 396 

– 16:59 LT, buoyancy typically produces additional turbulence, and this is reflected in the small 397 

magnitude of the VGs at this time. Not coincidentally, these are the typical hours included in 398 

atmospheric inversions for GHG emissions estimates. Further, we found that VGs are most 399 

sensitive to changes in wind speed for non-afternoon hours, when buoyant mixing is relatively 400 

weak.  401 

Even though fluxes vary over the day, the normalization by local fossil fuel flux did not 402 

affect the overall pattern observed when using the VGs alone (Figure 3), but revealed similar 403 

ratios between 𝑉𝐺̃[𝐶𝑂2][𝑡𝑖𝑚𝑒;𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛] across all hours the day (Figure S3). This indicates that 404 

VGs are not highly sensitive to atmospheric transport errors for windy conditions. We noted that 405 

only minor differences were found when compared to mid-afternoon conditions. Thus, for the 406 

dormant season, the VGs did not show strong sensitivity to the fossil fuel flux diurnal cycle, 407 

allowing for a simplified interpretation of VGs.  408 
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 409 
Figure 3. Mean vertical gradients normalized by fossil fuel emissions (details can be found in Text S1) and by the 410 

normalized mid-afternoon (12:00 to 16:59 LT) vertical gradient (equation 2) and categorized according to observed 411 

wind speed (from Indianapolis International Airport) for different time periods of the day, for January and February 412 

of 2016.  413 

 414 

Using a trace gas assumed to have small or no diurnal variation in emissions, such as 415 

CH4, enables us to examine if the results for CO2 are driven primarily by changes in turbulence 416 

or fluxes.  The similarity in results for both CO2 and CH4 during the dormant season suggests 417 

that these results are representative primarily of changes in mixing. Thus, it indicates one can use 418 

the method for either tracer gas interchangeably, and extend this methodology into the growing 419 

season, when biogenic fluxes can be a confounding factor (see Section 3.4). 420 

We also noted that using modeled wind speed to categorize VGs resulted in the same overall 421 

pattern as using observed wind speed (Figure S4). However, since the model underestimates 422 

surface wind speed, one possible caveat, is that using the modeled wind speed can reduce the 423 

amount of data that could possibly be included, since less observations will match the criterion 424 

(e.g.,  fewer observations when modeled wind speed is greater than 5 m/s). 425 

 426 

3.2 Boundary layer depth assessment for different criteria 427 

For January and February of 2016, on average, the WRF model underestimates BLD 428 

during the mid-afternoon hours regardless the wind speed during the dormant season, while for 429 

non-afternoon hours, when wind speed is lower than 3 m/s, the opposite is observed (Figure S5 430 

a).  It suggests that, under light wind conditions, the modeled buoyancy flux might be 431 

overestimated, resulting in an excessive growth of the BLD during non-afternoon hours (Figure 432 

S6).  433 

For non-afternoon hours, the relative model-observation mismatch in boundary layer 434 

depth decreased as wind speed increased, and for wind speed greater than 5 m/s, the absolute 435 

relative bias decrease to less than ~(±)30% (Figure 4). When wind speed is lower than 5 m/s, 436 

averaged bias typically exceed 100%.  For mid-afternoon, averaged biases did not exceed -21%, 437 

with the only exception at calm winds (<2 m/s), indicating that this period of the day 438 

satisfactorily reproduces the BLD. 439 
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 440 
Figure 4. Mean boundary layer depth (BLD) bias (mean mismatch between hourly modeled and observed BLD) for 441 

different time ranges shown at local time (LT), categorized by wind speed classes, for January and February 2016. 442 

 443 

It is important to note that the presented biases are averaged over the selected periods of 444 

time, and there might be many hours when the mismatches will exceed 30%. We, then, looked at 445 

the number of non-afternoon hours that will meet both conditions, i.e., relative BLD bias smaller 446 

than 30% at wind speed greater than 5 m/s. We found that 65% of the hours will have both 447 

conditions.  448 

Thus, during the dormant season, we found that when wind speed is above 5 m/s, VGs 449 

are about 2.5 times the typical mid-afternoon VGs, and the BLD bias is also smallest (30%) 450 

under these conditions. We found that both conditions are met for the majority of the non-451 

afternoon hours. Given the similarity of these conditions to typical mid-afternoon hours, we 452 

concluded that GHG mole fractions, when wind speed is greater than 5 m/s, for any hour of the 453 

day, can be used in AIM for Indianapolis.  454 

 455 

3.3 CO2xs during the dormant season 456 

Modeled CO2xs overestimate the observations for all hours of the day (Figure 5 a,b). The 457 

averaged CO2xs normalized by fossil fuel emissions and boundary layer depth, either observed 458 

and modeled, have similar magnitude across all hours of the day for windy conditions (Figure 5 459 

c,d). This shows that under low wind speeds, CO2xs are much more subjected to transport 460 

errors.   461 
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 462 
Figure 5. Mean CO2 enhancement for January and February 2016. (a)  Observed enhancements (CO2xs obs). (b) 463 

Modeled enhancements (CO2xs model). (c) Observed enhancement normalized by fossil fuel emissions and 464 

observed boundary layer depth. (d)  Modeled enhancements normalized by fossil fuel emissions and modeled 465 

boundary layer depth. 466 

 467 

We also note that since no filtering of atmospheric conditions is needed to use the data 468 

for mid-afternoon hours (i.e., atmospheric transport is well simulated, reproducing consistent 469 

CO2xs for all wind conditions), it is justifiable that previous work has only included mid-470 

afternoon hours. There is little change in MAE and bias during the afternoon with wind speed 471 

(Table 2). This is opposite to the remaining hours of the day, when MAE and bias dramatically 472 

decrease with more turbulent conditions. The model-observation performance also diverges 473 

significantly for non-afternoon hours due to problems in the modeled atmospheric transport, as 474 

also seen by the BLD model-observations performance. 475 

 476 

Table 2. CO2 enhancement mean, mean absolute error (MAE), and bias from all conditions, for atmospheric 477 

conditions when wind speed is smaller than 5 m/s, and greater than or equal to 5 m/s. All times are in local time = 478 

UTC-5. * The mean refers to the observed CO2 enhancement. 479 

Local time 

(LT) 
CO2xs 

(all conditions) 
CO2xs 

(wind speed <5 m/s) 
CO2xs 

(wind speed ≥5 m/s) 
MEAN* 

(ppm) 
MAE 

(ppm) 
BIAS 

(ppm) 
MEAN* 

(ppm) 
MAE 

(ppm) 
BIAS 

(ppm) 
MEAN* 

(ppm) 
MAE 

(ppm) 
BIAS 

(ppm) 
00:00-04:59 2.6 4.4 3.1 3.3 5.6 4.5 1.6 2.7 1.5 
05:00-08:59 3.8 4.3 3.4 4.3 4.9 4.0 2.9 3.1 2.3 
09:00-11:59 3.1 3.3 2.5 3.8 4.6 3.5 2.7 2.4 1.7 
12:00-16:59 2.2 2.4 1.9 2.7 2.9 2.2 2.0 2.2 1.8 
05:00-20:59 3.2 3.9 2.6 3.8 4.4 2.9 2.6 3.3 2.3 
09:00-23:59 2.5 4.8 3.4 3.8 5.7 3.7 1.2 3.8 3.1 

 480 

We also observed that CO2xs is typically larger than vertical differences for all hours of 481 

the day with >5 m/s  wind speed, and similar to mid-afternoon conditions, showing that the trace 482 

gas signal is not dominated by VGs (Figure 6 b). Yet for calmer wind conditions, we noticed the 483 
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enhancements are more susceptible to transport errors, shown by averaged vertical differences 484 

that can be greater than the enhancements, mainly noted between 05:00 - 08:50 LT and 21:00 - 485 

23:59 LT (Figure 6 a). Thus, in stable atmospheric conditions, simulation of VGs is more 486 

sensitive to transport errors. 487 

 488 
Figure 6. Absolute mean of hourly observed CO2 enhancement (Site 02 - background) normalized by CO2 vertical 489 

differences (Site 02) for January and February of 2016. (a) Wind speed < 5 m/s. (b) Wind speed ≥ 5 m/s. In (b) the 490 

scale is cut-off at 10; the morning (09:00-11:59 LT) averaged ratio between CO2xsobs and CO2diff is ~17. Note that 491 

this large difference might be due to rapid changes in VGs during these hours of the day. Error bars are the standard 492 

error of the mean. Hours are in local time. Using Site 02 inlet height 40 mAGL, background is either Site 01 (inlet 493 

height 121 mAGL) or Site 09 (inlet height 130 mAGL). Site 01 was adopted when air masses were coming from 180 494 

– 360 degrees, and Site 09, otherwise. 495 

 496 

3.4 Growing season 497 

Growing season 𝑉𝐺̃[𝐶𝑂2][𝑡𝑖𝑚𝑒] and 𝑉𝐺̃[𝐶𝐻4][𝑡𝑖𝑚𝑒] (Figure S7), and 498 

𝑉𝐺̃[𝐶𝑂2][𝑡𝑖𝑚𝑒;𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛] (Figure S8), showed similar patterns as in the dormant season, with VGs 499 

becoming closer to zero with the increased wind speed. We assume that the large differences in 500 

VGs during the morning hours might be related to rapid changes in VGs that occur about this 501 

time of day (09:00 - 11:59 LT),  due to the rapid changes in surface warming that occur within 502 

these warm months (May through July). 503 

There is seasonality in the wind speed, with the growing season being characterized by 504 

calmer winds than the dormant season. WRF simulated calm winds less robustly, resulting in 505 

smaller model-observation correlation for all hours of the day, when compared to the dormant 506 

season, although still underestimating the observations (Figure S9). The smallest correlation 507 

between these variables (r
2
 = 0.40) is found at late hours of the day (21:00 - 23:59 LT), while the 508 

strongest correlations were found at late morning (09:00 - 11:59 LT), r
2
 = 0.80, and mid-509 

afternoon (12:00 - 16:59 LT), r
2
 = 0.76. The mean bias is also significantly larger for wind speed 510 

greater than 5 m/s (Figure S10) than during the dormant season (Figure S6), for non-afternoon 511 

hours, possibly due to fewer observations within this wind range. Biases for these hours varied 512 

from -1.7 m/s (09:00 - 11:59 LT) to -2.8 m/s (21:00 - 23:59 LT). For mid-afternoon hours, the 513 

bias for unstable conditions (-1.5 m/s) is only slightly greater than the observed during the 514 

dormant season (-1.3 m/s). This discrepancy can be explained by the reduced frequency of strong 515 

wind speeds during non-afternoon hours compared to the dormant season. A direct consequence 516 

of using the wind speed as a criterion is that we expect that fewer observations during the 517 

growing season will be included in the AIM, which can possibly create noise, due to fewer 518 

observations, in posterior emissions estimates for non-afternoon hours.  519 
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The boundary layer also has seasonality, and similar to wind speed, we found larger 520 

biases for the growing season than for the dormant season. The smallest mean relative bias that 521 

encompasses all hours of the day is 40% (opposed to 31% for dormant season), when wind speed 522 

is greater than 6 m/s (opposed to 5 m/s during the dormant season) (Figure S11). This relative 523 

bias corresponds to non-afternoon VGs up to 5.5 times larger than typical afternoon VGs, when 524 

wind speed is greater than 6 m/s (Figure S12).  For wind speeds greater than 5 m/s, we found that 525 

in the late hours of the day (21:00 - 23:59 LT), the BLD bias exceeded 100%, but for all the 526 

remaining hours, it is kept below 40%. For these wind conditions (except for 21:00 - 23:59 LT), 527 

we also found that VGs are less than  5.5 times the typical afternoon 𝑉𝐺̅̅ ̅̅ [𝐶𝑂2]. 𝑉𝐺̅̅ ̅̅ [𝐶𝐻4] were so 528 

small in the mid-afternoon (close to zero), that non-afternoon conditions easily exceeded 10 529 

times the afternoon VGs (Figure S12). Thus, although we initially assumed that CH4 would be an 530 

alternative to avoid the complications of the CO2 biogenic fluxes, both trace gases showed 531 

similar patterns that can indicate the most likely atmospheric conditions for data usage.   532 

Looking at the CO2xs normalized by local anthropogenic fossil fuel emissions and boundary 533 

layer depth (Figure S13), we note that, as in the dormant season, there is a more consistent 534 

behavior of the normalized CO2xs as the wind becomes strong, for both observed and modeled 535 

variables. Large discrepancies were observed for early and late hours of the day. Unlike the 536 

VGs,it may be necessary to normalize the growing season CO2xs by biogenic as well as fossil 537 

fuel fluxes. Hence, the large discrepancies might be associated with biogenic respiration not 538 

accounted for in this study.  539 

Lastly, replicating the ratio between observed CO2xs and the vertical differences, we note 540 

that, on average, for the growing season, the CO2xs are typically larger than the vertical 541 

differences for all wind speed conditions (Figure S14). The only exception is when wind is 542 

greater than 5 m/s at late hours of the day. This is consistent with the large BLD and wind speed 543 

biases found within these hours, which is likely due to the small amount of data available in this 544 

category.  Another important caveat for this specific analysis is that biological fluxes might be  545 

largely impacting the background sites during the growing season, making these enhancements 546 

(without accounting for biogenic fluxes) not be a good representation of anthropogenic 547 

emissions.  548 

Thus, despite of the seasonality of the variables (e.g., CO2 fluxes, wind speed, boundary 549 

layer depth), combining all the results, there is not a significant difference between the patterns 550 

observed for dormant and growing season, indicating that 5 m/s is a reasonable criterion for both 551 

seasons. 552 

3.5 Expected non-afternoon observations to be added in urban AIM 553 

Using only mid-afternoon hours and excluding calm winds (e.g., <2 m/s), 21% of the 554 

data is retained for Indianapolis.  Retaining only the non-afternoon hours for which the wind 555 

speed is ≥5 m/s results in adding an additional 37% of the data for a total of 58% of the available 556 

data, close to tripling the amount of data used (Figure 7). 557 
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 558 
Figure 7. Data fraction from the total 24 hours of measurements by period of time using wind speed criteria. 559 

Baseline is mid-afternoon hours (12:00 – 16:59  LT) for all wind  conditions (excluding calm wind).  560 

 561 

Using the same wind speed criteria derived for Indianapolis, we examined the fraction of 562 

data that could be retained for other cities around the world which already have GHG 563 

observational networks (Figure 8), using wind speed data from the closest international airport of 564 

these cities (ASOS network), through the Iowa Environmental Mesonet (publicly available at 565 

https://mesonet.agron.iastate.edu/), for the year of 2021. We note each city has its own 566 

meteorological characteristics.  For example, Melbourne has strong winds during night-time, 567 

while in Los Angeles, the wind is the strongest in the sunset transition hours. Since turbulent 568 

mixing near the surface is tightly connected to near-surface winds, we can extrapolate our 569 

findings to other cities using the wind conditions for these cities.  570 

The wind speed criterion derived from Indianapolis  gives an indication of the additional 571 

data that could be added for other cities. Windier cities like Melbourne, Auckland, and Boston 572 

benefit strongly, since there are a large number of hours that fall within wind speeds higher than 573 

5 m/s. Cities with calmer winds like Zurich and Sao Paulo would add far less additional data. We 574 

do, however, recommend that before including additional data into AIM for other cities, a more 575 

rigorous analysis such as presented here for Indianapolis should be performed, as we have 576 

insufficient evidence to determine that 5 m/s is an appropriate wind speed threshold for all cities. 577 

https://mesonet.agron.iastate.edu/
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 578 
Figure 8. Data fraction that will be added into inversion models for different cities when wind speed is ≥ 5m/s, on 579 

top of the data fraction typically used on inverse systems (mid-afternoon) when removing calm winds (≤ 2m/s). This 580 

is based on 2021 wind speed datasets from the international airports as a representation of wind conditions in the 581 

cities where there is a greenhouse gas network in place. Indianapolis is used as a reference, and the other cities are 582 

sorted by largest to smallest data fraction. 583 

 584 

4 Conclusions 585 

We have identified a simple wind speed criterion that can be used to add GHG 586 

enhancement observations to AIMs outside of the afternoon conditions typically used for AIMs.  587 

Analysis of  vertical gradients of CO2 and CH4 categorized by different wind speed conditions 588 

indicated the most likely atmospheric conditions that can lead to the use of additional data in 589 

AIM. Further analysis that linked the model performance to the observed vertical gradients, 590 

confirmed that under unstable conditions, biases in BLD and enhancements are much smaller 591 

than under atmospheric stable conditions.  592 

  The use of additional data under relatively well-mixed atmospheric conditions will allow 593 

us to begin to use urban AIMs to study critical hours of the day, when emissions are at their 594 

highest levels in specific sectors. One example are the traffic rush hours, which fall within the 595 

transition of atmospheric conditions, close to sunset and sunrise hours, which means abrupt 596 

changes in the atmospheric boundary layer depth. Our analyses suggest that by selecting 597 

relatively windy atmospheric conditions, e.g., ≥ 5 m/s, data throughout the day can be applied to 598 

AIMs without introducing inordinately large errors in atmospheric transport. This criterion will 599 

allow to more than double the amount of data available to be assimilated by AIMs, which in 600 

urban environments will allow AIMs to better estimate fluxes for all hours of the day. 601 

 602 
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