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Abstract

Studies have implicated the importance of longwave (LW) cloud-radiative forcing (CRF) in facilitating or accelerating the

upscale development of tropical moist convection. While different cloud types are known to have distinct CRF, their individual

roles in driving upscale development through radiative feedback is largely unexplored. We hypothesize that CRF from stratiform

regions will have the greatest effect on upscale tropical convection. We test this hypothesis by analyzing output from convection-

permitting ensemble Weather Research and Forecasting (WRF) model simulations of tropical cyclone formation. Using a novel

column-by-column cloud classification scheme introduced herein, we use this model output to identify the relative contribution

of five cloud types (shallow, congestus, and deep convection; and stratiform and anvil clouds) to the direct LW radiative forcing

and the upscale development of convection via LW moist static energy variance. Results indicate that stratiform and anvil

regions contribute dominantly to the domain averages of these variables.
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Key Points:5
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Abstract12

Studies have implicated the importance of longwave (LW) cloud-radiative forcing (CRF)13

in facilitating or accelerating the upscale development of tropical moist convection. While14

different cloud types are known to have distinct CRF, their individual roles in driving15

upscale development through radiative feedback is largely unexplored. We hypothesize16

that CRF from stratiform regions will have the greatest effect on upscale tropical con-17

vection. We test this hypothesis by analyzing output from convection-permitting ensem-18

ble Weather Research and Forecasting (WRF) model simulations of tropical cyclone for-19

mation. Using a novel column-by-column cloud classification scheme introduced herein,20

we use this model output to identify the relative contribution of five cloud types (shal-21

low, congestus, and deep convection; and stratiform and anvil clouds) to the direct LW22

radiative forcing and the upscale development of convection via LW moist static energy23

variance. Results indicate that stratiform and anvil regions contribute dominantly to the24

domain averages of these variables.25

Plain Language Summary26

Infrared or longwave radiation and its interaction with clouds is important in the27

formation of tropical storms. Given the different shapes and distributions of distinct cloud28

types, we hypothesize that they interact with longwave radiation differently, and there-29

fore exert different impacts on the organization of tropical convection. This issue has largely30

been unexplored. To address this gap, we tested our hypothesis by analyzing numeri-31

cal model simulations of the formation of two tropical cyclones. Further, we developed32

a novel cloud classification scheme based on cloud properties that identifies five distinct33

cloud types. Our results indicate that light-raining regions, such as stratiform and anvil,34

contribute dominantly to the domain’s longwave cloud-radiative heating and the moist-35

ening of convective regions. This is due to both these cloud types’ strong greenhouse trap-36

ping effect and their extensive areal coverage, which spreads this effect over large regions37

of a developing storm.38

1 Introduction39

Over the past few decades, we have gained a better understanding of cloud feed-40

backs and their importance in our climate on a global and regional scale (Zelinka et al.,41

2020). For example, we now recognize that cloud-radiative forcing (CRF) is an essen-42

tial maintenance mechanism of the Madden–Julian Oscillation (MJO; Adames & Kim,43

2016; Ciesielski et al., 2017; Najarian & Sakaeda, 2023). We have further learned of CRF’s44

part in accelerating tropical cyclone (TC) genesis (e.g., J. H. Ruppert et al., 2020; Wu45

et al., 2021). However, there remain uncertainties regarding how cloud feedbacks and46

CRF affect the smaller-scale dynamics of moist convection (Bony et al., 2015).47

Studies have begun to highlight the role of CRF in the dynamics of tropical con-48

vection (e.g., Bretherton et al., 2005; Wing et al., 2016; J. H. Ruppert et al., 2020), for49

example, through the study of self-aggregation. Self-aggregation, the spontaneous ini-50

tiation and clustering of convection, develops in idealized model frameworks that are in51

radiative-convective equilibrium (RCE), an approximation for the real tropical atmosphere52

(Manabe & Strickler, 1964; Bretherton et al., 2005). A budget of moist static energy (MSE)53

variance identifies multiple pathways for promoting convective upscale growth, which shows54

that it is the longwave (LW) cloud effect that dominates the maintenance of a mature55

cluster (Muller & Held, 2012; Wing & Cronin, 2016; Wing et al., 2017). The inclusion56

of rotation provides an idealized analogue for TC development, wherein self-aggregation57

takes the form of tropical cyclogenesis (Bretherton et al., 2005; Davis, 2015; Wing et al.,58

2016). Like in non-rotating frameworks, the cloud-LW radiative feedback considerably59

aids the development of self-aggregation, but differing from non-rotating frameworks, sur-60

face flux feedback is also important to aggregation and its maintenance (Wing et al., 2016).61
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Nonetheless, prior to the development of strong surface winds (i.e., genesis of a surface62

vortex), the cloud-LW radiative feedback dominates aggregation, which takes the form63

of upscale convective development (J. H. Ruppert et al., 2020).64

Recent studies have applied the concepts from RCE model frameworks into a real-65

world context and demonstrate that LW CRF indeed accelerates TC development (J. H. Rup-66

pert et al., 2020; Wu et al., 2021). One supported hypothesis for how this works is that67

LW CRF promotes upward motion in moist regions (Bu et al., 2014; J. H. Ruppert et68

al., 2020) and, thus, creates a thermally direct circulation that increases moisture in those69

moist areas (Bretherton et al., 2005; Needham & Randall, 2021a, 2021b). Still, there is70

limited understanding of how the interaction between clouds, radiative heating, and convective-71

scale motions manifests in this feedback, which constitutes an important knowledge gap72

that we seek to address here.73

Tropical convection is composed of and closely linked to distinct cloud types, in-74

cluding shallow cumuli, congestus, deep cumulonimbi, stratiform, and anvil clouds (Johnson75

et al., 1999). These clouds are distinct components of mesoscale convective systems (MCSs),76

each with unique dynamic behavior, distribution, and composition (Houze Jr., 2004). To77

our knowledge, no study to date has identified the unique role of specific cloud types on78

CRF and their resulting influence on convective upscale growth, which is the focus of79

our study. We specifically address the question of how different cloud types in organized80

convective systems uniquely promote upscale development through LW radiative forc-81

ing.82

Given the widespread, blanketing, and long-lived nature of both anvil clouds and83

stratiform precipitation systems (Webster & Stephens, 1980; Houze, 1997; Schumacher84

& Houze, 2003; Ahmed & Schumacher, 2015), we specifically hypothesize that these85

cloud systems are the most important for promoting convective upscale de-86

velopment through LW CRF. We examine this hypothesis by determining the con-87

tributions of five different cloud types to LW CRF and the LW MSE variance source term88

using a novel classification scheme that we apply to convection-permitting ensemble Weather89

Research and Forecasting (WRF) model simulations of tropical organized deep convec-90

tion. We leverage two TC development events to do so, Super Typhoon Haiyan (2013)91

and Hurricane Maria (2017), though we emphasize the early simulation periods prior to92

any intense TCs. While we highlight our analysis of Haiyan, the results from Maria (Sup-93

porting Information; SI) support our hypothesis as well. Our results can guide future94

observational study of CRF. Furthermore, with CRF tied to a primary source of numer-95

ical model uncertainty (Morrison et al., 2020; Zelinka et al., 2020), this work may ulti-96

mately help identify new pathways to improve the numerical model prediction of weather97

and climate.98

2 WRF Simulations99

To quantify the role of different precipitating cloud types on CRF and their asso-100

ciated impact on tropical convection, we simulate the TC development cases for Haiyan101

and Maria through numerical model simulations. These storms were chosen because they102

developed in a typical environment for tropical cyclogenesis, including weak vertical wind103

shear and high sea surface temperatures (SSTs; J. H. Ruppert et al., 2020), and so rep-104

resent a larger population of TC cases. To support the notion that our results are gen-105

eralizable, i.e., not specific to post-TC-genesis conditions, we include in SI (Figures S1-106

S2) our results with only the first 24 hours of the simulation for comparison. The sim-107

ulations consist of a 10-member ensemble using the Advanced Research Weather Research108

and Forecasting model (WRF-ARW, version 4.3.1; Skamarock et al., 2021). We use a109

nested domain with the outer domain’s initial and boundary conditions initiated from110

the first 10 ensemble members of the NOAA-NCEP Global Ensemble Forecast System111

(2015) retrieved from the NOAA National Centers for Environmental Information. The112
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model is run with 55 stretched vertical levels with a model top at 10 hPa and a two-nest113

approach. The inner nest is 3-km grid spacing and approximately 3,600×2,200 km in scale.114

The simulations are integrated from 0000 UTC 1–0000 UTC 5 Nov 2013 for Haiyan and115

0000 UTC 14–0000 UTC 18 Sept 2017. The microphysics is represented by the two-moment116

scheme of Thompson and Eidhammer (2014). The simulations have clouds interacting117

with radiation as in nature using the SW and LW radiation schemes from the Rapid Ra-118

diative Transfer Model for GCMs (RRTMG) (Iacono et al., 2008), which is fully coupled119

to the microphysics scheme. The other physics settings are as in J. H. Ruppert et al. (2020).120

Our results for Maria are shown in the SI (Figures S3-S4). For all analysis, we exclude121

the first 12 timesteps as “spin-up” time and 80 points from domain lateral boundaries.122

3 Cloud Classification123

To investigate our research question, we require a classification algorithm that can124

accurately identify a range of cloud types. Traditional precipitation classifications rely125

on low-level reflectivity and its gradients to identify stratiform and convective precip-126

itation (e.g., Steiner et al., 1995; Biggerstaff & Listemaa, 2000; Powell et al., 2016). As127

we seek to more comprehensively capture three-dimensional cloud coverage, however, we128

develop a column-by-column scheme that leverages full-column model hydrometeor mass129

information, similar to Sui et al. (2007). Since it is column-by-column, the scheme can130

also be effectively implemented during runtime in parallelized model frameworks, which131

is a strength that we will exploit in a forthcoming study. While the scheme is developed132

ad hoc for our purposes and is expected to be sensitive to model microphysical scheme133

choice, its simplicity should make future implementations of the scheme straightforward,134

subject to adjustments as necessary.135

To build confidence in our algorithm, we compare the spatial distributions and mean136

vertical motion profiles using our classification to that of the traditional reflectivity-based137

scheme of Rogers (2010), which was developed for application to model output and as-138

signs cloud type based on reflectivity at 0.4 and 3 km elevation. Although we make this139

comparison to a reflectivity-based classification, we neither expect nor desire our results140

to perfectly match, since the motivation behind each algorithm is different. A scheme141

based on low-level reflectivity will likely underestimate or incorrectly classify stratiform142

and anvil regions considering reflectivity’s sensitivity to large rain drops and high rain143

rates. Since cloud–radiation interaction is not limited to strongly precipitating clouds,144

we have designed our algorithm with the goal of capturing this broader population of145

radiatively interactive clouds.146

Most classification schemes are limited to three precipitation categories: convec-147

tive, stratiform, and a third category dependent on the algorithm. The scheme by Rogers148

(2010) includes anvil as its third category and the Sui et al. (2007) classification contains149

a mixed category between convective and stratiform. We use the model hydrometeor in-150

formation in our scheme to further separate the categories, which include deep convec-151

tive, shallow convective, congestus, stratiform, anvil, and non-precipitating. In summary,152

we seek to develop an approach that leverages model microphysical information, captures153

the bulk convective and stratiform behavior as validated using well-established paradigms154

of vertical motion, and includes additional classification sub-types to capture their dis-155

tinct radiative forcing signatures.156

3.1 Description and Development157

Our classification is summarized in Figure 1. The first step of our classification de-158

termines if a cell contains cloud. This decision is determined via a total water path (TWP;159

the sum of rain, cloud, graupel, snow, and ice column-integrated mixing ratios) thresh-160

old of 0.1 mm. We found a TWP threshold to be a necessary cutoff to exclude many grid161

columns identified as containing spurious (i.e., small magnitude) hydrometeor amounts162
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Figure 1. Flow chart summarizing the categorization process for our precipitation classifica-

tion algorithm.

associated with negligible rainfall and radiative forcing. We compared this TWP thresh-163

old to Rogers (2010) to confirm we were not cutting out a large population of cloud (Fig-164

ure S5). Adjustments to the TWP threshold primarily effects shallow convective and anvil165

domain fractions, but does not strongly alter the radiative forcing statistics (not shown).166

Next, bulk convective and stratiform categories are separated by a cloud ratio (CR)167

threshold, as in Sui et al. (2007). The CR is the ratio of ice water path (IWP) to liq-168

uid water path (LWP). IWP is the sum of column-integrated graupel, snow, and cloud169

ice mixing ratios and LWP is the sum of column-integrated rain and cloud water mix-170

ing ratios. Columns with a CR < 2 are considered convective and columns with CR ≥171

2 are considered stratiform, assuming stratiform regions will be dominated by ice hydrom-172

eteors. We again compared the CR threshold to the Rogers (2010) scheme and confirmed173

our threshold falls between its identified convective and stratiform populations (Figure174

S6). Convective regions are further divided between deep convective, congestus, and shal-175

low, as follows. Grid cells are marked shallow if the column-integrated rain mixing ra-176

tio falls below a threshold of 0.1 mm considering that congestus and deep convective re-177

gions would have higher rain rates (Johnson et al., 1996). Deep convective is separated178

from congestus by a graupel mixing ratio threshold of 10−4 mm, with deep convective179

regions exceeding this threshold, on the basis that congestus have limited vertical ex-180

tent beyond the 0◦C level (Johnson et al., 1999) and hence limited glaciation. Stratiform181

is separated from anvil where columns exceed a rain mixing ratio of 0.01 mm, account-182

ing for stratiform having more precipitating liquid water content than anvil clouds (Houze,183

1997; Houze Jr., 2004). While we lack a means for comparing these sub-classifications184

with the traditional algorithm, we assess their averaged vertical motion profiles against185

well-established vertical structures in convective and stratiform precipitation (Steiner186

et al., 1995; Houze Jr., 2004) in the following subsection.187
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Figure 2. Maps comparing a) the new classification scheme, the b) traditional reflectivity

classification, c) the LW ACRE, and d) 1000 hPa rain water mixing ratio. See color bars for algo-

rithm classifications. All panels show the first ensemble member of Haiyan at 36 hours.

3.2 Comparison and Validation188

We first present horizontal maps (Figure 2) comparing the new algorithm and the189

Rogers (2010) classification. The new classification produces the following cloud frac-190

tions for the domain shown (Figure 2): deep convective as 2.76%, congestus as 1.39%,191

shallow convective as 4.04%, stratiform as 16.42%, anvil as 13.99%, and non-precipitating192

as 61.4%. The reflectivity approach produces the following cloud fractions: convective193

is 3.53%, stratiform is 10.09%, anvil is 6.98%, and non-precipitating is 79.4%. The new194

classification marks more grid cells within the domain as cloud while also increasing the195

number of points identified as anvil and stratiform compared to the reflectivity approach.196

The increased count for these cloud types indicates that our algorithm is more sensitive197

to cloudy columns with lower rain rates, which is an expected and intended result, given198

our objectives. Additionally, we see more stratiform and anvil regions enveloping the deep199
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convection regions, the latter of which are often located on edges with the reflectivity-200

based algorithm. Our algorithm also identifies shallow convection, which is incorporated201

with the general convective category when using reflectivity.202

We next present the vertical motion (w) profiles averaged for each cloud type in203

our classification alongside the adapted Rogers (2010) scheme in Figure 3a-c. All three204

convective w-profiles have an expected bottom-heavy profile, with deep convective max-205

imizing around 550 hPa, congestus maximizing at 850 hPa, and shallow convective max-206

imizing at 900 hPa. The profile averaged across all three convective types is consistent207

with the shape of reflectivity-based classification profile, albeit with a smaller magnitude208

and broader peak. These differences are consistent with the capture of more weakly pre-209

cipitating columns of convection in the new algorithm. Further, for both stratiform and210

anvil the new algorithm produces a “top-heavy” profile, with upper-level rising and low-211

level sinking motion, with anvil having a smaller magnitude than stratiform. In compar-212

ison with the reflectivity-based approach, the profiles are similar in shape but with slight213

differences in magnitudes and with our classification having a 50-100 hPa higher inflec-214

tion point. The overall merit of this new classification scheme is supported by the con-215

sistencies between these w-profiles in the two algorithms and, more broadly, with well-216

established paradigms documented in the literature (Steiner et al., 1995; Houze, 1997;217

Houze Jr., 2004).218

We conclude that the new classification algorithm accurately identifies precipita-219

tion types for this model output. The scheme is less computationally bulky than tradi-220

tional reflectivity-based schemes as it is based on microphysics thresholds and is a column-221

by-column approach. This allows for cloud classification within the framework of mod-222

els without the need of neighboring cell information, which is computationally cumber-223

some in highly parallelized frameworks commonly used for convective-scale modeling.224

However, this approach does have some weaknesses. By having the cloud classification225

based on microphysics thresholds, the scheme inherently relies on specific hydrometeor226

behavior and treatment. Different microphysics schemes have vastly different treatments227

of hydrometeors (Morrison et al., 2020) and would hence require modification to apply228

to other microphysics schemes. This caveat extends to reflectivity-based approaches, how-229

ever, since model-based reflectivity relies upon microphysical assumptions. Additionally,230

the new algorithm can only identify one cloud type per column. So, if there are layers231

of different cloud types present, only the most prominent type will be identified. Despite232

these limitations, we deem our algorithm suitable for our science question.233

4 Longwave Radiative Features of Different Cloud Types234

4.1 ACRE and CRF235

We next seek to quantify each cloud mode’s contribution to LW CRF and ACRE.236

Using our column-by-column based classification algorithm, we calculate the domain-237

averaged and class-averaged LW ACRE. The domain average measures each cloud types’238

contribution to the total LW ACRE in the domain, while the class average calculates239

the mean LW ACRE averaged only over the cells of that type. Stratiform and anvil modes240

contribute the most to the domain-averaged LW ACRE, with averages around 10 W m−2
241

(Figure 4a). Of the convective types, deep convective has the greatest contribution to242

the LW ACRE ( 2.5 W m−2), with congestus and shallow convective points providing243

the smallest contributions. The large contribution to the domain average by stratiform244

and anvil modes is partly due to the larger area coverage of these cloud types (Figure245

2a,b).246

But area coverage is not the only reason stratiform and anvil regions have the great-247

est domain-averaged LW ACRE. When averaging ACRE by class, stratiform and anvil248

regions retain the highest ACRE value (Figure 4b). They are almost an order of mag-249
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Figure 3. Averaged profiles of vertical motion (w) (a-c) and CRF (d-f) in convective cate-

gories (left column), stratiform and anvil (middle column), and the total convective and strati-

form categories (right column). In (a-c), the new classification is presented in solid lines and the

reflectivity approach appear as dashed. In (d,e), the dashed black lines represent the averages

across all shown categories within the respective panel. Plots include values from all 10 members

and 85 timesteps of Haiyan.
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Figure 4. Boxplots of domain-averaged (left) and class-averaged (right) LW ACRE (top)

and ĥ′NETLW ′ (bottom) by precipitation type. White circles indicate the mean value. Black

diamonds represent outliers. Domain averages represent class-averaged values normalized by total

grid cell count, and class-averaged values are normalized only by category cell count. Plots in-

clude values from all 10 members and 85 timesteps of Haiyan.
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nitude greater than that of the congestus and shallow convective types. Deep convec-250

tive has the greatest LW ACRE value of the three convective modes, with an average251

value of 85 W m−2. This value is comparable in magnitude to that of stratiform and252

anvil regions, suggesting comparable radiative forcing by these categories within a given253

column. The combination of stratiform and anvil’s large class-averaged LW ACRE with254

their larger area coverage explains their much larger contribution to the domain-averaged255

LW ACRE.256

We next present vertical profiles of LW CRF to aid interpretation of these results257

(Figure 3d-f). Cloud types with larger ACRE values exhibit a deep layer of positive CRF.258

Stratiform and anvil modes are similar in CRF shape and magnitude, which is notewor-259

thy given their much different vertical motion magnitude (Figure 3b). Namely, the ra-260

diative forcing per unit vertical mass flux within a given layer is much larger for anvil261

than stratiform. CRF in these cloud modes is positive from 200 hPa to the surface and262

with maxima around 5 K day−1 at 300 hPa, with strong cloud-top cooling above 200 hPa.263

Of the convective categories, deep convective has the deepest layer of positive CRF of264

2 K day−1 from 200 hPa to the surface, with a small layer near 0 K day−1 between 400265

and 500 hPa. This may be due to layers of detrained cloud in association with the 0◦C266

stable layer (Johnson et al., 1996). Like stratiform and anvil, deep convective has a strong267

signature of cloud-top cooling above 200 hPa. Congestus and shallow convective modes268

have maxima in the lower troposphere with cooling above due to their low cloud-top height.269

Above 800 hPa, their CRF hovers around 0 K day−1. The modest heating values in the270

upper troposphere in these categories are likely a result of the algorithm only identify-271

ing one cloud type for each column, with these columns potentially including thin anvil272

clouds. Otherwise, these results are consistent with expectations of cloud depth based273

on mean vertical motion (Figure 3 a-c).274

4.2 LW MSE Variance Source Term275

The MSE budget is a tool that allows us to assess and quantify upscale develop-276

ment and intensification of convection. This tool has been used to assess the influence277

of radiative feedback in relation to both self-aggregation (Wing & Emanuel, 2014) and278

TC genesis (J. H. Ruppert et al., 2020; Wu et al., 2021). Our interest in this budget is279

primarily in the LW-source term as it has been shown to be the dominant term for main-280

taining and accelerating convective upscale development (at least, prior to TC genesis)281

(Wing & Emanuel, 2014; Wing & Cronin, 2016; J. H. Ruppert et al., 2020). The LW MSE282

variance term (ĥ′NetLW′) is the correlation between the anomaly of the density-weighted283

vertical integral of MSE (ĥ′) and the anomalous column LW radiative flux convergence284

(NetLW′), where anomalies are calculated as the deviation from the domain average. More285

details on the calculation of this term can be found in Wing and Emanuel (2014) and286

J. H. Ruppert et al. (2020).287

When we average ĥ′NetLW′ by cloud type, we once again see that stratiform and288

anvil regions contribute the most to the domain-averaged LW MSE variance source term.289

Stratiform dominates, with an average of about 0.035 day−1 (Figure 4c). The stratiform290

regions also have the highest class-averaged LW MSE variance of all the cloud types (Fig-291

ure 4d). Congestus and shallow convective points have the lowest class-averaged LW MSE292

variance, as may be anticipated from LW ACRE (Figure 4 a-b). Surprisingly, deep con-293

vective regions have the second highest LW MSE variance, almost matching that of strat-294

iform. Anvil’s class average follows deep convective with a value of 0.25 day−1 compared295

to stratiform and deep connective’s averages of about 0.4 day−1. Like the LW ACRE,296

the stratiform and anvil regions have much greater areal coverage than convective re-297

gions (Figure 2a), which explains the smaller domain-averaged value for convection.298

The high column influence of stratiform and anvil clouds in terms of both LW ACRE299

and ĥ′NetLW′, combined with their extensive areal coverage, indicates their unique im-300
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portance for supporting upscale convective development in the tropics by amplifying MSE301

variance via radiative forcing. Although deep convective regions also have high values302

of LW MSE variance in a given column, the small regional coverage of this cloud type303

likely limits its area-averaged impact, which is how radiative forcing is linked to the ten-304

dency of MSE variance (Wing & Emanuel, 2014). These findings emphasize the impor-305

tant influences of stratiform and anvil regions on tropical convective organization through306

their radiative forcing, which have not been previously examined in this manner.307

5 Summary and Conclusions308

In this study, we have investigated the role of CRF of five different cloud types and309

their ability to aid the organization of tropical convection via the analysis of convection-310

permitting WRF simulations conducted in the context of TC development. To accom-311

plish this, we developed a novel column-by-column cloud classification algorithm based312

on microphysical thresholds. Our classification holds several advantages over low-level313

reflectivity-based approaches, such as it is computationally efficient and can be run within314

the framework of a numerical model, it is sensitive to cloud (including non-precipitating)315

throughout the column, and it identifies five cloud modes (instead of two or three): shal-316

low, congestus, and deep convective; and stratiform and anvil. However, the disadvan-317

tages to this algorithm includes its likely sensitivity to different microphysics schemes318

based on its threshold approach and that it can only identify one cloud type per column.319

Despite these disadvantages, this approach to cloud classification allows for more ques-320

tions to be answered on the influence of cloud type, including our question of how dif-321

ferent cloud types in organized convective systems promote upscale development though322

LW radiative forcing.323

We hypothesized that stratiform and anvil regions would support convective or-324

ganization more than other categories through LW ACRE and the LW MSE variance325

source term. We found that stratiform and anvil contributed the most to the domain-326

averaged ACRE and had greater class-averaged ACRE than that of the other types, in-327

dicating their important contribution to the direct LW radiative forcing. For the LW MSE328

variance source term, stratiform and anvil again contributed the most to the domain av-329

erage. However, the class averages revealed that deep convective was on par with strat-330

iform regions, resulting in those two classes having the highest class averages. Anvil was331

third highest, followed by shallow and congestus, which were much weaker. While the332

class-averaged LW MSE variance source term indicates that the localized forcing by deep333

convective, stratiform, and anvil clouds is comparable, anvil and stratiform clouds dom-334

inate in supporting convective upscale development owing to their much greater area cov-335

erage. Although we do not fully answer the question of how different cloud types in or-336

ganized convective systems uniquely promote upscale development through LW radia-337

tive forcing, we do provide support of our hypothesis and shed new light on the specific338

cloud types most important to convective upscale via LW cloud feedback. Future work339

will focus on the mechanisms CRF works through to promote organization within trop-340

ical convection.341

Open Research Section342

The code needed to recreate the WRF simulations described in this study is pub-343

lished at Zenodo (J. Ruppert & Zhang, 2024). The code for the precipitation classifica-344

tion algorithm (Luschen & Ruppert, 2024b) and the analysis (Luschen & Ruppert, 2024a)345

presented here are available on Zenodo as well.346
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Abstract12

Studies have implicated the importance of longwave (LW) cloud-radiative forcing (CRF)13

in facilitating or accelerating the upscale development of tropical moist convection. While14

different cloud types are known to have distinct CRF, their individual roles in driving15

upscale development through radiative feedback is largely unexplored. We hypothesize16

that CRF from stratiform regions will have the greatest effect on upscale tropical con-17

vection. We test this hypothesis by analyzing output from convection-permitting ensem-18

ble Weather Research and Forecasting (WRF) model simulations of tropical cyclone for-19

mation. Using a novel column-by-column cloud classification scheme introduced herein,20

we use this model output to identify the relative contribution of five cloud types (shal-21

low, congestus, and deep convection; and stratiform and anvil clouds) to the direct LW22

radiative forcing and the upscale development of convection via LW moist static energy23

variance. Results indicate that stratiform and anvil regions contribute dominantly to the24

domain averages of these variables.25

Plain Language Summary26

Infrared or longwave radiation and its interaction with clouds is important in the27

formation of tropical storms. Given the different shapes and distributions of distinct cloud28

types, we hypothesize that they interact with longwave radiation differently, and there-29

fore exert different impacts on the organization of tropical convection. This issue has largely30

been unexplored. To address this gap, we tested our hypothesis by analyzing numeri-31

cal model simulations of the formation of two tropical cyclones. Further, we developed32

a novel cloud classification scheme based on cloud properties that identifies five distinct33

cloud types. Our results indicate that light-raining regions, such as stratiform and anvil,34

contribute dominantly to the domain’s longwave cloud-radiative heating and the moist-35

ening of convective regions. This is due to both these cloud types’ strong greenhouse trap-36

ping effect and their extensive areal coverage, which spreads this effect over large regions37

of a developing storm.38

1 Introduction39

Over the past few decades, we have gained a better understanding of cloud feed-40

backs and their importance in our climate on a global and regional scale (Zelinka et al.,41

2020). For example, we now recognize that cloud-radiative forcing (CRF) is an essen-42

tial maintenance mechanism of the Madden–Julian Oscillation (MJO; Adames & Kim,43

2016; Ciesielski et al., 2017; Najarian & Sakaeda, 2023). We have further learned of CRF’s44

part in accelerating tropical cyclone (TC) genesis (e.g., J. H. Ruppert et al., 2020; Wu45

et al., 2021). However, there remain uncertainties regarding how cloud feedbacks and46

CRF affect the smaller-scale dynamics of moist convection (Bony et al., 2015).47

Studies have begun to highlight the role of CRF in the dynamics of tropical con-48

vection (e.g., Bretherton et al., 2005; Wing et al., 2016; J. H. Ruppert et al., 2020), for49

example, through the study of self-aggregation. Self-aggregation, the spontaneous ini-50

tiation and clustering of convection, develops in idealized model frameworks that are in51

radiative-convective equilibrium (RCE), an approximation for the real tropical atmosphere52

(Manabe & Strickler, 1964; Bretherton et al., 2005). A budget of moist static energy (MSE)53

variance identifies multiple pathways for promoting convective upscale growth, which shows54

that it is the longwave (LW) cloud effect that dominates the maintenance of a mature55

cluster (Muller & Held, 2012; Wing & Cronin, 2016; Wing et al., 2017). The inclusion56

of rotation provides an idealized analogue for TC development, wherein self-aggregation57

takes the form of tropical cyclogenesis (Bretherton et al., 2005; Davis, 2015; Wing et al.,58

2016). Like in non-rotating frameworks, the cloud-LW radiative feedback considerably59

aids the development of self-aggregation, but differing from non-rotating frameworks, sur-60

face flux feedback is also important to aggregation and its maintenance (Wing et al., 2016).61
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Nonetheless, prior to the development of strong surface winds (i.e., genesis of a surface62

vortex), the cloud-LW radiative feedback dominates aggregation, which takes the form63

of upscale convective development (J. H. Ruppert et al., 2020).64

Recent studies have applied the concepts from RCE model frameworks into a real-65

world context and demonstrate that LW CRF indeed accelerates TC development (J. H. Rup-66

pert et al., 2020; Wu et al., 2021). One supported hypothesis for how this works is that67

LW CRF promotes upward motion in moist regions (Bu et al., 2014; J. H. Ruppert et68

al., 2020) and, thus, creates a thermally direct circulation that increases moisture in those69

moist areas (Bretherton et al., 2005; Needham & Randall, 2021a, 2021b). Still, there is70

limited understanding of how the interaction between clouds, radiative heating, and convective-71

scale motions manifests in this feedback, which constitutes an important knowledge gap72

that we seek to address here.73

Tropical convection is composed of and closely linked to distinct cloud types, in-74

cluding shallow cumuli, congestus, deep cumulonimbi, stratiform, and anvil clouds (Johnson75

et al., 1999). These clouds are distinct components of mesoscale convective systems (MCSs),76

each with unique dynamic behavior, distribution, and composition (Houze Jr., 2004). To77

our knowledge, no study to date has identified the unique role of specific cloud types on78

CRF and their resulting influence on convective upscale growth, which is the focus of79

our study. We specifically address the question of how different cloud types in organized80

convective systems uniquely promote upscale development through LW radiative forc-81

ing.82

Given the widespread, blanketing, and long-lived nature of both anvil clouds and83

stratiform precipitation systems (Webster & Stephens, 1980; Houze, 1997; Schumacher84

& Houze, 2003; Ahmed & Schumacher, 2015), we specifically hypothesize that these85

cloud systems are the most important for promoting convective upscale de-86

velopment through LW CRF. We examine this hypothesis by determining the con-87

tributions of five different cloud types to LW CRF and the LW MSE variance source term88

using a novel classification scheme that we apply to convection-permitting ensemble Weather89

Research and Forecasting (WRF) model simulations of tropical organized deep convec-90

tion. We leverage two TC development events to do so, Super Typhoon Haiyan (2013)91

and Hurricane Maria (2017), though we emphasize the early simulation periods prior to92

any intense TCs. While we highlight our analysis of Haiyan, the results from Maria (Sup-93

porting Information; SI) support our hypothesis as well. Our results can guide future94

observational study of CRF. Furthermore, with CRF tied to a primary source of numer-95

ical model uncertainty (Morrison et al., 2020; Zelinka et al., 2020), this work may ulti-96

mately help identify new pathways to improve the numerical model prediction of weather97

and climate.98

2 WRF Simulations99

To quantify the role of different precipitating cloud types on CRF and their asso-100

ciated impact on tropical convection, we simulate the TC development cases for Haiyan101

and Maria through numerical model simulations. These storms were chosen because they102

developed in a typical environment for tropical cyclogenesis, including weak vertical wind103

shear and high sea surface temperatures (SSTs; J. H. Ruppert et al., 2020), and so rep-104

resent a larger population of TC cases. To support the notion that our results are gen-105

eralizable, i.e., not specific to post-TC-genesis conditions, we include in SI (Figures S1-106

S2) our results with only the first 24 hours of the simulation for comparison. The sim-107

ulations consist of a 10-member ensemble using the Advanced Research Weather Research108

and Forecasting model (WRF-ARW, version 4.3.1; Skamarock et al., 2021). We use a109

nested domain with the outer domain’s initial and boundary conditions initiated from110

the first 10 ensemble members of the NOAA-NCEP Global Ensemble Forecast System111

(2015) retrieved from the NOAA National Centers for Environmental Information. The112
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model is run with 55 stretched vertical levels with a model top at 10 hPa and a two-nest113

approach. The inner nest is 3-km grid spacing and approximately 3,600×2,200 km in scale.114

The simulations are integrated from 0000 UTC 1–0000 UTC 5 Nov 2013 for Haiyan and115

0000 UTC 14–0000 UTC 18 Sept 2017. The microphysics is represented by the two-moment116

scheme of Thompson and Eidhammer (2014). The simulations have clouds interacting117

with radiation as in nature using the SW and LW radiation schemes from the Rapid Ra-118

diative Transfer Model for GCMs (RRTMG) (Iacono et al., 2008), which is fully coupled119

to the microphysics scheme. The other physics settings are as in J. H. Ruppert et al. (2020).120

Our results for Maria are shown in the SI (Figures S3-S4). For all analysis, we exclude121

the first 12 timesteps as “spin-up” time and 80 points from domain lateral boundaries.122

3 Cloud Classification123

To investigate our research question, we require a classification algorithm that can124

accurately identify a range of cloud types. Traditional precipitation classifications rely125

on low-level reflectivity and its gradients to identify stratiform and convective precip-126

itation (e.g., Steiner et al., 1995; Biggerstaff & Listemaa, 2000; Powell et al., 2016). As127

we seek to more comprehensively capture three-dimensional cloud coverage, however, we128

develop a column-by-column scheme that leverages full-column model hydrometeor mass129

information, similar to Sui et al. (2007). Since it is column-by-column, the scheme can130

also be effectively implemented during runtime in parallelized model frameworks, which131

is a strength that we will exploit in a forthcoming study. While the scheme is developed132

ad hoc for our purposes and is expected to be sensitive to model microphysical scheme133

choice, its simplicity should make future implementations of the scheme straightforward,134

subject to adjustments as necessary.135

To build confidence in our algorithm, we compare the spatial distributions and mean136

vertical motion profiles using our classification to that of the traditional reflectivity-based137

scheme of Rogers (2010), which was developed for application to model output and as-138

signs cloud type based on reflectivity at 0.4 and 3 km elevation. Although we make this139

comparison to a reflectivity-based classification, we neither expect nor desire our results140

to perfectly match, since the motivation behind each algorithm is different. A scheme141

based on low-level reflectivity will likely underestimate or incorrectly classify stratiform142

and anvil regions considering reflectivity’s sensitivity to large rain drops and high rain143

rates. Since cloud–radiation interaction is not limited to strongly precipitating clouds,144

we have designed our algorithm with the goal of capturing this broader population of145

radiatively interactive clouds.146

Most classification schemes are limited to three precipitation categories: convec-147

tive, stratiform, and a third category dependent on the algorithm. The scheme by Rogers148

(2010) includes anvil as its third category and the Sui et al. (2007) classification contains149

a mixed category between convective and stratiform. We use the model hydrometeor in-150

formation in our scheme to further separate the categories, which include deep convec-151

tive, shallow convective, congestus, stratiform, anvil, and non-precipitating. In summary,152

we seek to develop an approach that leverages model microphysical information, captures153

the bulk convective and stratiform behavior as validated using well-established paradigms154

of vertical motion, and includes additional classification sub-types to capture their dis-155

tinct radiative forcing signatures.156

3.1 Description and Development157

Our classification is summarized in Figure 1. The first step of our classification de-158

termines if a cell contains cloud. This decision is determined via a total water path (TWP;159

the sum of rain, cloud, graupel, snow, and ice column-integrated mixing ratios) thresh-160

old of 0.1 mm. We found a TWP threshold to be a necessary cutoff to exclude many grid161

columns identified as containing spurious (i.e., small magnitude) hydrometeor amounts162
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Figure 1. Flow chart summarizing the categorization process for our precipitation classifica-

tion algorithm.

associated with negligible rainfall and radiative forcing. We compared this TWP thresh-163

old to Rogers (2010) to confirm we were not cutting out a large population of cloud (Fig-164

ure S5). Adjustments to the TWP threshold primarily effects shallow convective and anvil165

domain fractions, but does not strongly alter the radiative forcing statistics (not shown).166

Next, bulk convective and stratiform categories are separated by a cloud ratio (CR)167

threshold, as in Sui et al. (2007). The CR is the ratio of ice water path (IWP) to liq-168

uid water path (LWP). IWP is the sum of column-integrated graupel, snow, and cloud169

ice mixing ratios and LWP is the sum of column-integrated rain and cloud water mix-170

ing ratios. Columns with a CR < 2 are considered convective and columns with CR ≥171

2 are considered stratiform, assuming stratiform regions will be dominated by ice hydrom-172

eteors. We again compared the CR threshold to the Rogers (2010) scheme and confirmed173

our threshold falls between its identified convective and stratiform populations (Figure174

S6). Convective regions are further divided between deep convective, congestus, and shal-175

low, as follows. Grid cells are marked shallow if the column-integrated rain mixing ra-176

tio falls below a threshold of 0.1 mm considering that congestus and deep convective re-177

gions would have higher rain rates (Johnson et al., 1996). Deep convective is separated178

from congestus by a graupel mixing ratio threshold of 10−4 mm, with deep convective179

regions exceeding this threshold, on the basis that congestus have limited vertical ex-180

tent beyond the 0◦C level (Johnson et al., 1999) and hence limited glaciation. Stratiform181

is separated from anvil where columns exceed a rain mixing ratio of 0.01 mm, account-182

ing for stratiform having more precipitating liquid water content than anvil clouds (Houze,183

1997; Houze Jr., 2004). While we lack a means for comparing these sub-classifications184

with the traditional algorithm, we assess their averaged vertical motion profiles against185

well-established vertical structures in convective and stratiform precipitation (Steiner186

et al., 1995; Houze Jr., 2004) in the following subsection.187
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Figure 2. Maps comparing a) the new classification scheme, the b) traditional reflectivity

classification, c) the LW ACRE, and d) 1000 hPa rain water mixing ratio. See color bars for algo-

rithm classifications. All panels show the first ensemble member of Haiyan at 36 hours.

3.2 Comparison and Validation188

We first present horizontal maps (Figure 2) comparing the new algorithm and the189

Rogers (2010) classification. The new classification produces the following cloud frac-190

tions for the domain shown (Figure 2): deep convective as 2.76%, congestus as 1.39%,191

shallow convective as 4.04%, stratiform as 16.42%, anvil as 13.99%, and non-precipitating192

as 61.4%. The reflectivity approach produces the following cloud fractions: convective193

is 3.53%, stratiform is 10.09%, anvil is 6.98%, and non-precipitating is 79.4%. The new194

classification marks more grid cells within the domain as cloud while also increasing the195

number of points identified as anvil and stratiform compared to the reflectivity approach.196

The increased count for these cloud types indicates that our algorithm is more sensitive197

to cloudy columns with lower rain rates, which is an expected and intended result, given198

our objectives. Additionally, we see more stratiform and anvil regions enveloping the deep199
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convection regions, the latter of which are often located on edges with the reflectivity-200

based algorithm. Our algorithm also identifies shallow convection, which is incorporated201

with the general convective category when using reflectivity.202

We next present the vertical motion (w) profiles averaged for each cloud type in203

our classification alongside the adapted Rogers (2010) scheme in Figure 3a-c. All three204

convective w-profiles have an expected bottom-heavy profile, with deep convective max-205

imizing around 550 hPa, congestus maximizing at 850 hPa, and shallow convective max-206

imizing at 900 hPa. The profile averaged across all three convective types is consistent207

with the shape of reflectivity-based classification profile, albeit with a smaller magnitude208

and broader peak. These differences are consistent with the capture of more weakly pre-209

cipitating columns of convection in the new algorithm. Further, for both stratiform and210

anvil the new algorithm produces a “top-heavy” profile, with upper-level rising and low-211

level sinking motion, with anvil having a smaller magnitude than stratiform. In compar-212

ison with the reflectivity-based approach, the profiles are similar in shape but with slight213

differences in magnitudes and with our classification having a 50-100 hPa higher inflec-214

tion point. The overall merit of this new classification scheme is supported by the con-215

sistencies between these w-profiles in the two algorithms and, more broadly, with well-216

established paradigms documented in the literature (Steiner et al., 1995; Houze, 1997;217

Houze Jr., 2004).218

We conclude that the new classification algorithm accurately identifies precipita-219

tion types for this model output. The scheme is less computationally bulky than tradi-220

tional reflectivity-based schemes as it is based on microphysics thresholds and is a column-221

by-column approach. This allows for cloud classification within the framework of mod-222

els without the need of neighboring cell information, which is computationally cumber-223

some in highly parallelized frameworks commonly used for convective-scale modeling.224

However, this approach does have some weaknesses. By having the cloud classification225

based on microphysics thresholds, the scheme inherently relies on specific hydrometeor226

behavior and treatment. Different microphysics schemes have vastly different treatments227

of hydrometeors (Morrison et al., 2020) and would hence require modification to apply228

to other microphysics schemes. This caveat extends to reflectivity-based approaches, how-229

ever, since model-based reflectivity relies upon microphysical assumptions. Additionally,230

the new algorithm can only identify one cloud type per column. So, if there are layers231

of different cloud types present, only the most prominent type will be identified. Despite232

these limitations, we deem our algorithm suitable for our science question.233

4 Longwave Radiative Features of Different Cloud Types234

4.1 ACRE and CRF235

We next seek to quantify each cloud mode’s contribution to LW CRF and ACRE.236

Using our column-by-column based classification algorithm, we calculate the domain-237

averaged and class-averaged LW ACRE. The domain average measures each cloud types’238

contribution to the total LW ACRE in the domain, while the class average calculates239

the mean LW ACRE averaged only over the cells of that type. Stratiform and anvil modes240

contribute the most to the domain-averaged LW ACRE, with averages around 10 W m−2
241

(Figure 4a). Of the convective types, deep convective has the greatest contribution to242

the LW ACRE ( 2.5 W m−2), with congestus and shallow convective points providing243

the smallest contributions. The large contribution to the domain average by stratiform244

and anvil modes is partly due to the larger area coverage of these cloud types (Figure245

2a,b).246

But area coverage is not the only reason stratiform and anvil regions have the great-247

est domain-averaged LW ACRE. When averaging ACRE by class, stratiform and anvil248

regions retain the highest ACRE value (Figure 4b). They are almost an order of mag-249
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Figure 3. Averaged profiles of vertical motion (w) (a-c) and CRF (d-f) in convective cate-

gories (left column), stratiform and anvil (middle column), and the total convective and strati-

form categories (right column). In (a-c), the new classification is presented in solid lines and the

reflectivity approach appear as dashed. In (d,e), the dashed black lines represent the averages

across all shown categories within the respective panel. Plots include values from all 10 members

and 85 timesteps of Haiyan.

–8–



manuscript submitted to Geophysical Research Letters

Figure 4. Boxplots of domain-averaged (left) and class-averaged (right) LW ACRE (top)

and ĥ′NETLW ′ (bottom) by precipitation type. White circles indicate the mean value. Black

diamonds represent outliers. Domain averages represent class-averaged values normalized by total

grid cell count, and class-averaged values are normalized only by category cell count. Plots in-

clude values from all 10 members and 85 timesteps of Haiyan.
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nitude greater than that of the congestus and shallow convective types. Deep convec-250

tive has the greatest LW ACRE value of the three convective modes, with an average251

value of 85 W m−2. This value is comparable in magnitude to that of stratiform and252

anvil regions, suggesting comparable radiative forcing by these categories within a given253

column. The combination of stratiform and anvil’s large class-averaged LW ACRE with254

their larger area coverage explains their much larger contribution to the domain-averaged255

LW ACRE.256

We next present vertical profiles of LW CRF to aid interpretation of these results257

(Figure 3d-f). Cloud types with larger ACRE values exhibit a deep layer of positive CRF.258

Stratiform and anvil modes are similar in CRF shape and magnitude, which is notewor-259

thy given their much different vertical motion magnitude (Figure 3b). Namely, the ra-260

diative forcing per unit vertical mass flux within a given layer is much larger for anvil261

than stratiform. CRF in these cloud modes is positive from 200 hPa to the surface and262

with maxima around 5 K day−1 at 300 hPa, with strong cloud-top cooling above 200 hPa.263

Of the convective categories, deep convective has the deepest layer of positive CRF of264

2 K day−1 from 200 hPa to the surface, with a small layer near 0 K day−1 between 400265

and 500 hPa. This may be due to layers of detrained cloud in association with the 0◦C266

stable layer (Johnson et al., 1996). Like stratiform and anvil, deep convective has a strong267

signature of cloud-top cooling above 200 hPa. Congestus and shallow convective modes268

have maxima in the lower troposphere with cooling above due to their low cloud-top height.269

Above 800 hPa, their CRF hovers around 0 K day−1. The modest heating values in the270

upper troposphere in these categories are likely a result of the algorithm only identify-271

ing one cloud type for each column, with these columns potentially including thin anvil272

clouds. Otherwise, these results are consistent with expectations of cloud depth based273

on mean vertical motion (Figure 3 a-c).274

4.2 LW MSE Variance Source Term275

The MSE budget is a tool that allows us to assess and quantify upscale develop-276

ment and intensification of convection. This tool has been used to assess the influence277

of radiative feedback in relation to both self-aggregation (Wing & Emanuel, 2014) and278

TC genesis (J. H. Ruppert et al., 2020; Wu et al., 2021). Our interest in this budget is279

primarily in the LW-source term as it has been shown to be the dominant term for main-280

taining and accelerating convective upscale development (at least, prior to TC genesis)281

(Wing & Emanuel, 2014; Wing & Cronin, 2016; J. H. Ruppert et al., 2020). The LW MSE282

variance term (ĥ′NetLW′) is the correlation between the anomaly of the density-weighted283

vertical integral of MSE (ĥ′) and the anomalous column LW radiative flux convergence284

(NetLW′), where anomalies are calculated as the deviation from the domain average. More285

details on the calculation of this term can be found in Wing and Emanuel (2014) and286

J. H. Ruppert et al. (2020).287

When we average ĥ′NetLW′ by cloud type, we once again see that stratiform and288

anvil regions contribute the most to the domain-averaged LW MSE variance source term.289

Stratiform dominates, with an average of about 0.035 day−1 (Figure 4c). The stratiform290

regions also have the highest class-averaged LW MSE variance of all the cloud types (Fig-291

ure 4d). Congestus and shallow convective points have the lowest class-averaged LW MSE292

variance, as may be anticipated from LW ACRE (Figure 4 a-b). Surprisingly, deep con-293

vective regions have the second highest LW MSE variance, almost matching that of strat-294

iform. Anvil’s class average follows deep convective with a value of 0.25 day−1 compared295

to stratiform and deep connective’s averages of about 0.4 day−1. Like the LW ACRE,296

the stratiform and anvil regions have much greater areal coverage than convective re-297

gions (Figure 2a), which explains the smaller domain-averaged value for convection.298

The high column influence of stratiform and anvil clouds in terms of both LW ACRE299

and ĥ′NetLW′, combined with their extensive areal coverage, indicates their unique im-300
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portance for supporting upscale convective development in the tropics by amplifying MSE301

variance via radiative forcing. Although deep convective regions also have high values302

of LW MSE variance in a given column, the small regional coverage of this cloud type303

likely limits its area-averaged impact, which is how radiative forcing is linked to the ten-304

dency of MSE variance (Wing & Emanuel, 2014). These findings emphasize the impor-305

tant influences of stratiform and anvil regions on tropical convective organization through306

their radiative forcing, which have not been previously examined in this manner.307

5 Summary and Conclusions308

In this study, we have investigated the role of CRF of five different cloud types and309

their ability to aid the organization of tropical convection via the analysis of convection-310

permitting WRF simulations conducted in the context of TC development. To accom-311

plish this, we developed a novel column-by-column cloud classification algorithm based312

on microphysical thresholds. Our classification holds several advantages over low-level313

reflectivity-based approaches, such as it is computationally efficient and can be run within314

the framework of a numerical model, it is sensitive to cloud (including non-precipitating)315

throughout the column, and it identifies five cloud modes (instead of two or three): shal-316

low, congestus, and deep convective; and stratiform and anvil. However, the disadvan-317

tages to this algorithm includes its likely sensitivity to different microphysics schemes318

based on its threshold approach and that it can only identify one cloud type per column.319

Despite these disadvantages, this approach to cloud classification allows for more ques-320

tions to be answered on the influence of cloud type, including our question of how dif-321

ferent cloud types in organized convective systems promote upscale development though322

LW radiative forcing.323

We hypothesized that stratiform and anvil regions would support convective or-324

ganization more than other categories through LW ACRE and the LW MSE variance325

source term. We found that stratiform and anvil contributed the most to the domain-326

averaged ACRE and had greater class-averaged ACRE than that of the other types, in-327

dicating their important contribution to the direct LW radiative forcing. For the LW MSE328

variance source term, stratiform and anvil again contributed the most to the domain av-329

erage. However, the class averages revealed that deep convective was on par with strat-330

iform regions, resulting in those two classes having the highest class averages. Anvil was331

third highest, followed by shallow and congestus, which were much weaker. While the332

class-averaged LW MSE variance source term indicates that the localized forcing by deep333

convective, stratiform, and anvil clouds is comparable, anvil and stratiform clouds dom-334

inate in supporting convective upscale development owing to their much greater area cov-335

erage. Although we do not fully answer the question of how different cloud types in or-336

ganized convective systems uniquely promote upscale development through LW radia-337

tive forcing, we do provide support of our hypothesis and shed new light on the specific338

cloud types most important to convective upscale via LW cloud feedback. Future work339

will focus on the mechanisms CRF works through to promote organization within trop-340

ical convection.341

Open Research Section342

The code needed to recreate the WRF simulations described in this study is pub-343
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presented here are available on Zenodo as well.346
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qualitative results as Haiyan shown within the main paper. We also include analysis for a 
24-hour period (12-36 hours) at the beginning of the Haiyan simulation to demonstrate 
that our results are generalizable beyond the post-TC-genesis. Finally, we present 
histograms of the Rogers (2010) classification to support our development of the new 
classification scheme.  
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Figure S1. Same as Figure 3 but for the first 24 hours after “spin-up.” 
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Figure S2. Same as Figure 4 but for the first 24 hours after “spin-up.” 
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Figure S3. Same as Figure 3 but for Hurricane Maria. 
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Figure S4. Same as Figure 4 but for Hurricane Maria. 
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Figure S5. Total water path (TWP) frequency for the Rogers (2010) classification. The 
convective mode is in blue, the stratiform mode is in red, and the anvil mode is in black. 
The vertical black line indicates the TWP threshold for the new classification. Figure 
shows the first member of Haiyan at the timestep 36 hours. 
 

 

 

Figure S6. Same as Figure S5 but for cloud ratio (CR). 

 
 
 


