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Abstract

This study characterized ocean biological carbon pump metrics in the second iteration of the REgional Carbon Cycle Assess-

ment and Processes (RECCAP2) project, a coordinated, international effort to constrain contemporary ocean carbon air-sea

fluxes and interior carbon storage trends using a combination of observation-based estimates, inverse models, and global ocean

biogeochemical models. The analysis here focused on comparisons of global and biome-scale regional patterns in particulate

organic carbon production and sinking flux from the RECCAP2 model ensemble against observational products derived from

satellite remote sensing, sediment traps, and geochemical methods. There was generally encouraging model-data agreement

in large-scale spatial patterns, though with substantial spread across the model ensemble and observational products. The

global-integrated, model ensemble-mean export production, taken as the sinking particulate organic carbon flux at 100 m (6.41

± 1.52 Pg C yr–1), and export ratio defined as sinking flux divided by net primary production (0.154 ± 0.026) both fell at the

lower end of observational estimates. Comparison with observational constraints also suggested that the model ensemble may

have underestimated regional biological CO2 drawdown and air-sea CO2 flux in high productivity regions. Reasonable model-

data agreement was found for global-integrated, ensemble-mean sinking particulate organic carbon flux into the deep ocean at

1000 m (0.95 ± 0.64 Pg C yr–1) and the transfer efficiency defined as flux at 1000m divided by flux at 100m (0.121 ± 0.035),

with both variables exhibiting considerable regional variability. Future modeling studies are needed to improve system-level

simulation of interaction between model ocean physics and biogeochemical response.
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Key Points: 25 

• Global-scale, ocean biogeochemical simulations are compared with observation-based 26 
estimates of the marine biological carbon pump. 27 

• A multi-model ensemble exhibits relatively good agreement with observation-based 28 
metrics for carbon export flux and transfer efficiency.  29 

• Based on identified model-observation and inter-model differences, we provide guidance 30 
for future model evaluations and development. 31 

  32 
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Abstract 33 

This study characterized ocean biological carbon pump metrics in the second iteration of 34 
the REgional Carbon Cycle Assessment and Processes (RECCAP2) project, a coordinated, 35 
international effort to constrain contemporary ocean carbon air-sea fluxes and interior carbon 36 
storage trends using a combination of observation-based estimates, inverse models, and global 37 
ocean biogeochemical models. The analysis here focused on comparisons of global and biome-38 
scale regional patterns in particulate organic carbon production and sinking flux from the 39 
RECCAP2 model ensemble against observational products derived from satellite remote sensing, 40 
sediment traps, and geochemical methods. There was generally encouraging model-data 41 
agreement in large-scale spatial patterns, though with substantial spread across the model ensemble 42 
and observational products. The global-integrated, model ensemble-mean export production, taken 43 
as the sinking particulate organic carbon flux at 100 m (6.41 ± 1.52 Pg C yr–1), and export ratio 44 
defined as sinking flux divided by net primary production (0.154 ± 0.026) both fell at the lower end 45 
of observational estimates. Comparison with observational constraints also suggested that the 46 
model ensemble may have underestimated regional biological CO2 drawdown and air-sea CO2 flux 47 
in high productivity regions. Reasonable model-data agreement was found for global-integrated, 48 
ensemble-mean sinking particulate organic carbon flux into the deep ocean at 1000 m (0.95 ± 0.64 49 
Pg C yr–1) and the transfer efficiency defined as flux at 1000m divided by flux at 100m (0.121 ± 50 
0.035), with both variables exhibiting considerable regional variability. Future modeling studies 51 
are needed to improve system-level simulation of interaction between model ocean physics and 52 
biogeochemical response. 53 

 54 

Plain Language Summary 55 

Phytoplankton in the surface ocean create each year an amount of organic carbon 56 
approximately equivalent to all the annual photosynthesis by plants on land. A small fraction of 57 
this newly formed organic carbon is exported below the surface layer, and an even smaller amount 58 
makes it all the way to the deep ocean. The transport of organic carbon to the sub-surface ocean, 59 
called the biological carbon pump, influences the global-scale distributions of ocean nutrients, 60 
oxygen, and inorganic carbon as well as the amount of carbon dioxide in the atmosphere. The 61 
global rates and geographic patterns of photosynthesis and carbon flux out of the surface ocean 62 
have previously been constructed from ship measurements and satellite remote sensing. Here, we 63 
compare these observation-based estimates to a suite of three-dimensional, numerical ocean 64 
models and find broadly similar results. The model simulations also capture aspects of the 65 
biological carbon pump deeper in the water column, where there are fewer direct constraints from 66 
field observations. Our comparison of observations and simulations identifies some deficiencies 67 
in the models that should be corrected in order to better simulate climate change impacts on the 68 
biological carbon pump.  69 

 70 

1 Introduction 71 

Marine biogeochemical processes play a central role in the global Earth System, 72 
modulating the distribution of inorganic carbon, oxygen, and nutrients within the ocean and the 73 
partitioning of carbon between ocean and atmosphere reservoirs (Broecker and Peng, 1982; 74 
Sarmiento and Gruber, 2002; Devries, 2022; Iversen, 2023; Siegel et al., 2023). Because of the 75 
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strong oceanic influence on atmospheric CO2 concentration and thus planetary climate, there is 76 
considerable scientific focus on quantifying both the baseline and trends in ocean carbon storage 77 
and fluxes arising from the uptake of anthropogenic CO2 and climate change impacts on marine 78 
biogeochemical and physical dynamics (Henson et al., 2016; DeVries et al., 2019; Hauck et al., 79 
2020; Canadell et al., 2021; Crisp et al., 2022; Wilson et al., 2022; Gruber et al., 2023). The 80 
REgional Carbon Cycle Assessment and Processes (RECCAP) project is a coordinated, 81 
international effort to constrain contemporary ocean carbon air-sea fluxes and interior storage 82 
trends using a combination of observation-based estimates, inverse models, and global ocean 83 
biogeochemical models (GOBMs) (Wanninkhof et al., 2013; Khatiwala et al., 2013). The second 84 
phase, RECCAP2, extends the original synthesis using additional years of ocean observations and 85 
updated methodology and numerical results (DeVries et al., 2023; Hauck et al., 2023) as well as 86 
expanding the scope of the analysis, in this case into biological carbon pump magnitude and 87 
efficiency.  88 

In a simple 1-D form, the marine biological carbon pump can be viewed as the net 89 
production of particulate organic carbon (POC) and inorganic carbon (PIC) in the surface ocean, 90 
downward vertical transport of particulate carbon into the thermocline and deep sea, and 91 
subsequent respiration and remineralization of particulate carbon back into dissolved inorganic 92 
carbon (DIC) (Volk and Hoffert, 1985). The downward organic carbon transport, or export flux, 93 
drives subsurface marine biogeochemistry, fuels deep-ocean ecosystems, and influences ocean 94 
carbon storage and atmospheric CO2. The biological pump accentuates the vertical gradient in DIC 95 
already established from CO2 system thermal solubility and temperature gradients, and deep-ocean 96 
carbon storage reflects a net balance between the biological carbon pump source and physical 97 
ocean circulation processes that return elevated deep-ocean DIC waters back to the surface ocean 98 
via upwelling and vertical mixing (Sarmiento and Gruber, 2006). The relationship between ocean 99 
carbon storage and the strength of the biological pump is not necessarily straightforward because 100 
of physical-biological interactions; for example, stronger overturning circulation can enhance both 101 
biological export through increased nutrient supply and the physical return of high-DIC deep-102 
ocean waters to the surface (Doney et al., 2006). The vertical structure of the biological carbon 103 
pump is also important. Sinking POC fluxes decline rapidly in the thermocline (0 to ~1000 m 104 
depth), with only a fraction of surface export flux reaching the deep ocean below 1000 m (Martin 105 
et al., 1987; Lutz et al., 2007; Lima et al., 2014; Dinauer et al., 2022). Deeper remineralization 106 
depths, that is the transport of a greater fraction of POC into the lower thermocline or deep ocean 107 
prior to respiration, enhances ocean carbon storage because of generally reduced physical return 108 
rates to the surface ocean for deeper waters, and therefore longer retention times for the 109 
remineralized DIC, although with substantial regional variations associated with circulation 110 
pathways and rates (Kwon et al., 2009; Siegel et al., 2021).  111 

Net primary production (NPP) by surface ocean phytoplankton generates POC and 112 
dissolved organic carbon (DOC), and most marine NPP is converted rapidly back to DIC through 113 
zooplankton grazing of living biomass and detritus or through the microbial loop involving 114 
consumption of POC and DOC pools. Export fluxes require an excess of community production 115 
of organic carbon over respiration that in turn must be supported by an external supply of new 116 
nutrients over sufficient time and space scales (Ducklow and Doney, 2013). The fraction of NPP 117 
that is exported (export ratio = export flux/NPP), is modulated by the magnitude and seasonality 118 
of NPP, environmental conditions, and phytoplankton and zooplankton community composition 119 
(Laufkötter et al., 2016). Export flux from the euphotic zone occurs through multiple pathways 120 
including gravitational sinking of POC (e.g., living and dead cells; fecal pellets; marine snow), 121 
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physical subduction and mixing of POC and DOC below the surface layer, and active biological 122 
transport by vertically migrating organisms (Siegel et al., 2016). Contemporary models capture, 123 
with varying levels of sophistication and skill, biological processes involved in NPP and export 124 
flux from the upper ocean (Fennel et al., 2022), though models tend to focus on gravitational 125 
particle sinking and many do not incorporate all of the relevant export pathways (Boyd et al., 2019; 126 
Henson et al., 2022) or dynamics governing vertical carbon fluxes from the surface to the deep sea 127 
(Burd, 2024). Here we focus on simulated export via gravitational particle sinking, which is 128 
incorporated in virtually all global ocean biogeochemical models in some form. Observation-based 129 
estimates of the global export flux have a large range (~5-12 Pg C yr-1; Siegel et al., 2016), which 130 
is almost identical to the range in export estimates for the modern-day era simulated by coupled 131 
climate models (4.5-12 Pg C yr-1; Henson et al., 2022), i.e. the observations-based estimates of 132 
export flux provide a poor constraint for biogeochemical models. Because of differences in model 133 
climate responses and parameterizations of the ocean biological carbon pump, substantial 134 
uncertainties also plague projections of future changes in export flux in response to climate change. 135 
For example, Henson et al. (2022) found a large inter-model spread in projected changes in export 136 
flux by 2100 of between +0.16 and -1.98 Pg C yr-1 (+1.8 to -41%) under the high-emission SSP5-137 
8.5 scenario. 138 

Much of the export flux of organic carbon from the euphotic zone, taken here as the 139 
downward flux through 100m (F100), is consumed by respiration in the mesopelagic zone (100 – 140 
1000 m). The diverse mechanisms for vertical transport and remineralization of organic matter in 141 
the mesopelagic are only partially captured in models (Fennel et al., 2022). A steep decline with 142 
depth in the gravitational sinking flux of particles is well documented from mid-depth sediment 143 
traps (e.g., Lutz et al., 2007; Lima et al., 2014; Dinauer et al., 2022), but the exact processes 144 
involved are less well quantified and may include physical and biological particle fragmentation 145 
(Briggs et al., 2020) as well as particle consumption and repackaging by zooplankton (Stukel et 146 
al., 2019). Particle fluxes and the depth-scale of remineralization are affected by particle 147 
composition, size, density, and sinking speeds. Particles can vary widely from small, slowly 148 
sinking dead cells and detrital material, to large marine snow aggregates with enhanced sinking 149 
speeds from captured ballast material, to large rapidly sinking fecal pellets (Lam et al., 2011; 150 
Omand et al., 2020). Vertical migrators transport organic carbon downward from the euphotic 151 
zone into the mesopelagic, respiring CO2 and releasing fecal pellets at depth (Archibald et al., 152 
2019). Sinking particle fluxes and mesopelagic biological processes typically are not modeled in 153 
great mechanistic detail in contemporary global ocean biogeochemical models, and often relatively 154 
simplistic empirical relationships such as variants of the Martin power-law flux curve (Martin et 155 
al., 1987) are used in place of explicit representation of the processes controlling mesopelagic flux 156 
attenuation.     157 

The proportion of sinking exported POC that survives remineralization in the mesopelagic 158 
zone to reach depths > 1000 meters is referred to as the transfer efficiency, given here as the ratio 159 
of sinking fluxes at 100 and 1000 meters (E1000/100). POC reaching 1000m depth is remineralized 160 
below the main thermocline and is likely sequestered on timescales of >100 years, thus 161 
contributing to the long-term ocean carbon sink (Siegel et al., 2021). There is currently little 162 
consensus on the global magnitude or spatial patterns of transfer efficiency, with some approaches 163 
suggesting that E1000/100 is high at high latitudes and low at low latitudes (Marsay et al., 2015; 164 
Weber et al., 2016; DeVries and Weber, 2017), whilst others imply the opposite pattern (Lam et 165 
al., 2011; Henson et al., 2012; Guidi et al., 2015; Mouw et al., 2016b; Dinauer et al. 2022).  A 166 
variety of approaches have been used to generate these estimates, including paired in situ 167 
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observations of 234Th-derived export flux and deep sediment trap flux (Henson et al. 2012), vertical 168 
profiles of flux from drifting sediment traps (Marsay et al., 2015) or inverting the observed nutrient 169 
and/or oxygen distributions using an inverse model (Weber et al., 2016; Devries and Weber, 2017; 170 
Cram et al., 2018). The differing approaches, and differing time and space scales that they integrate 171 
over, are likely a significant source of the uncertainty in global E1000/100 patterns.  In CMIP6 172 
models, there are substantial differences in both the preindustrial mean E1000/100 (varying from 3% 173 
to 25% across models) and its response to 21st century climate change, with projections showing 174 
both increases and decreases in E1000/100 over time (Wilson et al., 2022).  175 

Early model skill assessments relied heavily on model-data comparisons to transient 176 
tracers, ocean physics, and sub-surface nutrient and oxygen fields that reflect the imprint of 177 
biological pump fluxes and ocean circulation (e.g., Matsumoto et al., 2004; Doney et al. 2004; 178 
Najjar et al. 2007). However, observational constraints on the ocean biological carbon pump have 179 
advanced considerably since the early global 3-D ocean biogeochemical modelling efforts (e.g., 180 
Bacastow and Maier-Reimer, 1990; Maier-Reimer, 1993). Global-scale data compilations of 181 
primary production, surface export and mesopelagic sinking carbon fluxes are now available based 182 
on a wealth of satellite remote sensing, sediment traps, and geochemical methods (e.g., Henson et 183 
al. 2012; Mouw et al., 2016a). Past model-data skill assessments using multi-model ensembles 184 
have highlighted differences in simulated ocean biological carbon pump patterns, magnitudes, and 185 
mechanisms and identified model biases relative to admittedly imperfect observational estimates 186 
(Laufkötter et al., 2015; Laufkötter et al., 2016). This study expands on these past assessment 187 
efforts of the ocean biological carbon pump to include the current generation of global ocean 188 
biogeochemical models compiled for RECCAP2 (DeVries et al., 2023).  189 

The objective of this study is to characterize the global-scale biological carbon pump from 190 
RECCAP2 models and compare the simulation results with observation-based metrics. The focus 191 
is on the spatial patterns and global-integrated rates from the multi-model ensemble mean taking 192 
into consideration inter-model spread. Key metrics include export of sinking POC from the surface 193 
euphotic zone and the efficiency of POC transfer through the mesopelagic ocean, both of which 194 
are central to ocean carbon storage. Based on identified model-observation and inter-model 195 
differences, we also provide guidance for future global ocean biogeochemical model evaluations 196 
and development that could include targeted, more detailed analyses of dynamics and biases within 197 
individual RECCAP models. 198 

 199 

2 Methods and Data 200 

2.1 RECCAP2 model simulations and observational data products 201 

This study leveraged a collection of ocean simulation and observational data sets, outlined 202 
in Table 1, assembled for RECCAP2 following standardized protocols and data reporting for 203 
numerical and observation-based pCO2 products (RECCAP2 Ocean Science Team, 2022; DeVries 204 
et al., 2023; Müller, 2023). The RECCAP2 ocean data sets included monthly surface and annual 205 
ocean interior output for the contemporary period from more than a dozen global ocean 206 
biogeochemical model hindcast simulations, including both forward and data-assimilated models, 207 
along with observation-based surface ocean pCO2 interpolation products. Many of the models 208 
included in the RECCAP2 suite have been used in the Global Carbon Project to assess the ocean 209 
carbon sink (Hauck et al., 2020; Friedlingstein et al., 2022). Here, we present model results for 210 
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1985 to 2018 from RECCAP2 simulation A, which was forced with historical atmospheric 211 
reanalysis data and increasing atmospheric CO2, and hence represents both steady-state and 212 
variable climate processes and both natural, pre-industrial carbon fluxes and anthropogenic carbon 213 
fluxes caused by rising atmospheric CO2 (DeVries et al., 2023).  214 

 215 
Table 1. Description of RECCAP2 global ocean biogeochemical hindcast models, global data-216 
assimilated models, and observation-based products used in this study. For more details see 217 
Tables S1 and S2 in DeVries et al. (2023). The World Ocean Atlas (WOA) data set was also 218 
used in the model-data evaluation. 219 
 220 
Global hindcast models Data range References 221 
CCSM-WHOI   1958-2017 Doney et al. (2009) 222 
CESM-ETHZ   1980-2018 Lindsay et al. (2014); Yang and Gruber (2016)  223 
CNRM-ESM2 -1  1980-2018 Séférian et al. (2019; 2020); Berthet et al. (2019) 224 
EC-Earth3   1980-2018 Döscher et al. (2021)  225 
FESOM-REcoM-LR  1980-2018 Hauck et al. (2020)  226 
MPIOM-HAMOCC  1980-2018 Ilyina et al. (2013); Mauritsen et al. (2019) 227 
MOM6-Princeton  1980-2018 Liao et al. (2020); Stock et al. (2020) 228 
MRI-ESM2-1   1980-2018 Urakawa et al. (2020); Tsujino et al. (2017)  229 
NorESM-OC1.2  1980-2018 Schwinger et al. (2016) 230 
NEMO-PlankTOM12.1 1980-2018 Le Quéré et al. (2016); Wright et al. (2021) 231 
ORCA1-LIM3-PISCES 1980-2018 Aumont et al. (2015)  232 
  233 
Data-assimilated models  234 
ECCO-Darwin   1995-2018 Carroll et al. (2020; 2022) 235 
SIMPLE-TRIM  Climatology DeVries and Weber (2017)  236 
  237 
pCO2 interpolation products  238 
CMEMS-LSCE-FFNN 1985-2018 Chau et al. (2022) 239 
JenaMLS   1985-2018 Rödenbeck et al. (2013); Rödenbeck et al. (2022) 240 
MPI-SOMFFN  1982-2018 Landschützer et al. (2016) 241 
NIES-ML3   1980-2020 Zeng et al. (2022) 242 
OceanSODA-ETHZ  1985-2018 Gregor and Gruber (2021) 243 
LDEO_HPD   1985-2018 Gloege et al. (2022) 244 
UOEX_Wat20   1985-2019 Watson et al. (2020) 245 
 246 
World Ocean Atlas 247 
Oxygen and AOU  Climatology Garcia et al. (2019) 248 
 249 
Biological carbon pump metrics 250 
net primary production, export production,  251 
and sinking POC flux   Climatology Mouw et al. (2016a; 2016b) 252 
 253 
 254 

Spatial 2D model output and pCO2 interpolation products were provided to RECCAP2 255 
with 1° x 1° resolution at monthly time steps, and 3D model output was resolved at annual time 256 
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steps. All estimates derived in this study were computed on the 1° x 1° grid. Global multi-model 257 
ensembles, spatial integrals and averages were computed as needed from the gridded results. For 258 
the aggregation to sub-basin ocean regions, ocean biomes based on Fay and McKinley (2014) were 259 
used in most instances to facilitate consistent regional intercomparison across RECCAP2 studies 260 
(e.g., Hauck et al., 2023). Longhurst provinces (Supplement Figure S1; Reygondeau et al., 2013) 261 
were additionally used in some of the biological pump model-observational comparisons to be 262 
consistent with one of the key observational data synthesis products (Mouw et al., 2016a). The 263 
notation and units for the biological, chemical and physical variables used in this study are 264 
described in Table 2. More details on the RECCAP2 ocean data sets can be found in DeVries et 265 
al. (2023).  266 

We also used an observational compilation of surface ocean export production and sinking 267 
POC flux combined with satellite ocean color data products for primary production synthesized in 268 
Mouw et al. (2016a) and as aggregated to Longhurst regional provinces in Mouw et al. (2016b). 269 
The full dataset includes over 15000 individual sediment trap and 234Th POC flux measurements 270 
at 673 locations, combined with satellite-derived estimates of NPP. Chlorophyll measurements 271 
collected from the SeaWiFS sensor on the OrbView-2 ocean color satellite, spanning from August 272 
1997 to December 2010, were used to derive NPP using the vertically generalized production 273 
model (VGPM) (Behrenfeld and Falkowski, 1997) on an equal-area grid with 9-km resolution. 274 
The climatology in Mouw et al. (2016a) used an interpolation approach to combine the satellite 275 
timeseries and short-deployment (<30 days trap cup intervals) sediment trap POC flux 276 
measurements at overlapping locations. Over 43% of the POC flux measurements were collected 277 
after 1997, overlapping with the satellite record. For each POC flux location, median monthly 278 
values are computed and binned into biogeochemical Longhurst provinces for the climatology. 279 
The POC flux climatology also has a depth dimension, with depth bins centered at 20 m for a near-280 
surface layer, in 50 m intervals in the upper thermocline, and in 200 m intervals from 500 m to 281 
5000 m. 282 
 283 
Table 2. Glossary and description of modeled, observed, and derived variables including 284 
notation and units.  285 
 286 
  
Variable Name Units 

Output 
frequency Description 

 
2D or surface ocean properties    

𝑝𝐶𝑂! µatm monthly Surface ocean pCO2 

𝑁𝑃𝑃 mol C m-2 yr-1 monthly 
Vertically-integrated net primary production 
of organic carbon 

𝐹"## mol C m-2 yr-1 monthly POC sinking flux at 100 m 

𝐹"### mol C m-2 yr-1 monthly POC sinking flux at 1000 m 
  
3D or Interior Ocean Properties    

T °C annual Seawater potential temperature 

S - annual Salinity (PSS-78) 

𝐹$% mol C m-2 yr-1 annual 3D field of POC sinking flux 
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O2 mol O2 m-3 annual Dissolved oxygen concentration 

Derived Variables    

𝐸"## &''⁄ =	𝐹"## 𝑁𝑃𝑃⁄  - monthly Surface Export Ratio  

𝐸"### "##⁄ =	𝐹"### 𝐹"##⁄  - monthly Mesopelagic Transfer Efficiency 

𝐸"### &''⁄ =	𝐹"### 𝑁𝑃𝑃⁄  - monthly Surface to Deep-sea Export Efficiency  

AOU µmol kg-1 monthly Apparent oxygen utilization 
 287 
 288 

2.2 Ocean biological pump and biogeochemical metrics  289 

Our analysis utilized biogeochemical model estimates of vertically integrated NPP and 290 
export fluxes of sinking POC flux across a shallow surface at the approximate base of the euphotic 291 
zone (100 m, F100) and at the base of the main thermocline (1000 m, F1000). Note that the 1000 m 292 
fluxes were not provided for all models (see Figure 2c), and therefore the ensemble means for F100 293 
and F1000 were constructed from different subsets of RECCAP2 simulations. The export ratio, 294 
E100/NPP, was computed as the ratio of POC sinking flux at 100 m divided by net integrated primary 295 
production: 296 

𝐸"## &''⁄ =
𝐹"##
NPP 297 

(1) 298 
The transfer efficiency across the 1000 m depth horizon, E1000/100, was similarly computed as the 299 
ratio of sinking POC fluxes at 100 m and 1000 m: 300 

𝐸"### "##⁄ =
𝐹"###
𝐹"##

 301 

(2) 302 

A depth of 1000 m is taken as an approximate boundary between the main thermocline with 303 
ventilation timescales of years to decades and the deep ocean with time-scales of a century and 304 
longer (Siegel et al., 2021). 305 

The relationship between the biological pump and the inorganic CO2 system was examined 306 
by partitioning the seasonal variability in surface seawater pCO2 into thermal and non-thermal 307 
components following Takahashi et al. (2002). We refer readers interested in a thorough analysis 308 
of RECCAP2 CO2 system seasonality to Rodgers et al. (2023). The temperature effect on pCO2 309 

was calculated for isochemical seawater using the approximation !(#$(%&')))
!)

= 0.0423 (°C–1) from 310 

the experimental value from Takahashi et al. (1993). The seasonal cycle in monthly surface 311 
temperature anomalies relative to the annual mean surface temperature generated a corresponding 312 
seasonal variation in the thermal (temperature-dependent) pCO2 component about the pCO2 annual 313 
mean:  314 

𝑝𝐶𝑂!*+,-./0 = (𝑝𝐶𝑂!).,/1 × 𝑒𝑥𝑝20.04238𝑇.21*+03 − 𝑇.,/1;< 315 
(3) 316 



manuscript submitted to Global Biogeochemical Cycles 

 

Ocean hindcast simulations typically capture quite well the seasonal cycle of sea surface 317 
temperature because the ocean models are forced by atmospheric reanalysis products and heat flux 318 
boundary conditions that effectively contain information on the observed temperature record 319 
(Doney et al., 2007); the same model-data agreement transfers to the thermal pCO2 seasonal 320 
component. The non-thermal pCO2 component was computed by subtracting the thermal 321 
component from the monthly pCO2 values, and the seasonal amplitude DpCO2,non-thermal was 322 
calculated as the seasonal peak-to-trough difference. The non-thermal pCO2 component reflects 323 
seasonal variations in DIC and alkalinity from biological organic and inorganic carbon production 324 
and remineralization, air-sea CO2 gas exchange, and physical transport and mixing. Note that the 325 
seasonal phasing of the non-thermal pCO2 component can be distinct from the phasing of the total 326 
pCO2 cycle. This is especially the case in the low latitudes, where the thermal component 327 
dominates the seasonal cycle (Takahashi et al., 1993; Landschützer et al., 2018; Rodgers et al., 328 
2023). 329 

We also computed apparent oxygen utilization (AOU) using modeled dissolved oxygen, 330 
salinity, and potential temperature fields. Modeled average AOU at 100 m (AOU100) and 1000 m 331 
depth (AOU1000) were found using nearest depth bins in model products (bins centered within 50 332 
m of depths). The simulated AOU fields are compared against the World Ocean Atlas (WOA) data 333 
product (Garcia et al., 2019). 334 

 335 

3 Results 336 

3.1 Simulated ocean biological carbon pump metrics 337 

Global spatial fields of present-day biological carbon pump variables are displayed in 338 
Figure 1 for the RECCAP2 model ensemble mean with the corresponding ensemble standard 339 
deviation in Figure S1. Biome-scale ensemble-mean averages and within-ensemble standard 340 
deviation values for the biological pump metrics are reported in Table 3 using the standard 341 
RECCAP2 biomes by ocean basin (Figure S2; Fay and McKinley, 2014).   342 

The magnitude and spatial patterns of simulated annual mean NPP and export flux from 343 
sinking POC (F100) (Figure 1a and 1b) are broadly similar to observational estimates (Section 3.2). 344 
Simulated upper-ocean biological pump variables showed large geographic variations with annual-345 
mean NPP ranging on biome scales (Table 3) from 8 to 21 mol C m–2 yr–1 and F100 ranging from 346 
1.1 to 2.9 mol C m–2 yr–1. The simulated spatial patterns reflect euphotic zone temperature, nutrient 347 
supply, and grazing and loss rates that govern phytoplankton standing stock in the models 348 
(Falkowski et al., 1998; Laufkötter et al., 2015; Laufkötter et al., 2016). The imprint of nutrient 349 
supply was particularly evident in the elevated NPP and export fluxes found in equatorial and 350 
coastal upwelling regions, western boundary currents, and mid-latitude bands of deep seasonal 351 
mixing. Within-ensemble standard deviations (s) of NPP and F100 were elevated in the equatorial 352 
band, and high sNPP values were found also in the Southern Ocean indicating substantial model 353 
disagreement within the ensemble (Figure S1a and S1b). Biome-scale sNPP values ranged from 2.1 354 
to 6.6 mol C m–2 yr–1 (from as low as 0.22 to nearly 0.72 times the ensemble mean in parts of the 355 
Southern Ocean); biome-scale sF100 values varied from 0.4 to >1.0 mol C m–2 yr–1 with the largest 356 
absolute and fractional within-ensemble variation of >0.7 times the ensemble mean occurring in 357 
the western equatorial Pacific.  358 
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The local POC sinking flux at the base of the mesopelagic (F1000) ranged at biome scale 359 
from 0.09 to 0.54 mol C m–2 yr–1 with broadly similar patterns to F100, though with some notable 360 
exceptions such as the high F1000 values in tropical low-oxygen zones in the eastern tropical Pacific 361 
and Arabian Sea (Figure 1c). Note the roughly half to full order of magnitude decline in scale in 362 
Figure 1 from NPP to F100 and then F100 to F1000. This indicates first that the bulk of simulated 363 
NPP is recycled within the euphotic zone above 100 m, rather than exported as sinking POC flux, 364 
and second that most of the sinking POC flux at 100 m is remineralized in the mesopelagic, rather 365 
than reaching the deep ocean below 1000 m. As for NPP and F100, some correspondence was found 366 
for the spatial patterns of ensemble-mean F1000 and sF1000. Highest biome-scale sF1000 values of  367 
0.26 to 0.29 mol C m–2 yr–1 occurred in the North Pacific and eastern equatorial Pacific, equal to 368 
0.85 and 0.53 times the ensemble-mean F1000 for those biomes; biome-scale sF1000 values of ~0.5 369 
or more of the ensemble-mean were common, with even higher fractional values locally such is in 370 
the eastern subtropical North Pacific (Figure S1c; Table 3). 371 

The fraction of NPP exported across 100 m, or export ratio (E100/NPP, Figure 1d; Table 3) 372 
varies at the biome scale in the ensemble mean from 0.12 to 0.21 with elevated values in high 373 
latitudes. The spatial patterns for within-ensemble E100/NPP standard deviation (Figure S1d) mirror 374 
that of the mean E100/NPP with biome-mean standard deviations of 0.035 to 0.050 in most biomes 375 
and up to 0.091 in the sub-polar Southern Ocean biome where there is more within-ensemble 376 
model spread.  377 
 378 
 379 
 380 
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 381 
 382 
Figure 1. Multi-model ensemble averages of biological pump parameters from 1985 to 2018 383 
across all RECCAP2 model simulations (simulation A). Maps of annual mean (a) integrated net 384 
primary productivity 𝑁𝑃𝑃, (b) particulate organic carbon export fluxes at 100 m 𝐹"##, and (c) 1000 385 
m depth 𝐹"###, all in mol C m–2 yr–1. Ensemble mean (d) surface export efficiency ratio 𝐸"## &''⁄ =386 
𝐹"##/𝑁𝑃𝑃 (Eq. 1), (e) mesopelagic transfer efficiency at 1000 m 𝐸"### "##⁄ = 𝐹"### 𝐹⁄ "## (Eq. 2), and 387 
(f) export efficiency to the deep ocean 𝐸"### &''⁄ = 𝐹"###/𝑁𝑃𝑃, all ratios unitless.  388 

 389 

The ensemble-mean transfer efficiency through the mesopelagic, E1000/100 (Figure 1e; Table 390 
3), exhibited background levels at the biome-scale of 0.09-0.14 for most biomes and ranging as 391 
high as 0.18 in the eastern equatorial Pacific biome; sub-biome regional values up to 0.3 occurred 392 
in the eastern tropical Pacific, western and eastern tropical Atlantic, and Arabian Sea and Bay of 393 
Bengal. Some ocean biogeochemical models reduce sub-surface POC remineralization in low-394 
oxygen zones, using a parameterization based on local oxygen concentrations, driving higher 395 
E1000/100 values in low-oxygen regions such as the eastern tropical Pacific, Arabian Sea and Bay of 396 
Bengal. Furthermore, POC flux mineral ballasting from Saharan dust deposition, prescribed as an 397 
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external forcing, is likely an important contributor in at least some models (CCSM-WHOI and 398 
CESM-ETHZ) to high E1000/100 in the western tropical Atlantic (Lima et al., 2014). The ensemble 399 
E1000/100 standard deviation (Figure S1e) generally followed E1000/100 with particularly large 400 
sE1000/100 values up to 0.3 in the western tropical Atlantic reflecting differences across models in 401 
the parameterization of POC sinking in the presence of desert dust. The metric E1000/NPP (Figure 402 
1f), combining surface export and mesopelagic transfer efficiencies, had generally similar spatial 403 
patterns to E1000/100 but with lower values, reflecting the small fraction of NPP that sinks below 404 
1000 m and is sequestered in the deep ocean. More than a factor of two variation was found for 405 
metric E1000/NPP across biomes (0.012 to 0.027) with large within-ensemble variation for some 406 
biomes where the standard deviation approached or exceeded the ensemble mean. 407 

 408 
Table 3. Model ensemble averages and standard deviations of biological pump parameters by 409 
RECCAP2 regional biomes (Figure S2) (see also Figure 1) grouped as Sub-Polar Seasonally 410 
Stratified (SPSS), Sub-Tropical Seasonally Stratified (STSS), Sub-Tropical Permanently Stratified 411 
(STPS), Equatorial (EQU), and Mediterranean (MED). Table includes annual means and standard 412 
deviations for vertically integrated net primary productivity 𝑁𝑃𝑃, particulate organic carbon export 413 
fluxes at 100 m 𝐹"##, and 1000 m depth 𝐹"###, all in mol C m–2 yr–1, and average surface export 414 
efficiency ratio 𝐸"## &''⁄ = 𝐹"##/𝑁𝑃𝑃, mesopelagic transfer efficiency at 1000 m 𝐸"### "##⁄ =415 
𝐹"### 𝐹⁄ "##, and export efficiency to the deep ocean 𝐸"### &''⁄ = 𝐹"###/𝑁𝑃𝑃, all ratios unitless. 416 
Ensemble were not computed for the small, high-latitude polar ice biomes due to noisy and/or 417 
missing data across the full ensemble.  418 
 419 

 NPP F100 F1000 E100/NPP E1000/100 E1000/NPP 

SPSS       

N. PACIFIC 11.89±4.81 2.21±0.65 0.307±0.263 0.206±0.076 0.124±0.071 0.018±0.012 

N. ATLANTIC 9.30±3.00 1.77±0.65 0.177±0.156 0.211±0.075 0.116±0.060 0.014±0.009 

SOUTHERN  9.24±6.64 1.59±0.60 0.197±0.119 0.213±0.091 0.132±0.071 0.023±0.025 

STSS       

N. PACIFIC 13.53±3.68 2.04±0.70 0.206±0.117 0.161±0.040 0.114±0.049 0.014±0.006 

N. ATLANTIC 12.98±3.28 1.93±0.54 0.165±0.069 0.162±0.049 0.099±0.036 0.014±0.006 

SOUTHERN 13.91±5.02 2.12±0.39 0.222±0.087 0.173±0.053 0.109±0.040 0.016±0.009 

STPS       

N. PACIFIC 8.92±3.24 1.18±0.61 0.177±0.102 0.131±0.047 0.132±0.049 0.017±0.010 

N. ATLANTIC 7.70±2.37 0.97±0.44 0.092±0.057 0.121±0.051 0.140±0.097 0.013±0.008 

S. ATLANTIC 9.78±2.16 1.33±0.41 0.138±0.090 0.130±0.043 0.104±0.040 0.012±0.008 

INDIAN 16.67±4.75 2.25±0.85 0.284±0.162 0.143±0.035 0.130±0.063 0.016±0.008 

EQU       

W. PACIFIC 11.03±5.31 1.44±1.06 0.10±0.078 0.134±0.059 0.089±0.050 0.013±0.011 

E. PACIFIC 21.16±5.16 2.91±0.74 0.542±0.288 0.151±0.043 0.178±0.086 0.027±0.015 

ATLANTIC 14.33±4.71 1.94±0.65 0.272±0.137 0.145±0.039 0.140±0.043 0.019±0.010 

MED 9.21±3.71 1.34±0.79 0.074±0.062 0.141±0.060 0.119± 0.107 0.011± 0.008 
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 420 

To illustrate differences among the models making up the RECCAP2 multi-model 421 
ensemble, global integrals of the annual average biological pump metrics are displayed in Figure 422 
2. A box-whisker plot is shown for each model ensemble member quantifying the interannual 423 
variability for each model for the RECCAP2 reporting period (1985-2018). Note that some 424 
RECCAP2 models did not report F1000, resulting in missing estimates for E1000/100 and E1000/NPP. 425 
Some models stood out as either anomalously low (e.g. FESOM-REcoM-LR for NPP) or high 426 
(e.g. NEMO-PlankTOM12.1 for F100) relative to the other RECCAP2 ensemble members, though 427 
inter-model agreement alone was not necessarily a robust indicator of model skill (see Section 428 
3.2). For global E100/NPP, the models were roughly split into low (0.10-0.12) and high (0.16-0.19) 429 
groups (Figure 2d). Global F1000, E1000/100, and E1000/NPP varied widely for the smaller number of 430 
available models (Figure 2c, 2e, and 2f). 431 
 432 
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 433 
 434 
Figure 2. Boxplots showing median values (1985-2018), interannual interquartile ranges, and 435 
outliers of biological pump metrics across model products in RECCAP2 ensemble (simulation A). 436 
Globally integrated, annual (a) net primary productivity 𝑁𝑃𝑃, (b) particulate organic carbon export 437 
fluxes at 100 m 𝐹"##, and (c) 1000 m depth 𝐹"### , all in Pg C y–1. Global and annual average (d) 438 
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surface export efficiency ratio 𝐸"## &''⁄ = 𝐹"##/𝑁𝑃𝑃 (Eq. 1), (e) mesopelagic transfer efficiency at 439 
1000 m 𝐸"### "##⁄ = 𝐹"### 𝐹⁄ "## (Eq. 2), and (f) export efficiency to the deep ocean 𝐸"### &''⁄ =440 
𝐹"###/𝑁𝑃𝑃, all ratios unitless. CCSM-WHOI output does not include the year 2018 and SIMPLE-441 
TRIM does not simulate interannual variability. Efficiency ratios are not given in panels d, e, and 442 
f for models lacking the corresponding NPP, 𝐹"##, or 𝐹"###. 443 
 444 

3.2 Model-observational comparisons   445 

The global ocean biological carbon pump metrics from the RECCAP2 multi-model 446 
ensemble were compared against corresponding literature values in Table 4 and Figure 3. The 447 
RECCAP2 multi-model ensemble global-integrated NPP value, 42.7 ± 10.9 Pg C yr–1, was at the 448 
lower end of literature estimates (43.5-68 Pg C yr–1), and the inter-quartiles have limited overlap. 449 
Similarly, global-integrated F100 from the multi-model ensemble of 6.41 ± 1.52 Pg C yr–1 was 450 
lower than the mean of the literature estimates of sinking POC flux (~8 Pg C yr-1, range 4-13 Pg 451 
C yr–1), though the inter-quartiles overlapped substantially because of the large range in 452 
observation-based estimates. The global-integrated model ensemble F1000 value of 0.95 ± 0.64 Pg 453 
C yr–1 fell between one low estimate of 0.66 Pg C yr–1 (Henson et al., 2012) and two other literature 454 
estimates of 1.1 Pg C yr–1. The global multi-model ensemble-mean export and transfer efficiencies, 455 
E100/NPP (0.15 ± 0.03) and E1000/100 (0.12 ± 0.04), were within the range of literature values after 456 
removing the high E100 values (0.3 and 0.38) from Laws et al. (2000) and acknowledging one low 457 
outlier model for global E1000/100 (~0.05; CCSM-WHOI; Figure 2e).  458 

The wide range of literature estimates reflects differences in measurement methodologies, 459 
biases, and uncertainties in the datasets used for biological carbon pump metric estimation, as well 460 
as uncertainties introduced by data sampling biases, aggregation, time/space interpolation and 461 
modeling approaches. At global scales, in situ observational sampling for some variables remains 462 
sparse and regionally patchy, and satellites, empirical relationships, and numerical models have 463 
been used to gap-fill for global-scale product generation. For example, even with field data sets 464 
available for ocean NPP based on 14C uptake incubation studies, satellite remote sensing has been 465 
required to create uniform global NPP products, which have been calibrated/validated against 14C 466 
NPP field data. A variety of in situ methods have been used to estimate surface ocean export flux 467 
estimates (~F100) – drifting sediment traps, 234Th deficit, etc. To derive global-scale fields of 468 
export, extrapolation from the limited in situ data is required which generates uncertainties in the 469 
derived estimates due to the underlying data sparsity (Henson et al., 2024). Typically, satellite data 470 
is used to build an empirical relationship between flux and readily derived variables, such as sea 471 
surface temperature or chlorophyll concentration.  Other approaches include merging satellite data 472 
with food-web models (e.g., Siegel et al., 2014). Observation-based global F1000 estimates have 473 
been generated from sediment trap data (Mouw et al., 2016a), and estimates of both global F100 474 
and F1000 have been derived from inverse and data-assimilation ocean models (e.g., Devries and 475 
Weber, 2017; Nowicki et al., 2022).  476 
  477 
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Table 4. Comparison of literature-based, global observation-based ocean biological carbon pump 478 
metrics with the RECCAP2 model ensemble means and within-ensemble standard deviations. 479 
Note that SIMPLE-TRIM data assimilation results from Devries and Weber (2017) are also 480 
included in the RECCAP-2 model ensemble. 481 

 482 

Net Primary Production NPP (Pg C yr–1) References 

43.5 VGPM Behrenfeld & Falkowski (1997) 

52 CAFÉ Silsbe et al. 2016 

68 Carr (2002) & Carr et al. 2006 

49 Marra et al. (2003)  

52 CbPM2 Behrenfeld et al. 2005 

42.7 ± 10.9 RECCAP2 model ensemble mean and STD 

POC Export ~F100 (Pg C yr–1)  

4 Henson et al. (2012) 

9.6 Dunne et al. (2007) 

11.1-12.9 Laws et al. (2000) 

5.7 Siegel et al. (2014) 

9.6  Schlitzer (2000); inversion 

9-13 Laws et al. (2011) 

8.8 (7.3 at 100 m) DeVries & Weber (2017); data assimilating 

7.3 (6.4 at 100 m) Nowicki et al. (2022) 

6.41 ± 1.52 RECCAP2 model ensemble-mean and STD 

POC Flux 1000 m F1000 (Pg C yr–1)  

0.66 Henson et al. (2012) 

1.1 DeVries & Weber (2017) 

1.1 Nowicki et al. (2022) 

0.95 ± 0.64 RECCAP2 model ensemble mean and STD 

Export Ratio ~E100/NPP   

0.1 Henson et al. (2012) 

0.19 Dunne et al. (2007) 

0.3 Laws et al. (2000); food web 

0.38 Laws et al. (2000); empirical 

0.103 Siegel et al. (2014) 

0.17 Devries & Weber (2017) 
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0.13 (for POC only) 

0.18 (for POC + DOC + vertical migration) 

Nowicki et al. (2022) 

0.154 ± 0.026 RECCAP2 model ensemble mean and STD 

Transfer Flux Efficiency E1000/100  

0.19 Henson et al. (2012) 

0.13 DeVries & Weber (2017) 

0.15 Nowicki et al. (2022) 

0.121 ± 0.035 RECCAP2 model ensemble mean 

 483 

 484 
 485 
Figure 3. Box-whisker plots showing median values and interquartile ranges of biological pump 486 
parameters from 1985-2018 averaged across model products in RECCAP2 ensemble (simulation 487 
A). Global integrated, annual (a) net primary productivity 𝑁𝑃𝑃, (b) particulate organic carbon 488 
export fluxes at 100 m 𝐹"##, and (c) 1000 m depth 𝐹"### , all in Pg C yr-1 (note that the median line 489 
for 𝐹"###  is also the upper interquartile because two of the three observational estimates match). 490 
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Global and annual average surface export efficiency ratio (d) 𝐸"## &''⁄ = 𝐹"##/𝑁𝑃𝑃 (Eq. 1), and (e) 491 
mesopelagic transfer efficiency at 1000 m 𝐸"### "##⁄ = 𝐹"### 𝐹⁄ "## (Eq. 2), all ratios unitless.   492 
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 493 

 494 
 495 
Figure 4. Map of Longhurst provinces (Reygondeau et al., 2013) used in analysis of biological 496 
pump field observations and model results (Mouw et al., 2016a).  497 

 498 
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 499 
 500 
Figure 5. Box-whisker plot of RECCAP2 multi-model ensemble medians, interquartile ranges, 501 
and outliers for annual-mean (a) vertical integrated primary production (NPPint), (b) sinking POC 502 
fluxes at 100m (F100), and (c) sinking POC flux at 1000m (𝐹"###), all in Pg C yr-1, pooled into 503 
biogeochemical Longhurst ocean provinces (Figure 4) and compared to the observational 504 
climatology for the same provinces constructed by Mouw et al. (2016b). Robust uncertainty 505 
estimates are not available for the observational climatology which averages available data that is 506 



manuscript submitted to Global Biogeochemical Cycles 

 

often spatially sparse and/or concentrated in brief time intervals. Note that only provinces with 507 
sufficient observational data are plotted (see Figure 4).  508 
 509 

The biological carbon pump model comparison to observation-based estimates was 510 
extended in Figure 5 to a regional level using the observational data of Mouw et al. (2016a) as 511 
aggregated by Mouw et al. (2016b) into monthly climatological values for Longhurst 512 
biogeographic provinces (Figure 4). The Mouw et al. (2016a) date set aggregates the limited 513 
available field data that is often spatially sparse and locally high frequency with considerable 514 
mesoscale variability, some of which may be aliased into monthly and province scale averages. 515 
Therefore, robust uncertainty estimates are not available for the Mouw et al. (2016b) observational 516 
climatology. The variations across the RECCAP2 models are displayed as box-whisker plots. The 517 
members of the model ensemble exhibited a wide range of NPP, F100 and F1000 values for many 518 
provinces, but still the observational climatology falls within the multi-model ensemble inter-519 
quartiles for only about half of the provinces. The substantial model-observational offsets indicate 520 
recurring regional differences consistent across multiple models in the RECCAP2 ensemble; these 521 
disagreements could be targets for future ocean biogeochemical model development and analyses 522 
of observational sampling biases. The model ensemble members also exhibited extreme model-523 
data differences in some provinces where the observational climatology value falls outside the 524 
simulated range including model outliers. The RECCAP2 models consistently underestimated the 525 
strength of biological carbon pump metrics, relative to the observational climatology, in polar and 526 
sub-polar provinces in the North Pacific (N. Pacific epicontinental sea, BERS, low NPP and F100) 527 
and North Atlantic (N. Atlantic Drift, NADR, low NPP); and in equatorial provinces in the Indian 528 
(Northwest Arabian Sea upwelling, ARAB, low NPP), Pacific (Trades-Pacific Equatorial 529 
Divergence, PEQD, low F100) and Atlantic (Guianas coast, GUIA, low F1000; note, the observed 530 
high Guianas coast value reflects a small, productive region that may not be well represented in 531 
global-scale models). In other provinces, the model ensemble overestimated the biological pump 532 
in the South Pacific gyre (SPSG, high NPP and F100), Indian monsoon gyre (MONS, high NPP 533 
and F100), and Western Pacific subarctic gyres (PSAW, high F1000). 534 

 535 

3.3 Biological pump imprint on ocean CO2 system and biogeochemistry   536 

The ocean biological carbon pump imprints on surface and sub-surface biogeochemistry 537 
(see Introduction), and these effects are simulated in the RECCAP2 models. A strong positive 538 
mesopelagic AOU signal is generated by cumulative biological O2 consumption along the 539 
ventilation paths of subsurface waters (Najjar et al., 2007). AOU fields thus integrate non-local, 540 
large-scale biogeochemical dynamics and physical resupply of O2 from the surface. A key 541 
contributor to AOU is the remineralization of sinking POC flux in the mesopelagic, quantified by 542 
the large decline between F100 and F1000 and low transfer efficiency through the mesopelagic 543 
E1000/100 (Figures 1–3; Tables 3 and 4). For the RECCAP2 model ensemble, there was generally 544 
good model-data agreement in the geographic pattern in AOU averaged over the mesopelagic 545 
(100–1000 m) (Figure 6). The model ensemble captured the regional AOU variation of <50 to 546 
>250 µmol kg–1, though substantial disagreement arose on the scale of Longhurst provinces where 547 
the model-ensemble interquartile spans the observational data for only a handful of provinces 548 
(Figure 6c). The RECCAP2 models did not exhibit a strong inter-model relationship between 549 
global mean AOU and F100 (not shown). The weak relationship between AOU and F100 across 550 
models likely highlights the influence on AOU of substantial variations in the strength of model 551 
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thermocline ventilation rates that could also influence simulated anthropogenic CO2 uptake (e.g., 552 
Dutay et al., 2002; Matsumoto et al., 2004). Model deep-ocean AOU was not evaluated because 553 
model spin-up time scales were too short for the simulations to reach steady-state (Séférian et al., 554 
2019), an issue that also would affect simulated deep-ocean preindustrial DIC (Mikaloff Fletcher 555 
et al., 2007). Some imprint of the observational fields used for model initial conditions could also 556 
be retained in the simulated mesopelagic AOU depending on the model spin-up procedure.  557 
 558 

 559 
 560 
Figure 6. Analysis of apparent oxygen utilization (AOU, µmol kg–1) vertically averaged over the 561 
mesopelagic zone (100-1000 m): (a) spatial map of RECCAP2 multi-model ensemble average, 562 
and (b) spatial map from WOA observational data set, and (c) box-whisker plot of RECCAP2 563 
multi-model ensemble medians, interquartile ranges, and outliers pooled into biogeochemical 564 
Longhurst ocean provinces (Figure 4). 565 

 566 

The simulated regional patterns and global integrated surface POC export F100 (Figures 1 567 
–3; Tables 3 and 4) must be balanced on appropriate time and space scales by new production and 568 
external nutrient supply, largely from physical upwelling and mixing for most ocean regions 569 
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(Ducklow and Doney, 2013). As an indicator of physical controls on export associated with 570 
nutrient supply, the individual RECCAP2 model, global-integrated F100 values exhibited a positive 571 
correlation with global-ocean anthropogenic CO2 uptake (Figure 7) (DeVries et al., 2023). This is 572 
consistent with findings from previous model intercomparison exercises where models with 573 
stronger thermocline ventilation had both larger export flux and anthropogenic CO2 uptake (Najjar 574 
et al., 2007). The F100–anthropogenic CO2 uptake correlation, therefore, is indirect through a 575 
common underlying physical mechanism whereby stronger ventilation enhances both the 576 
downward transport of anthropogenic CO2 correlation and the upward transport of nutrients and 577 
thus F100. The physical-chemical solubility mechanisms controlling ocean anthropogenic CO2 578 
uptake are well documented, and there is no evidence of any significant role for biogeochemical 579 
processes, though climate-change biogeochemical feedbacks on ocean carbon storage may become 580 
more important in the future (Canadell et al., 2021). 581 
 582 

 583 
 584 
Figure 7. Scatter plot of global-integrated ocean anthropogenic CO2 uptake (mean of 1985-2018) 585 
(Pg C yr-1) versus particulate organic carbon (POC) export flux (F100, Pg C yr-1) for individual 586 
RECCAP2 models. Anthropogenic CO2 uptake for the same RECCAP2 models was taken from 587 
DeVries et al. (2023) A linear regression and confidence intervals for the regression are overlain. 588 
The F100–anthropogenic CO2 uptake correlation was indirect through a common underlying 589 
physical mechanism whereby stronger ventilation enhances both the downward transport of 590 
anthropogenic CO2 correlation and the upward transport of nutrients and thus F100. 591 

 592 
Seasonal variations in upper-ocean biogeochemistry were used as a metric of the physical 593 

controls associated with seasonal mixing and nutrient supply, which are reflected in simulated 594 
POC export. By correcting for seasonal thermal variations in pCO2 (Equation 3), we used model 595 
monthly pCO2 fields to quantify the combined effects of seasonal biogeochemical, gas-exchange 596 
and physical processes through the seasonal amplitude of non-thermal pCO2, DpCO2,non-thermal  597 
(Takahashi et al., 2002). The geographic pattern of DpCO2,non-thermal from the RECCAP2 model 598 
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ensemble was similar to the pattern from the mean of the pCO2 observational products (Figure 8a 599 
and 8b). Both the model ensemble and observational products exhibited regional variations of 600 
DpCO2,non-thermal that ranged from 30 to >150 µatm with elevated values in mid- to high latitudes 601 
as well as equatorial and eastern boundary current upwelling regions. However, the magnitude of 602 
DpCO2,non-thermal in the model ensemble was considerably lower in the mid- to high latitude northern 603 
hemisphere, eastern tropical Pacific, and Brazil-Malvinas convergence region, suggesting a 604 
generally weaker modeled seasonal cycling of DIC. The same low bias in the RECCAP2 models 605 
was evident on the scale of Longhurst provinces where the observational products fell at the top 606 
end or well above the model-ensemble interquartile (Figure 8c). In many ocean regions, strong 607 
seasonality in mixed layer depth modulates vertical nutrient supply and annual-mean biological 608 
productivity. The weaker model ensemble DpCO2,non-thermal values (Figure 8), therefore, may be 609 
linked to regional patterns of lower NPP and F100 relative to observations (Figure 5) in the North 610 
Pacific (BERS province), North Atlantic (NADR province), eastern equatorial Pacific (PEQD), 611 
and Brazil-Malvinas convergence (western part of SATL province).  612 

 613 
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 614 
 615 
Figure 8. Analysis characterizing the combined effects of seasonal biogeochemical, gas-exchange 616 
and physical processes using the seasonal amplitude of non-thermal ∆𝑝𝐶𝑂!1214*+,-./0 (a) spatial 617 
map of RECCAP2 multi-model ensemble average, (b) spatial map from pCO2 observational data 618 
products, and (c) box-whisker plot of RECCAP2 multi-model ensemble medians, interquartile 619 
ranges, and outliers pooled into biogeochemical Longhurst ocean provinces (Figure 4). The 620 
province means from each observational product are plotted in panel (c) as individual points rather 621 
than as box-whiskers because of the limited number of observational products.    622 
 623 

4 Discussion and Conclusions 624 

Our analysis of the ocean biological carbon pump fields from the RECCAP2 multi-model 625 
ensemble revealed generally encouraging agreement with many aspects of observed patterns. 626 
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Global-integrated NPP and surface export flux (F100) from the RECCAP2 models tended to fall at 627 
the lower end of observational estimates (Figure 3 and Table 4), and geographic patterns in NPP 628 
were generally consistent with observational data products (Figures 1 and 5). Similar to previous 629 
model intercomparison studies (Laufkötter et al., 2015; Laufkötter et al., 2016), we found 630 
substantial within-ensemble variation in global biological carbon pump metrics, including the 631 
presence of model outliers (Figure 3), indicating that these aspect of biogeochemical models have 632 
not necessarily converged with time.  633 

Regional patterns in the RECCAP2 model-mean ensemble included elevated NPP, surface 634 
export flux (F100) and export efficiency (E100) in high-latitudes and coastal and equatorial 635 
upwelling regions, with lower values in more oligotrophic regions. These results are in line with 636 
previous studies that found that a substantial proportion of NPP in nutrient-rich regions is driven 637 
by large phytoplankton such as diatoms and, combined with an active zooplankton population, this 638 
can generate a significant export flux in the form of both dense aggregates and fecal pellets. High-639 
latitude elevated biomass, colder temperatures (Dunne et al., 2005), and strong seasonality also 640 
have been implicated in observations of higher POC export fluxes in spring and/or summer months 641 
contributing to the annual mean (Buesseler et al., 2001; Lampitt et al., 2001; Bol et al., 2018; 642 
Henson et al., 2023). In low nutrient regimes, such as the lower latitude oligotrophic gyres, 643 
previous studies report export flux to be low (Henson et al., 2012) but relatively constant 644 
throughout the year with small seasonal increases in fluxes (Karl et al., 2012). Future studies of 645 
the RECCAP2 ensemble could investigate in more detail the seasonality in NPP, F100, and E100, 646 
exploring, for example, the seasonal variability in export ratio that can be substantial due in part 647 
to the time lag between NPP and export flux (Henson et al., 2015; Giering et al., 2017; Laws and 648 
Maiti, 2019; Henson et al., 2015). 649 

The sinking POC flux into the deep ocean (F1000) and mesopelagic transfer efficiency 650 
across the mesopelagic zone (E1000/100) in the RECCAP2 multi-model ensemble (Figures 1 and 5) 651 
exhibited different spatial patterns than found for surface export, similar to findings of previous 652 
studies (e.g., Henson et al., 2012). Simulated F1000 and E1000/100 were greater in the tropical eastern 653 
Pacific, eastern Atlantic, and Arabian Sea, and E1000/100 was also elevated in the western tropical 654 
North Atlantic and, to a lesser extent, Southern Ocean. Previous model studies have also found 655 
substantial regional variations due to particle size and composition effects (Lima et al., 2014) that 656 
modify empirical power curves used for modeling POC sinking and remineralization (Martin et 657 
al., 1987). Model parameterizations tend to increase the effective remineralization length scales 658 
and thus transfer to depth in regions with high mineral fluxes (e.g., dust, CaCO3, silica) (Armstrong 659 
et al., 2002) or in tropical oxygen minimum zones (Laufkötter et al., 2017; Dinauer et al., 2022). 660 
The RECCAP2 regional variations in mesopelagic transfer efficiency, modulated with basin-scale 661 
variations in physical circulation-driven sequestration time-scale (Siegel et al., 2021), influence 662 
the effect of the biological pump on ocean carbon storage (Kwon et al., 2009). 663 

While we focused primarily on long-term mean NPP and export fluxes, the RECCAP2 664 
models also exhibited year-to-year variability (Table S1), though typically much lower than 665 
within-ensemble model differences (Figure 2), and small long-term temporal trends (Table S2). 666 
No consistent positive or negative trend was observed across the models in simulated NPP and 667 
sinking POC fluxes at 100m and 1000m, with NPP trends of order ±0.01 Pg C yr–1/year over the 668 
33 years of the time series (1985-2018). Although these trends could contain a signal from climate 669 
change, the relatively short duration of the RECCAP2 analysis period resulted in large signal to 670 
noise due to interannual variability. Previous modeling studies indicate that chlorophyll and NPP 671 
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time series of 30-40 years length are needed to distinguish climate change trends from natural 672 
variability (Henson et al., 2010). Hence, the RECCAP2 analysis period may indeed not be long 673 
enough to separate trends from interannual variability. While a recent study suggests that climate-674 
change trends can emerge more rapidly in ocean color remote-sensing reflectance (Cael et al., 675 
2023), any actual climate change signal in models may be masked by temporal biases associated 676 
with incomplete model spin-up and resulting temporal drift (Séférian et al., 2016).  677 

Our analysis of the biological carbon pump was relevant in several ways to the primary 678 
focus of the RECCAP2 ocean project on air-sea CO2 fluxes and ocean uptake of anthropogenic 679 
CO2 (DeVries et al., 2023). Biological net CO2 uptake and carbon export modulate the background, 680 
pre-industrial and contemporary spatial and seasonal patterns of surface ocean pCO2 and sea-air 681 
CO2 flux that must be accounted for to determine anthropogenic CO2 perturbations. The low model 682 
F100 values globally (Figure 3) and for mid- to high-latitude Northern Hemisphere and eastern 683 
equatorial Pacific provinces (Figure 5), relative to observations, suggested that the RECCAP2 684 
model ensemble may have underestimated biological CO2 drawdown in high productivity regions. 685 
Potential issues were also identified in simulated seasonal biogeochemical, gas-exchange and 686 
physical dynamics as captured in the seasonal amplitude of non-thermal pCO2 variations, with 687 
weaker DpCO2,non-thermal values found at mid- to high-latitudes and in the eastern equatorial Pacific 688 
in the model ensemble relative to observations (Figure 8). Future work with more detailed model 689 
diagnostics could explore the connections between regional biases in simulated annual-mean and 690 
seasonal export production and biases in air-sea CO2 flux as observed in other RECCAP2 studies 691 
(DeVries et al., 2023; Hauck et al., 2023). 692 

Ocean circulation modulates biological export flux on basin to global scales (Najjar et al., 693 
2007), and the range in RECCAP2 global-integrated F100 values indicated that substantial 694 
differences exist in simulated ocean physics within the RECCAP2 marine biogeochemical models 695 
(Doney et al., 2004). The same ocean circulation variations also likely influenced the 696 
anthropogenic CO2 uptake estimates from DeVries et al. (2023) as indicated by the positive 697 
correlation between anthropogenic CO2 uptake and F100 across individual RECCAP2 models 698 
(Figure 7). This is supported by further analysis of the RECCAP2 models demonstrating that the 699 
rate of ocean overturning circulation is strongly correlated with anthropogenic CO2 uptake in the 700 
models (Terhaar et al., 2023). Variations in model export could also be compared against metrics 701 
of physical stratification (Fu et al., 2022). The substantial inter-model spread in both physical and 702 
biogeochemical metrics likely reflects common factors resulting from differences in simulated 703 
thermocline ventilation and exchange between the surface and mid-depth ocean.  704 

A set of additional model development recommendations emerge from our analyses. One 705 
path forward would leverage independent model skill evaluation for inert chemical tracers (e.g., 706 
CFC-11, CFC-12, SF6) using standard ocean model intercomparison protocols (e.g., CMIP6 Ocean 707 
Model Intercomparison Project; Orr et al., 2017). The transient tracer simulations would help 708 
decipher the physical-biological factors controlling simulated AOU (Figure 6). Remineralization 709 
of sinking biological organic matter structures sub-surface ocean dissolved inorganic carbon, O2, 710 
and nutrient fields, a signal that must be addressed in observational estimates of anthropogenic 711 
CO2. While the predominant pathway for ocean anthropogenic CO2 uptake involves physical-712 
chemical dynamics, rather than biological dynamics, the same physical circulation and mixing 713 
processes influence biogeochemical rates such as nutrient supply. Therefore, evaluation and 714 
improvement of the ocean biological pump may provide additional insight.  715 
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The substantial variation in biological pump metrics shown here highlighted the need to 716 
reconcile inter-model and model-observational differences. Challenges arise for model 717 
improvement because there is limited agreement on the appropriate parameterizations for many 718 
key processes of biological carbon export (Henson et al., 2022), subsurface particle sinking, and 719 
remineralization. Many global models include detailed representation of euphotic zone processes 720 
but rather more simplistic representation of mesopelagic processes. Thus, the simulated global-721 
scale biological carbon pump responses to interannual variability, let alone decadal climate 722 
change, remain poorly constrained (Henson et al., 2016). Following the mechanistic approach 723 
reported in previous model intercomparison studies for primary production (Laufkötter et al., 724 
2015) and export production (Laufkötter et al., 2016), future studies could emphasize how overall 725 
model behavior reflects differences in model parameterizations, functional equations, and 726 
parameter values in both the euphotic and mesopelagic zones.  727 

Opportunities exist to leverage process-level information from lab and field studies to 728 
improve model treatment of POC production, sinking POC flux and extension of export pathways 729 
beyond POC gravitational sinking, for example physical subduction and active migration by 730 
organisms (Boyd et al., 2019; Siegel et al., 2016; Henson et al., 2022; Siegel et al., 2023). 731 
Phytoplankton community structure, captured to some degree in many models, influences 732 
magnitude and composition of export flux from the euphotic zone, the heterotrophic consumers of 733 
sinking POC and zooplankton community structure (Boyd and Newton, 1995; Cavan et al., 2019). 734 
Model treatments could be improved for grazers, such as zooplankton, that act to decrease particle 735 
flux by consuming phytoplankton and sinking POC, while also increasing flux by packaging POC 736 
into fecal pellets with a wide range of sinking speeds (Turner, 2015; Steinberg and Landry, 2017). 737 
Grazer diel vertical migration may also need to be incorporated as a carbon shunt below the depth 738 
horizons of most intense heterotrophic activity (i.e., upper mesopelagic zone), consuming POC in 739 
the surface ocean and respiring it at grazer resident daytime depth (Bianchi et al., 2013). More 740 
mechanistic treatment of particle dynamics may also be feasible. Particle disaggregation, 741 
physically through shear or biologically through fragmentation by grazers, likely contributes 742 
substantially to the decline in POC flux with depth while also providing a POC source for 743 
mesopelagic microbes (Laurenceau‐Cornec et al., 2020; Briggs et al., 2020). Microbes also can 744 
reduce POC flux directly, as they constantly attach and detach from sinking POC (Kiørboe et al., 745 
2002; Kiørboe et al., 2003), hydrolyzing and respiring the POC. While variable particle sinking 746 
speed is included in some model parameterizations, large meta-analyses of empirical data have 747 
struggled to find a strong link between sinking rate and size of particles, because of the vast 748 
variability in particle type, methods used to measure sinking rate, and environment the particles 749 
were collected from (Cael et al., 2021).  750 

Many of these process-level insights are already driving progress on mechanistic 751 
parameterizations for sinking particle flux (e.g., Dinauer et al., 2022), vertical migration (e.g., 752 
Archibald et al., 2019), and other key factors in the marine biological pump. Together with global-753 
scale ocean biogeochemical data compilations and syntheses (e.g., Mouw et al., 2016a; Mouw et 754 
al., 2016b, Clements et al., 2023) there are now promising new opportunities to evaluate, constrain, 755 
and improve ocean biological carbon pump simulations. Based on the model-data analysis 756 
presented here, the RECCAP2 multi-model ensemble exhibited relatively good agreement with 757 
observed biological carbon pump metrics, where there is sufficient data. The analysis also 758 
identified model-data biases and substantial differences among some of the models included in 759 
RECCAP2. These biases should be used to guide directions for future model development. 760 
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 1424 
 1425 
 1426 
Figure S1. Maps of within-ensemble standard deviation of biological pump parameters. Standard 1427 
deviations across model ensemble members are computed relative to the average model ensemble 1428 
presented in Figure 1 for: (a) vertically integrated primary productivity 𝜎*++, (b) particulate 1429 
organic carbon export fluxes at 100 m 𝜎𝐹"##, and (c) 1000 m 𝜎𝐹"###, all in moles C m–2 y–1, and (d) 1430 
surface export efficiency ratio 𝐸"## &''⁄ = 𝐹"##/𝑁𝑃𝑃, (e) mesopelagic transfer efficiency at 1000 m 1431 
𝐸"### "##⁄ = 𝐹"### 𝐹⁄ "##, and (f) export efficiency to the deep ocean 𝐸"### &''⁄ = 𝐹"###/𝑁𝑃𝑃, all ratios 1432 
unitless.  1433 
 1434 
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 1436 
 1437 

 1438 



manuscript submitted to Global Biogeochemical Cycles 

 

 1439 
 1440 

Figure S2. Map of standard RECCAP2 biomes by ocean basin (Fay and McKinley, 2014). The 1441 
biomes include polar (ICE), subpolar seasonally-stratified (SPSS), subtropical seasonally stratified 1442 
(STSS), subtropical permanently stratified (STPS), and equatorial regions (EQU); note the 1443 
equatorial Pacific is divided into western and eastern sub-basins. The equatorial eastern Pacific 1444 
and Atlantic, monsoon-influenced Indian, and seasonally-stratified biomes generally exhibited 1445 
relatively high NPP, F100, and F1000. Polar and sub-polar biomes exhibited relatively high E100.  1446 
  1447 
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 1449 
 1450 
Figure S3. Analysis of the seasonal cycle of non-thermal ∆𝑝𝐶𝑂!1214*+,-./0 (a) spatial map of 1451 
RECCAP2 multi-model ensemble average, (b) spatial map from pCO2 observational data products, 1452 
and (c) box-whisker plot of RECCAP2 multi-model ensemble medians, interquartile ranges, and 1453 
outliers pooled into Fay and McKinley biomes (Figure S2). 1454 
 1455 
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 1456 
 1457 
Figure S4. Analysis of apparent oxygen utilization (AOU) vertically averaged over the 1458 
mesopelagic zone (100-1000 m) (a) spatial map of RECCAP2 multi-model ensemble average, and 1459 
(b) spatial map from WOA observational data set, and (c) box-whisker plot of RECCAP2 multi-1460 
model ensemble medians, interquartile ranges, and outliers pooled into Fay and McKinley biomes 1461 
(Figure S2). 1462 
 1463 
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Table S1. Interannual variability (1985-2018) for the RECCAP2 simulations (simulation A) for 1467 
global-integrated, annual-mean variables: vertically integrated net primary productivity 𝑁𝑃𝑃 and 1468 
particulate organic carbon export fluxes at 100 m 𝐹,-- and 1000 m depth 𝐹,---. Interannual 1469 
variability (standard deviation) are in Pg C y–1.  1470 
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Table S2. Long-term temporal trends (1985-2018) for the RECCAP2 simulations (simulation A) 1473 
for global-integrated, annual-mean variables: vertically integrated net primary productivity 𝑁𝑃𝑃 1474 
and particulate organic carbon export fluxes at 100 m 𝐹,-- and 1000 m depth 𝐹,---. Trends are in 1475 
Pg C y–1/year,  1476 
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Key Points: 25 

• Global-scale, ocean biogeochemical simulations are compared with observation-based 26 
estimates of the marine biological carbon pump. 27 

• A multi-model ensemble exhibits relatively good agreement with observation-based 28 
metrics for carbon export flux and transfer efficiency.  29 

• Based on identified model-observation and inter-model differences, we provide guidance 30 
for future model evaluations and development. 31 

  32 



manuscript submitted to Global Biogeochemical Cycles 

 

Abstract 33 

This study characterized ocean biological carbon pump metrics in the second iteration of 34 
the REgional Carbon Cycle Assessment and Processes (RECCAP2) project, a coordinated, 35 
international effort to constrain contemporary ocean carbon air-sea fluxes and interior carbon 36 
storage trends using a combination of observation-based estimates, inverse models, and global 37 
ocean biogeochemical models. The analysis here focused on comparisons of global and biome-38 
scale regional patterns in particulate organic carbon production and sinking flux from the 39 
RECCAP2 model ensemble against observational products derived from satellite remote sensing, 40 
sediment traps, and geochemical methods. There was generally encouraging model-data 41 
agreement in large-scale spatial patterns, though with substantial spread across the model ensemble 42 
and observational products. The global-integrated, model ensemble-mean export production, taken 43 
as the sinking particulate organic carbon flux at 100 m (6.41 ± 1.52 Pg C yr–1), and export ratio 44 
defined as sinking flux divided by net primary production (0.154 ± 0.026) both fell at the lower end 45 
of observational estimates. Comparison with observational constraints also suggested that the 46 
model ensemble may have underestimated regional biological CO2 drawdown and air-sea CO2 flux 47 
in high productivity regions. Reasonable model-data agreement was found for global-integrated, 48 
ensemble-mean sinking particulate organic carbon flux into the deep ocean at 1000 m (0.95 ± 0.64 49 
Pg C yr–1) and the transfer efficiency defined as flux at 1000m divided by flux at 100m (0.121 ± 50 
0.035), with both variables exhibiting considerable regional variability. Future modeling studies 51 
are needed to improve system-level simulation of interaction between model ocean physics and 52 
biogeochemical response. 53 

 54 

Plain Language Summary 55 

Phytoplankton in the surface ocean create each year an amount of organic carbon 56 
approximately equivalent to all the annual photosynthesis by plants on land. A small fraction of 57 
this newly formed organic carbon is exported below the surface layer, and an even smaller amount 58 
makes it all the way to the deep ocean. The transport of organic carbon to the sub-surface ocean, 59 
called the biological carbon pump, influences the global-scale distributions of ocean nutrients, 60 
oxygen, and inorganic carbon as well as the amount of carbon dioxide in the atmosphere. The 61 
global rates and geographic patterns of photosynthesis and carbon flux out of the surface ocean 62 
have previously been constructed from ship measurements and satellite remote sensing. Here, we 63 
compare these observation-based estimates to a suite of three-dimensional, numerical ocean 64 
models and find broadly similar results. The model simulations also capture aspects of the 65 
biological carbon pump deeper in the water column, where there are fewer direct constraints from 66 
field observations. Our comparison of observations and simulations identifies some deficiencies 67 
in the models that should be corrected in order to better simulate climate change impacts on the 68 
biological carbon pump.  69 

 70 

1 Introduction 71 

Marine biogeochemical processes play a central role in the global Earth System, 72 
modulating the distribution of inorganic carbon, oxygen, and nutrients within the ocean and the 73 
partitioning of carbon between ocean and atmosphere reservoirs (Broecker and Peng, 1982; 74 
Sarmiento and Gruber, 2002; Devries, 2022; Iversen, 2023; Siegel et al., 2023). Because of the 75 
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strong oceanic influence on atmospheric CO2 concentration and thus planetary climate, there is 76 
considerable scientific focus on quantifying both the baseline and trends in ocean carbon storage 77 
and fluxes arising from the uptake of anthropogenic CO2 and climate change impacts on marine 78 
biogeochemical and physical dynamics (Henson et al., 2016; DeVries et al., 2019; Hauck et al., 79 
2020; Canadell et al., 2021; Crisp et al., 2022; Wilson et al., 2022; Gruber et al., 2023). The 80 
REgional Carbon Cycle Assessment and Processes (RECCAP) project is a coordinated, 81 
international effort to constrain contemporary ocean carbon air-sea fluxes and interior storage 82 
trends using a combination of observation-based estimates, inverse models, and global ocean 83 
biogeochemical models (GOBMs) (Wanninkhof et al., 2013; Khatiwala et al., 2013). The second 84 
phase, RECCAP2, extends the original synthesis using additional years of ocean observations and 85 
updated methodology and numerical results (DeVries et al., 2023; Hauck et al., 2023) as well as 86 
expanding the scope of the analysis, in this case into biological carbon pump magnitude and 87 
efficiency.  88 

In a simple 1-D form, the marine biological carbon pump can be viewed as the net 89 
production of particulate organic carbon (POC) and inorganic carbon (PIC) in the surface ocean, 90 
downward vertical transport of particulate carbon into the thermocline and deep sea, and 91 
subsequent respiration and remineralization of particulate carbon back into dissolved inorganic 92 
carbon (DIC) (Volk and Hoffert, 1985). The downward organic carbon transport, or export flux, 93 
drives subsurface marine biogeochemistry, fuels deep-ocean ecosystems, and influences ocean 94 
carbon storage and atmospheric CO2. The biological pump accentuates the vertical gradient in DIC 95 
already established from CO2 system thermal solubility and temperature gradients, and deep-ocean 96 
carbon storage reflects a net balance between the biological carbon pump source and physical 97 
ocean circulation processes that return elevated deep-ocean DIC waters back to the surface ocean 98 
via upwelling and vertical mixing (Sarmiento and Gruber, 2006). The relationship between ocean 99 
carbon storage and the strength of the biological pump is not necessarily straightforward because 100 
of physical-biological interactions; for example, stronger overturning circulation can enhance both 101 
biological export through increased nutrient supply and the physical return of high-DIC deep-102 
ocean waters to the surface (Doney et al., 2006). The vertical structure of the biological carbon 103 
pump is also important. Sinking POC fluxes decline rapidly in the thermocline (0 to ~1000 m 104 
depth), with only a fraction of surface export flux reaching the deep ocean below 1000 m (Martin 105 
et al., 1987; Lutz et al., 2007; Lima et al., 2014; Dinauer et al., 2022). Deeper remineralization 106 
depths, that is the transport of a greater fraction of POC into the lower thermocline or deep ocean 107 
prior to respiration, enhances ocean carbon storage because of generally reduced physical return 108 
rates to the surface ocean for deeper waters, and therefore longer retention times for the 109 
remineralized DIC, although with substantial regional variations associated with circulation 110 
pathways and rates (Kwon et al., 2009; Siegel et al., 2021).  111 

Net primary production (NPP) by surface ocean phytoplankton generates POC and 112 
dissolved organic carbon (DOC), and most marine NPP is converted rapidly back to DIC through 113 
zooplankton grazing of living biomass and detritus or through the microbial loop involving 114 
consumption of POC and DOC pools. Export fluxes require an excess of community production 115 
of organic carbon over respiration that in turn must be supported by an external supply of new 116 
nutrients over sufficient time and space scales (Ducklow and Doney, 2013). The fraction of NPP 117 
that is exported (export ratio = export flux/NPP), is modulated by the magnitude and seasonality 118 
of NPP, environmental conditions, and phytoplankton and zooplankton community composition 119 
(Laufkötter et al., 2016). Export flux from the euphotic zone occurs through multiple pathways 120 
including gravitational sinking of POC (e.g., living and dead cells; fecal pellets; marine snow), 121 



manuscript submitted to Global Biogeochemical Cycles 

 

physical subduction and mixing of POC and DOC below the surface layer, and active biological 122 
transport by vertically migrating organisms (Siegel et al., 2016). Contemporary models capture, 123 
with varying levels of sophistication and skill, biological processes involved in NPP and export 124 
flux from the upper ocean (Fennel et al., 2022), though models tend to focus on gravitational 125 
particle sinking and many do not incorporate all of the relevant export pathways (Boyd et al., 2019; 126 
Henson et al., 2022) or dynamics governing vertical carbon fluxes from the surface to the deep sea 127 
(Burd, 2024). Here we focus on simulated export via gravitational particle sinking, which is 128 
incorporated in virtually all global ocean biogeochemical models in some form. Observation-based 129 
estimates of the global export flux have a large range (~5-12 Pg C yr-1; Siegel et al., 2016), which 130 
is almost identical to the range in export estimates for the modern-day era simulated by coupled 131 
climate models (4.5-12 Pg C yr-1; Henson et al., 2022), i.e. the observations-based estimates of 132 
export flux provide a poor constraint for biogeochemical models. Because of differences in model 133 
climate responses and parameterizations of the ocean biological carbon pump, substantial 134 
uncertainties also plague projections of future changes in export flux in response to climate change. 135 
For example, Henson et al. (2022) found a large inter-model spread in projected changes in export 136 
flux by 2100 of between +0.16 and -1.98 Pg C yr-1 (+1.8 to -41%) under the high-emission SSP5-137 
8.5 scenario. 138 

Much of the export flux of organic carbon from the euphotic zone, taken here as the 139 
downward flux through 100m (F100), is consumed by respiration in the mesopelagic zone (100 – 140 
1000 m). The diverse mechanisms for vertical transport and remineralization of organic matter in 141 
the mesopelagic are only partially captured in models (Fennel et al., 2022). A steep decline with 142 
depth in the gravitational sinking flux of particles is well documented from mid-depth sediment 143 
traps (e.g., Lutz et al., 2007; Lima et al., 2014; Dinauer et al., 2022), but the exact processes 144 
involved are less well quantified and may include physical and biological particle fragmentation 145 
(Briggs et al., 2020) as well as particle consumption and repackaging by zooplankton (Stukel et 146 
al., 2019). Particle fluxes and the depth-scale of remineralization are affected by particle 147 
composition, size, density, and sinking speeds. Particles can vary widely from small, slowly 148 
sinking dead cells and detrital material, to large marine snow aggregates with enhanced sinking 149 
speeds from captured ballast material, to large rapidly sinking fecal pellets (Lam et al., 2011; 150 
Omand et al., 2020). Vertical migrators transport organic carbon downward from the euphotic 151 
zone into the mesopelagic, respiring CO2 and releasing fecal pellets at depth (Archibald et al., 152 
2019). Sinking particle fluxes and mesopelagic biological processes typically are not modeled in 153 
great mechanistic detail in contemporary global ocean biogeochemical models, and often relatively 154 
simplistic empirical relationships such as variants of the Martin power-law flux curve (Martin et 155 
al., 1987) are used in place of explicit representation of the processes controlling mesopelagic flux 156 
attenuation.     157 

The proportion of sinking exported POC that survives remineralization in the mesopelagic 158 
zone to reach depths > 1000 meters is referred to as the transfer efficiency, given here as the ratio 159 
of sinking fluxes at 100 and 1000 meters (E1000/100). POC reaching 1000m depth is remineralized 160 
below the main thermocline and is likely sequestered on timescales of >100 years, thus 161 
contributing to the long-term ocean carbon sink (Siegel et al., 2021). There is currently little 162 
consensus on the global magnitude or spatial patterns of transfer efficiency, with some approaches 163 
suggesting that E1000/100 is high at high latitudes and low at low latitudes (Marsay et al., 2015; 164 
Weber et al., 2016; DeVries and Weber, 2017), whilst others imply the opposite pattern (Lam et 165 
al., 2011; Henson et al., 2012; Guidi et al., 2015; Mouw et al., 2016b; Dinauer et al. 2022).  A 166 
variety of approaches have been used to generate these estimates, including paired in situ 167 
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observations of 234Th-derived export flux and deep sediment trap flux (Henson et al. 2012), vertical 168 
profiles of flux from drifting sediment traps (Marsay et al., 2015) or inverting the observed nutrient 169 
and/or oxygen distributions using an inverse model (Weber et al., 2016; Devries and Weber, 2017; 170 
Cram et al., 2018). The differing approaches, and differing time and space scales that they integrate 171 
over, are likely a significant source of the uncertainty in global E1000/100 patterns.  In CMIP6 172 
models, there are substantial differences in both the preindustrial mean E1000/100 (varying from 3% 173 
to 25% across models) and its response to 21st century climate change, with projections showing 174 
both increases and decreases in E1000/100 over time (Wilson et al., 2022).  175 

Early model skill assessments relied heavily on model-data comparisons to transient 176 
tracers, ocean physics, and sub-surface nutrient and oxygen fields that reflect the imprint of 177 
biological pump fluxes and ocean circulation (e.g., Matsumoto et al., 2004; Doney et al. 2004; 178 
Najjar et al. 2007). However, observational constraints on the ocean biological carbon pump have 179 
advanced considerably since the early global 3-D ocean biogeochemical modelling efforts (e.g., 180 
Bacastow and Maier-Reimer, 1990; Maier-Reimer, 1993). Global-scale data compilations of 181 
primary production, surface export and mesopelagic sinking carbon fluxes are now available based 182 
on a wealth of satellite remote sensing, sediment traps, and geochemical methods (e.g., Henson et 183 
al. 2012; Mouw et al., 2016a). Past model-data skill assessments using multi-model ensembles 184 
have highlighted differences in simulated ocean biological carbon pump patterns, magnitudes, and 185 
mechanisms and identified model biases relative to admittedly imperfect observational estimates 186 
(Laufkötter et al., 2015; Laufkötter et al., 2016). This study expands on these past assessment 187 
efforts of the ocean biological carbon pump to include the current generation of global ocean 188 
biogeochemical models compiled for RECCAP2 (DeVries et al., 2023).  189 

The objective of this study is to characterize the global-scale biological carbon pump from 190 
RECCAP2 models and compare the simulation results with observation-based metrics. The focus 191 
is on the spatial patterns and global-integrated rates from the multi-model ensemble mean taking 192 
into consideration inter-model spread. Key metrics include export of sinking POC from the surface 193 
euphotic zone and the efficiency of POC transfer through the mesopelagic ocean, both of which 194 
are central to ocean carbon storage. Based on identified model-observation and inter-model 195 
differences, we also provide guidance for future global ocean biogeochemical model evaluations 196 
and development that could include targeted, more detailed analyses of dynamics and biases within 197 
individual RECCAP models. 198 

 199 

2 Methods and Data 200 

2.1 RECCAP2 model simulations and observational data products 201 

This study leveraged a collection of ocean simulation and observational data sets, outlined 202 
in Table 1, assembled for RECCAP2 following standardized protocols and data reporting for 203 
numerical and observation-based pCO2 products (RECCAP2 Ocean Science Team, 2022; DeVries 204 
et al., 2023; Müller, 2023). The RECCAP2 ocean data sets included monthly surface and annual 205 
ocean interior output for the contemporary period from more than a dozen global ocean 206 
biogeochemical model hindcast simulations, including both forward and data-assimilated models, 207 
along with observation-based surface ocean pCO2 interpolation products. Many of the models 208 
included in the RECCAP2 suite have been used in the Global Carbon Project to assess the ocean 209 
carbon sink (Hauck et al., 2020; Friedlingstein et al., 2022). Here, we present model results for 210 
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1985 to 2018 from RECCAP2 simulation A, which was forced with historical atmospheric 211 
reanalysis data and increasing atmospheric CO2, and hence represents both steady-state and 212 
variable climate processes and both natural, pre-industrial carbon fluxes and anthropogenic carbon 213 
fluxes caused by rising atmospheric CO2 (DeVries et al., 2023).  214 

 215 
Table 1. Description of RECCAP2 global ocean biogeochemical hindcast models, global data-216 
assimilated models, and observation-based products used in this study. For more details see 217 
Tables S1 and S2 in DeVries et al. (2023). The World Ocean Atlas (WOA) data set was also 218 
used in the model-data evaluation. 219 
 220 
Global hindcast models Data range References 221 
CCSM-WHOI   1958-2017 Doney et al. (2009) 222 
CESM-ETHZ   1980-2018 Lindsay et al. (2014); Yang and Gruber (2016)  223 
CNRM-ESM2 -1  1980-2018 Séférian et al. (2019; 2020); Berthet et al. (2019) 224 
EC-Earth3   1980-2018 Döscher et al. (2021)  225 
FESOM-REcoM-LR  1980-2018 Hauck et al. (2020)  226 
MPIOM-HAMOCC  1980-2018 Ilyina et al. (2013); Mauritsen et al. (2019) 227 
MOM6-Princeton  1980-2018 Liao et al. (2020); Stock et al. (2020) 228 
MRI-ESM2-1   1980-2018 Urakawa et al. (2020); Tsujino et al. (2017)  229 
NorESM-OC1.2  1980-2018 Schwinger et al. (2016) 230 
NEMO-PlankTOM12.1 1980-2018 Le Quéré et al. (2016); Wright et al. (2021) 231 
ORCA1-LIM3-PISCES 1980-2018 Aumont et al. (2015)  232 
  233 
Data-assimilated models  234 
ECCO-Darwin   1995-2018 Carroll et al. (2020; 2022) 235 
SIMPLE-TRIM  Climatology DeVries and Weber (2017)  236 
  237 
pCO2 interpolation products  238 
CMEMS-LSCE-FFNN 1985-2018 Chau et al. (2022) 239 
JenaMLS   1985-2018 Rödenbeck et al. (2013); Rödenbeck et al. (2022) 240 
MPI-SOMFFN  1982-2018 Landschützer et al. (2016) 241 
NIES-ML3   1980-2020 Zeng et al. (2022) 242 
OceanSODA-ETHZ  1985-2018 Gregor and Gruber (2021) 243 
LDEO_HPD   1985-2018 Gloege et al. (2022) 244 
UOEX_Wat20   1985-2019 Watson et al. (2020) 245 
 246 
World Ocean Atlas 247 
Oxygen and AOU  Climatology Garcia et al. (2019) 248 
 249 
Biological carbon pump metrics 250 
net primary production, export production,  251 
and sinking POC flux   Climatology Mouw et al. (2016a; 2016b) 252 
 253 
 254 

Spatial 2D model output and pCO2 interpolation products were provided to RECCAP2 255 
with 1° x 1° resolution at monthly time steps, and 3D model output was resolved at annual time 256 
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steps. All estimates derived in this study were computed on the 1° x 1° grid. Global multi-model 257 
ensembles, spatial integrals and averages were computed as needed from the gridded results. For 258 
the aggregation to sub-basin ocean regions, ocean biomes based on Fay and McKinley (2014) were 259 
used in most instances to facilitate consistent regional intercomparison across RECCAP2 studies 260 
(e.g., Hauck et al., 2023). Longhurst provinces (Supplement Figure S1; Reygondeau et al., 2013) 261 
were additionally used in some of the biological pump model-observational comparisons to be 262 
consistent with one of the key observational data synthesis products (Mouw et al., 2016a). The 263 
notation and units for the biological, chemical and physical variables used in this study are 264 
described in Table 2. More details on the RECCAP2 ocean data sets can be found in DeVries et 265 
al. (2023).  266 

We also used an observational compilation of surface ocean export production and sinking 267 
POC flux combined with satellite ocean color data products for primary production synthesized in 268 
Mouw et al. (2016a) and as aggregated to Longhurst regional provinces in Mouw et al. (2016b). 269 
The full dataset includes over 15000 individual sediment trap and 234Th POC flux measurements 270 
at 673 locations, combined with satellite-derived estimates of NPP. Chlorophyll measurements 271 
collected from the SeaWiFS sensor on the OrbView-2 ocean color satellite, spanning from August 272 
1997 to December 2010, were used to derive NPP using the vertically generalized production 273 
model (VGPM) (Behrenfeld and Falkowski, 1997) on an equal-area grid with 9-km resolution. 274 
The climatology in Mouw et al. (2016a) used an interpolation approach to combine the satellite 275 
timeseries and short-deployment (<30 days trap cup intervals) sediment trap POC flux 276 
measurements at overlapping locations. Over 43% of the POC flux measurements were collected 277 
after 1997, overlapping with the satellite record. For each POC flux location, median monthly 278 
values are computed and binned into biogeochemical Longhurst provinces for the climatology. 279 
The POC flux climatology also has a depth dimension, with depth bins centered at 20 m for a near-280 
surface layer, in 50 m intervals in the upper thermocline, and in 200 m intervals from 500 m to 281 
5000 m. 282 
 283 
Table 2. Glossary and description of modeled, observed, and derived variables including 284 
notation and units.  285 
 286 
  
Variable Name Units 

Output 
frequency Description 

 
2D or surface ocean properties    

𝑝𝐶𝑂! µatm monthly Surface ocean pCO2 

𝑁𝑃𝑃 mol C m-2 yr-1 monthly 
Vertically-integrated net primary production 
of organic carbon 

𝐹"## mol C m-2 yr-1 monthly POC sinking flux at 100 m 

𝐹"### mol C m-2 yr-1 monthly POC sinking flux at 1000 m 
  
3D or Interior Ocean Properties    

T °C annual Seawater potential temperature 

S - annual Salinity (PSS-78) 

𝐹$% mol C m-2 yr-1 annual 3D field of POC sinking flux 
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O2 mol O2 m-3 annual Dissolved oxygen concentration 

Derived Variables    

𝐸"## &''⁄ =	𝐹"## 𝑁𝑃𝑃⁄  - monthly Surface Export Ratio  

𝐸"### "##⁄ =	𝐹"### 𝐹"##⁄  - monthly Mesopelagic Transfer Efficiency 

𝐸"### &''⁄ =	𝐹"### 𝑁𝑃𝑃⁄  - monthly Surface to Deep-sea Export Efficiency  

AOU µmol kg-1 monthly Apparent oxygen utilization 
 287 
 288 

2.2 Ocean biological pump and biogeochemical metrics  289 

Our analysis utilized biogeochemical model estimates of vertically integrated NPP and 290 
export fluxes of sinking POC flux across a shallow surface at the approximate base of the euphotic 291 
zone (100 m, F100) and at the base of the main thermocline (1000 m, F1000). Note that the 1000 m 292 
fluxes were not provided for all models (see Figure 2c), and therefore the ensemble means for F100 293 
and F1000 were constructed from different subsets of RECCAP2 simulations. The export ratio, 294 
E100/NPP, was computed as the ratio of POC sinking flux at 100 m divided by net integrated primary 295 
production: 296 

𝐸"## &''⁄ =
𝐹"##
NPP 297 

(1) 298 
The transfer efficiency across the 1000 m depth horizon, E1000/100, was similarly computed as the 299 
ratio of sinking POC fluxes at 100 m and 1000 m: 300 

𝐸"### "##⁄ =
𝐹"###
𝐹"##

 301 

(2) 302 

A depth of 1000 m is taken as an approximate boundary between the main thermocline with 303 
ventilation timescales of years to decades and the deep ocean with time-scales of a century and 304 
longer (Siegel et al., 2021). 305 

The relationship between the biological pump and the inorganic CO2 system was examined 306 
by partitioning the seasonal variability in surface seawater pCO2 into thermal and non-thermal 307 
components following Takahashi et al. (2002). We refer readers interested in a thorough analysis 308 
of RECCAP2 CO2 system seasonality to Rodgers et al. (2023). The temperature effect on pCO2 309 

was calculated for isochemical seawater using the approximation !(#$(%&')))
!)

= 0.0423 (°C–1) from 310 

the experimental value from Takahashi et al. (1993). The seasonal cycle in monthly surface 311 
temperature anomalies relative to the annual mean surface temperature generated a corresponding 312 
seasonal variation in the thermal (temperature-dependent) pCO2 component about the pCO2 annual 313 
mean:  314 

𝑝𝐶𝑂!*+,-./0 = (𝑝𝐶𝑂!).,/1 × 𝑒𝑥𝑝20.04238𝑇.21*+03 − 𝑇.,/1;< 315 
(3) 316 
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Ocean hindcast simulations typically capture quite well the seasonal cycle of sea surface 317 
temperature because the ocean models are forced by atmospheric reanalysis products and heat flux 318 
boundary conditions that effectively contain information on the observed temperature record 319 
(Doney et al., 2007); the same model-data agreement transfers to the thermal pCO2 seasonal 320 
component. The non-thermal pCO2 component was computed by subtracting the thermal 321 
component from the monthly pCO2 values, and the seasonal amplitude DpCO2,non-thermal was 322 
calculated as the seasonal peak-to-trough difference. The non-thermal pCO2 component reflects 323 
seasonal variations in DIC and alkalinity from biological organic and inorganic carbon production 324 
and remineralization, air-sea CO2 gas exchange, and physical transport and mixing. Note that the 325 
seasonal phasing of the non-thermal pCO2 component can be distinct from the phasing of the total 326 
pCO2 cycle. This is especially the case in the low latitudes, where the thermal component 327 
dominates the seasonal cycle (Takahashi et al., 1993; Landschützer et al., 2018; Rodgers et al., 328 
2023). 329 

We also computed apparent oxygen utilization (AOU) using modeled dissolved oxygen, 330 
salinity, and potential temperature fields. Modeled average AOU at 100 m (AOU100) and 1000 m 331 
depth (AOU1000) were found using nearest depth bins in model products (bins centered within 50 332 
m of depths). The simulated AOU fields are compared against the World Ocean Atlas (WOA) data 333 
product (Garcia et al., 2019). 334 

 335 

3 Results 336 

3.1 Simulated ocean biological carbon pump metrics 337 

Global spatial fields of present-day biological carbon pump variables are displayed in 338 
Figure 1 for the RECCAP2 model ensemble mean with the corresponding ensemble standard 339 
deviation in Figure S1. Biome-scale ensemble-mean averages and within-ensemble standard 340 
deviation values for the biological pump metrics are reported in Table 3 using the standard 341 
RECCAP2 biomes by ocean basin (Figure S2; Fay and McKinley, 2014).   342 

The magnitude and spatial patterns of simulated annual mean NPP and export flux from 343 
sinking POC (F100) (Figure 1a and 1b) are broadly similar to observational estimates (Section 3.2). 344 
Simulated upper-ocean biological pump variables showed large geographic variations with annual-345 
mean NPP ranging on biome scales (Table 3) from 8 to 21 mol C m–2 yr–1 and F100 ranging from 346 
1.1 to 2.9 mol C m–2 yr–1. The simulated spatial patterns reflect euphotic zone temperature, nutrient 347 
supply, and grazing and loss rates that govern phytoplankton standing stock in the models 348 
(Falkowski et al., 1998; Laufkötter et al., 2015; Laufkötter et al., 2016). The imprint of nutrient 349 
supply was particularly evident in the elevated NPP and export fluxes found in equatorial and 350 
coastal upwelling regions, western boundary currents, and mid-latitude bands of deep seasonal 351 
mixing. Within-ensemble standard deviations (s) of NPP and F100 were elevated in the equatorial 352 
band, and high sNPP values were found also in the Southern Ocean indicating substantial model 353 
disagreement within the ensemble (Figure S1a and S1b). Biome-scale sNPP values ranged from 2.1 354 
to 6.6 mol C m–2 yr–1 (from as low as 0.22 to nearly 0.72 times the ensemble mean in parts of the 355 
Southern Ocean); biome-scale sF100 values varied from 0.4 to >1.0 mol C m–2 yr–1 with the largest 356 
absolute and fractional within-ensemble variation of >0.7 times the ensemble mean occurring in 357 
the western equatorial Pacific.  358 
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The local POC sinking flux at the base of the mesopelagic (F1000) ranged at biome scale 359 
from 0.09 to 0.54 mol C m–2 yr–1 with broadly similar patterns to F100, though with some notable 360 
exceptions such as the high F1000 values in tropical low-oxygen zones in the eastern tropical Pacific 361 
and Arabian Sea (Figure 1c). Note the roughly half to full order of magnitude decline in scale in 362 
Figure 1 from NPP to F100 and then F100 to F1000. This indicates first that the bulk of simulated 363 
NPP is recycled within the euphotic zone above 100 m, rather than exported as sinking POC flux, 364 
and second that most of the sinking POC flux at 100 m is remineralized in the mesopelagic, rather 365 
than reaching the deep ocean below 1000 m. As for NPP and F100, some correspondence was found 366 
for the spatial patterns of ensemble-mean F1000 and sF1000. Highest biome-scale sF1000 values of  367 
0.26 to 0.29 mol C m–2 yr–1 occurred in the North Pacific and eastern equatorial Pacific, equal to 368 
0.85 and 0.53 times the ensemble-mean F1000 for those biomes; biome-scale sF1000 values of ~0.5 369 
or more of the ensemble-mean were common, with even higher fractional values locally such is in 370 
the eastern subtropical North Pacific (Figure S1c; Table 3). 371 

The fraction of NPP exported across 100 m, or export ratio (E100/NPP, Figure 1d; Table 3) 372 
varies at the biome scale in the ensemble mean from 0.12 to 0.21 with elevated values in high 373 
latitudes. The spatial patterns for within-ensemble E100/NPP standard deviation (Figure S1d) mirror 374 
that of the mean E100/NPP with biome-mean standard deviations of 0.035 to 0.050 in most biomes 375 
and up to 0.091 in the sub-polar Southern Ocean biome where there is more within-ensemble 376 
model spread.  377 
 378 
 379 
 380 
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 381 
 382 
Figure 1. Multi-model ensemble averages of biological pump parameters from 1985 to 2018 383 
across all RECCAP2 model simulations (simulation A). Maps of annual mean (a) integrated net 384 
primary productivity 𝑁𝑃𝑃, (b) particulate organic carbon export fluxes at 100 m 𝐹"##, and (c) 1000 385 
m depth 𝐹"###, all in mol C m–2 yr–1. Ensemble mean (d) surface export efficiency ratio 𝐸"## &''⁄ =386 
𝐹"##/𝑁𝑃𝑃 (Eq. 1), (e) mesopelagic transfer efficiency at 1000 m 𝐸"### "##⁄ = 𝐹"### 𝐹⁄ "## (Eq. 2), and 387 
(f) export efficiency to the deep ocean 𝐸"### &''⁄ = 𝐹"###/𝑁𝑃𝑃, all ratios unitless.  388 

 389 

The ensemble-mean transfer efficiency through the mesopelagic, E1000/100 (Figure 1e; Table 390 
3), exhibited background levels at the biome-scale of 0.09-0.14 for most biomes and ranging as 391 
high as 0.18 in the eastern equatorial Pacific biome; sub-biome regional values up to 0.3 occurred 392 
in the eastern tropical Pacific, western and eastern tropical Atlantic, and Arabian Sea and Bay of 393 
Bengal. Some ocean biogeochemical models reduce sub-surface POC remineralization in low-394 
oxygen zones, using a parameterization based on local oxygen concentrations, driving higher 395 
E1000/100 values in low-oxygen regions such as the eastern tropical Pacific, Arabian Sea and Bay of 396 
Bengal. Furthermore, POC flux mineral ballasting from Saharan dust deposition, prescribed as an 397 
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external forcing, is likely an important contributor in at least some models (CCSM-WHOI and 398 
CESM-ETHZ) to high E1000/100 in the western tropical Atlantic (Lima et al., 2014). The ensemble 399 
E1000/100 standard deviation (Figure S1e) generally followed E1000/100 with particularly large 400 
sE1000/100 values up to 0.3 in the western tropical Atlantic reflecting differences across models in 401 
the parameterization of POC sinking in the presence of desert dust. The metric E1000/NPP (Figure 402 
1f), combining surface export and mesopelagic transfer efficiencies, had generally similar spatial 403 
patterns to E1000/100 but with lower values, reflecting the small fraction of NPP that sinks below 404 
1000 m and is sequestered in the deep ocean. More than a factor of two variation was found for 405 
metric E1000/NPP across biomes (0.012 to 0.027) with large within-ensemble variation for some 406 
biomes where the standard deviation approached or exceeded the ensemble mean. 407 

 408 
Table 3. Model ensemble averages and standard deviations of biological pump parameters by 409 
RECCAP2 regional biomes (Figure S2) (see also Figure 1) grouped as Sub-Polar Seasonally 410 
Stratified (SPSS), Sub-Tropical Seasonally Stratified (STSS), Sub-Tropical Permanently Stratified 411 
(STPS), Equatorial (EQU), and Mediterranean (MED). Table includes annual means and standard 412 
deviations for vertically integrated net primary productivity 𝑁𝑃𝑃, particulate organic carbon export 413 
fluxes at 100 m 𝐹"##, and 1000 m depth 𝐹"###, all in mol C m–2 yr–1, and average surface export 414 
efficiency ratio 𝐸"## &''⁄ = 𝐹"##/𝑁𝑃𝑃, mesopelagic transfer efficiency at 1000 m 𝐸"### "##⁄ =415 
𝐹"### 𝐹⁄ "##, and export efficiency to the deep ocean 𝐸"### &''⁄ = 𝐹"###/𝑁𝑃𝑃, all ratios unitless. 416 
Ensemble were not computed for the small, high-latitude polar ice biomes due to noisy and/or 417 
missing data across the full ensemble.  418 
 419 

 NPP F100 F1000 E100/NPP E1000/100 E1000/NPP 

SPSS       

N. PACIFIC 11.89±4.81 2.21±0.65 0.307±0.263 0.206±0.076 0.124±0.071 0.018±0.012 

N. ATLANTIC 9.30±3.00 1.77±0.65 0.177±0.156 0.211±0.075 0.116±0.060 0.014±0.009 

SOUTHERN  9.24±6.64 1.59±0.60 0.197±0.119 0.213±0.091 0.132±0.071 0.023±0.025 

STSS       

N. PACIFIC 13.53±3.68 2.04±0.70 0.206±0.117 0.161±0.040 0.114±0.049 0.014±0.006 

N. ATLANTIC 12.98±3.28 1.93±0.54 0.165±0.069 0.162±0.049 0.099±0.036 0.014±0.006 

SOUTHERN 13.91±5.02 2.12±0.39 0.222±0.087 0.173±0.053 0.109±0.040 0.016±0.009 

STPS       

N. PACIFIC 8.92±3.24 1.18±0.61 0.177±0.102 0.131±0.047 0.132±0.049 0.017±0.010 

N. ATLANTIC 7.70±2.37 0.97±0.44 0.092±0.057 0.121±0.051 0.140±0.097 0.013±0.008 

S. ATLANTIC 9.78±2.16 1.33±0.41 0.138±0.090 0.130±0.043 0.104±0.040 0.012±0.008 

INDIAN 16.67±4.75 2.25±0.85 0.284±0.162 0.143±0.035 0.130±0.063 0.016±0.008 

EQU       

W. PACIFIC 11.03±5.31 1.44±1.06 0.10±0.078 0.134±0.059 0.089±0.050 0.013±0.011 

E. PACIFIC 21.16±5.16 2.91±0.74 0.542±0.288 0.151±0.043 0.178±0.086 0.027±0.015 

ATLANTIC 14.33±4.71 1.94±0.65 0.272±0.137 0.145±0.039 0.140±0.043 0.019±0.010 

MED 9.21±3.71 1.34±0.79 0.074±0.062 0.141±0.060 0.119± 0.107 0.011± 0.008 
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 420 

To illustrate differences among the models making up the RECCAP2 multi-model 421 
ensemble, global integrals of the annual average biological pump metrics are displayed in Figure 422 
2. A box-whisker plot is shown for each model ensemble member quantifying the interannual 423 
variability for each model for the RECCAP2 reporting period (1985-2018). Note that some 424 
RECCAP2 models did not report F1000, resulting in missing estimates for E1000/100 and E1000/NPP. 425 
Some models stood out as either anomalously low (e.g. FESOM-REcoM-LR for NPP) or high 426 
(e.g. NEMO-PlankTOM12.1 for F100) relative to the other RECCAP2 ensemble members, though 427 
inter-model agreement alone was not necessarily a robust indicator of model skill (see Section 428 
3.2). For global E100/NPP, the models were roughly split into low (0.10-0.12) and high (0.16-0.19) 429 
groups (Figure 2d). Global F1000, E1000/100, and E1000/NPP varied widely for the smaller number of 430 
available models (Figure 2c, 2e, and 2f). 431 
 432 
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 433 
 434 
Figure 2. Boxplots showing median values (1985-2018), interannual interquartile ranges, and 435 
outliers of biological pump metrics across model products in RECCAP2 ensemble (simulation A). 436 
Globally integrated, annual (a) net primary productivity 𝑁𝑃𝑃, (b) particulate organic carbon export 437 
fluxes at 100 m 𝐹"##, and (c) 1000 m depth 𝐹"### , all in Pg C y–1. Global and annual average (d) 438 
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surface export efficiency ratio 𝐸"## &''⁄ = 𝐹"##/𝑁𝑃𝑃 (Eq. 1), (e) mesopelagic transfer efficiency at 439 
1000 m 𝐸"### "##⁄ = 𝐹"### 𝐹⁄ "## (Eq. 2), and (f) export efficiency to the deep ocean 𝐸"### &''⁄ =440 
𝐹"###/𝑁𝑃𝑃, all ratios unitless. CCSM-WHOI output does not include the year 2018 and SIMPLE-441 
TRIM does not simulate interannual variability. Efficiency ratios are not given in panels d, e, and 442 
f for models lacking the corresponding NPP, 𝐹"##, or 𝐹"###. 443 
 444 

3.2 Model-observational comparisons   445 

The global ocean biological carbon pump metrics from the RECCAP2 multi-model 446 
ensemble were compared against corresponding literature values in Table 4 and Figure 3. The 447 
RECCAP2 multi-model ensemble global-integrated NPP value, 42.7 ± 10.9 Pg C yr–1, was at the 448 
lower end of literature estimates (43.5-68 Pg C yr–1), and the inter-quartiles have limited overlap. 449 
Similarly, global-integrated F100 from the multi-model ensemble of 6.41 ± 1.52 Pg C yr–1 was 450 
lower than the mean of the literature estimates of sinking POC flux (~8 Pg C yr-1, range 4-13 Pg 451 
C yr–1), though the inter-quartiles overlapped substantially because of the large range in 452 
observation-based estimates. The global-integrated model ensemble F1000 value of 0.95 ± 0.64 Pg 453 
C yr–1 fell between one low estimate of 0.66 Pg C yr–1 (Henson et al., 2012) and two other literature 454 
estimates of 1.1 Pg C yr–1. The global multi-model ensemble-mean export and transfer efficiencies, 455 
E100/NPP (0.15 ± 0.03) and E1000/100 (0.12 ± 0.04), were within the range of literature values after 456 
removing the high E100 values (0.3 and 0.38) from Laws et al. (2000) and acknowledging one low 457 
outlier model for global E1000/100 (~0.05; CCSM-WHOI; Figure 2e).  458 

The wide range of literature estimates reflects differences in measurement methodologies, 459 
biases, and uncertainties in the datasets used for biological carbon pump metric estimation, as well 460 
as uncertainties introduced by data sampling biases, aggregation, time/space interpolation and 461 
modeling approaches. At global scales, in situ observational sampling for some variables remains 462 
sparse and regionally patchy, and satellites, empirical relationships, and numerical models have 463 
been used to gap-fill for global-scale product generation. For example, even with field data sets 464 
available for ocean NPP based on 14C uptake incubation studies, satellite remote sensing has been 465 
required to create uniform global NPP products, which have been calibrated/validated against 14C 466 
NPP field data. A variety of in situ methods have been used to estimate surface ocean export flux 467 
estimates (~F100) – drifting sediment traps, 234Th deficit, etc. To derive global-scale fields of 468 
export, extrapolation from the limited in situ data is required which generates uncertainties in the 469 
derived estimates due to the underlying data sparsity (Henson et al., 2024). Typically, satellite data 470 
is used to build an empirical relationship between flux and readily derived variables, such as sea 471 
surface temperature or chlorophyll concentration.  Other approaches include merging satellite data 472 
with food-web models (e.g., Siegel et al., 2014). Observation-based global F1000 estimates have 473 
been generated from sediment trap data (Mouw et al., 2016a), and estimates of both global F100 474 
and F1000 have been derived from inverse and data-assimilation ocean models (e.g., Devries and 475 
Weber, 2017; Nowicki et al., 2022).  476 
  477 
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Table 4. Comparison of literature-based, global observation-based ocean biological carbon pump 478 
metrics with the RECCAP2 model ensemble means and within-ensemble standard deviations. 479 
Note that SIMPLE-TRIM data assimilation results from Devries and Weber (2017) are also 480 
included in the RECCAP-2 model ensemble. 481 

 482 

Net Primary Production NPP (Pg C yr–1) References 

43.5 VGPM Behrenfeld & Falkowski (1997) 

52 CAFÉ Silsbe et al. 2016 

68 Carr (2002) & Carr et al. 2006 

49 Marra et al. (2003)  

52 CbPM2 Behrenfeld et al. 2005 

42.7 ± 10.9 RECCAP2 model ensemble mean and STD 

POC Export ~F100 (Pg C yr–1)  

4 Henson et al. (2012) 

9.6 Dunne et al. (2007) 

11.1-12.9 Laws et al. (2000) 

5.7 Siegel et al. (2014) 

9.6  Schlitzer (2000); inversion 

9-13 Laws et al. (2011) 

8.8 (7.3 at 100 m) DeVries & Weber (2017); data assimilating 

7.3 (6.4 at 100 m) Nowicki et al. (2022) 

6.41 ± 1.52 RECCAP2 model ensemble-mean and STD 

POC Flux 1000 m F1000 (Pg C yr–1)  

0.66 Henson et al. (2012) 

1.1 DeVries & Weber (2017) 

1.1 Nowicki et al. (2022) 

0.95 ± 0.64 RECCAP2 model ensemble mean and STD 

Export Ratio ~E100/NPP   

0.1 Henson et al. (2012) 

0.19 Dunne et al. (2007) 

0.3 Laws et al. (2000); food web 

0.38 Laws et al. (2000); empirical 

0.103 Siegel et al. (2014) 

0.17 Devries & Weber (2017) 
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0.13 (for POC only) 

0.18 (for POC + DOC + vertical migration) 

Nowicki et al. (2022) 

0.154 ± 0.026 RECCAP2 model ensemble mean and STD 

Transfer Flux Efficiency E1000/100  

0.19 Henson et al. (2012) 

0.13 DeVries & Weber (2017) 

0.15 Nowicki et al. (2022) 

0.121 ± 0.035 RECCAP2 model ensemble mean 

 483 

 484 
 485 
Figure 3. Box-whisker plots showing median values and interquartile ranges of biological pump 486 
parameters from 1985-2018 averaged across model products in RECCAP2 ensemble (simulation 487 
A). Global integrated, annual (a) net primary productivity 𝑁𝑃𝑃, (b) particulate organic carbon 488 
export fluxes at 100 m 𝐹"##, and (c) 1000 m depth 𝐹"### , all in Pg C yr-1 (note that the median line 489 
for 𝐹"###  is also the upper interquartile because two of the three observational estimates match). 490 
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Global and annual average surface export efficiency ratio (d) 𝐸"## &''⁄ = 𝐹"##/𝑁𝑃𝑃 (Eq. 1), and (e) 491 
mesopelagic transfer efficiency at 1000 m 𝐸"### "##⁄ = 𝐹"### 𝐹⁄ "## (Eq. 2), all ratios unitless.   492 
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 493 

 494 
 495 
Figure 4. Map of Longhurst provinces (Reygondeau et al., 2013) used in analysis of biological 496 
pump field observations and model results (Mouw et al., 2016a).  497 

 498 
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 499 
 500 
Figure 5. Box-whisker plot of RECCAP2 multi-model ensemble medians, interquartile ranges, 501 
and outliers for annual-mean (a) vertical integrated primary production (NPPint), (b) sinking POC 502 
fluxes at 100m (F100), and (c) sinking POC flux at 1000m (𝐹"###), all in Pg C yr-1, pooled into 503 
biogeochemical Longhurst ocean provinces (Figure 4) and compared to the observational 504 
climatology for the same provinces constructed by Mouw et al. (2016b). Robust uncertainty 505 
estimates are not available for the observational climatology which averages available data that is 506 
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often spatially sparse and/or concentrated in brief time intervals. Note that only provinces with 507 
sufficient observational data are plotted (see Figure 4).  508 
 509 

The biological carbon pump model comparison to observation-based estimates was 510 
extended in Figure 5 to a regional level using the observational data of Mouw et al. (2016a) as 511 
aggregated by Mouw et al. (2016b) into monthly climatological values for Longhurst 512 
biogeographic provinces (Figure 4). The Mouw et al. (2016a) date set aggregates the limited 513 
available field data that is often spatially sparse and locally high frequency with considerable 514 
mesoscale variability, some of which may be aliased into monthly and province scale averages. 515 
Therefore, robust uncertainty estimates are not available for the Mouw et al. (2016b) observational 516 
climatology. The variations across the RECCAP2 models are displayed as box-whisker plots. The 517 
members of the model ensemble exhibited a wide range of NPP, F100 and F1000 values for many 518 
provinces, but still the observational climatology falls within the multi-model ensemble inter-519 
quartiles for only about half of the provinces. The substantial model-observational offsets indicate 520 
recurring regional differences consistent across multiple models in the RECCAP2 ensemble; these 521 
disagreements could be targets for future ocean biogeochemical model development and analyses 522 
of observational sampling biases. The model ensemble members also exhibited extreme model-523 
data differences in some provinces where the observational climatology value falls outside the 524 
simulated range including model outliers. The RECCAP2 models consistently underestimated the 525 
strength of biological carbon pump metrics, relative to the observational climatology, in polar and 526 
sub-polar provinces in the North Pacific (N. Pacific epicontinental sea, BERS, low NPP and F100) 527 
and North Atlantic (N. Atlantic Drift, NADR, low NPP); and in equatorial provinces in the Indian 528 
(Northwest Arabian Sea upwelling, ARAB, low NPP), Pacific (Trades-Pacific Equatorial 529 
Divergence, PEQD, low F100) and Atlantic (Guianas coast, GUIA, low F1000; note, the observed 530 
high Guianas coast value reflects a small, productive region that may not be well represented in 531 
global-scale models). In other provinces, the model ensemble overestimated the biological pump 532 
in the South Pacific gyre (SPSG, high NPP and F100), Indian monsoon gyre (MONS, high NPP 533 
and F100), and Western Pacific subarctic gyres (PSAW, high F1000). 534 

 535 

3.3 Biological pump imprint on ocean CO2 system and biogeochemistry   536 

The ocean biological carbon pump imprints on surface and sub-surface biogeochemistry 537 
(see Introduction), and these effects are simulated in the RECCAP2 models. A strong positive 538 
mesopelagic AOU signal is generated by cumulative biological O2 consumption along the 539 
ventilation paths of subsurface waters (Najjar et al., 2007). AOU fields thus integrate non-local, 540 
large-scale biogeochemical dynamics and physical resupply of O2 from the surface. A key 541 
contributor to AOU is the remineralization of sinking POC flux in the mesopelagic, quantified by 542 
the large decline between F100 and F1000 and low transfer efficiency through the mesopelagic 543 
E1000/100 (Figures 1–3; Tables 3 and 4). For the RECCAP2 model ensemble, there was generally 544 
good model-data agreement in the geographic pattern in AOU averaged over the mesopelagic 545 
(100–1000 m) (Figure 6). The model ensemble captured the regional AOU variation of <50 to 546 
>250 µmol kg–1, though substantial disagreement arose on the scale of Longhurst provinces where 547 
the model-ensemble interquartile spans the observational data for only a handful of provinces 548 
(Figure 6c). The RECCAP2 models did not exhibit a strong inter-model relationship between 549 
global mean AOU and F100 (not shown). The weak relationship between AOU and F100 across 550 
models likely highlights the influence on AOU of substantial variations in the strength of model 551 
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thermocline ventilation rates that could also influence simulated anthropogenic CO2 uptake (e.g., 552 
Dutay et al., 2002; Matsumoto et al., 2004). Model deep-ocean AOU was not evaluated because 553 
model spin-up time scales were too short for the simulations to reach steady-state (Séférian et al., 554 
2019), an issue that also would affect simulated deep-ocean preindustrial DIC (Mikaloff Fletcher 555 
et al., 2007). Some imprint of the observational fields used for model initial conditions could also 556 
be retained in the simulated mesopelagic AOU depending on the model spin-up procedure.  557 
 558 

 559 
 560 
Figure 6. Analysis of apparent oxygen utilization (AOU, µmol kg–1) vertically averaged over the 561 
mesopelagic zone (100-1000 m): (a) spatial map of RECCAP2 multi-model ensemble average, 562 
and (b) spatial map from WOA observational data set, and (c) box-whisker plot of RECCAP2 563 
multi-model ensemble medians, interquartile ranges, and outliers pooled into biogeochemical 564 
Longhurst ocean provinces (Figure 4). 565 

 566 

The simulated regional patterns and global integrated surface POC export F100 (Figures 1 567 
–3; Tables 3 and 4) must be balanced on appropriate time and space scales by new production and 568 
external nutrient supply, largely from physical upwelling and mixing for most ocean regions 569 
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(Ducklow and Doney, 2013). As an indicator of physical controls on export associated with 570 
nutrient supply, the individual RECCAP2 model, global-integrated F100 values exhibited a positive 571 
correlation with global-ocean anthropogenic CO2 uptake (Figure 7) (DeVries et al., 2023). This is 572 
consistent with findings from previous model intercomparison exercises where models with 573 
stronger thermocline ventilation had both larger export flux and anthropogenic CO2 uptake (Najjar 574 
et al., 2007). The F100–anthropogenic CO2 uptake correlation, therefore, is indirect through a 575 
common underlying physical mechanism whereby stronger ventilation enhances both the 576 
downward transport of anthropogenic CO2 correlation and the upward transport of nutrients and 577 
thus F100. The physical-chemical solubility mechanisms controlling ocean anthropogenic CO2 578 
uptake are well documented, and there is no evidence of any significant role for biogeochemical 579 
processes, though climate-change biogeochemical feedbacks on ocean carbon storage may become 580 
more important in the future (Canadell et al., 2021). 581 
 582 

 583 
 584 
Figure 7. Scatter plot of global-integrated ocean anthropogenic CO2 uptake (mean of 1985-2018) 585 
(Pg C yr-1) versus particulate organic carbon (POC) export flux (F100, Pg C yr-1) for individual 586 
RECCAP2 models. Anthropogenic CO2 uptake for the same RECCAP2 models was taken from 587 
DeVries et al. (2023) A linear regression and confidence intervals for the regression are overlain. 588 
The F100–anthropogenic CO2 uptake correlation was indirect through a common underlying 589 
physical mechanism whereby stronger ventilation enhances both the downward transport of 590 
anthropogenic CO2 correlation and the upward transport of nutrients and thus F100. 591 

 592 
Seasonal variations in upper-ocean biogeochemistry were used as a metric of the physical 593 

controls associated with seasonal mixing and nutrient supply, which are reflected in simulated 594 
POC export. By correcting for seasonal thermal variations in pCO2 (Equation 3), we used model 595 
monthly pCO2 fields to quantify the combined effects of seasonal biogeochemical, gas-exchange 596 
and physical processes through the seasonal amplitude of non-thermal pCO2, DpCO2,non-thermal  597 
(Takahashi et al., 2002). The geographic pattern of DpCO2,non-thermal from the RECCAP2 model 598 
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ensemble was similar to the pattern from the mean of the pCO2 observational products (Figure 8a 599 
and 8b). Both the model ensemble and observational products exhibited regional variations of 600 
DpCO2,non-thermal that ranged from 30 to >150 µatm with elevated values in mid- to high latitudes 601 
as well as equatorial and eastern boundary current upwelling regions. However, the magnitude of 602 
DpCO2,non-thermal in the model ensemble was considerably lower in the mid- to high latitude northern 603 
hemisphere, eastern tropical Pacific, and Brazil-Malvinas convergence region, suggesting a 604 
generally weaker modeled seasonal cycling of DIC. The same low bias in the RECCAP2 models 605 
was evident on the scale of Longhurst provinces where the observational products fell at the top 606 
end or well above the model-ensemble interquartile (Figure 8c). In many ocean regions, strong 607 
seasonality in mixed layer depth modulates vertical nutrient supply and annual-mean biological 608 
productivity. The weaker model ensemble DpCO2,non-thermal values (Figure 8), therefore, may be 609 
linked to regional patterns of lower NPP and F100 relative to observations (Figure 5) in the North 610 
Pacific (BERS province), North Atlantic (NADR province), eastern equatorial Pacific (PEQD), 611 
and Brazil-Malvinas convergence (western part of SATL province).  612 

 613 
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 614 
 615 
Figure 8. Analysis characterizing the combined effects of seasonal biogeochemical, gas-exchange 616 
and physical processes using the seasonal amplitude of non-thermal ∆𝑝𝐶𝑂!1214*+,-./0 (a) spatial 617 
map of RECCAP2 multi-model ensemble average, (b) spatial map from pCO2 observational data 618 
products, and (c) box-whisker plot of RECCAP2 multi-model ensemble medians, interquartile 619 
ranges, and outliers pooled into biogeochemical Longhurst ocean provinces (Figure 4). The 620 
province means from each observational product are plotted in panel (c) as individual points rather 621 
than as box-whiskers because of the limited number of observational products.    622 
 623 

4 Discussion and Conclusions 624 

Our analysis of the ocean biological carbon pump fields from the RECCAP2 multi-model 625 
ensemble revealed generally encouraging agreement with many aspects of observed patterns. 626 
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Global-integrated NPP and surface export flux (F100) from the RECCAP2 models tended to fall at 627 
the lower end of observational estimates (Figure 3 and Table 4), and geographic patterns in NPP 628 
were generally consistent with observational data products (Figures 1 and 5). Similar to previous 629 
model intercomparison studies (Laufkötter et al., 2015; Laufkötter et al., 2016), we found 630 
substantial within-ensemble variation in global biological carbon pump metrics, including the 631 
presence of model outliers (Figure 3), indicating that these aspect of biogeochemical models have 632 
not necessarily converged with time.  633 

Regional patterns in the RECCAP2 model-mean ensemble included elevated NPP, surface 634 
export flux (F100) and export efficiency (E100) in high-latitudes and coastal and equatorial 635 
upwelling regions, with lower values in more oligotrophic regions. These results are in line with 636 
previous studies that found that a substantial proportion of NPP in nutrient-rich regions is driven 637 
by large phytoplankton such as diatoms and, combined with an active zooplankton population, this 638 
can generate a significant export flux in the form of both dense aggregates and fecal pellets. High-639 
latitude elevated biomass, colder temperatures (Dunne et al., 2005), and strong seasonality also 640 
have been implicated in observations of higher POC export fluxes in spring and/or summer months 641 
contributing to the annual mean (Buesseler et al., 2001; Lampitt et al., 2001; Bol et al., 2018; 642 
Henson et al., 2023). In low nutrient regimes, such as the lower latitude oligotrophic gyres, 643 
previous studies report export flux to be low (Henson et al., 2012) but relatively constant 644 
throughout the year with small seasonal increases in fluxes (Karl et al., 2012). Future studies of 645 
the RECCAP2 ensemble could investigate in more detail the seasonality in NPP, F100, and E100, 646 
exploring, for example, the seasonal variability in export ratio that can be substantial due in part 647 
to the time lag between NPP and export flux (Henson et al., 2015; Giering et al., 2017; Laws and 648 
Maiti, 2019; Henson et al., 2015). 649 

The sinking POC flux into the deep ocean (F1000) and mesopelagic transfer efficiency 650 
across the mesopelagic zone (E1000/100) in the RECCAP2 multi-model ensemble (Figures 1 and 5) 651 
exhibited different spatial patterns than found for surface export, similar to findings of previous 652 
studies (e.g., Henson et al., 2012). Simulated F1000 and E1000/100 were greater in the tropical eastern 653 
Pacific, eastern Atlantic, and Arabian Sea, and E1000/100 was also elevated in the western tropical 654 
North Atlantic and, to a lesser extent, Southern Ocean. Previous model studies have also found 655 
substantial regional variations due to particle size and composition effects (Lima et al., 2014) that 656 
modify empirical power curves used for modeling POC sinking and remineralization (Martin et 657 
al., 1987). Model parameterizations tend to increase the effective remineralization length scales 658 
and thus transfer to depth in regions with high mineral fluxes (e.g., dust, CaCO3, silica) (Armstrong 659 
et al., 2002) or in tropical oxygen minimum zones (Laufkötter et al., 2017; Dinauer et al., 2022). 660 
The RECCAP2 regional variations in mesopelagic transfer efficiency, modulated with basin-scale 661 
variations in physical circulation-driven sequestration time-scale (Siegel et al., 2021), influence 662 
the effect of the biological pump on ocean carbon storage (Kwon et al., 2009). 663 

While we focused primarily on long-term mean NPP and export fluxes, the RECCAP2 664 
models also exhibited year-to-year variability (Table S1), though typically much lower than 665 
within-ensemble model differences (Figure 2), and small long-term temporal trends (Table S2). 666 
No consistent positive or negative trend was observed across the models in simulated NPP and 667 
sinking POC fluxes at 100m and 1000m, with NPP trends of order ±0.01 Pg C yr–1/year over the 668 
33 years of the time series (1985-2018). Although these trends could contain a signal from climate 669 
change, the relatively short duration of the RECCAP2 analysis period resulted in large signal to 670 
noise due to interannual variability. Previous modeling studies indicate that chlorophyll and NPP 671 



manuscript submitted to Global Biogeochemical Cycles 

 

time series of 30-40 years length are needed to distinguish climate change trends from natural 672 
variability (Henson et al., 2010). Hence, the RECCAP2 analysis period may indeed not be long 673 
enough to separate trends from interannual variability. While a recent study suggests that climate-674 
change trends can emerge more rapidly in ocean color remote-sensing reflectance (Cael et al., 675 
2023), any actual climate change signal in models may be masked by temporal biases associated 676 
with incomplete model spin-up and resulting temporal drift (Séférian et al., 2016).  677 

Our analysis of the biological carbon pump was relevant in several ways to the primary 678 
focus of the RECCAP2 ocean project on air-sea CO2 fluxes and ocean uptake of anthropogenic 679 
CO2 (DeVries et al., 2023). Biological net CO2 uptake and carbon export modulate the background, 680 
pre-industrial and contemporary spatial and seasonal patterns of surface ocean pCO2 and sea-air 681 
CO2 flux that must be accounted for to determine anthropogenic CO2 perturbations. The low model 682 
F100 values globally (Figure 3) and for mid- to high-latitude Northern Hemisphere and eastern 683 
equatorial Pacific provinces (Figure 5), relative to observations, suggested that the RECCAP2 684 
model ensemble may have underestimated biological CO2 drawdown in high productivity regions. 685 
Potential issues were also identified in simulated seasonal biogeochemical, gas-exchange and 686 
physical dynamics as captured in the seasonal amplitude of non-thermal pCO2 variations, with 687 
weaker DpCO2,non-thermal values found at mid- to high-latitudes and in the eastern equatorial Pacific 688 
in the model ensemble relative to observations (Figure 8). Future work with more detailed model 689 
diagnostics could explore the connections between regional biases in simulated annual-mean and 690 
seasonal export production and biases in air-sea CO2 flux as observed in other RECCAP2 studies 691 
(DeVries et al., 2023; Hauck et al., 2023). 692 

Ocean circulation modulates biological export flux on basin to global scales (Najjar et al., 693 
2007), and the range in RECCAP2 global-integrated F100 values indicated that substantial 694 
differences exist in simulated ocean physics within the RECCAP2 marine biogeochemical models 695 
(Doney et al., 2004). The same ocean circulation variations also likely influenced the 696 
anthropogenic CO2 uptake estimates from DeVries et al. (2023) as indicated by the positive 697 
correlation between anthropogenic CO2 uptake and F100 across individual RECCAP2 models 698 
(Figure 7). This is supported by further analysis of the RECCAP2 models demonstrating that the 699 
rate of ocean overturning circulation is strongly correlated with anthropogenic CO2 uptake in the 700 
models (Terhaar et al., 2023). Variations in model export could also be compared against metrics 701 
of physical stratification (Fu et al., 2022). The substantial inter-model spread in both physical and 702 
biogeochemical metrics likely reflects common factors resulting from differences in simulated 703 
thermocline ventilation and exchange between the surface and mid-depth ocean.  704 

A set of additional model development recommendations emerge from our analyses. One 705 
path forward would leverage independent model skill evaluation for inert chemical tracers (e.g., 706 
CFC-11, CFC-12, SF6) using standard ocean model intercomparison protocols (e.g., CMIP6 Ocean 707 
Model Intercomparison Project; Orr et al., 2017). The transient tracer simulations would help 708 
decipher the physical-biological factors controlling simulated AOU (Figure 6). Remineralization 709 
of sinking biological organic matter structures sub-surface ocean dissolved inorganic carbon, O2, 710 
and nutrient fields, a signal that must be addressed in observational estimates of anthropogenic 711 
CO2. While the predominant pathway for ocean anthropogenic CO2 uptake involves physical-712 
chemical dynamics, rather than biological dynamics, the same physical circulation and mixing 713 
processes influence biogeochemical rates such as nutrient supply. Therefore, evaluation and 714 
improvement of the ocean biological pump may provide additional insight.  715 
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The substantial variation in biological pump metrics shown here highlighted the need to 716 
reconcile inter-model and model-observational differences. Challenges arise for model 717 
improvement because there is limited agreement on the appropriate parameterizations for many 718 
key processes of biological carbon export (Henson et al., 2022), subsurface particle sinking, and 719 
remineralization. Many global models include detailed representation of euphotic zone processes 720 
but rather more simplistic representation of mesopelagic processes. Thus, the simulated global-721 
scale biological carbon pump responses to interannual variability, let alone decadal climate 722 
change, remain poorly constrained (Henson et al., 2016). Following the mechanistic approach 723 
reported in previous model intercomparison studies for primary production (Laufkötter et al., 724 
2015) and export production (Laufkötter et al., 2016), future studies could emphasize how overall 725 
model behavior reflects differences in model parameterizations, functional equations, and 726 
parameter values in both the euphotic and mesopelagic zones.  727 

Opportunities exist to leverage process-level information from lab and field studies to 728 
improve model treatment of POC production, sinking POC flux and extension of export pathways 729 
beyond POC gravitational sinking, for example physical subduction and active migration by 730 
organisms (Boyd et al., 2019; Siegel et al., 2016; Henson et al., 2022; Siegel et al., 2023). 731 
Phytoplankton community structure, captured to some degree in many models, influences 732 
magnitude and composition of export flux from the euphotic zone, the heterotrophic consumers of 733 
sinking POC and zooplankton community structure (Boyd and Newton, 1995; Cavan et al., 2019). 734 
Model treatments could be improved for grazers, such as zooplankton, that act to decrease particle 735 
flux by consuming phytoplankton and sinking POC, while also increasing flux by packaging POC 736 
into fecal pellets with a wide range of sinking speeds (Turner, 2015; Steinberg and Landry, 2017). 737 
Grazer diel vertical migration may also need to be incorporated as a carbon shunt below the depth 738 
horizons of most intense heterotrophic activity (i.e., upper mesopelagic zone), consuming POC in 739 
the surface ocean and respiring it at grazer resident daytime depth (Bianchi et al., 2013). More 740 
mechanistic treatment of particle dynamics may also be feasible. Particle disaggregation, 741 
physically through shear or biologically through fragmentation by grazers, likely contributes 742 
substantially to the decline in POC flux with depth while also providing a POC source for 743 
mesopelagic microbes (Laurenceau‐Cornec et al., 2020; Briggs et al., 2020). Microbes also can 744 
reduce POC flux directly, as they constantly attach and detach from sinking POC (Kiørboe et al., 745 
2002; Kiørboe et al., 2003), hydrolyzing and respiring the POC. While variable particle sinking 746 
speed is included in some model parameterizations, large meta-analyses of empirical data have 747 
struggled to find a strong link between sinking rate and size of particles, because of the vast 748 
variability in particle type, methods used to measure sinking rate, and environment the particles 749 
were collected from (Cael et al., 2021).  750 

Many of these process-level insights are already driving progress on mechanistic 751 
parameterizations for sinking particle flux (e.g., Dinauer et al., 2022), vertical migration (e.g., 752 
Archibald et al., 2019), and other key factors in the marine biological pump. Together with global-753 
scale ocean biogeochemical data compilations and syntheses (e.g., Mouw et al., 2016a; Mouw et 754 
al., 2016b, Clements et al., 2023) there are now promising new opportunities to evaluate, constrain, 755 
and improve ocean biological carbon pump simulations. Based on the model-data analysis 756 
presented here, the RECCAP2 multi-model ensemble exhibited relatively good agreement with 757 
observed biological carbon pump metrics, where there is sufficient data. The analysis also 758 
identified model-data biases and substantial differences among some of the models included in 759 
RECCAP2. These biases should be used to guide directions for future model development. 760 
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The REgional Carbon Cycle Assessment and Processes (RECCAP) project is a coordinated, international 1414 
effort to constrain contemporary ocean carbon air-sea fluxes and interior storage trends using a combination 1415 
of field observations, inverse model products, and ocean biogeochemical hindcast simulations. The second 1416 
phase, RECCAP2, extends the original synthesis using additional years of ocean observational data and 1417 
updated numerical results (DeVries et al., 2023) as well as expanding the scope of the observational and model 1418 
analysis, in this case into the biological carbon pump magnitude and efficiency. 1419 
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 1425 
 1426 
Figure S1. Maps of within-ensemble standard deviation of biological pump parameters. Standard 1427 
deviations across model ensemble members are computed relative to the average model ensemble 1428 
presented in Figure 1 for: (a) vertically integrated primary productivity 𝜎*++, (b) particulate 1429 
organic carbon export fluxes at 100 m 𝜎𝐹"##, and (c) 1000 m 𝜎𝐹"###, all in moles C m–2 y–1, and (d) 1430 
surface export efficiency ratio 𝐸"## &''⁄ = 𝐹"##/𝑁𝑃𝑃, (e) mesopelagic transfer efficiency at 1000 m 1431 
𝐸"### "##⁄ = 𝐹"### 𝐹⁄ "##, and (f) export efficiency to the deep ocean 𝐸"### &''⁄ = 𝐹"###/𝑁𝑃𝑃, all ratios 1432 
unitless.  1433 
 1434 

 1435 
 1436 
 1437 

 1438 



manuscript submitted to Global Biogeochemical Cycles 

 

 1439 
 1440 

Figure S2. Map of standard RECCAP2 biomes by ocean basin (Fay and McKinley, 2014). The 1441 
biomes include polar (ICE), subpolar seasonally-stratified (SPSS), subtropical seasonally stratified 1442 
(STSS), subtropical permanently stratified (STPS), and equatorial regions (EQU); note the 1443 
equatorial Pacific is divided into western and eastern sub-basins. The equatorial eastern Pacific 1444 
and Atlantic, monsoon-influenced Indian, and seasonally-stratified biomes generally exhibited 1445 
relatively high NPP, F100, and F1000. Polar and sub-polar biomes exhibited relatively high E100.  1446 
  1447 

 1448 
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 1449 
 1450 
Figure S3. Analysis of the seasonal cycle of non-thermal ∆𝑝𝐶𝑂!1214*+,-./0 (a) spatial map of 1451 
RECCAP2 multi-model ensemble average, (b) spatial map from pCO2 observational data products, 1452 
and (c) box-whisker plot of RECCAP2 multi-model ensemble medians, interquartile ranges, and 1453 
outliers pooled into Fay and McKinley biomes (Figure S2). 1454 
 1455 
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 1456 
 1457 
Figure S4. Analysis of apparent oxygen utilization (AOU) vertically averaged over the 1458 
mesopelagic zone (100-1000 m) (a) spatial map of RECCAP2 multi-model ensemble average, and 1459 
(b) spatial map from WOA observational data set, and (c) box-whisker plot of RECCAP2 multi-1460 
model ensemble medians, interquartile ranges, and outliers pooled into Fay and McKinley biomes 1461 
(Figure S2). 1462 
 1463 
 1464 
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Table S1. Interannual variability (1985-2018) for the RECCAP2 simulations (simulation A) for 1467 
global-integrated, annual-mean variables: vertically integrated net primary productivity 𝑁𝑃𝑃 and 1468 
particulate organic carbon export fluxes at 100 m 𝐹,-- and 1000 m depth 𝐹,---. Interannual 1469 
variability (standard deviation) are in Pg C y–1.  1470 
 1471 
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NPP 0.1914 0.3743 0.2000 0.7272 0.2194 0.3878 0.3204 1.5377 0.4127 0.3518 0.2286 0.3655 
F100 0.0352 0.0491 0.0304 0.1966 0.0412 0.1079 0.0383 0.2004 0.0736 0.0717 0.0484 0.1447 

F1000 0.0024 0.0140 0.0000 0.1107 0.0000 0.0143 0.0000 0.0419 0.0103 0.0283 0.0000 0.0000 
 1472 

Table S2. Long-term temporal trends (1985-2018) for the RECCAP2 simulations (simulation A) 1473 
for global-integrated, annual-mean variables: vertically integrated net primary productivity 𝑁𝑃𝑃 1474 
and particulate organic carbon export fluxes at 100 m 𝐹,-- and 1000 m depth 𝐹,---. Trends are in 1475 
Pg C y–1/year,  1476 
 1477 
 

CCSM-
WHOI 

CESM-
ETHZ 

CNRM-
ESM2 

ECCO-
Darwin 

EC-
Earth3 

FESOM
-
REcoM
_LR 

MOM6-
Princeto
n 

MPIOM
-
HAMO
CC 

MRI-
ESM2-0 

Nor_ES
M-
OC1.2 

ORCA1
-LIM3-
PISCES 

PlankT
OM12 

NPP -0.0140 -0.0172 0.0005 -0.0727 0.0017 -0.0094 0.0102 0.0028 -0.0047 0.0009 0.0190 0.0184 
F100 -0.0031 -0.0020 0.0000 -0.0209 0.0000 0.0013 0.0010 0.0001 0.0002 0.0017 0.0029 0.0237 

F1000 -0.0002 -0.0002 0.0000 -0.0117 0.0000 0.0004 0.0000 0.0013 0.0000 -0.0001 0.0000 0.0000 
 1478 
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