
P
os
te
d
on

7
M
ar

20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
es
so
ar
.1
70
98
31
60
.0
08
86
47
1/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Effects of mesozooplankton growth and reproduction on plankton

and organic carbon dynamics in a marine biogeochemical model

Corentin Clerc1, Laurent Bopp2, Fabio Benedetti3, Nielja S. Knecht4, Meike Vogt5, and
Olivier Aumont6

1ETH Zürich
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Abstract

Marine mesozooplankton play an important role for marine ecosystem functioning and global biogeochemical cycles. Their size

structure, varying spatially and temporally, heavily impacts biogeochemical processes and ecosystem services. Mesozooplank-

ton exhibit size changes throughout their life cycle, affecting metabolic rates and functional traits. Despite this variability,

many models oversimplify mesozooplankton as a single, unchanging size class, potentially biasing carbon flux estimates. Here,

we include mesozooplankton ontogenetic growth and reproduction into a 3-dimensional global ocean biogeochemical model,

PISCES-MOG, and investigate the subsequent effects on simulated mesozooplankton phenology, plankton distribution, and

organic carbon export. Utilizing an ensemble of statistical predictive models calibrated with a global set of observations, we

generated monthly climatologies of mesozooplankton biomass to evaluate the simulations of PISCES-MOG. Our analyses reveal

that the model and observation-based biomass distributions are comparable (r$ {pearson}$=0.40, total epipelagic biomass:

137TgC from observations vs. 232TgC in the model), with similar seasonality (r$ {pearson}$=0.25 for the months of maximal

biomass). Including ontogenetic growth in the model induced cohort dynamics and variable seasonal dynamics across mesozoo-

plankton size classes and altered the relative contribution of carbon cycling pathways. Younger and smaller mesozooplankton

transitioned to microzooplankton in PISCES-MOG, resulting in a change in particle size distribution, characterized by a de-

crease in large particulate organic carbon (POC) and an increase in small POC generation. Consequently, carbon export from

the surface was reduced by 10\%. This study underscores the importance of accounting for ontogenetic growth and reproduction

in models, highlighting the interconnectedness between mesozooplankton size, phenology, and their effects on marine carbon

cycling.
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Key Points:12

• Incorporating mesozooplankton growth and reproduction alters carbon cycling path-13

ways, reducing carbon export at 100 m by 10%.14

• Cohort dynamics lead to significant variations in seasonal dynamics across meso-15

zooplankton size classes without affecting export seasonality.16

• Statistical predictive models demonstrate consistency between modeled and ob-17

served mesozooplankton dynamics globally.18
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Abstract19

Marine mesozooplankton play an important role for marine ecosystem functioning and20

global biogeochemical cycles. Their size structure, varying spatially and temporally, heav-21

ily impacts biogeochemical processes and ecosystem services. Mesozooplankton exhibit22

size changes throughout their life cycle, affecting metabolic rates and functional traits.23

Despite this variability, many models oversimplify mesozooplankton as a single, unchang-24

ing size class, potentially biasing carbon flux estimates. Here, we include mesozooplank-25

ton ontogenetic growth and reproduction into a 3-dimensional global ocean biogeochem-26

ical model, PISCES-MOG, and investigate the subsequent effects on simulated mesozoo-27

plankton phenology, plankton distribution, and organic carbon export. Utilizing an en-28

semble of statistical predictive models calibrated with a global set of observations, we29

generated monthly climatologies of mesozooplankton biomass to evaluate the simulations30

of PISCES-MOG. Our analyses reveal that the model and observation-based biomass31

distributions are comparable (rpearson=0.40, total epipelagic biomass: 137TgC from ob-32

servations vs. 232TgC in the model), with similar seasonality (rpearson=0.25 for the months33

of maximal biomass). Including ontogenetic growth in the model induced cohort dynam-34

ics and variable seasonal dynamics across mesozooplankton size classes and altered the35

relative contribution of carbon cycling pathways. Younger and smaller mesozooplank-36

ton transitioned to microzooplankton in PISCES-MOG, resulting in a change in parti-37

cle size distribution, characterized by a decrease in large particulate organic carbon (POC)38

and an increase in small POC generation. Consequently, carbon export from the surface39

was reduced by 10%. This study underscores the importance of accounting for ontoge-40

netic growth and reproduction in models, highlighting the interconnectedness between41

mesozooplankton size, phenology, and their effects on marine carbon cycling.42

1 Introduction43

Mesozooplankton are heterotrophic plankton that span a size range of 102-104 µm44

and play a central role in marine biogeochemical cycles (Calbet, 2001; Steinberg & Landry,45

2017). Mesozooplankton hold an intermediate position in marine trophic webs, as they46

mediate the energy transfer from phytoplankton and small zooplankton to larger organ-47

isms such as fish and large marine mammals (Steinberg & Landry, 2017; Dupont et al.,48

2023). They regulate the efficiency and intensity of the soft-tissue biological carbon pump49

(BCP; Steinberg and Landry (2017); Boyd et al. (2019)). Recent model-based studies50

estimated that mesozooplankton contribute to a quarter of the total carbon sequestered51

by the biological carbon pump (Pinti, DeVries, et al., 2023). Due to trophic amplifica-52

tion, mesozooplankton are highly vulnerable to changes in marine ecosystem structure53

caused by climate change (Chust et al., 2014; Kwiatkowski et al., 2019; Clerc, Aumont,54

& Bopp, 2023). Hence, quantifying their contribution to biogeochemical processes is key55

to accurately understanding how changes in mesozooplankton abundance and distribu-56

tion threaten ecosystem functioning and global biogeochemical cycling. Accurately quan-57

tifying the effects of mesozooplankton on ecosystem functions and the carbon cycle ne-58

cessitates a nuanced understanding of the trade-offs associated with various functional59

traits exhibited by mesozooplankton, including their feeding mechanisms, life histories,60

and mortality rates (Kiørboe, 2011; Hébert et al., 2017; Steinberg & Landry, 2017; Kiørboe61

et al., 2018).62

The expression of most plankton functional traits is linked to body size (Litchman63

et al., 2013; Andersen et al., 2016). Changes in body size throughout the life history of64

an individual are a primary driver of zooplankton ecology, as body size controls the per-65

formance of the ”fundamental Darwinian missions” organisms strive to maximise (feed-66

ing, growth, reproduction, survival) (Litchman et al., 2013). In this context, the traits67

and life histories of mesozooplankton largely differ from those of the smaller microzoo-68

plankton, which are mainly composed of protozoans and share many similarities with69

phytoplankton, except for their trophic mode. Recent observations even suggest that a70
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significant amount of unicellular marine organisms are mixoplankton (i.e., they can per-71

form both phototrophy and phagotrophy, Mitra et al. (2023)). Microzooplankton size72

variations are generally limited to a doubling or halving of their biovolume, resulting in73

marginal fluctuations of their metabolic rates throughout their life cycle. On the con-74

trary, mesozooplankton often undergo size changes spanning multiple orders of magni-75

tude. Consequently, these changes in body size contribute to the emergence of distinct76

phenologies between micro- and mesozooplankton, influencing the seasonality of biogeo-77

chemical functions driven by zooplankton. Using a chemostat-like zero-dimensional bio-78

geochemical model, Clerc et al. (2021) showed that a size-based formulation, including79

explicit reproduction and ontogenetic growth, significantly impacts the seasonal dynam-80

ics of mesozooplankton. Indeed, compared to a standard model version in which meso-81

zooplankton are represented as a single and nonvarying size class, the new model ver-82

sion resulted in a delayed response of mesozooplankton to an increase in food availabil-83

ity (i.e., a phytoplankton bloom) by a few months. In addition, mesozooplankton in the84

new model version started to display cohort dynamics, namely the propagation of suc-85

cessive waves of biomass from small to larger organisms, controlled by the dependency86

of the ingestion rate on body size. However, this simplified zero-dimensional framework87

did not allow for the quantification of the spatial variability of this specific temporal dy-88

namic across different regions of the ocean, nor the corresponding impacts on carbon cy-89

cling.90

Global models strive to increase the ecological realism in their representation of the91

marine plankton community. A range of recent global marine ecosystem models now in-92

cludes the size spectrum of particles (Serra-Pompei et al., 2020), phytoplankton (Serra-93

Pompei et al., 2020; Heneghan et al., 2020; Blanchard et al., 2014), zooplankton (Heneghan94

et al., 2020) or even upper trophic levels (Maury, 2010; Dupont et al., 2023). Cohort dy-95

namics are a common emergent pattern in these size spectrum models (Pope et al., 1994;96

Maury et al., 2007; Zhou et al., 2010). However, the seasonal patterns of the zooplank-97

ton size structure are usually not analysed in such global models, with very few excep-98

tions (e.g., Datta and Blanchard (2016)). In parallel, recent developments in global bio-99

geochemical models introduced additional zooplankton functional types (e.g. cnidarians100

in Wright et al. (2021), pelagic tunicates in Luo et al. (2022); Clerc, Bopp, et al. (2023);101

Clerc, Aumont, and Bopp (2023), crustacean macrozooplankton in Clerc, Bopp, et al.102

(2023); Luo et al. (2022)) and new processes (e.g., diel vertical migration in (Aumont103

et al., 2018), grazing parameterization in (Rohr et al., 2023)) known to impact the ma-104

rine biological carbon pump, leading to a better quantification of BCP pathways (Boyd105

et al., 2019). In this context, modeling studies offer a valuable framework for investigat-106

ing the influence of plankton-mediated pathways on biogeochemical processes. However,107

existing biogeochemical models often overlook mesozooplankton size variation and re-108

production, resulting in a lack of quantification regarding the effects of these processes109

on carbon cycling(Clerc et al., 2021). One limitation to such an implementation is the110

difficulty of evaluating mesozooplankton phenology on a global scale due to the sparsity111

of field observations necessary for model evaluation, even though satellite-based zooplank-112

ton indicators are under active development (Strömberg et al., 2009; Basedow et al., 2019;113

Druon et al., 2019).114

In this study, we develop and use PISCES-MOG (Mesozooplankton ontogenetic growth),115

a new version of PISCES-v2 (Aumont et al., 2015), the standard marine biogeochem-116

istry component of NEMO (Nucleus for European Modelling of the Ocean) (Madec, 2008).117

In PISCES-MOG, mesozooplankton are now represented similarly as in Clerc et al. (2021)118

and the new mesozooplankton module accounts for ontogenetic growth and reproduc-119

tion. We first explore the global structure of simulated mesozooplankton phenology and120

characterise the presence and drivers of the emergent cohort dynamics. To evaluate how121

PISCES-MOG performs in simulating mesozooplankton seasonality, we derive a global122

mesozooplankton monthly climatology by training an ensemble of biomass distribution123

models (BDMs) based on the MAREDAT mesozooplankton biomass dataset (Moriarty124
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& O’Brien, 2013)in combination with the recent predictive modelling framework of (Knecht125

et al., 2023). We also evaluate the skill of PISCES-MOG in reproducing the seasonal pat-126

terns in mesozooplankton size-structure by comparing the model-based seasonal cycles127

to those observed at two well-studied time series (the Hawaii ocean time series, HOT (Sheridan128

& Landry, 2004), and the Bermuda Atlantic time series study, BATS (Steinberg et al.,129

2001). We then investigate how the simulated cohort dynamics affect the biogeochem-130

ical properties of the total mesozooplankton to answer the following questions: Does the131

inclusion of ontogenetic growth and reproduction induce a change in mesozooplankton132

seasonality and biomass distribution, compared to that simulated by a model with a sin-133

gle and nonvarying size representation (as in PISCES-v2)? Does this affect the phenol-134

ogy and distribution of other living ecosystem and non-living particle components, and135

how do all these factors influence the carbon fluxes associated with the BCP?136

2 Materials and method137

2.1 Model description138

2.1.1 Model structure139

The marine biogeochemical model used in the present study is a revised version of140

PISCES-v2 (grey boxes in Fig. 1, Aumont et al. (2015)). It includes five nutrient pools141

(Fe, NH+
4 , Si, PO3−

4 and NO−
3 ), two phytoplankton groups (Diatoms and Nanophy-142

toplankton, denoted D and N), two zooplankton size classes (Micro- and Mesozooplank-143

ton, denoted Z and M) and an explicit representation of dissolved and particulate or-144

ganic matter, reaching a total of 24 prognostic variables (tracers). A full description of145

the model is provided in Aumont et al. (2015).146

PISCES-MOG includes a subdivision of the zooplankton to explicitly represent dif-147

ferent metazoan size classes, mesozooplankton sexual reproduction, and ontogenetic growth.148

Zooplankton representation in PISCES-MOG has been updated from PISCES-v2 based149

on the size-structured model outlined in Clerc et al. (2021) (Figure 1). In PISCES-MOG,150

we consider a subdivision of the metazoan zooplankton into Ns size classes of equal width151

in logarithmic space. The centre of each size class is defined as follows: ls = lmin

(
lmax

lmin

) 2s+1
2Ns

152

where s ∈ [0, Ns − 1]. The width of each size class is ∆ ln(ls) =
1
Ns

ln
(

lmax

lmin

)
in loga-153

rithmic space and is therefore constant. Microzooplankton Z is now divided into strictly154

heterotrophic protists U and the Ns

2 first metazoan size classes, representing juvenile meta-155

zoan zooplankton, Ji with i ∈ [0, Ns

2 −1]. The remaining Ns

2 size classes, representing156

adult metazoan zooplankton, Ai with i ∈ [0, Ns

2 − 1], form the mesozooplankton com-157

partment M in PISCES-MOG. The adult metazoan size class of maximum size is de-158

noted as Amax.159

2.1.2 Metazoans and protists dynamics160

The newly introduced adult metazoan groups aim to represent the same commu-161

nity as mesozooplankton in PISCES-v2, for which the parameterisation is mainly based162

on copepods (Aumont et al., 2015). Juvenile metazoans and unicellular protists aim to163

represent the same community as microzooplankton in PISCES-v2. Thus, the tempo-164

ral evolution of the Ns metazoan zooplankton groups is computed according to PISCES-165

v2 micro- and mesozooplankton equations, in which we introduced ontogenetic growth166
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Figure 1. Architecture of the PISCES-MOG (mesozooplankton ontogenetic

growth) model in the study This figure illustrates the living and non-living organic com-

ponents of the model (boxes) and their interactions (arrows). This diagram emphasizes trophic

interactions (i.e., turquoise arrows, the width representing the preference of the predator for

the prey) as well as particulate organic matter production (i.e., black arrows), two processes

impacted by the introduction of metazoan reproduction (vertical upward pink arrows) and onto-

genetic growth (other pink arrows) in PISCES-MOG. POM = Particulate Organic Matter; DOM

= Dissolved Organic Matter.

and reproduction terms (derived from (Clerc et al., 2021)):167

GX = eXgX (1−∆(O2)) fX(T )

rX = rXfX(T )

(
X

Km +X
+ 3∆(O2)

)
mX = mXfX(T ) (1−∆(O2))X

2

∂J0
∂t

=

 (1− v)GJ0︸ ︷︷ ︸
growth and transition

− gZMM︸ ︷︷ ︸
predation

−mA0
Z − rJ0︸ ︷︷ ︸

mortality

 · J0 + wGA0
A0︸ ︷︷ ︸

reproduction

∂Js
∂t

=

 (1− v)GJs︸ ︷︷ ︸
growth and transition

− gZMM︸ ︷︷ ︸
predation

−mJsZ − rJs︸ ︷︷ ︸
mortality

 · Js + vGJs−1Js−1︸ ︷︷ ︸
transition

+ wGAsAs︸ ︷︷ ︸
reproduction

∂A0

∂t
=

 (1− w)(1− v)GA0︸ ︷︷ ︸
growth, reproduction and transition

−mA0
M− rA0︸ ︷︷ ︸

mortality

 ·A0 + vGJNs
2

−1
JNs

2 −1︸ ︷︷ ︸
transition

∂As

∂t
=

 (1− w)(1− v)GAs︸ ︷︷ ︸
growth, reproduction and transition

−mAs
M− rAs︸ ︷︷ ︸

mortality

 ·As + (1− w)vGAs−1
As−1︸ ︷︷ ︸

transition
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X is a metazoan compartment, T is temperature and O2 is dissolved oxygen con-168

centration. Grazing (GX), quadratic (mX) and linear mortalities (rX) parameterisations169

are identical to that of micro- and mesozooplankton in PISCES-v2. Food preference is170

constant for each major zooplankton compartment (microzooplankton and mesozooplank-171

ton): all zooplankton groups feed on diatoms, nanophytoplankton, and small POC. In172

addition, mesozooplankton feed on heterotrophic protists, juveniles, and large POC. For173

mesozooplankton, in addition to conventional suspension feeding based on a Michaelis-174

Menten parameterisation without switching and a threshold, flux feeding is also repre-175

sented (Jackson, 1993; Stukel et al., 2019). eX is the growth efficiency. All terms in this176

equation were given the same temperature sensitivity fX(T ) using a Q10 of 2.14 (Eq.177

25a and 25b in Aumont et al. (2015)), as for mesozooplankton in PISCES-v2 and accord-178

ing to Buitenhuis et al. (2006). Growth rate and quadratic mortality are reduced and179

linear mortality is enhanced at very low oxygen levels, as we assume that mesozooplank-180

ton are not able to cope with anoxic waters (∆(O2) is an anoxia parameterisation that181

varies between 0 in fully oxic conditions and 1 in fully anoxic conditions, see Eq. 57 in182

Aumont et al. (2015)). Linear mortality is also enhanced at high organism concentra-183

tions (Km is the half-saturation constant for mortality).184

Similarly to (Clerc et al., 2021), for each mature mesozooplankton As, part of the185

assimilated food w is allocated to reproduction and is transferred to the juvenile sub-186

compartment Js. This representation assumes that we represent a community of meta-187

zoan individuals with a mean egg-to-adult ratio of 1/20. The remainder of the assim-188

ilated food is used for growth, resulting in a transfer between adjacent size classes at a189

rate v. The value of this parameter depends on the number of size classes and the as-190

sumed size distribution within each size class (see Table 1 and (Clerc et al., 2021)). For191

the largest size class of mature mesozooplankton Amax, no size growth is possible.192

Protists, U , follow the same dynamics as microzooplankton in PISCES-v2, except193

for predation by mesozooplankton and quadratic mortality which are now scaled to the194

full PISCES-MOG microzooplankton compartment (Z = U +
∑

J) to keep equiva-195

lency between PISCES-v2 and PISCES-MOG microzooplankton compartments.196

∂U

∂t
=

 GU︸︷︷︸
growth

− gZMM︸ ︷︷ ︸
predation

−mUZ − rU︸ ︷︷ ︸
mortality

 · U

All of the other 22 biogeochemical tracers that are common to PISCES-v2 and PISCES-197

MOG are driven by the exact same equations, which are fully detailed in Aumont et al.198

(2015).199

2.1.2.1 Size-based parameterisation The maximum ingestion and quadratic mor-200

tality rates of the different zooplankton classes are set according to the allometric rela-201

tionship proposed by Hansen et al. (1997). The half-saturation constant used in the graz-202

ing parameterisation is supposed constant as observations suggest no significant varia-203

tions with size (Hansen et al., 1997). The transition rate v between the different size classes204

was computed by assuming that the slope of the biomass size spectrum within each size205

class is constant in a log-log space. It is set to -3 following the seminal study of Sheldon206

et al. (1972), which corresponds to an approximate constant biomass in logarithmically207

equal size intervals. The expressions for the transition rate and for the maximum inges-208

tion rate are shown in Table 1. The size-dependent formulations used in our standard209

model configuration are listed in Table 1.210
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Term Value Description

lmin Minimal metazoan zooplankton body length
lmax Maximal metazoan zooplankton body length
v = NS

3 ln lmax
lmin

Transition rate between the mesozooplankton size-classes

gM Geometric mean of the maximum adult metazoans ingestion rate
gZ Geometric mean of the maximum juveniles metazoans ingestion rate
L(Js) = 2s+1

2NS
Length factor of juvenile size-classes Js

L(As) = Ns+2s+1
2NS

Length factor of mature size-classes As

L(U) = 1
4 Length factor for generic microzooplankton U

ln gs = ln gZ + α(L(U)− L(Xs)) ln
(

lmax

lmin

)
Maximum ingestion rate of the zooplankton size-class Xs

lnms = lnmZ + α(L(U)− L(Xs)) ln
(

lmax

lmin

)
Quadratic mortality rate of the zooplankton size-class Xs

Table 1. Parameters and equations used in the size-based parameterizations To pa-

rameterize size in the equations, we introduce a length factor L for each size class. It ranges from

0 (minimum length) to 1 (maximal length) and varies linearly with the logarithm of the length.

Parameter Default Unit Description Range Source

NS 20 - Number of mesozooplankton size-classes
gM 0.5 d−1 Geometric mean of the adult metazoans ingestion rate 0.13-0.97 (Buitenhuis et al., 2006)
gZ 2.0 d−1 Geometric mean of the maximum juveniles metazoans ingestion rate 0.55-4.1 See table 1

mM 1.5× 104 Lmol−1 d−1 Geometric mean of adult metazoans quadratic mortality (Aumont et al., 2015)

mZ 5.0× 103 Lmol−1 d−1 Geometric mean of juveniles metazoans quadratic mortality See table 1
w 0.3 - Fraction of the assimilated food allocated to reproduction 0.2-0.8 (Kooijman, 2013)
v 1.1 - Transition rate across metazoan size-classes (Clerc et al., 2021)
lmin 10 µm Minimal metazoan zooplankton body length
lmax 4000 µm Maximal metazoan zooplankton body length
α 0.48 - Allometric parameter 0.42-0.54 (Hansen et al., 1997)

Table 2. Parameter values of the default configuration.

2.2 Numerical experiments211

2.2.1 Reference simulation212

PISCES-MOG is run in offline mode with dynamic fields identical to those used213

in Aumont et al. (2015). These climatological dynamic fields (as well as the input files)214

can be obtained at www.nemo-ocean.eu and were produced using an ORCA2-LIM con-215

figuration (Madec, 2008). The spatial resolution is about 2◦ by 2◦ cos(ϕ) (where ϕ is the216

latitude) with a meridional resolution enhanced to 0.5◦ at the equator. The model has217

30 vertical layers with increasing vertical thickness from 10 m at the surface to 500 m218

at 5000 m. PISCES-MOG was initialised from the quasi-steady-state simulation presented219

in Aumont et al. (2015). NS , the number of metazoan size classes was set to 20 to achieve220

a reasonable discretization of a metazoan size-spectrum while limiting the computational221

cost to a doubling compared to PISCES-v2. The initial concentrations of the 21 zooplank-222

ton groups were set to a small uniform value of 10−9 mol CL−1. The model was then223

integrated for the equivalent of 100 years, forced with 5-day averaged ocean dynamic fields224

and with a three-hour integration time step. All the analyses are performed on the last225

year of the simulation. When not specified, the parameter values are identical to those226

of PISCES-v2 (Aumont et al., 2015). The other parameter values are given in Table 2.227

2.2.2 Sensitivity experiments228

Here, microzooplankton include 10 juvenile metazoan size classes and one protist229

size class. Mesozooplankton include 10 adult metazoan size classes. Quadratic mortal-230

ities and maximum ingestion rates vary with size following the allometric relationship231

proposed by Hansen et al. (1997). To investigate the influence of each new mesozooplank-232
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ton feature (e.g., reproduction, ontogenetic growth, and size structure) on the model’s233

behavior, we conducted sensitivity experiments based on three alternative model versions.234

The resulting biogeochemical model properties are compared with those of the standard235

model, PISCES-MOG.236

The first alternative model version simply corresponds to the PISCES-v2 standard237

model. Here, metazoans are represented by a single mesozooplankton compartment, while238

the microzooplankton only include one protist size class. Thus, juvenile and mature meta-239

zoan organisms are assumed to have the same metabolic rates and the same predation240

behaviour. In this model, the representation of both microzooplankton and mesozooplank-241

ton is similar and corresponds to a formalism used for protists whose reproduction mode242

is based on cell division. This model serves as a reference representing the most com-243

mon mesozooplankton formulation in the biogeochemical components of Earth System244

Models (Kearney et al., 2021).245

In the second alternative model version, PISCES-MOG-2LS (”Two-life-stage”), the246

representation of metazoan zooplankton is limited to two size classes: juveniles and ma-247

ture organisms (microzooplankton include one juvenile metazoan size class and one pro-248

tist size class; mesozooplankton include one adult metazoan size class only). As a result,249

the computing cost of PISCES-MOG-2LS is reduced by a factor of two compared to PISCES-250

MOG. PISCES-MOG-2LS was built to investigate the effect of a full-size spectrum rep-251

resentation of metazoans (in PISCES-MOG but not in PISCES-MOG-2LS) on the spa-252

tiotemporal dynamics of the system.253

In the third alternative model version, PISCES-MOG-CM (”Constant Mortality”),254

zooplankton compartmentation is identical to the one in PISCES-MOG, but quadratic255

mortality rates are constant across all size classes of each zooplankton compartment. In-256

deed, in the chemostat-like model presented in Clerc et al. (2021), the allometric scal-257

ing was only applied to maximum ingestion rates and not to quadratic mortality rates.258

Thus, PISCES-MOG-CM serves as a reference representing the zooplankton dynamics259

from Clerc et al. (2021)’s model. The resulting system dynamics are very similar to those260

of PISCES-MOG and subsequently will not be presented in this paper. A figure com-261

paring PISCES-MOG and PISCES-MOG-CM outputs is available in the supplementary262

material (Fig. S1 and S2).263

2.2.3 Metrics to evaluate the seasonality of different plankton functional264

groups265

Given the high dimensionality of the biomass outputs of PISCES-MOG (space, time,266

and size), summary metrics are needed to describe the global metazoan seasonality. To267

this end, we designed a set of four phenological metrics inspired by (Llort et al., 2015):268

(i) Relative Seasonal Amplitude is computed as the difference between the annual min-269

imal and maximal biomass, normalised by the yearly average. (ii) Bloom Apex refers to270

the time of year when biomass reaches its maximum (iii) Bloom Climax refers to the time271

of year when population growth (derivative of the biomass) is maximal. (iv) Bloom du-272

ration is defined as the period spent within the 75th percentile of the yearly seasonal cy-273

cle, indicating the length of the bloom period.274

2.3 Observations-based products275

We used two distinct observations-based products for model evaluation: (i) a global276

monthly climatology of mesozooplankton biomass was used to evaluate how the model277

performs in simulating the seasonality of global mesozooplankton distribution (Moriarty278

& O’Brien, 2013), and (ii) monthly climatologies from local time series are used to eval-279

uate the model performance in reproducing the size-structure of mesozooplankton biomass280

and seasonality (Steinberg et al., 2001; Sheridan & Landry, 2004).281
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BATS HOTS

TARGET 
MAREDAT Mesozooplankton Biomasses

BDMs-MAREDAT
Interpolated mesozooplankton climatology

FEATURES
Chl-a, SST, NO3, …

MACHINE LEARNING MODEL ENSEMBLE :
• Multi-layer perceptron (DL)
• Random Forest (RF)
• Boosted Regression Trees (BRT)
• General Linear Model (GLM)
• General Additive Model (GAM)

MAREDAT TEMPORAL GRID COMPLETION

(a) Field observation products (b) Biomass Distribution Models (BDMs) pipeline

Figure 2. Description of the fields observation and biomass distribution models

(BDMs) datasets. (a) Spatio-temporal coverage of mesozooplankton biomass field observa-

tions from MAREDAT global monthly climatologies (Moriarty & O’Brien, 2013) and from the

BATS and HOT time-series stations (Steinberg et al., 2001; Sheridan & Landry, 2004) (b) BDMs

pipeline trained on the MAREDAT monthly climatology of mesozooplankton biomass integrated

over the top 200 m (Moriarty & O’Brien, 2013)

2.3.1 Global mesozooplankton monthly climatology282

To be able to compare the mesozooplankton biomass distribution simulated by PISCES-283

MOG to observational data, we relied on observational monthly mesozooplankton biomass284

fields from the MARine Ecosystem DATa (MAREDAT) (Moriarty & O’Brien, 2013) in285

combination with climatological fields of the environmental predictors of mesozooplank-286

ton biomass (Strömberg et al., 2009; Knecht et al., 2023; Benedetti et al., 2021) to make287

use a new habitat modelling pipeline for continuous target variables (Knecht et al., 2023)288

that enable us to estimate monthly fields of mesozooplankton biomass in model units289

of mmol C m−3 for the global epipelagic ocean.290

MAREDAT mesozooplankton biomass product The MAREDAT mesozooplank-291

ton biomass field consists of 153,163 field measurements of mesozooplankton biomass con-292

centrations and was extracted from the Coastal and Oceanic Plankton Ecology, Produc-293

tion, and Observation Database (COPEPOD, http://www.st.nmfs.noaa. gov/copepod).294

These measurements were quality controlled, standardised across different sampling and295

measurement methods and then aggregated into global climatological biomass concen-296

tration values (for more information about the treatment and standardisation of data297

in COPEPOD, see O’Brien (2010) (http: //www.st.nmfs.noaa.gov/copepod/2010)) and298

(Moriarty & O’Brien, 2013).After re-gridding, the MAREDAT biomass fields comprise299

42,245 data points on the WOA grid (1× 1× 12 months × 33 depths), expressed in µmol300

C L−1 (Moriarty & O’Brien, 2013). In our study, these standardised monthly values are301

converted into mmol m−3 and are vertically integrated between 0 and 200 m to be rep-302

resentative of the epipelagic zone which is where most of the zooplankton organisms are303

concentrated. The resulting climatology encompasses 27% of the epipelagic ocean area304

and shows an uneven distribution between the hemispheres. The spatial coverage is 40%305
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in the northern hemisphere and 16% in the southern hemisphere. Moreover, the dataset306

has limited temporal coverage, as only 1% of the grid cells contain data for at least 8 dis-307

tinct months (i.e., including observations that span at least three seasons), mostly con-308

centrated near the coasts of Japan and the US (Fig. 2(a)). To address this spatiotem-309

poral bias, we employ an ensemble of statistical data-driven models to predict mesozoo-310

plankton biomass concentration as a function of biologically relevant environmental pre-311

dictors and map it onto a global monthly 1× 1grid (Knecht et al. (2023)). Such a sta-312

tistical modelling framework is widely used in community ecology and biogeography to313

predict the spatial distribution of species and emerging diversity patterns based on en-314

vironmental covariates (Melo-Merino et al., 2020). In our study, we adapt the concept315

of species distribution modelling to model mesozooplankton biomass as a continuous tar-316

get variable (as opposed to the binary presence-absence data commonly used in the fields317

of community ecology and biogeography Guisan and Zimmermann (2000); Elith and Leath-318

wick (2009); Righetti et al. (2019); Benedetti et al. (2021); Waldock et al. (2022)).319

Biomass Distribution Models (BDM)-ensemble We used the ensemble of monthly320

climatologies of environmental variables from Knecht et al. (2023) to identify the set of321

potential environmental predictors that explain a substantial variance in the biomass data,322

in order for these predictors to be used in training the BDMs. These climatologies were323

selected as potentially relevant for modelling the biomass of pteropods and foraminifers,324

two important mesozooplankton functional groups that share similar predictors with cope-325

pods (Benedetti et al., 2023). Where necessary, these environmental predictor fields were326

averaged and re-gridded to monthly climatologies on a 1 × 1° resolution. We followed327

a similar approach as described in (Knecht et al., 2023) to select the set of predictors328

used in training the BDMs. Initially, using univariate Generalised Additive Models (GAM)329

and Generalized Linear Models (GLM), we evaluated the percentage of deviance explained330

by each selected predictor at various spatial aggregation levels (Knecht et al., 2023). We331

retained all predictors that explained 5% of the variability at any of the spatial aggre-332

gation levels. We used a Pearson correlation coefficient threshold (|r| ≥ 0.7) to iden-333

tify clusters of collinear variables, which cannot reliably be discerned by our statistical334

models (Dormann et al., 2013). Then, we used univariate tests to identify the predic-335

tor displaying the highest predictive skill within those collinearity clusters. These top-336

ranking predictors were selected to represent all the candidate predictors in the cluster337

to which they belong. The resulting set of predictors includes surface chlorophyll-a, mixed338

layer depth (MLD), nitrate concentrations averaged over the MLD, partial pressure of339

CO2, total alkalinity, eddy kinetic energy (EKE) and photosynthetically active radia-340

tion (PAR). Note that Chlorophyll-a, EKE, MLD and nitrate concentration were log-341

transformed, so their distribution is closer to a Gaussian distribution. The final set of342

predictors is consistent with the predictors that were retained to model global zooplank-343

ton habitat suitability patterns in other SDM-based studies (Knecht et al., 2023; Benedetti344

et al., 2021; Strömberg et al., 2009).345

We train an ensemble of five BDMs with the selected environmental predictor vari-346

ables and gridded, depth-integrated mesozooplankton biomass, using a 75%:25% train-347

test split and five-fold cross-validation following the method detailed in (Knecht et al.,348

2023). The five BDMs include a GLM, a GAM, a Random Forest (RF), a Gradient Boost-349

ing Machine (GBM), and a Neural Network/Deep Learning Model (DL; see Figure 2).350

Model parameter tuning for the RF, GBM, and DL was performed using grid search (see351

supplementary table ?? for the list of tuned hyperparameters). The statistical modelling352

framework was conducted in the R coding environment (R Core Team, 2022) based on353

the h2o 3.36.0.3 R package (H2O.ai, 2021).354

We applied the BDMs to predict monthly mesozooplankton biomass values for the355

epipelagic layer globally. These projections were made for each grid cell and month with356

available data for all the predictors included in the BDMs. Statistical predictive mod-357

els including too many complex features can suffer from limited transferability into novel358
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environmental conditions due to non-linear response curves (Bell & Schlaepfer, 2016; Elith359

et al., 2010; Qiao et al., 2019). To address this issue, we evaluated whether the environ-360

mental conditions for each grid cell fell within the range of the training dataset or were361

non-analogue states, using a Multivariate Environmental Similarity Surfaces (MESS) anal-362

ysis (Elith et al., 2010). This allows us to flag those locations of the ocean where our spa-363

tial predictions of mesozooplankton biomass are more uncertain due to model extrap-364

olation into non-analogue conditions.365

We assessed the performance of each BDM based on three metrics. The root mean366

squared error (RMSE) is an error metric estimating the deviation between predicted and367

true values. Pearson’s coefficient of correlation, R2 indicates the magnitude of correspon-368

dence between trends in the predicted and observed values. Finally, the Nash-Sutcliffe369

efficiency (NSE; Nash and Sutcliffe (1970)) compares the model performance to a null370

model, that is, the mean of all observations. Positive NSE values indicate that the as-371

sessed model performs better than the null model. Each performance metric was calcu-372

lated on both the training and the testing set of the data. The models perform reason-373

ably well (Table S1), with the RF model showing the best performance across all met-374

rics (RMSE = 0.22, R2 = 0.52,NSE = 0.52 on the test set), followed by the GBM375

and then the DL model. Chlorophyll-a concentration was found to be the most impor-376

tant predictor as it explains 42.1% of the model’s predictive power on average. This find-377

ing supports the models’ ability to capture the responses of zooplankton biomass to large-378

scale gradients of plankton productivity (Strömberg et al., 2009). The supplementary379

materials include annually averaged mesozooplankton biomass maps for the five mod-380

els, seasonal maps, and the Partial Dependency Plots (PDP) that show the response learnt381

by the BDMs to the gradients of predictors included (Fig. S3, S4 and S5).382

To evaluate the global mesozooplankton biomass of PISCES-MOG, model outputs383

were vertically integrated over the top 200 m and horizontally re-gridded to match the384

grid of the BDMs predictions. Then, annually averaged fields were computed and PISCES-385

MOG outputs were compared against the BDM outputs based on relevant quantitative386

statistics (see Table 3).387

2.3.2 Size-structured mesozooplankton climatologies at BATS and HOT388

To compare the size-specific seasonal dynamics of metazoan simulated by PISCES-389

MOG to in situ observations, we used two widely-studied times series of size-structured390

mesozooplankton biomass (the Hawaii ocean time series, HOT; Sheridan and Landry (2004),391

and the Bermuda Atlantic time series study, BATS; Steinberg et al. (2001)). Mesozoo-392

plankton at HOT and BATS have been collected biweekly to monthly since 1994 at day393

time and night time through two replicate oblique net tows equipped with a 200 m mesh394

net, in the top 200 m of the water column. The samples were divided into two halves,395

and one half underwent successive wet sieving with nested sieves of various mesh sizes396

(5.0, 2.0, 1.0, 0.5, and 0.2 mm). The resulting fractions were placed on nets with a 0.2397

mm mesh size, frozen, thawed, blotted, and then analysed for dry weight on shore (Madin398

et al., 2001). Thus, dry weight mesozooplankton time series, in mg m−2, are available399

for five size classes: 200-500 m, 500 m - 1 mm, 1-2 mm, 2-5 mm, and ¿5 mm. We down-400

loaded the 1994-2019 mesozooplankton biomass times series at https://bats.bios.asu.edu/bats-401

data/bats.bios.asu.edu for BATS (last access: 02/01/2024) and https://hahana.soest.hawaii.edu/hot/hot-402

dogs/documentation/mextraction.htmlhahana.soest.hawaii.edu for HOT (last access: 02/01/2024).403

Note that there is a measurement gap in the HOT mesozooplankton biomass time se-404

ries between 2002 and 2005.405

Prior to comparing PISCES-MOG outputs with the time series observations, the406

latter underwent a series of post-processing steps. First, we only retained the night-time407

observations (18:00-7:00). Indeed, the version of PISCES used here does not represent408

diel vertical migration (DVM). Consequently, simulated mesozooplankton do not migrate409
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down to the mesopelagic zone during the day, contrary to observed behavior. Thus, we410

posit that PISCES, operating with a 3-hourly time step and constant light forcing, pri-411

marily captures nighttime mesozooplankton vertical distribution across all time steps.412

This assumption is based on the hypothesis that variations in light exert minimal influ-413

ence on diurnal variations in epipelagic zooplankton biomass compared to DVM. Then414

we converted the dry weights (mg m−2) to carbon molar concentration (mg C m−3) by415

dividing by the maximal tow depth (200 m) and multiplying by a single dry weight-to-416

carbon mass conversion factor of 0.35 (as per Madin et al. (2001)). For the HOT time417

series, both dry weight and carbon biomass were available, allowing us to validate the418

use of the conversion factor at both stations (see Fig. 4(b)). Subsequently, we averaged419

the time series to create monthly daytime size-resolved mesozooplankton carbon concen-420

tration climatologies at both stations.421

First, to compare the observed and modelled size structure of mesozooplankton com-422

munity, we computed the mean annual size spectrum at both stations by dividing the423

mean annual concentration of each size class by its width. Then, to analyse the size de-424

pendency of seasonality strength, we computed the relative seasonal amplitude for each425

mesozooplankton size class. This was done by calculating the difference between the max-426

imum and minimum biomass of each year, normalised by the annual mean. The mean427

and standard deviation of the relative amplitude were then computed for each size class428

across the available years. Lastly, to further explore size-driven differences in temporal429

dynamics, we calculated a seasonal cycle for each year and each size class. To do so, we430

normalised each month by the mean of that year and averaged the monthly normalized431

values over the years, for the five size classes, at both stations.432

3 Results433

3.1 Simulated ecosystem structure and phenology434

3.1.1 Global mesozooplankton biomass and community dynamics435

The total integrated annual mean biomass of all living compartments simulated by436

PISCES-MOG is 1.2 Pg C for the upper 200 m of the global ocean (Table 4). Primary437

producers account for 48% of this biomass, with the remaining 52% consisting of zoo-438

plankton, divided into unicellular protists (36%), juvenile metazoans (27%), and adult439

metazoans (37%, mesozooplankton). The contribution of each metazoan size class ranges440

from 3 (J1) to 36 TgC (Amax), with a mean normalized biomass size spectrum (NBSS)441

slope of -0.80 ± 0.05, close to the theoretical size spectrum slope of -1 (Sheldon et al.,442

1972). The spatial distribution of the NBSS slopes indicates steeper spectra in less pro-443

ductive areas (e.g. -0.9 in oligotrophic gyres vs -0.7 in the upwelling systems, see fig. S17),444

consistent with previous studies about the plankton size spectrum (see (Sprules & Barth,445

2016) and references within).446

Spatially, simulated mesozooplankton concentration is high (¿ 0.25 mmol C m−3)447

in the subpolar and upwelling regions and low (¡ 0.25 mmol C m−3) in the oligotrophic448

gyres and at high latitudes (Fig. 3(a)). This results in a clear zonal pattern in both hemi-449

spheres: low concentrations below 30° and above 70° latitude, and high concentrations450

between 30° and 60° latitude (Fig. 3(b)). This pattern seems to be driven by primary451

producers, as all plankton compartments show the same zonal pattern (Fig. 3(b)). The452

same zonal pattern also emerges for all adult metazoan size classes within the mesozoo-453

plankton (Fig. 3(c)).454

The phenology of mesozooplankton significantly differs from that of microzooplank-455

ton and phytoplankton, both of which exhibit shorter and earlier blooms (Table 5, Fig.456

3(e)). On average, phyto- and microzooplankton bloom apexes occur 133 days after the457

start of the year (1st of January in the Northern Hemisphere, 1st of July in the South-458

ern Hemisphere), whereas mesozooplankton peak one month later (Table 5). Bloom cli-459
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Figure 3. Global and zonally averaged epipelagic (0-200 m) plankton biomass and

seasonality simulated by PISCES-MOG (a) Global average of epipelagic adult metazoans

(mesozooplankton) concentration (mmol C m−3). (b) Zonal mean of adult (red) and juvenile

(pink) metazoans, unicellular protists (light blue), and total phytoplankton (green) concentra-

tions (mmol C m−3). (c) Mean zonal size spectra (biomass over size class width, mmol C m−3

mm−1) for the 10 adult metazoans size-classes. (d) Global average of epipelagic mesozooplank-

ton bloom apex (day of maximal abundance). (e) Zonal mean plankton groups bloom apexes

(days, same colors as above) (f) Mean zonal delay (days) between the bloom apex of the 10 adult

metazoans size classes and the bloom apexes of phytoplankton. (g) Global average of epipelagic

mesozooplankton relative seasonal amplitude (%) (h) Zonal mean plankton groups relative sea-

sonal amplitude (%, same colours as above). (i) Mean zonal relative seasonal amplitude (%) for

the 10 adult metazoan size classes.

max is synchronous with the bloom apex for phytoplankton, occurs two weeks before the460

bloom apex for microzooplankton, and happens a month before the bloom apex for meso-461

zooplankton (Table 5). Phytoplankton and microzooplankton show sharp but short blooms462

(mean duration: 64 and 70 days resp.), while mesozooplankton are characterized by longer463

blooms that lasts 86 days on average (Table 5). Lastly, the relative seasonal amplitude464

of biomass is more than 25% smaller for mesozooplankton than for microzooplankton465

and phytoplankton (Table 5).466
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Figure 4. Seasonal dynamics of the epipelagic (0-200 m) ecosystem simulated by

PISCES-MOG in the North Atlantic (46.4°N, 19.9°W) The coordinates are chosen to

match the location of the North Atlantic Bloom Experiment (NABE), a pilot process study of

the spring phytoplankton bloom conducted by JGOFS in 1989-1990 (Ducklow & Harris, 1993).

Time evolution of (a) the phytoplankton and (b) the zooplankton concentrations (mmol C m−3)

over one year. Triangles indicate the bloom apexes of the plankton groups. (c) Change in size-

class composition of metazoans over the year. The y-axis represents the 20 size classes ordered

by increasing size. The grey levels correspond to the proportion of total metazoans (juvenile +

adults) in each size classes for each time-step. Thus, for each time step, the proportions of the 20

size classes sums to 100. The arrows indicate cohorts, namely the propagation of successive waves

of biomass from small to large organisms.

As latitude increases poleward, mesozooplankton phenology exhibits a later (Fig.467

3(d)) and more pronounced (Fig. 3(g)) bloom (approximately +3 days delay and +5%468

in relative amplitude per degree poleward in PISCES-MOG). A similar pattern is sim-469

ulated for the phytoplankton (Fig. 3(e,i)), suggesting that primary producers’ phenol-470

ogy drives the simulated zonal pattern in mesozooplankton’s phenology.471

3.1.2 Cohort dynamics472

Globally, all mesozooplankton size classes exhibit a zonal seasonality pattern sim-473

ilar to the one shown for total mesozooplankton. There is a strong latitudinal gradient474

in seasonality, with bloom apex (Fig. 3(e,f)) and bloom climax (Fig. S6(d,e,f)) occur-475

ring later as latitude increases poleward. The relative seasonal amplitude of mesozoo-476

plankton biomass increases poleward (Fig. 3(h)).477

Moreover, PISCES-MOG simulations reveal a size class dependency of mesozoo-478

plankton dynamics: larger size classes peak later than smaller ones, with the largest size479
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classes peaking up to 3 months later than the smallest one (Fig 3(f)). This trend aligns480

with the temporal trend of other metrics: larger size classes have a later bloom climax481

(Fig. S6(f)) and a longer bloom duration (Fig. S6(c)), along with a lower seasonal am-482

plitude (Fig 3(j)). Note that a similar size class dependency is simulated for juvenile meta-483

zoans dynamics (Fig. S7 and S8). These size-dependent variations in bloom metrics in-484

dicate a cohort dynamics, a phenomenon in which biomass spreads across the size spec-485

trum due to synchronous growth and/or reproduction. This behaviour is extensively de-486

scribed in the chemostat model of plankton dynamics by Clerc et al. (2021). The bio-487

geochemical conditions driving metazoan cohort dynamics in Clerc et al. (2021) aim to488

replicate those in the North Atlantic, where zooplankton phenology is influenced by a489

strong phytoplankton spring bloom. To further characterise this pattern in PISCES-MOG,490

we analyse the temporal dynamics of plankton at a grid point representative of the well-491

studied North Atlantic bloom system: NABE (46.4°N, 19.9°W).492

As expected, PISCES-MOG simulates a phytoplankton bloom in early spring at493

NABE, reaching its peak in early April (Fig. 4(a)). This triggers a zooplankton bloom:494

microzooplankton (protists and juvenile metazoans) peak around 15 days later, while meso-495

zooplankton peak 45 days later (Fig. 4(b)). The temporal evolution of the metazoan com-496

position shows a wave signal driven by a cohort dynamic, as demonstrated in Clerc et497

al. (2021). Before the phytoplankton spring bloom, biomass is distributed similarly in498

both juvenile and adult metazoan groups; larger organisms are more abundant than smaller499

ones (Fig. 4(c)). The bloom triggers an increase in food availability, leading to popu-500

lation growth. Smaller organisms, that are characterised by higher maximal grazing rates,501

experience a faster increase in concentration than larger organisms, resulting in a higher502

proportion of biomass accumulating in smaller size classes at the beginning of April (Fig.503

4(c)). Ontogenetic growth results in the transfer of this biomass to the larger juvenile504

size classes (orange arrow) and then to adults (orange arrows in Fig. 4(c)). This char-505

acterises the formation of a first cohort. Reproduction of the adults from this first co-506

hort results in a second cohort, for which the signal is lost in the adult size classes (white507

arrow, Fig. 4(c)). Note that a comparable cohort pattern also emerges under the olig-508

otrophic conditions prevalent at BATS (Fig. S9) and at HOT even though the signal is509

weaker there (Fig. S10).510

3.2 Comparison of PISCES-MOG outputs to observations511

Next, we focus on the evaluation of the key new component of the PISCES-MOG512

model (absent in PISCES-v2): the size-structured mesozooplankton compartment. In513

the supplementary material, we present an evaluation of nitrate and chlorophyll distri-514

butions (Fig. S11) and chlorophyll dynamics (Fig. S12). For these tracers, note that the515

performance of PISCES-MOG is similar to that of PISCES-v2 (Aumont et al., 2015).516

3.2.1 Evaluation of simulated total mesozooplankton biomass and sea-517

sonality against observation-based products518

The annual mean distribution of total mesozooplankton biomass as well as the dis-519

tribution of the four seasonality metrics defined in section 2.2.3 are compared to the BDMs-520

based climatology. Overall, the quantitative statistical evaluation shows that PISCES-521

MOG successfully simulates mesozooplankton biomass and phenology at the global scale522

(Table 3) and zonally 5.523

We find that both biomass distributions align in their overall order of magnitude524

(total epipelagic biomass: 137 TgC in the BDMs-based climatologies vs. 322 TgC in the525

PISCES-MOG outputs). PISCES-MOG and BDMs-based global mesozooplankton biomasses526

are significantly correlated (Pearson r = 0.4, p-value ¡ 10−15, Table 3 and Fig. S13). In527

productive systems, such as upwelling areas, and less productive systems, such as olig-528

otrophic gyres, both observed and modeled climatologies consistently depict higher and529

–15–



manuscript submitted to Global Biogeochemical Cycles

Mean Standard deviation
Corr RMSE Bias Obs. Model Obs. Model

average biomass (mmol/m3) 0.40 0.14 0.09 0.18 0.27 0.10 0.11
bloom apex (days) 0.25 75 -15 158 144 57 56
bloom climax (days) 0.32 77 0 87 87 60 57
bloom duration (days) 0.04 50 14 75 89 37 32
relative amplitude (%) 0.52 42% -3% 82% 79% 43% 46%

Table 3. Evaluation metrics computed to compare the model-based and the

observation-based mesozooplankton biomass monthly climatologies. Obs refers to

the BDMs-MAREDAT product, Model here refers to the PISCES-MOG mesozooplankton out-

puts. With the exception of correlation coefficients, metric units are the same as the units of

the evaluated variable. Corr is the correlation coefficient between the BDM-based and the

PISCES-MOG-based fields of mesozooplankton biomass. For the average concentration, the

bloom duration and the relative amplitude, the metric corresponds to the Pearson correlation

coefficient. For the bloom climax and bloom duration, the metric corresponds to the circular

version of the Pearson correlation coefficient (Jammalamadaka & SenGupta, 2001), since those

are periodic metrics (with a period of 1 year). The periodicity of those metrics is also accounted

for in the computation of root mean square error (RMSE) and Bias. All metrics are weighted

by the area of each ocean grid cell and averaged over the top 200 m of the ocean. Seasonality

metrics are also weighted. Note that a visualisation of the comparison between PISCES-MOG

and BDMs-MAREDAT mesozooplankton metrics is available in Fig. S13.

Figure 5. Model-data comparison of the mesozooplankton biomass and its season-

ality. For each of the five evaluated metrics, we compare the zonal mean of the metric computed

on the mesozooplankton distribution simulated by PISCES-v2 (grey line), PISCES-MOG (black

line) and interpolated from observation (BDMs-MAREDAT, dotted red line). The five metrics

evaluated are (a) biomass (mmol C m−3), (b) relative seasonal amplitude (%), (c) bloom apex

(day of the year), (d) bloom climax (day of the year) and (e) bloom duration (days). The metrics

are defined is the methods section 2.2.3.
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lower biomass levels, respectively (Fig. 5(a), Fig. S13). Spatial variability is also con-530

sistent between the model-based outputs and observations (Table 3).531

The seasonality metrics and their standard deviations are consistent between PISCES-532

MOG outputs and observation-based fields on a global scale (Table 3, Fig. S13), with533

biases lower than 20%. However, PISCES-MOG tends to simulate earlier and longer meso-534

zooplankton blooms than computed from the BDMs-based climatology (Table 3, Fig. 5(c,d)).535

The spatial distribution of bloom climax and bloom duration is consistent across the model-536

based and the BDMs-based outputs (r2 = 0.23 and 0.32, Table 3, Fig. 5(c,d), with the537

dominant pattern being a later bloom as latitude increases poleward (approximately +3538

days per degree poleward in PISCES-MOG, +2 days per degree poleward in the BDMs-539

based climatology, Fig. 5(c,d)). In the tropical band (i.e., between 30°S and 30°N), where540

the seasonal signal is low (¡80%, Fig. 5(b)), the bloom apex and bloom climax distribu-541

tion are patchy in both the model-based and the BDMs-based fields (Fig. 5(c,d), Fig.542

3(d), S14(d), S6(d), S15(d)), as intra-annual variations are not driven by seasonality in543

these regions at the first order. In contrast, bloom duration is poorly correlated between544

the model-based and the BDMs-based fields (r = 0.04, Table 3, Fig. 5(e)). No clear large-545

scale pattern emerges from the model and observation for this metric, as bloom dura-546

tion seems to be uniformly patchy across the global ocean (Fig. S15(a), Fig. S6(a)). Rel-547

ative biomass amplitudes are spatially consistent between the model-based and the BDMs-548

based fields (r = 0.52, table 3, Fig. 5(b)), with the dominating pattern being an increase549

in relative amplitude towards the poles (Fig. 3(g) and S16(a)). Therefore, PISCES-MOG550

consistently simulates large-scale mesozooplankton spatial and intra-annual variability,551

even though bloom duration is poorly constrained due to its patchiness.552

3.2.2 Evaluation of modelled mesozooplankton size structure against time-553

series data554

To our knowledge, no global monthly climatologies of mesozooplankton size struc-555

ture based on field observation are currently available. Thus, our evaluation of mesozoo-556

plankton size structure is limited to the observations from the two time series stations,557

BATS and HOT. Note that observed mesozooplankton time-series were not available at558

NABE, where we described an emergent metazoan cohort dynamics in PISCES-MOG559

(section 3.2.2). However, PISCES-MOG simulates a cohort pattern at HOT and BATS560

that is similar to the one simulated for NABE (see supp fig. S9 and S10).561

We divided the evaluation of the seasonal patterns in mesozooplankton size struc-562

ture at the HOT and BATS stations into three parts: (i) the comparison of the size spec-563

tra aims to evaluate the size structure of the mean annual biomass (Fig. 6(a,b)), (ii) the564

comparison of relative seasonal amplitudes investigates the size-dependent variations in565

seasonal biomass (Fig. 6(c,d)), and (iii) the comparison of normalised seasonal cycles eval-566

uates the relationship between size and the temporal structure of seasonality (Fig. 6(e,f)).567

Consistent with Sheldon’s theoretical hypothesis (Sheldon et al., 1972), the slope568

of the spectrum is not significantly different from -1 (p-values ¿ 0.05) for the model-based569

outputs and the observations at both stations (modelled resp. observed, size spectrum570

slopes are -0.92 resp. -0.84 at BATS, -1.12 resp. -0.61 at HOT, Fig. 6(a,b)). Note that,571

for the time series observations, the size spectrum’s normalised biomass (NBSS) value572

(Fig. 6(a,b)) is likely underestimated for the small size class due to the detection limit573

corresponding to the net mesh size (202 µm). This explains the misalignment of the smaller574

size class point in both field-based size spectra. The model overestimates biomass at BATS575

by a factor of 4 (Fig. 6(a)) but performs well at HOT (mean model over obs. ratio ¡ 1.5,576

Fig. 6(b)). As a result, a simple parameterization of mesozooplankton allows the intro-577

duction and evaluation of a consistent size-spectrum structure in PISCES-MOG, which578

was absent in PISCES-v2 (indicated by the black dot).579
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Figure 6. Model-data comparison of mesozooplankton biomass and seasonality at

BATS (32.1°N 64.0°W, left panels) and HOT (25.1°N 158.0°W, right panels). (a,b)

(resp. (c,d)) Size spectra comparison (concentration/width class, in mmol m−3 µm−1), (resp.

relative seasonal amplitude, in % of yearly average biomass). The time series of the ten adult

metazoan size classes simulated by PISCES-MOG are represented by black lines with round dots.

The squared grey dot refers to the PISCES-v2 total mesozooplankton time series. Black dotted

lines with lozenge dots represent observed mesozooplankton dry weight time series converted to

carbon concentrations for the five size classes (see section 2.3.2). Note that for the larger ob-

served size class, the mean individual size is arbitrarily set to 10 mm since the upper size limit is

unknown, but is not considered when computing size spectrum slopes. For (b), the red line indi-

cates the size spectrum computed from carbon content values, available only for the HOT time

series, illustrating the consistency of our dry-weight to carbon conversion. Error bars in obser-

vations represent inter-annual variability. (e-h) Normalised seasonal cycle for each observed and

modelled mesozooplankton biomass time-series by size class. Normalisation is based on yearly

average biomass, with error bars indicating inter-annual variability of the normalized seasonal

cycle. The colour represents the mean size of the class (light pink for smaller sizes to dark brown

for larger size classes). Note that error bars are absent for model outputs in all panels (a-h) since

PISCES is forced with a 1-year climatology.
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Ecosystem Biological carbon pump
Nanophyto.
(PgC)

Diatoms
(PgC)

Microzoo.
(PgC)

Mesozoo.
(PgC)

Total
(PgC)

NPP
(PgC yr−1)

EP100
(PgC yr−1)

pe-ratio
(-)

PISCES-MOG 0.378 0.174 0.394 0.232 1.178 42.32 7.13 0.168
PISCES-v2 0.430 0.158 0.326 0.322 1.236 43.31 7.89 0.182
Anomaly MOG - v2 (%) -11.9% +9.6% +20.8% -27.9% -4.7% -2.3% -9.6% -7.7%
PISCES-MOG-2LS 0.366 0.168 0.427 0.232 1.194 44.80 7.02 0.157
Anomaly MOG-2LS - v2 (%) -14.8% +6.3% +30.9% -27.8% -3.4% +3.4% -11.0% -13.7%

Table 4. Global biomass of the simulated living compartments and associated car-

bon export. All biomass values are computed over the top 200m. NPP100 is the Net Primary

Production over the top 100 m. EP100 is the particulate organic carbon export at 100 m. pe-

ratio is defined as EP100/NPP100.

The relative seasonal amplitude of mesozooplankton biomass is comparable between580

the model and observations at both stations, albeit with a consistently reduced mean581

amplitude at HOT compared to BATS. (Fig. 6(c,d)). Although PISCES-MOG exhibits582

a clear bell-shaped size structure in relative seasonal amplitude, with lower seasonal am-583

plitudes for the smallest and largest size classes, the inter-annual variability of the ob-584

servations is too high to delineate differences in seasonality across size classes (Fig. 6(c,d)).585

The comparison of the observed and modelled mesozooplankton temporal dynam-586

ics is limited by the inter-annual variability in the observations. PISCES-MOG predicts587

a bloom that occurs between one and two months later than the ones reported at BATS588

(April-July vs. March-May, Fig. 6(e)). It also predicts a marked shift in the timing of589

maximum biomass with increasing size that is consistent with a cohort process (Fig. 6(e),590

see section 3.1.2). A similar pattern appears in the observations, but the high inter-annual591

variability makes it difficult to discern a significant pattern. At HOT also, a cohort pat-592

tern is observed in the model, with bloom peaks occurring between February and April593

(Fig. 6(f)). However, analysing the seasonality in observations at HOT is even more chal-594

lenging than at BATS due to the high inter-annual variability and the low seasonal vari-595

ability (Fig. 6(g)).596

In summary, while the evaluation of mesozooplankton size structure and season-597

ality showed that PISCES-MOG performs reasonably well, evaluating the size structure598

of the seasonal signal remains challenging. Yet, we note that both BATS and HOT are599

stations located in oligotrophic gyres, where both productivity and seasonality are known600

to be low all year long. This could explain why observations have a low seasonal signal601

versus inter-annual variability ratio.602

3.3 Biogeochemical impacts of the representation of mesozooplankton603

ontogenetic growth and reproduction604

In order to quantify the impacts of mesozooplankton ontogenetic growth and re-605

production, in this section we compare PISCES-MOG and PISCES-v2. We first com-606

pare the ecosystem structure and phenology between the two models, and then show how607

these differences between models induce different carbon fluxes.608

3.3.1 Impacts on the ecosystem structure609

The simulated total living epipelagic biomass is similar in both PISCES-v2 and PISCES-610

MOG, with an estimated amount of 1.18 and 1.24 GtC, respectively, over the top 200611

m (Table 4). The inclusion of mesozooplankton ontogenetic growth in PISCES-MOG re-612

sults in juvenile metazoans biomass redistribution from the mesozooplankton biomass613

pool to the microzooplankton pool. Consequently, total mesozooplankton biomass is 28%614

lower and total microzooplankton 21% higher in PISCES-MOG compared to PISCES-615
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Figure 7. Global particulate organic carbon (POC) flux estimates, particle compo-

sition and biological drivers in PISCES-MOG and PISCES-v2. (a) Global distribution

of POC export at 100 m (gC m−2 yr−1) simulated in PISCES-MOG and (d) relative anomaly

compared to PISCES-v2 (b) Zonal mean POC export at 100 m (gC m−2 yr−1) and (e) relative

anomaly compared to PISCES-v2. The dashed line shows the total POC. The fill colours show

the contribution of the different components of the POC: small particles in light grey, large par-

ticles in dark gray. (c) Zonal mean community composition (mmol C m−3) in PISCES-MOG and

(f) relative anomaly compared to PISCES-v2. The dashed line shows the total simulated living

concentration. The fill colours show the different groups of organisms: nanophytoplankton in

light green, diatoms in dark green, microzooplankton in orange and mesozooplankton in pink.

v2 (Table 4). Thus, while total zooplankton (i.e., micro- and mesozooplankton together)616

biomass is only slightly affected by the inclusion of a more complex mesozooplankton617

representation (-3.4% in PISCES-MOG compared to PISCES-v2, Table 4), the repar-618

tition within size-based compartments is different (i.e., mesozooplankton represents 50%619

of total zooplankton in PISCES-v2, 38% in PISCES-MOG, Table 4).620

These changes in biomass distribution impact the overall ecosystem structure sig-621

nificantly. As zooplankton exert a top-down control on primary producers through graz-622

ing, changes in zooplankton composition modify predation pressure and thus impact phy-623

toplankton composition. Indeed, PISCES includes an explicit representation of two phy-624

toplankton groups: nanophytoplankton that are mainly grazed by microzooplankton, and625

diatoms that are mainly grazed by mesozooplankton. As a consequence of this top-down626

control by zooplankton, a decrease of 12% of nanophytoplankton biomass is simulated627

in PISCES-MOG compared to PISCES-v2 due to an increase in predation pressure me-628

diated by an increase in microzooplankton (Table 4). Similarly, an increase of 10% in629

diatom biomass is simulated in PISCES-MOG due to a relaxation of predation pressure630

by mesozooplankton (Table 4). These effects on the epipelagic ecosystem structure are631

qualitatively similar across latitudes (Fig. 7(f))632
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Phytoplankton Microzoo. Mesozoo.

Relative seasonal amplitude (%)
PISCES-MOG 121% 107% 93%
PISCES-v2 115% 132% 111%
Anomaly MOG - v2 6% -25% -18%

Bloom apex (day)
PISCES-MOG 133 133 159
PISCES-v2 133 129 161
Anomaly MOG - v2 0 4 -2

Bloom climax (day)
PISCES-MOG 117 124 130
PISCES-v2 116 124 133
Anomaly MOG - v2 1 0 -3

Bloom duration (days)
PISCES-MOG 64 70 86
PISCES-v2 62 60 80
Anomaly MOG - v2 2 10 6

Table 5. Global seasonality metrics of the simulated living compartments. Vari-

ables are defined in section 2.2.3 of the methods. All values are computed over the top 200m.

Global averages are weighted by the corresponding plankton biomass distribution simulated in

PISCES-MOG (the same weights are applied to PISCES-v2 and PISCES-MOG for consistency in

the anomaly computation. Note that applying weights from PISCES-v2 would result in similar

averages).

3.3.2 Impacts on plankton phenology633

We evaluate the differences in seasonal patterns between PISCES-v2 and PISCES-634

MOG for latitudes beyond 20 degrees based on 5-day-average time series (Table 5).635

Differences in seasonality are small between PISCES-MOG in PISCES-v2 (Table636

5). The timing of the bloom apex and bloom climax varies by a few days in the two mod-637

els for micro- and mesozooplankton (Table 5, Fig. 5). The impacts on phytoplankton638

phenology are even smaller (i.e., ¡ 2 days). However, annual absolute amplitudes are af-639

fected consistently with the change in absolute biomass: mesozooplankton seasonal am-640

plitude is reduced by 39%, while it is increased by 6% for microzooplankton (Table 5).641

More interestingly, while absolute amplitudes show opposite patterns for meso- and mi-642

crozooplankton, relative amplitudes are reduced by more than a quarter in both groups643

(Table 5). This can be explained by the subdivision into classes that have differential644

seasonality (cohort pattern, see section 3.1.2), which flattens the seasonal signal of the645

whole group. This is confirmed by the bloom duration, which increases by 17% for mi-646

crozooplankton and 8% for mesozooplankton in PISCES-MOG compared to PISCES-647

v2 (Table 5).648

Therefore, while the introduction of ontogenetic growth in PISCES-MOG modi-649

fies the ecosystem structure and the seasonal amplitude of total mesozooplankton sig-650

nificantly, its impact on total mesozooplankton biomass seasonality remains limited, even651

if there are large intra-compartment variations in biomass seasonality due to cohort dy-652

namics (see section 3.1).653

3.3.3 Impacts on the carbon cycle654

The efficiency of carbon transfer to the deeper layers strongly relies on the sink-655

ing speed of particles which is highly size-dependent (Cael et al., 2021). In both PISCES656

versions, POC is split into two groups: small organic carbon particles, which sink at a657

speed of 2 m d−1, and large particles, which sink at a speed of 50 m d−1. Consequently,658

for an identical remineralisation rate, carbon contained in large particles will be exported659

25 times more efficiently than carbon contained in small POC. Moreover, while meso-660

zooplankton particle production is mainly directed towards large POC, microzooplankton-661
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produced particles are considered small particles. As a direct consequence of simulated662

changes in zooplankton composition in PISCES-MOG compared to PISCES-v2, POC663

flux at 100 m is reduced by 10% in PISCES-MOG . This change is mainly driven by the664

decrease in the flux associated to large particles (97%) caused by the decrease in meso-665

zooplankton biomass. The net primary production being similar in PISCES-v2 (43.3 PgC666

yr−1) and PISCES-MOG (42.3 PgC yr−1), this reduced export in PISCES-MOG is as-667

sociated to a 8% lower pe-ratio.668

Spatially, the changes in export are driven by changes in mesozooplankton biomass669

in the productive regions, since maxima in mesozooplankton decline at around 40° lat-670

itude and at the Equator (7(f)) correlate with peaks in large particles’ decline at the same671

latitudes (7(e)). As a result, the equatorial upwelling and the sub-polar productive zones672

contribute the most to the decline in 100 m export when accounting for mesozooplank-673

ton reproduction and ontogenetic growth (7(d)).674

While the introduction of mesozooplankton ontogenetic growth and reproduction675

into PISCES significantly reduces the mean annual export of particulate organic carbon676

(POC) at 100 meters depth in the ocean, its impact on the seasonality of this flux is lim-677

ited. Changes of less than 5 days in the global average for particles bloom apexes and678

climaxes, not presented here, indicate this limited effect. This expected behaviour re-679

sults from the limited influence of mesozooplankton ontogenetic growth and reproduc-680

tion on the seasonal timing of various organism groups (3.3.2).681

3.3.4 Relative contributions: the relative role of reproduction and on-682

togenetic growth versus that of the representation of size683

The addition of explicit reproduction and ontogenetic growth versus the addition684

of a full size spectrum could have differential effects on the behaviour of PISCES-MOG.685

To disentangle their relative importance, we compare PISCES-MOG vs PISCES-v2 anoma-686

lies to PISCES-MOG-2LS vs PISCES-v2 anomalies (Table 4, models defined in section687

2.2.2). We identified three possible scenarios: i) If PISCES-MOG anomalies are similar688

to PISCES-MOG-2LS anomalies, the size spectrum representation has little impact on689

the behaviour of PISCES-MOG. In this case, the simulated differences between PISCES-690

MOG and PISCES-v2 are driven by the introduction of ontogenetic growth and repro-691

duction. ii) If there is a lower absolute anomalies in PISCES-MOG-2LS compared to PISCES-692

MOG, the impact of reproduction and ontogenetic growth on the model behaviour is am-693

plified when representing the size spectrum. iii) If there is a higher absolute anomaly in694

PISCES-MOG-2LS compared to PISCES-MOG, the size spectrum representation actu-695

ally dampens the effect of representing ontogenetic growth and reproduction.696

Based on these scenarios, we disentangle the relative effect of reproduction and on-697

togenetic growth versus that of the representation of size. PISCES-MOG-2LS and PISCES-698

MOG show consistent biomass anomaly signs across all plankton groups (Table 4). How-699

ever, micro- and nanophytoplankton anomalies are 30-50% higher, while diatom anoma-700

lies are 30% lower in PISCES-MOG-2LS compared to PISCES-MOG (Table 4). Con-701

sequently, diatoms and mesozooplankton are less abundant in PISCES-MOG-2LS, lead-702

ing to a 20% higher absolute export flux anomaly (Table 4). In PISCES-MOG-2LS, NPP703

shows an opposite anomaly compared to PISCES-MOG, resulting in a doubling of the704

PE-ratio anomaly. Thus, the effect of metazoan ontogenetic growth and reproduction705

representation on the intensity and efficiency of the BCP is dampened by the represen-706

tation of a size spectrum. Spatially, both models show similar anomaly distributions for707

most plankton groups, except for diatoms in the Southern Ocean (Fig. S1). Despite this708

difference, the resulting export flux anomaly distribution is similar in both models for709

most ocean regions (Fig. S2). Thus, in PISCES-MOG, metazoan reproduction and on-710

togenetic growth representation primarily drive differences with PISCES-v2 behaviour.711
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4 Discussion712

4.1 Changes in plankton biomasses and carbon export estimates713

Incorporating a detailed representation of mesozooplankton ontogenetic growth and714

reproduction into a biogeochemical component of an earth system model did not alter715

the realism of PISCES biogeochemical global properties. Indeed, in PISCES-MOG, spa-716

tial patterns are primarily related to the global gradient in primary productivity. This717

results in high biomasses in high-latitude regions and low biomasses in oligotrophic gyres,718

consistent with observations (Hatton et al., 2021). Net primary production (NPP, 42 PgC719

yr−1) and carbon export estimates at 100 m (EP100, 7.1 PgC yr−1), fall within the range720

of the literature (EP100: 5.8 PgC yr1 in Clements et al. (2023), 6.6 PgC yr−1 in (Siegel721

et al., 2014) and 9.1 PgC yr−1 in (DeVries & Weber, 2017), NPP: 35-77 PgC yr−1; Field722

et al. (1998); Westberry et al. (2023)).723

However, incorporating mesozooplankton ontogenetic growth and reproduction led724

to significant changes in annual biomass distribution within plankton compartments rel-725

ative to the standard version of the model. As anticipated in Clerc et al. (2021), zoo-726

plankton biomass was partly redistributed toward microzooplankton because adult meta-727

zoans allocate a portion of their energy towards reproduction. This behaviour enhances728

the realism of PISCES. Indeed, Copepoda, recognised as the most abundant mesozoo-729

plankton group (Moriarty & O’Brien, 2013; Drago et al., 2022), can represent a signif-730

icant portion of microzooplankton at their nauplii stages (up to 30%; Quevedo and Anadón731

(2000); Safi et al. (2007)). In addition, PISCES-MOG simulated mesozooplankton biomass732

distributions are closer to our present BDMs-based biomass estimates compared to the733

distributions simulated by PISCES-v2 (Fig. 6), suggesting that PISCES-MOG simula-734

tions are closer to field observations. Thus, PISCES-MOG simulates zooplankton more735

accurately than PISCES-v2, which may lead to increased realism in biogeochemical fluxes.736

As a consequence of the changes in zooplankton structure, the particle size distri-737

bution shifted toward smaller particles (section 3.3.3). Consequently, the export at 100738

meters was 10% lower in PISCES-MOG compared to PISCES-v2. This finding suggests739

that zooplankton-driven carbon export may be overestimated in many biogeochemical740

components of Earth System Models, as these often represent mesozooplankton as a sin-741

gle and constant size class (Kearney et al., 2021). However, adding a more complex rep-742

resentation of the mesozooplankton would increase the computational cost by a factor743

of 2 or even more in fully coupled Earth System Models experiments, where physical and744

biogeochemical processes interact in both ways (such as in the Climate Model Intercom-745

parison Project (CMIP) exercises; Eyring et al. (2016); Taylor et al. (2012)). In paral-746

lel, the sensitivity experiment based on PISCES-MOG-2LS, where the representation of747

metazoan zooplankton is limited to two size classes instead of 20 (one juvenile compart-748

ment and one mature organism compartment, section 2.2.2) resulted in similar changes749

in biomass distribution and changes in carbon export compared to the changes observed750

when comparing PISCES-MOG to PISCES-v2 (section 3.3.4). Therefore, mesozooplank-751

ton ontogenetic growth and reproduction could be included in biogeochemical models752

without inducing a significant increase in computational cost by simply including a ju-753

venile metazoan compartment in the microzooplankton. This simple addition would likely754

suffice to influence the dynamics of carbon export in a manner similar to adding a com-755

plete representation of mesozooplankton ontogenetic growth and reproduction.756

4.2 Cohort-driven impacts on plankton and carbon cycling757

To our knowledge, this is the first study to specifically diagnose potential shifts in758

zooplankton phenology induced by incorporating of full size spectrum representation in759

a global biogeochemical model. By representing metazoan size classes the same way as760

in the 0D chemostat model of Clerc et al. (2021), we successfully introduced cohort dy-761

namics for metazoans in PISCES-MOG. Indeed, the seasonal behaviour of each size class762
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showed a globally consistent pattern: larger metazoans peak later and their blooms last763

longer. These cohort dynamics is consistent with patterns previously evidenced in the764

field (Mackas et al., 2012) and in models (McCauley & Murdoch, 1987; Persson et al.,765

1998; Pope et al., 1994; Maury et al., 2007; Zhou et al., 2010). They emerge because ju-766

veniles display a competitive advantage over adults right after a phytoplankton bloom767

thanks to their higher mass-specific ingestion rates (Persson et al., 1998; De Roos & Pers-768

son, 2003; De Roos et al., 2008; Persson & de Roos, 2013).769

We expected cohort dynamics to induce a temporal delay in the peak of mesozoo-770

plankton biomass within the year, compared to the peak simulated by a model without771

cohorts (Clerc et al., 2021). Surprisingly, the inclusion of mesozooplankton ontogenetic772

growth and reproduction did not significantly modify the temporal dynamics of meso-773

zooplankton biomass in the 3-D implementation of the Clerc et al. (2021) model (Ta-774

ble 5). To explain this, we argue that the metazoan population size structure right be-775

fore the phytoplankton bloom (i.e., pre-bloom conditions) plays a determining role in776

the simulated temporal dynamics. In Clerc et al. (2021) the pre-bloom metazoan pop-777

ulation consisted of mature adult stages only. Due to the lower growth rate of mature778

adults compared to other smaller metazoan size classes, this population structure resulted779

in a slow formation of the first cohort, significantly contributing to the simulated delay780

in the peak of mesozooplankton compared to the model without ontogenic growth and781

reproduction. In PISCES-MOG, pre-bloom metazoan size classes are more evenly dis-782

tributed among juveniles and adults (Fig. 4). This structure led to a faster cohort for-783

mation than in Clerc et al. (2021) and eliminated the delay in the peak of mesozooplank-784

ton biomass between PISCES-MOG and PISCES-v2 (Table 5).785

Including mesozooplankton ontogenetic growth also had limited impact on the sea-786

sonality of carbon export (section 3.3.3). However, we argue that the effects on carbon787

flux seasonality are underestimated because the particles produced by any mesozooplank-788

ton size class are all directed to the same particle pool. We hypothesise that represent-789

ing a particle size spectrum in PISCES-MOG would delay the annual peak in carbon ex-790

port, because particles produced by each mesozooplankton size class would be allocated791

to distinct particle size classes. Small metazoans, that peak earlier (section 3.1.2), would792

produce small particles that sink slowly (Cael et al., 2021). Large metazoans, that peak793

later (section 3.1.2), would produce large particles, that sink fast. Thus, by introducing794

a particle size spectrum, the particle export efficiency would increase over time after the795

phytoplankton bloom, and consequently POC flux export peak would be delayed. Us-796

ing a numerical model representing a particle size spectrum, Serra-Pompei et al. (2022)797

showed that size-spectrum slope and trophic levels of copepods (that can be linked to798

the size) are important drivers of carbon export and carbon export efficiency (pe-ratio),799

respectively. This supports our hypothesis that including particles size spectrum in PISCES-800

MOG would result in changes in POC flux seasonality when accounting for mesozooplank-801

ton ontogenetic growth.802

4.3 Evaluating mesozooplankton phenology and size structure in ma-803

rine biogeochemical models804

We emphasise that new observation-based BDMs provide valuable insights into the805

seasonal patterns of global zooplankton biomass, as they unlock spatial and temporal806

scales that are not covered by the previous observations. Observations-based biomass807

products from MAREDAT (Moriarty & O’Brien, 2013) (or subset, such as COPEPOD,808

O’Brien (2005)) are often used to evaluate the predictions made by marine ecosystem809

models for various plankton functional types in point-by-point comparisons (Le Quéré810

et al., 2005; Aumont et al., 2015; Stock et al., 2014; Clerc, Bopp, et al., 2023). This eval-811

uation is limited by the restricted spatiotemporal scales covered by these observational812

data. Here, we benefit from novel approaches established to develop distribution mod-813

els based on continuous abundance and derived biomass observations (Drago et al., 2022;814
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Waldock et al., 2022; Knecht et al., 2023). Indeed, for the first time to our knowledge,815

we were able to evaluate the skill of a global biogeochemical model in predicting the phe-816

nology and the seasonal production patterns of zooplankton against an observation-based817

product. BDMs can thus successfully extract and extrapolate biomass patterns in space818

and time, and substantially reduce the noise levels in biological data, enabling their com-819

parizon with biogeochemical model outputs. Our work represents a key step towards im-820

proving the assessment of zooplankton functional groups in Earth System Models, as we821

anticipate that further versions of such data-driven extrapolated biomass distribution822

products will emerge for multiple plankton functional types (PFT), like those developed823

for crustaceans and radiozoa based on imaging data (Drago et al., 2022) and those for824

pteropods and foraminifers based on traditional net data Knecht et al. (2023).825

Unlike previous versions of PISCES, a new feature requiring evaluation against field826

observations is the mesozooplankton size spectrum. However, we identified only two open-827

ocean time series that provided sufficient information to assess both the zooplankton size828

spectrum and its seasonality. While modeled and observed zooplankton size spectra ex-829

hibited similarities, both time series displayed significant inter-annual variation in sea-830

sonality, precluding the identification of size-dependent seasonal patterns. In this con-831

text, zooplankton community monitoring using imaging methodology (e.g., Lombard et832

al. (2019)) paired with machine learning and BDM techniques are promising tools to (a)833

increase the number of observations, and (b) extrapolate between measurements at a global834

scale. Specifically, Under Vision Profiler 6 (UVP6) images are expected to significantly835

contribute to constraining zooplankton size spectrum dynamics globally (Picheral et al.,836

2022). Indeed, particle size distribution can be extracted from the images with novel ma-837

chine learning tools that enable the quantification and monitoring of zooplankton func-838

tional traits from a wealth of in situ imaging observations (Irisson et al., 2022; Orenstein839

et al., 2022). Thus, the integration of imaging-derived in situ zooplankton size observa-840

tions with machine learning and BDM techniques would enable the evaluation of size-841

structured zooplankton global dynamics simulated by our model.842

4.4 Model caveats843

The extraordinary diversity of zooplankton life histories leads to complex responses844

to environmental conditions and seasonal successions between different organisms (Romagnan845

et al., 2015; Kenitz et al., 2017). In contrast, the way we incorporated mesozooplank-846

ton ontogenetic growth and reproduction remains simplified due to computational con-847

straints and does not account for all sources of intra- and interspecific variability within848

the mesozooplankton life histories (Mauchline, 1998). First, we assumed that all adult849

metazoans can reproduce. However, large species can reach a size considered as adult850

in PISCES-MOG before reaching sexual maturity (Hartvig et al., 2011). A consequence851

of that assumption is that the biomass and pool of reproductory organisms is overesti-852

mated, leading to a likely overestimate of simulated reproduction rates. A more realis-853

tic representation of reproduction would necessitate multiple size spectra organized based854

on maximum size (Hartvig et al., 2011) or to make coarse assumptions about the max-855

imum reproduction rates (Baird & Suthers, 2007), and this would likely reduce the dif-856

ferences in annual biomass and POC fluxes between PISCES-MOG and PISCES-v2.857

Second, zooplankton are assumed to be ”income breeders” (Sainmont et al., 2014)858

in PISCES-MOG, meaning that a portion of the grazing flux is instantaneously allocated859

to reproduction (section 2.2.2). However, some organisms adopt an alternative repro-860

duction strategy called ”capital breeding” (Varpe et al., 2009), according to which an861

individual may allocate energy to reserves which are used later in the year for reproduc-862

tion. For example, certain copepod species undergo one or more diapause stages through-863

out their life cycle to overcome unfavourable conditions (Hirche, 1996; Baumgartner &864

Tarrant, 2017). This pause in biological development can occur at various life stages, in-865

cluding eggs, embryos, juveniles, and adults and lead to synchronous metazoan life cy-866
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cles (Brun et al., 2016). Consequently, representing this additional process in PISCES-867

MOG could affect the pre-bloom metazoan population size structure by delaying the peak868

of mesozooplankton biomass between PISCES-MOG and PISCES-v2, in an even further869

fashion than presently modelled (see section 4.2). Capital breeding being the dominant870

reproductive strategy for marine copepods Sainmont et al. (2014) in regions characterised871

by strong seasonality, implementing this strategy in PISCES-MOG would alter our re-872

sults. In this case, the impact of reproduction and ontogenetic growth on mesozooplank-873

ton seasonality and on metazoan-driven carbon export seasonal dynamics would be higher874

than currently simulated in high latitude regions.875

Another caveat is that our model misses part of the complex processes through which876

mesozooplankton interact with the BCP (Steinberg & Landry, 2017). In particular, (Boyd877

et al., 2019) estimated the contribution of five additional mechanisms to the gravitational878

carbon pump, referred to as ”particle injection pumps”. Two of these mechanisms are879

directly linked to zooplankton: (i) the mortality of specific zooplankton groups under-880

taking seasonal migration to hibernate in the deep ocean (the ”seasonal lipid pump” (Jónasdóttir881

et al., 2015; Pinti, DeVries, et al., 2023)), and (ii) the active transport of organic car-882

bon by organisms that feed in surface layers and excrete in deeper layers by perform-883

ing diel vertical migration (DVM) (the ”mesopelagic-migrant pump”). As a result, the884

gravitational pump alone exports between 4 to 9 PgC yr−1, whereas incorporating the885

”particle injection pumps” would increase this export flux up to 5 to 16 PgC yr−1 (Boyd886

et al., 2019). Notably, DVM alone would contribute several petagrams of carbon per year887

(Boyd et al., 2019; Pinti, Jónasdóttir, et al., 2023; Aumont et al., 2018). Thus, in a model888

also accounting for both migration (i.e., DVM and hibernation) and reproduction pro-889

cesses, representing DVM and hibernation would increase the export of particles whereas890

reproduction would decrease it (see section 3.3.3). Yet, it remains difficult to hypoth-891

esise how the combination of these two processes would impact total export, since they892

have opposing effects on these fluxes. So far, these processes have been evaluated inde-893

pendently in different models (Jónasdóttir et al., 2015; Aumont et al., 2018), including894

ours, but no global biogeochemical model currently integrates all these processes in its895

representation of zooplankton. The ongoing developments in zooplankton observation896

systems (Lombard et al., 2019; Irisson et al., 2022) and the emergence of more spatially897

explicit data products of group-specific plankton biomass (Drago et al., 2022; Knecht et898

al., 2023) will facilitate the development of such integrative models and they will help899

to better constrain BCP estimates in a context of climate change.900

5 Conclusions901

Our study provides new insights into the impact of a more realistic representation902

of mesozooplankton biology on community structure, plankton functional type dynam-903

ics, and the export of organic carbon to depth in a global model. The inclusion of on-904

togenetic growth and reproduction shifts the structure of the zooplankton community905

toward smaller organisms (more mesozooplankton, less microzooplankton) and thus to-906

ward smaller organic particles, compared to that simulated by a model with a single and907

nonvarying size representation (as in PISCES-v2). This shift increases the grazing pres-908

sure on the nanophytoplankton while relaxing it for larger phytoplankton (diatoms), thus909

influencing the structure of the phytoplankton community size inversely to that of zoo-910

plankton. The net effect of mesozooplankton ontogeny and reproduction on total par-911

ticles is a shift towards smaller particles, significantly reducing organic carbon export912

below 100 meters depth compared to a previous version of PISCES. This suggests that913

the contribution of zooplankton to the Biological Carbon Pump (BCP) export may be914

overestimated in many biogeochemical components of Earth System Models (ESMs).915

Surprisingly, despite the partial representation of zooplankton life histories in our916

model that induced cohort dynamics, the emergent impact of this representation on the917

phenology of living ecosystem and non-living particle components is limited, even though918
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it was important for their mean annual distribution. However, we could benefit from the919

cohort behaviour that emerges in PISCES-MOG to improve the understanding of zooplankton-920

driven carbon flux dynamics and BCP seasonality. This would require new model de-921

velopments, such as incorporating mesozooplankton capital breeding at high latitude or922

representing the size spectrum of non-living particles and could be the subject of fur-923

ther studies.924

We emphasise that the observations-based mesozooplankton biomass climatology925

provide valuable insights into the seasonal patterns of global zooplankton biomass as they926

unlock spatial and temporal scales that were not covered by the previous observations.927

New model development and data-based product presented in this study contribute to928

improve model-observation synergies to understand the role of mesozooplankton on the929

biological carbon pump, and to characterize the level of abstraction necessary to accu-930

rately estimate its contribution to carbon fluxes.931

Finally, here, we focused of the biogeochemical impacts of the mesozooplankton re-932

production and ontogenetic growth. Given that mesozooplankton serve as food for many933

predators, understanding their life cycles and ontogenetic growth could also regulate the934

dynamics of higher trophic levels. Therefore, it would be relevant to study the effects935

of these characteristics in a model explicitly representing the top of the trophic chain,936

e.g. APECOSM (Maury, 2010; Dupont et al., 2023). In particular, the size structure of937

zooplanktivorous predators could be influenced by the cohort pattern. Smaller preda-938

tors would be favoured at the beginning of the cohort when smaller metazoans dominate,939

while larger ones would emerge later along with larger metazoans.940
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served mesozooplankton dynamics globally.18
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Abstract19

Marine mesozooplankton play an important role for marine ecosystem functioning and20

global biogeochemical cycles. Their size structure, varying spatially and temporally, heav-21

ily impacts biogeochemical processes and ecosystem services. Mesozooplankton exhibit22

size changes throughout their life cycle, affecting metabolic rates and functional traits.23

Despite this variability, many models oversimplify mesozooplankton as a single, unchang-24

ing size class, potentially biasing carbon flux estimates. Here, we include mesozooplank-25

ton ontogenetic growth and reproduction into a 3-dimensional global ocean biogeochem-26

ical model, PISCES-MOG, and investigate the subsequent effects on simulated mesozoo-27

plankton phenology, plankton distribution, and organic carbon export. Utilizing an en-28

semble of statistical predictive models calibrated with a global set of observations, we29

generated monthly climatologies of mesozooplankton biomass to evaluate the simulations30

of PISCES-MOG. Our analyses reveal that the model and observation-based biomass31

distributions are comparable (rpearson=0.40, total epipelagic biomass: 137TgC from ob-32

servations vs. 232TgC in the model), with similar seasonality (rpearson=0.25 for the months33

of maximal biomass). Including ontogenetic growth in the model induced cohort dynam-34

ics and variable seasonal dynamics across mesozooplankton size classes and altered the35

relative contribution of carbon cycling pathways. Younger and smaller mesozooplank-36

ton transitioned to microzooplankton in PISCES-MOG, resulting in a change in parti-37

cle size distribution, characterized by a decrease in large particulate organic carbon (POC)38

and an increase in small POC generation. Consequently, carbon export from the surface39

was reduced by 10%. This study underscores the importance of accounting for ontoge-40

netic growth and reproduction in models, highlighting the interconnectedness between41

mesozooplankton size, phenology, and their effects on marine carbon cycling.42

1 Introduction43

Mesozooplankton are heterotrophic plankton that span a size range of 102-104 µm44

and play a central role in marine biogeochemical cycles (Calbet, 2001; Steinberg & Landry,45

2017). Mesozooplankton hold an intermediate position in marine trophic webs, as they46

mediate the energy transfer from phytoplankton and small zooplankton to larger organ-47

isms such as fish and large marine mammals (Steinberg & Landry, 2017; Dupont et al.,48

2023). They regulate the efficiency and intensity of the soft-tissue biological carbon pump49

(BCP; Steinberg and Landry (2017); Boyd et al. (2019)). Recent model-based studies50

estimated that mesozooplankton contribute to a quarter of the total carbon sequestered51

by the biological carbon pump (Pinti, DeVries, et al., 2023). Due to trophic amplifica-52

tion, mesozooplankton are highly vulnerable to changes in marine ecosystem structure53

caused by climate change (Chust et al., 2014; Kwiatkowski et al., 2019; Clerc, Aumont,54

& Bopp, 2023). Hence, quantifying their contribution to biogeochemical processes is key55

to accurately understanding how changes in mesozooplankton abundance and distribu-56

tion threaten ecosystem functioning and global biogeochemical cycling. Accurately quan-57

tifying the effects of mesozooplankton on ecosystem functions and the carbon cycle ne-58

cessitates a nuanced understanding of the trade-offs associated with various functional59

traits exhibited by mesozooplankton, including their feeding mechanisms, life histories,60

and mortality rates (Kiørboe, 2011; Hébert et al., 2017; Steinberg & Landry, 2017; Kiørboe61

et al., 2018).62

The expression of most plankton functional traits is linked to body size (Litchman63

et al., 2013; Andersen et al., 2016). Changes in body size throughout the life history of64

an individual are a primary driver of zooplankton ecology, as body size controls the per-65

formance of the ”fundamental Darwinian missions” organisms strive to maximise (feed-66

ing, growth, reproduction, survival) (Litchman et al., 2013). In this context, the traits67

and life histories of mesozooplankton largely differ from those of the smaller microzoo-68

plankton, which are mainly composed of protozoans and share many similarities with69

phytoplankton, except for their trophic mode. Recent observations even suggest that a70
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significant amount of unicellular marine organisms are mixoplankton (i.e., they can per-71

form both phototrophy and phagotrophy, Mitra et al. (2023)). Microzooplankton size72

variations are generally limited to a doubling or halving of their biovolume, resulting in73

marginal fluctuations of their metabolic rates throughout their life cycle. On the con-74

trary, mesozooplankton often undergo size changes spanning multiple orders of magni-75

tude. Consequently, these changes in body size contribute to the emergence of distinct76

phenologies between micro- and mesozooplankton, influencing the seasonality of biogeo-77

chemical functions driven by zooplankton. Using a chemostat-like zero-dimensional bio-78

geochemical model, Clerc et al. (2021) showed that a size-based formulation, including79

explicit reproduction and ontogenetic growth, significantly impacts the seasonal dynam-80

ics of mesozooplankton. Indeed, compared to a standard model version in which meso-81

zooplankton are represented as a single and nonvarying size class, the new model ver-82

sion resulted in a delayed response of mesozooplankton to an increase in food availabil-83

ity (i.e., a phytoplankton bloom) by a few months. In addition, mesozooplankton in the84

new model version started to display cohort dynamics, namely the propagation of suc-85

cessive waves of biomass from small to larger organisms, controlled by the dependency86

of the ingestion rate on body size. However, this simplified zero-dimensional framework87

did not allow for the quantification of the spatial variability of this specific temporal dy-88

namic across different regions of the ocean, nor the corresponding impacts on carbon cy-89

cling.90

Global models strive to increase the ecological realism in their representation of the91

marine plankton community. A range of recent global marine ecosystem models now in-92

cludes the size spectrum of particles (Serra-Pompei et al., 2020), phytoplankton (Serra-93

Pompei et al., 2020; Heneghan et al., 2020; Blanchard et al., 2014), zooplankton (Heneghan94

et al., 2020) or even upper trophic levels (Maury, 2010; Dupont et al., 2023). Cohort dy-95

namics are a common emergent pattern in these size spectrum models (Pope et al., 1994;96

Maury et al., 2007; Zhou et al., 2010). However, the seasonal patterns of the zooplank-97

ton size structure are usually not analysed in such global models, with very few excep-98

tions (e.g., Datta and Blanchard (2016)). In parallel, recent developments in global bio-99

geochemical models introduced additional zooplankton functional types (e.g. cnidarians100

in Wright et al. (2021), pelagic tunicates in Luo et al. (2022); Clerc, Bopp, et al. (2023);101

Clerc, Aumont, and Bopp (2023), crustacean macrozooplankton in Clerc, Bopp, et al.102

(2023); Luo et al. (2022)) and new processes (e.g., diel vertical migration in (Aumont103

et al., 2018), grazing parameterization in (Rohr et al., 2023)) known to impact the ma-104

rine biological carbon pump, leading to a better quantification of BCP pathways (Boyd105

et al., 2019). In this context, modeling studies offer a valuable framework for investigat-106

ing the influence of plankton-mediated pathways on biogeochemical processes. However,107

existing biogeochemical models often overlook mesozooplankton size variation and re-108

production, resulting in a lack of quantification regarding the effects of these processes109

on carbon cycling(Clerc et al., 2021). One limitation to such an implementation is the110

difficulty of evaluating mesozooplankton phenology on a global scale due to the sparsity111

of field observations necessary for model evaluation, even though satellite-based zooplank-112

ton indicators are under active development (Strömberg et al., 2009; Basedow et al., 2019;113

Druon et al., 2019).114

In this study, we develop and use PISCES-MOG (Mesozooplankton ontogenetic growth),115

a new version of PISCES-v2 (Aumont et al., 2015), the standard marine biogeochem-116

istry component of NEMO (Nucleus for European Modelling of the Ocean) (Madec, 2008).117

In PISCES-MOG, mesozooplankton are now represented similarly as in Clerc et al. (2021)118

and the new mesozooplankton module accounts for ontogenetic growth and reproduc-119

tion. We first explore the global structure of simulated mesozooplankton phenology and120

characterise the presence and drivers of the emergent cohort dynamics. To evaluate how121

PISCES-MOG performs in simulating mesozooplankton seasonality, we derive a global122

mesozooplankton monthly climatology by training an ensemble of biomass distribution123

models (BDMs) based on the MAREDAT mesozooplankton biomass dataset (Moriarty124
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& O’Brien, 2013)in combination with the recent predictive modelling framework of (Knecht125

et al., 2023). We also evaluate the skill of PISCES-MOG in reproducing the seasonal pat-126

terns in mesozooplankton size-structure by comparing the model-based seasonal cycles127

to those observed at two well-studied time series (the Hawaii ocean time series, HOT (Sheridan128

& Landry, 2004), and the Bermuda Atlantic time series study, BATS (Steinberg et al.,129

2001). We then investigate how the simulated cohort dynamics affect the biogeochem-130

ical properties of the total mesozooplankton to answer the following questions: Does the131

inclusion of ontogenetic growth and reproduction induce a change in mesozooplankton132

seasonality and biomass distribution, compared to that simulated by a model with a sin-133

gle and nonvarying size representation (as in PISCES-v2)? Does this affect the phenol-134

ogy and distribution of other living ecosystem and non-living particle components, and135

how do all these factors influence the carbon fluxes associated with the BCP?136

2 Materials and method137

2.1 Model description138

2.1.1 Model structure139

The marine biogeochemical model used in the present study is a revised version of140

PISCES-v2 (grey boxes in Fig. 1, Aumont et al. (2015)). It includes five nutrient pools141

(Fe, NH+
4 , Si, PO3−

4 and NO−
3 ), two phytoplankton groups (Diatoms and Nanophy-142

toplankton, denoted D and N), two zooplankton size classes (Micro- and Mesozooplank-143

ton, denoted Z and M) and an explicit representation of dissolved and particulate or-144

ganic matter, reaching a total of 24 prognostic variables (tracers). A full description of145

the model is provided in Aumont et al. (2015).146

PISCES-MOG includes a subdivision of the zooplankton to explicitly represent dif-147

ferent metazoan size classes, mesozooplankton sexual reproduction, and ontogenetic growth.148

Zooplankton representation in PISCES-MOG has been updated from PISCES-v2 based149

on the size-structured model outlined in Clerc et al. (2021) (Figure 1). In PISCES-MOG,150

we consider a subdivision of the metazoan zooplankton into Ns size classes of equal width151

in logarithmic space. The centre of each size class is defined as follows: ls = lmin

(
lmax

lmin

) 2s+1
2Ns

152

where s ∈ [0, Ns − 1]. The width of each size class is ∆ ln(ls) =
1
Ns

ln
(

lmax

lmin

)
in loga-153

rithmic space and is therefore constant. Microzooplankton Z is now divided into strictly154

heterotrophic protists U and the Ns

2 first metazoan size classes, representing juvenile meta-155

zoan zooplankton, Ji with i ∈ [0, Ns

2 −1]. The remaining Ns

2 size classes, representing156

adult metazoan zooplankton, Ai with i ∈ [0, Ns

2 − 1], form the mesozooplankton com-157

partment M in PISCES-MOG. The adult metazoan size class of maximum size is de-158

noted as Amax.159

2.1.2 Metazoans and protists dynamics160

The newly introduced adult metazoan groups aim to represent the same commu-161

nity as mesozooplankton in PISCES-v2, for which the parameterisation is mainly based162

on copepods (Aumont et al., 2015). Juvenile metazoans and unicellular protists aim to163

represent the same community as microzooplankton in PISCES-v2. Thus, the tempo-164

ral evolution of the Ns metazoan zooplankton groups is computed according to PISCES-165

v2 micro- and mesozooplankton equations, in which we introduced ontogenetic growth166
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Figure 1. Architecture of the PISCES-MOG (mesozooplankton ontogenetic

growth) model in the study This figure illustrates the living and non-living organic com-

ponents of the model (boxes) and their interactions (arrows). This diagram emphasizes trophic

interactions (i.e., turquoise arrows, the width representing the preference of the predator for

the prey) as well as particulate organic matter production (i.e., black arrows), two processes

impacted by the introduction of metazoan reproduction (vertical upward pink arrows) and onto-

genetic growth (other pink arrows) in PISCES-MOG. POM = Particulate Organic Matter; DOM

= Dissolved Organic Matter.

and reproduction terms (derived from (Clerc et al., 2021)):167

GX = eXgX (1−∆(O2)) fX(T )

rX = rXfX(T )

(
X

Km +X
+ 3∆(O2)

)
mX = mXfX(T ) (1−∆(O2))X

2

∂J0
∂t

=

 (1− v)GJ0︸ ︷︷ ︸
growth and transition

− gZMM︸ ︷︷ ︸
predation

−mA0
Z − rJ0︸ ︷︷ ︸

mortality

 · J0 + wGA0
A0︸ ︷︷ ︸

reproduction

∂Js
∂t

=

 (1− v)GJs︸ ︷︷ ︸
growth and transition

− gZMM︸ ︷︷ ︸
predation

−mJsZ − rJs︸ ︷︷ ︸
mortality

 · Js + vGJs−1Js−1︸ ︷︷ ︸
transition

+ wGAsAs︸ ︷︷ ︸
reproduction

∂A0

∂t
=

 (1− w)(1− v)GA0︸ ︷︷ ︸
growth, reproduction and transition

−mA0
M− rA0︸ ︷︷ ︸

mortality

 ·A0 + vGJNs
2

−1
JNs

2 −1︸ ︷︷ ︸
transition

∂As

∂t
=

 (1− w)(1− v)GAs︸ ︷︷ ︸
growth, reproduction and transition

−mAs
M− rAs︸ ︷︷ ︸

mortality

 ·As + (1− w)vGAs−1
As−1︸ ︷︷ ︸

transition
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X is a metazoan compartment, T is temperature and O2 is dissolved oxygen con-168

centration. Grazing (GX), quadratic (mX) and linear mortalities (rX) parameterisations169

are identical to that of micro- and mesozooplankton in PISCES-v2. Food preference is170

constant for each major zooplankton compartment (microzooplankton and mesozooplank-171

ton): all zooplankton groups feed on diatoms, nanophytoplankton, and small POC. In172

addition, mesozooplankton feed on heterotrophic protists, juveniles, and large POC. For173

mesozooplankton, in addition to conventional suspension feeding based on a Michaelis-174

Menten parameterisation without switching and a threshold, flux feeding is also repre-175

sented (Jackson, 1993; Stukel et al., 2019). eX is the growth efficiency. All terms in this176

equation were given the same temperature sensitivity fX(T ) using a Q10 of 2.14 (Eq.177

25a and 25b in Aumont et al. (2015)), as for mesozooplankton in PISCES-v2 and accord-178

ing to Buitenhuis et al. (2006). Growth rate and quadratic mortality are reduced and179

linear mortality is enhanced at very low oxygen levels, as we assume that mesozooplank-180

ton are not able to cope with anoxic waters (∆(O2) is an anoxia parameterisation that181

varies between 0 in fully oxic conditions and 1 in fully anoxic conditions, see Eq. 57 in182

Aumont et al. (2015)). Linear mortality is also enhanced at high organism concentra-183

tions (Km is the half-saturation constant for mortality).184

Similarly to (Clerc et al., 2021), for each mature mesozooplankton As, part of the185

assimilated food w is allocated to reproduction and is transferred to the juvenile sub-186

compartment Js. This representation assumes that we represent a community of meta-187

zoan individuals with a mean egg-to-adult ratio of 1/20. The remainder of the assim-188

ilated food is used for growth, resulting in a transfer between adjacent size classes at a189

rate v. The value of this parameter depends on the number of size classes and the as-190

sumed size distribution within each size class (see Table 1 and (Clerc et al., 2021)). For191

the largest size class of mature mesozooplankton Amax, no size growth is possible.192

Protists, U , follow the same dynamics as microzooplankton in PISCES-v2, except193

for predation by mesozooplankton and quadratic mortality which are now scaled to the194

full PISCES-MOG microzooplankton compartment (Z = U +
∑

J) to keep equiva-195

lency between PISCES-v2 and PISCES-MOG microzooplankton compartments.196

∂U

∂t
=

 GU︸︷︷︸
growth

− gZMM︸ ︷︷ ︸
predation

−mUZ − rU︸ ︷︷ ︸
mortality

 · U

All of the other 22 biogeochemical tracers that are common to PISCES-v2 and PISCES-197

MOG are driven by the exact same equations, which are fully detailed in Aumont et al.198

(2015).199

2.1.2.1 Size-based parameterisation The maximum ingestion and quadratic mor-200

tality rates of the different zooplankton classes are set according to the allometric rela-201

tionship proposed by Hansen et al. (1997). The half-saturation constant used in the graz-202

ing parameterisation is supposed constant as observations suggest no significant varia-203

tions with size (Hansen et al., 1997). The transition rate v between the different size classes204

was computed by assuming that the slope of the biomass size spectrum within each size205

class is constant in a log-log space. It is set to -3 following the seminal study of Sheldon206

et al. (1972), which corresponds to an approximate constant biomass in logarithmically207

equal size intervals. The expressions for the transition rate and for the maximum inges-208

tion rate are shown in Table 1. The size-dependent formulations used in our standard209

model configuration are listed in Table 1.210
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Term Value Description

lmin Minimal metazoan zooplankton body length
lmax Maximal metazoan zooplankton body length
v = NS

3 ln lmax
lmin

Transition rate between the mesozooplankton size-classes

gM Geometric mean of the maximum adult metazoans ingestion rate
gZ Geometric mean of the maximum juveniles metazoans ingestion rate
L(Js) = 2s+1

2NS
Length factor of juvenile size-classes Js

L(As) = Ns+2s+1
2NS

Length factor of mature size-classes As

L(U) = 1
4 Length factor for generic microzooplankton U

ln gs = ln gZ + α(L(U)− L(Xs)) ln
(

lmax

lmin

)
Maximum ingestion rate of the zooplankton size-class Xs

lnms = lnmZ + α(L(U)− L(Xs)) ln
(

lmax

lmin

)
Quadratic mortality rate of the zooplankton size-class Xs

Table 1. Parameters and equations used in the size-based parameterizations To pa-

rameterize size in the equations, we introduce a length factor L for each size class. It ranges from

0 (minimum length) to 1 (maximal length) and varies linearly with the logarithm of the length.

Parameter Default Unit Description Range Source

NS 20 - Number of mesozooplankton size-classes
gM 0.5 d−1 Geometric mean of the adult metazoans ingestion rate 0.13-0.97 (Buitenhuis et al., 2006)
gZ 2.0 d−1 Geometric mean of the maximum juveniles metazoans ingestion rate 0.55-4.1 See table 1

mM 1.5× 104 Lmol−1 d−1 Geometric mean of adult metazoans quadratic mortality (Aumont et al., 2015)

mZ 5.0× 103 Lmol−1 d−1 Geometric mean of juveniles metazoans quadratic mortality See table 1
w 0.3 - Fraction of the assimilated food allocated to reproduction 0.2-0.8 (Kooijman, 2013)
v 1.1 - Transition rate across metazoan size-classes (Clerc et al., 2021)
lmin 10 µm Minimal metazoan zooplankton body length
lmax 4000 µm Maximal metazoan zooplankton body length
α 0.48 - Allometric parameter 0.42-0.54 (Hansen et al., 1997)

Table 2. Parameter values of the default configuration.

2.2 Numerical experiments211

2.2.1 Reference simulation212

PISCES-MOG is run in offline mode with dynamic fields identical to those used213

in Aumont et al. (2015). These climatological dynamic fields (as well as the input files)214

can be obtained at www.nemo-ocean.eu and were produced using an ORCA2-LIM con-215

figuration (Madec, 2008). The spatial resolution is about 2◦ by 2◦ cos(ϕ) (where ϕ is the216

latitude) with a meridional resolution enhanced to 0.5◦ at the equator. The model has217

30 vertical layers with increasing vertical thickness from 10 m at the surface to 500 m218

at 5000 m. PISCES-MOG was initialised from the quasi-steady-state simulation presented219

in Aumont et al. (2015). NS , the number of metazoan size classes was set to 20 to achieve220

a reasonable discretization of a metazoan size-spectrum while limiting the computational221

cost to a doubling compared to PISCES-v2. The initial concentrations of the 21 zooplank-222

ton groups were set to a small uniform value of 10−9 mol CL−1. The model was then223

integrated for the equivalent of 100 years, forced with 5-day averaged ocean dynamic fields224

and with a three-hour integration time step. All the analyses are performed on the last225

year of the simulation. When not specified, the parameter values are identical to those226

of PISCES-v2 (Aumont et al., 2015). The other parameter values are given in Table 2.227

2.2.2 Sensitivity experiments228

Here, microzooplankton include 10 juvenile metazoan size classes and one protist229

size class. Mesozooplankton include 10 adult metazoan size classes. Quadratic mortal-230

ities and maximum ingestion rates vary with size following the allometric relationship231

proposed by Hansen et al. (1997). To investigate the influence of each new mesozooplank-232

–7–



manuscript submitted to Global Biogeochemical Cycles

ton feature (e.g., reproduction, ontogenetic growth, and size structure) on the model’s233

behavior, we conducted sensitivity experiments based on three alternative model versions.234

The resulting biogeochemical model properties are compared with those of the standard235

model, PISCES-MOG.236

The first alternative model version simply corresponds to the PISCES-v2 standard237

model. Here, metazoans are represented by a single mesozooplankton compartment, while238

the microzooplankton only include one protist size class. Thus, juvenile and mature meta-239

zoan organisms are assumed to have the same metabolic rates and the same predation240

behaviour. In this model, the representation of both microzooplankton and mesozooplank-241

ton is similar and corresponds to a formalism used for protists whose reproduction mode242

is based on cell division. This model serves as a reference representing the most com-243

mon mesozooplankton formulation in the biogeochemical components of Earth System244

Models (Kearney et al., 2021).245

In the second alternative model version, PISCES-MOG-2LS (”Two-life-stage”), the246

representation of metazoan zooplankton is limited to two size classes: juveniles and ma-247

ture organisms (microzooplankton include one juvenile metazoan size class and one pro-248

tist size class; mesozooplankton include one adult metazoan size class only). As a result,249

the computing cost of PISCES-MOG-2LS is reduced by a factor of two compared to PISCES-250

MOG. PISCES-MOG-2LS was built to investigate the effect of a full-size spectrum rep-251

resentation of metazoans (in PISCES-MOG but not in PISCES-MOG-2LS) on the spa-252

tiotemporal dynamics of the system.253

In the third alternative model version, PISCES-MOG-CM (”Constant Mortality”),254

zooplankton compartmentation is identical to the one in PISCES-MOG, but quadratic255

mortality rates are constant across all size classes of each zooplankton compartment. In-256

deed, in the chemostat-like model presented in Clerc et al. (2021), the allometric scal-257

ing was only applied to maximum ingestion rates and not to quadratic mortality rates.258

Thus, PISCES-MOG-CM serves as a reference representing the zooplankton dynamics259

from Clerc et al. (2021)’s model. The resulting system dynamics are very similar to those260

of PISCES-MOG and subsequently will not be presented in this paper. A figure com-261

paring PISCES-MOG and PISCES-MOG-CM outputs is available in the supplementary262

material (Fig. S1 and S2).263

2.2.3 Metrics to evaluate the seasonality of different plankton functional264

groups265

Given the high dimensionality of the biomass outputs of PISCES-MOG (space, time,266

and size), summary metrics are needed to describe the global metazoan seasonality. To267

this end, we designed a set of four phenological metrics inspired by (Llort et al., 2015):268

(i) Relative Seasonal Amplitude is computed as the difference between the annual min-269

imal and maximal biomass, normalised by the yearly average. (ii) Bloom Apex refers to270

the time of year when biomass reaches its maximum (iii) Bloom Climax refers to the time271

of year when population growth (derivative of the biomass) is maximal. (iv) Bloom du-272

ration is defined as the period spent within the 75th percentile of the yearly seasonal cy-273

cle, indicating the length of the bloom period.274

2.3 Observations-based products275

We used two distinct observations-based products for model evaluation: (i) a global276

monthly climatology of mesozooplankton biomass was used to evaluate how the model277

performs in simulating the seasonality of global mesozooplankton distribution (Moriarty278

& O’Brien, 2013), and (ii) monthly climatologies from local time series are used to eval-279

uate the model performance in reproducing the size-structure of mesozooplankton biomass280

and seasonality (Steinberg et al., 2001; Sheridan & Landry, 2004).281
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BATS HOTS

TARGET 
MAREDAT Mesozooplankton Biomasses

BDMs-MAREDAT
Interpolated mesozooplankton climatology

FEATURES
Chl-a, SST, NO3, …

MACHINE LEARNING MODEL ENSEMBLE :
• Multi-layer perceptron (DL)
• Random Forest (RF)
• Boosted Regression Trees (BRT)
• General Linear Model (GLM)
• General Additive Model (GAM)

MAREDAT TEMPORAL GRID COMPLETION

(a) Field observation products (b) Biomass Distribution Models (BDMs) pipeline

Figure 2. Description of the fields observation and biomass distribution models

(BDMs) datasets. (a) Spatio-temporal coverage of mesozooplankton biomass field observa-

tions from MAREDAT global monthly climatologies (Moriarty & O’Brien, 2013) and from the

BATS and HOT time-series stations (Steinberg et al., 2001; Sheridan & Landry, 2004) (b) BDMs

pipeline trained on the MAREDAT monthly climatology of mesozooplankton biomass integrated

over the top 200 m (Moriarty & O’Brien, 2013)

2.3.1 Global mesozooplankton monthly climatology282

To be able to compare the mesozooplankton biomass distribution simulated by PISCES-283

MOG to observational data, we relied on observational monthly mesozooplankton biomass284

fields from the MARine Ecosystem DATa (MAREDAT) (Moriarty & O’Brien, 2013) in285

combination with climatological fields of the environmental predictors of mesozooplank-286

ton biomass (Strömberg et al., 2009; Knecht et al., 2023; Benedetti et al., 2021) to make287

use a new habitat modelling pipeline for continuous target variables (Knecht et al., 2023)288

that enable us to estimate monthly fields of mesozooplankton biomass in model units289

of mmol C m−3 for the global epipelagic ocean.290

MAREDAT mesozooplankton biomass product The MAREDAT mesozooplank-291

ton biomass field consists of 153,163 field measurements of mesozooplankton biomass con-292

centrations and was extracted from the Coastal and Oceanic Plankton Ecology, Produc-293

tion, and Observation Database (COPEPOD, http://www.st.nmfs.noaa. gov/copepod).294

These measurements were quality controlled, standardised across different sampling and295

measurement methods and then aggregated into global climatological biomass concen-296

tration values (for more information about the treatment and standardisation of data297

in COPEPOD, see O’Brien (2010) (http: //www.st.nmfs.noaa.gov/copepod/2010)) and298

(Moriarty & O’Brien, 2013).After re-gridding, the MAREDAT biomass fields comprise299

42,245 data points on the WOA grid (1× 1× 12 months × 33 depths), expressed in µmol300

C L−1 (Moriarty & O’Brien, 2013). In our study, these standardised monthly values are301

converted into mmol m−3 and are vertically integrated between 0 and 200 m to be rep-302

resentative of the epipelagic zone which is where most of the zooplankton organisms are303

concentrated. The resulting climatology encompasses 27% of the epipelagic ocean area304

and shows an uneven distribution between the hemispheres. The spatial coverage is 40%305
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in the northern hemisphere and 16% in the southern hemisphere. Moreover, the dataset306

has limited temporal coverage, as only 1% of the grid cells contain data for at least 8 dis-307

tinct months (i.e., including observations that span at least three seasons), mostly con-308

centrated near the coasts of Japan and the US (Fig. 2(a)). To address this spatiotem-309

poral bias, we employ an ensemble of statistical data-driven models to predict mesozoo-310

plankton biomass concentration as a function of biologically relevant environmental pre-311

dictors and map it onto a global monthly 1× 1grid (Knecht et al. (2023)). Such a sta-312

tistical modelling framework is widely used in community ecology and biogeography to313

predict the spatial distribution of species and emerging diversity patterns based on en-314

vironmental covariates (Melo-Merino et al., 2020). In our study, we adapt the concept315

of species distribution modelling to model mesozooplankton biomass as a continuous tar-316

get variable (as opposed to the binary presence-absence data commonly used in the fields317

of community ecology and biogeography Guisan and Zimmermann (2000); Elith and Leath-318

wick (2009); Righetti et al. (2019); Benedetti et al. (2021); Waldock et al. (2022)).319

Biomass Distribution Models (BDM)-ensemble We used the ensemble of monthly320

climatologies of environmental variables from Knecht et al. (2023) to identify the set of321

potential environmental predictors that explain a substantial variance in the biomass data,322

in order for these predictors to be used in training the BDMs. These climatologies were323

selected as potentially relevant for modelling the biomass of pteropods and foraminifers,324

two important mesozooplankton functional groups that share similar predictors with cope-325

pods (Benedetti et al., 2023). Where necessary, these environmental predictor fields were326

averaged and re-gridded to monthly climatologies on a 1 × 1° resolution. We followed327

a similar approach as described in (Knecht et al., 2023) to select the set of predictors328

used in training the BDMs. Initially, using univariate Generalised Additive Models (GAM)329

and Generalized Linear Models (GLM), we evaluated the percentage of deviance explained330

by each selected predictor at various spatial aggregation levels (Knecht et al., 2023). We331

retained all predictors that explained 5% of the variability at any of the spatial aggre-332

gation levels. We used a Pearson correlation coefficient threshold (|r| ≥ 0.7) to iden-333

tify clusters of collinear variables, which cannot reliably be discerned by our statistical334

models (Dormann et al., 2013). Then, we used univariate tests to identify the predic-335

tor displaying the highest predictive skill within those collinearity clusters. These top-336

ranking predictors were selected to represent all the candidate predictors in the cluster337

to which they belong. The resulting set of predictors includes surface chlorophyll-a, mixed338

layer depth (MLD), nitrate concentrations averaged over the MLD, partial pressure of339

CO2, total alkalinity, eddy kinetic energy (EKE) and photosynthetically active radia-340

tion (PAR). Note that Chlorophyll-a, EKE, MLD and nitrate concentration were log-341

transformed, so their distribution is closer to a Gaussian distribution. The final set of342

predictors is consistent with the predictors that were retained to model global zooplank-343

ton habitat suitability patterns in other SDM-based studies (Knecht et al., 2023; Benedetti344

et al., 2021; Strömberg et al., 2009).345

We train an ensemble of five BDMs with the selected environmental predictor vari-346

ables and gridded, depth-integrated mesozooplankton biomass, using a 75%:25% train-347

test split and five-fold cross-validation following the method detailed in (Knecht et al.,348

2023). The five BDMs include a GLM, a GAM, a Random Forest (RF), a Gradient Boost-349

ing Machine (GBM), and a Neural Network/Deep Learning Model (DL; see Figure 2).350

Model parameter tuning for the RF, GBM, and DL was performed using grid search (see351

supplementary table ?? for the list of tuned hyperparameters). The statistical modelling352

framework was conducted in the R coding environment (R Core Team, 2022) based on353

the h2o 3.36.0.3 R package (H2O.ai, 2021).354

We applied the BDMs to predict monthly mesozooplankton biomass values for the355

epipelagic layer globally. These projections were made for each grid cell and month with356

available data for all the predictors included in the BDMs. Statistical predictive mod-357

els including too many complex features can suffer from limited transferability into novel358
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environmental conditions due to non-linear response curves (Bell & Schlaepfer, 2016; Elith359

et al., 2010; Qiao et al., 2019). To address this issue, we evaluated whether the environ-360

mental conditions for each grid cell fell within the range of the training dataset or were361

non-analogue states, using a Multivariate Environmental Similarity Surfaces (MESS) anal-362

ysis (Elith et al., 2010). This allows us to flag those locations of the ocean where our spa-363

tial predictions of mesozooplankton biomass are more uncertain due to model extrap-364

olation into non-analogue conditions.365

We assessed the performance of each BDM based on three metrics. The root mean366

squared error (RMSE) is an error metric estimating the deviation between predicted and367

true values. Pearson’s coefficient of correlation, R2 indicates the magnitude of correspon-368

dence between trends in the predicted and observed values. Finally, the Nash-Sutcliffe369

efficiency (NSE; Nash and Sutcliffe (1970)) compares the model performance to a null370

model, that is, the mean of all observations. Positive NSE values indicate that the as-371

sessed model performs better than the null model. Each performance metric was calcu-372

lated on both the training and the testing set of the data. The models perform reason-373

ably well (Table S1), with the RF model showing the best performance across all met-374

rics (RMSE = 0.22, R2 = 0.52,NSE = 0.52 on the test set), followed by the GBM375

and then the DL model. Chlorophyll-a concentration was found to be the most impor-376

tant predictor as it explains 42.1% of the model’s predictive power on average. This find-377

ing supports the models’ ability to capture the responses of zooplankton biomass to large-378

scale gradients of plankton productivity (Strömberg et al., 2009). The supplementary379

materials include annually averaged mesozooplankton biomass maps for the five mod-380

els, seasonal maps, and the Partial Dependency Plots (PDP) that show the response learnt381

by the BDMs to the gradients of predictors included (Fig. S3, S4 and S5).382

To evaluate the global mesozooplankton biomass of PISCES-MOG, model outputs383

were vertically integrated over the top 200 m and horizontally re-gridded to match the384

grid of the BDMs predictions. Then, annually averaged fields were computed and PISCES-385

MOG outputs were compared against the BDM outputs based on relevant quantitative386

statistics (see Table 3).387

2.3.2 Size-structured mesozooplankton climatologies at BATS and HOT388

To compare the size-specific seasonal dynamics of metazoan simulated by PISCES-389

MOG to in situ observations, we used two widely-studied times series of size-structured390

mesozooplankton biomass (the Hawaii ocean time series, HOT; Sheridan and Landry (2004),391

and the Bermuda Atlantic time series study, BATS; Steinberg et al. (2001)). Mesozoo-392

plankton at HOT and BATS have been collected biweekly to monthly since 1994 at day393

time and night time through two replicate oblique net tows equipped with a 200 m mesh394

net, in the top 200 m of the water column. The samples were divided into two halves,395

and one half underwent successive wet sieving with nested sieves of various mesh sizes396

(5.0, 2.0, 1.0, 0.5, and 0.2 mm). The resulting fractions were placed on nets with a 0.2397

mm mesh size, frozen, thawed, blotted, and then analysed for dry weight on shore (Madin398

et al., 2001). Thus, dry weight mesozooplankton time series, in mg m−2, are available399

for five size classes: 200-500 m, 500 m - 1 mm, 1-2 mm, 2-5 mm, and ¿5 mm. We down-400

loaded the 1994-2019 mesozooplankton biomass times series at https://bats.bios.asu.edu/bats-401

data/bats.bios.asu.edu for BATS (last access: 02/01/2024) and https://hahana.soest.hawaii.edu/hot/hot-402

dogs/documentation/mextraction.htmlhahana.soest.hawaii.edu for HOT (last access: 02/01/2024).403

Note that there is a measurement gap in the HOT mesozooplankton biomass time se-404

ries between 2002 and 2005.405

Prior to comparing PISCES-MOG outputs with the time series observations, the406

latter underwent a series of post-processing steps. First, we only retained the night-time407

observations (18:00-7:00). Indeed, the version of PISCES used here does not represent408

diel vertical migration (DVM). Consequently, simulated mesozooplankton do not migrate409
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down to the mesopelagic zone during the day, contrary to observed behavior. Thus, we410

posit that PISCES, operating with a 3-hourly time step and constant light forcing, pri-411

marily captures nighttime mesozooplankton vertical distribution across all time steps.412

This assumption is based on the hypothesis that variations in light exert minimal influ-413

ence on diurnal variations in epipelagic zooplankton biomass compared to DVM. Then414

we converted the dry weights (mg m−2) to carbon molar concentration (mg C m−3) by415

dividing by the maximal tow depth (200 m) and multiplying by a single dry weight-to-416

carbon mass conversion factor of 0.35 (as per Madin et al. (2001)). For the HOT time417

series, both dry weight and carbon biomass were available, allowing us to validate the418

use of the conversion factor at both stations (see Fig. 4(b)). Subsequently, we averaged419

the time series to create monthly daytime size-resolved mesozooplankton carbon concen-420

tration climatologies at both stations.421

First, to compare the observed and modelled size structure of mesozooplankton com-422

munity, we computed the mean annual size spectrum at both stations by dividing the423

mean annual concentration of each size class by its width. Then, to analyse the size de-424

pendency of seasonality strength, we computed the relative seasonal amplitude for each425

mesozooplankton size class. This was done by calculating the difference between the max-426

imum and minimum biomass of each year, normalised by the annual mean. The mean427

and standard deviation of the relative amplitude were then computed for each size class428

across the available years. Lastly, to further explore size-driven differences in temporal429

dynamics, we calculated a seasonal cycle for each year and each size class. To do so, we430

normalised each month by the mean of that year and averaged the monthly normalized431

values over the years, for the five size classes, at both stations.432

3 Results433

3.1 Simulated ecosystem structure and phenology434

3.1.1 Global mesozooplankton biomass and community dynamics435

The total integrated annual mean biomass of all living compartments simulated by436

PISCES-MOG is 1.2 Pg C for the upper 200 m of the global ocean (Table 4). Primary437

producers account for 48% of this biomass, with the remaining 52% consisting of zoo-438

plankton, divided into unicellular protists (36%), juvenile metazoans (27%), and adult439

metazoans (37%, mesozooplankton). The contribution of each metazoan size class ranges440

from 3 (J1) to 36 TgC (Amax), with a mean normalized biomass size spectrum (NBSS)441

slope of -0.80 ± 0.05, close to the theoretical size spectrum slope of -1 (Sheldon et al.,442

1972). The spatial distribution of the NBSS slopes indicates steeper spectra in less pro-443

ductive areas (e.g. -0.9 in oligotrophic gyres vs -0.7 in the upwelling systems, see fig. S17),444

consistent with previous studies about the plankton size spectrum (see (Sprules & Barth,445

2016) and references within).446

Spatially, simulated mesozooplankton concentration is high (¿ 0.25 mmol C m−3)447

in the subpolar and upwelling regions and low (¡ 0.25 mmol C m−3) in the oligotrophic448

gyres and at high latitudes (Fig. 3(a)). This results in a clear zonal pattern in both hemi-449

spheres: low concentrations below 30° and above 70° latitude, and high concentrations450

between 30° and 60° latitude (Fig. 3(b)). This pattern seems to be driven by primary451

producers, as all plankton compartments show the same zonal pattern (Fig. 3(b)). The452

same zonal pattern also emerges for all adult metazoan size classes within the mesozoo-453

plankton (Fig. 3(c)).454

The phenology of mesozooplankton significantly differs from that of microzooplank-455

ton and phytoplankton, both of which exhibit shorter and earlier blooms (Table 5, Fig.456

3(e)). On average, phyto- and microzooplankton bloom apexes occur 133 days after the457

start of the year (1st of January in the Northern Hemisphere, 1st of July in the South-458

ern Hemisphere), whereas mesozooplankton peak one month later (Table 5). Bloom cli-459
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Figure 3. Global and zonally averaged epipelagic (0-200 m) plankton biomass and

seasonality simulated by PISCES-MOG (a) Global average of epipelagic adult metazoans

(mesozooplankton) concentration (mmol C m−3). (b) Zonal mean of adult (red) and juvenile

(pink) metazoans, unicellular protists (light blue), and total phytoplankton (green) concentra-

tions (mmol C m−3). (c) Mean zonal size spectra (biomass over size class width, mmol C m−3

mm−1) for the 10 adult metazoans size-classes. (d) Global average of epipelagic mesozooplank-

ton bloom apex (day of maximal abundance). (e) Zonal mean plankton groups bloom apexes

(days, same colors as above) (f) Mean zonal delay (days) between the bloom apex of the 10 adult

metazoans size classes and the bloom apexes of phytoplankton. (g) Global average of epipelagic

mesozooplankton relative seasonal amplitude (%) (h) Zonal mean plankton groups relative sea-

sonal amplitude (%, same colours as above). (i) Mean zonal relative seasonal amplitude (%) for

the 10 adult metazoan size classes.

max is synchronous with the bloom apex for phytoplankton, occurs two weeks before the460

bloom apex for microzooplankton, and happens a month before the bloom apex for meso-461

zooplankton (Table 5). Phytoplankton and microzooplankton show sharp but short blooms462

(mean duration: 64 and 70 days resp.), while mesozooplankton are characterized by longer463

blooms that lasts 86 days on average (Table 5). Lastly, the relative seasonal amplitude464

of biomass is more than 25% smaller for mesozooplankton than for microzooplankton465

and phytoplankton (Table 5).466
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Figure 4. Seasonal dynamics of the epipelagic (0-200 m) ecosystem simulated by

PISCES-MOG in the North Atlantic (46.4°N, 19.9°W) The coordinates are chosen to

match the location of the North Atlantic Bloom Experiment (NABE), a pilot process study of

the spring phytoplankton bloom conducted by JGOFS in 1989-1990 (Ducklow & Harris, 1993).

Time evolution of (a) the phytoplankton and (b) the zooplankton concentrations (mmol C m−3)

over one year. Triangles indicate the bloom apexes of the plankton groups. (c) Change in size-

class composition of metazoans over the year. The y-axis represents the 20 size classes ordered

by increasing size. The grey levels correspond to the proportion of total metazoans (juvenile +

adults) in each size classes for each time-step. Thus, for each time step, the proportions of the 20

size classes sums to 100. The arrows indicate cohorts, namely the propagation of successive waves

of biomass from small to large organisms.

As latitude increases poleward, mesozooplankton phenology exhibits a later (Fig.467

3(d)) and more pronounced (Fig. 3(g)) bloom (approximately +3 days delay and +5%468

in relative amplitude per degree poleward in PISCES-MOG). A similar pattern is sim-469

ulated for the phytoplankton (Fig. 3(e,i)), suggesting that primary producers’ phenol-470

ogy drives the simulated zonal pattern in mesozooplankton’s phenology.471

3.1.2 Cohort dynamics472

Globally, all mesozooplankton size classes exhibit a zonal seasonality pattern sim-473

ilar to the one shown for total mesozooplankton. There is a strong latitudinal gradient474

in seasonality, with bloom apex (Fig. 3(e,f)) and bloom climax (Fig. S6(d,e,f)) occur-475

ring later as latitude increases poleward. The relative seasonal amplitude of mesozoo-476

plankton biomass increases poleward (Fig. 3(h)).477

Moreover, PISCES-MOG simulations reveal a size class dependency of mesozoo-478

plankton dynamics: larger size classes peak later than smaller ones, with the largest size479
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classes peaking up to 3 months later than the smallest one (Fig 3(f)). This trend aligns480

with the temporal trend of other metrics: larger size classes have a later bloom climax481

(Fig. S6(f)) and a longer bloom duration (Fig. S6(c)), along with a lower seasonal am-482

plitude (Fig 3(j)). Note that a similar size class dependency is simulated for juvenile meta-483

zoans dynamics (Fig. S7 and S8). These size-dependent variations in bloom metrics in-484

dicate a cohort dynamics, a phenomenon in which biomass spreads across the size spec-485

trum due to synchronous growth and/or reproduction. This behaviour is extensively de-486

scribed in the chemostat model of plankton dynamics by Clerc et al. (2021). The bio-487

geochemical conditions driving metazoan cohort dynamics in Clerc et al. (2021) aim to488

replicate those in the North Atlantic, where zooplankton phenology is influenced by a489

strong phytoplankton spring bloom. To further characterise this pattern in PISCES-MOG,490

we analyse the temporal dynamics of plankton at a grid point representative of the well-491

studied North Atlantic bloom system: NABE (46.4°N, 19.9°W).492

As expected, PISCES-MOG simulates a phytoplankton bloom in early spring at493

NABE, reaching its peak in early April (Fig. 4(a)). This triggers a zooplankton bloom:494

microzooplankton (protists and juvenile metazoans) peak around 15 days later, while meso-495

zooplankton peak 45 days later (Fig. 4(b)). The temporal evolution of the metazoan com-496

position shows a wave signal driven by a cohort dynamic, as demonstrated in Clerc et497

al. (2021). Before the phytoplankton spring bloom, biomass is distributed similarly in498

both juvenile and adult metazoan groups; larger organisms are more abundant than smaller499

ones (Fig. 4(c)). The bloom triggers an increase in food availability, leading to popu-500

lation growth. Smaller organisms, that are characterised by higher maximal grazing rates,501

experience a faster increase in concentration than larger organisms, resulting in a higher502

proportion of biomass accumulating in smaller size classes at the beginning of April (Fig.503

4(c)). Ontogenetic growth results in the transfer of this biomass to the larger juvenile504

size classes (orange arrow) and then to adults (orange arrows in Fig. 4(c)). This char-505

acterises the formation of a first cohort. Reproduction of the adults from this first co-506

hort results in a second cohort, for which the signal is lost in the adult size classes (white507

arrow, Fig. 4(c)). Note that a comparable cohort pattern also emerges under the olig-508

otrophic conditions prevalent at BATS (Fig. S9) and at HOT even though the signal is509

weaker there (Fig. S10).510

3.2 Comparison of PISCES-MOG outputs to observations511

Next, we focus on the evaluation of the key new component of the PISCES-MOG512

model (absent in PISCES-v2): the size-structured mesozooplankton compartment. In513

the supplementary material, we present an evaluation of nitrate and chlorophyll distri-514

butions (Fig. S11) and chlorophyll dynamics (Fig. S12). For these tracers, note that the515

performance of PISCES-MOG is similar to that of PISCES-v2 (Aumont et al., 2015).516

3.2.1 Evaluation of simulated total mesozooplankton biomass and sea-517

sonality against observation-based products518

The annual mean distribution of total mesozooplankton biomass as well as the dis-519

tribution of the four seasonality metrics defined in section 2.2.3 are compared to the BDMs-520

based climatology. Overall, the quantitative statistical evaluation shows that PISCES-521

MOG successfully simulates mesozooplankton biomass and phenology at the global scale522

(Table 3) and zonally 5.523

We find that both biomass distributions align in their overall order of magnitude524

(total epipelagic biomass: 137 TgC in the BDMs-based climatologies vs. 322 TgC in the525

PISCES-MOG outputs). PISCES-MOG and BDMs-based global mesozooplankton biomasses526

are significantly correlated (Pearson r = 0.4, p-value ¡ 10−15, Table 3 and Fig. S13). In527

productive systems, such as upwelling areas, and less productive systems, such as olig-528

otrophic gyres, both observed and modeled climatologies consistently depict higher and529
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Mean Standard deviation
Corr RMSE Bias Obs. Model Obs. Model

average biomass (mmol/m3) 0.40 0.14 0.09 0.18 0.27 0.10 0.11
bloom apex (days) 0.25 75 -15 158 144 57 56
bloom climax (days) 0.32 77 0 87 87 60 57
bloom duration (days) 0.04 50 14 75 89 37 32
relative amplitude (%) 0.52 42% -3% 82% 79% 43% 46%

Table 3. Evaluation metrics computed to compare the model-based and the

observation-based mesozooplankton biomass monthly climatologies. Obs refers to

the BDMs-MAREDAT product, Model here refers to the PISCES-MOG mesozooplankton out-

puts. With the exception of correlation coefficients, metric units are the same as the units of

the evaluated variable. Corr is the correlation coefficient between the BDM-based and the

PISCES-MOG-based fields of mesozooplankton biomass. For the average concentration, the

bloom duration and the relative amplitude, the metric corresponds to the Pearson correlation

coefficient. For the bloom climax and bloom duration, the metric corresponds to the circular

version of the Pearson correlation coefficient (Jammalamadaka & SenGupta, 2001), since those

are periodic metrics (with a period of 1 year). The periodicity of those metrics is also accounted

for in the computation of root mean square error (RMSE) and Bias. All metrics are weighted

by the area of each ocean grid cell and averaged over the top 200 m of the ocean. Seasonality

metrics are also weighted. Note that a visualisation of the comparison between PISCES-MOG

and BDMs-MAREDAT mesozooplankton metrics is available in Fig. S13.

Figure 5. Model-data comparison of the mesozooplankton biomass and its season-

ality. For each of the five evaluated metrics, we compare the zonal mean of the metric computed

on the mesozooplankton distribution simulated by PISCES-v2 (grey line), PISCES-MOG (black

line) and interpolated from observation (BDMs-MAREDAT, dotted red line). The five metrics

evaluated are (a) biomass (mmol C m−3), (b) relative seasonal amplitude (%), (c) bloom apex

(day of the year), (d) bloom climax (day of the year) and (e) bloom duration (days). The metrics

are defined is the methods section 2.2.3.
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lower biomass levels, respectively (Fig. 5(a), Fig. S13). Spatial variability is also con-530

sistent between the model-based outputs and observations (Table 3).531

The seasonality metrics and their standard deviations are consistent between PISCES-532

MOG outputs and observation-based fields on a global scale (Table 3, Fig. S13), with533

biases lower than 20%. However, PISCES-MOG tends to simulate earlier and longer meso-534

zooplankton blooms than computed from the BDMs-based climatology (Table 3, Fig. 5(c,d)).535

The spatial distribution of bloom climax and bloom duration is consistent across the model-536

based and the BDMs-based outputs (r2 = 0.23 and 0.32, Table 3, Fig. 5(c,d), with the537

dominant pattern being a later bloom as latitude increases poleward (approximately +3538

days per degree poleward in PISCES-MOG, +2 days per degree poleward in the BDMs-539

based climatology, Fig. 5(c,d)). In the tropical band (i.e., between 30°S and 30°N), where540

the seasonal signal is low (¡80%, Fig. 5(b)), the bloom apex and bloom climax distribu-541

tion are patchy in both the model-based and the BDMs-based fields (Fig. 5(c,d), Fig.542

3(d), S14(d), S6(d), S15(d)), as intra-annual variations are not driven by seasonality in543

these regions at the first order. In contrast, bloom duration is poorly correlated between544

the model-based and the BDMs-based fields (r = 0.04, Table 3, Fig. 5(e)). No clear large-545

scale pattern emerges from the model and observation for this metric, as bloom dura-546

tion seems to be uniformly patchy across the global ocean (Fig. S15(a), Fig. S6(a)). Rel-547

ative biomass amplitudes are spatially consistent between the model-based and the BDMs-548

based fields (r = 0.52, table 3, Fig. 5(b)), with the dominating pattern being an increase549

in relative amplitude towards the poles (Fig. 3(g) and S16(a)). Therefore, PISCES-MOG550

consistently simulates large-scale mesozooplankton spatial and intra-annual variability,551

even though bloom duration is poorly constrained due to its patchiness.552

3.2.2 Evaluation of modelled mesozooplankton size structure against time-553

series data554

To our knowledge, no global monthly climatologies of mesozooplankton size struc-555

ture based on field observation are currently available. Thus, our evaluation of mesozoo-556

plankton size structure is limited to the observations from the two time series stations,557

BATS and HOT. Note that observed mesozooplankton time-series were not available at558

NABE, where we described an emergent metazoan cohort dynamics in PISCES-MOG559

(section 3.2.2). However, PISCES-MOG simulates a cohort pattern at HOT and BATS560

that is similar to the one simulated for NABE (see supp fig. S9 and S10).561

We divided the evaluation of the seasonal patterns in mesozooplankton size struc-562

ture at the HOT and BATS stations into three parts: (i) the comparison of the size spec-563

tra aims to evaluate the size structure of the mean annual biomass (Fig. 6(a,b)), (ii) the564

comparison of relative seasonal amplitudes investigates the size-dependent variations in565

seasonal biomass (Fig. 6(c,d)), and (iii) the comparison of normalised seasonal cycles eval-566

uates the relationship between size and the temporal structure of seasonality (Fig. 6(e,f)).567

Consistent with Sheldon’s theoretical hypothesis (Sheldon et al., 1972), the slope568

of the spectrum is not significantly different from -1 (p-values ¿ 0.05) for the model-based569

outputs and the observations at both stations (modelled resp. observed, size spectrum570

slopes are -0.92 resp. -0.84 at BATS, -1.12 resp. -0.61 at HOT, Fig. 6(a,b)). Note that,571

for the time series observations, the size spectrum’s normalised biomass (NBSS) value572

(Fig. 6(a,b)) is likely underestimated for the small size class due to the detection limit573

corresponding to the net mesh size (202 µm). This explains the misalignment of the smaller574

size class point in both field-based size spectra. The model overestimates biomass at BATS575

by a factor of 4 (Fig. 6(a)) but performs well at HOT (mean model over obs. ratio ¡ 1.5,576

Fig. 6(b)). As a result, a simple parameterization of mesozooplankton allows the intro-577

duction and evaluation of a consistent size-spectrum structure in PISCES-MOG, which578

was absent in PISCES-v2 (indicated by the black dot).579
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Figure 6. Model-data comparison of mesozooplankton biomass and seasonality at

BATS (32.1°N 64.0°W, left panels) and HOT (25.1°N 158.0°W, right panels). (a,b)

(resp. (c,d)) Size spectra comparison (concentration/width class, in mmol m−3 µm−1), (resp.

relative seasonal amplitude, in % of yearly average biomass). The time series of the ten adult

metazoan size classes simulated by PISCES-MOG are represented by black lines with round dots.

The squared grey dot refers to the PISCES-v2 total mesozooplankton time series. Black dotted

lines with lozenge dots represent observed mesozooplankton dry weight time series converted to

carbon concentrations for the five size classes (see section 2.3.2). Note that for the larger ob-

served size class, the mean individual size is arbitrarily set to 10 mm since the upper size limit is

unknown, but is not considered when computing size spectrum slopes. For (b), the red line indi-

cates the size spectrum computed from carbon content values, available only for the HOT time

series, illustrating the consistency of our dry-weight to carbon conversion. Error bars in obser-

vations represent inter-annual variability. (e-h) Normalised seasonal cycle for each observed and

modelled mesozooplankton biomass time-series by size class. Normalisation is based on yearly

average biomass, with error bars indicating inter-annual variability of the normalized seasonal

cycle. The colour represents the mean size of the class (light pink for smaller sizes to dark brown

for larger size classes). Note that error bars are absent for model outputs in all panels (a-h) since

PISCES is forced with a 1-year climatology.

–18–



manuscript submitted to Global Biogeochemical Cycles

Ecosystem Biological carbon pump
Nanophyto.
(PgC)

Diatoms
(PgC)

Microzoo.
(PgC)

Mesozoo.
(PgC)

Total
(PgC)

NPP
(PgC yr−1)

EP100
(PgC yr−1)

pe-ratio
(-)

PISCES-MOG 0.378 0.174 0.394 0.232 1.178 42.32 7.13 0.168
PISCES-v2 0.430 0.158 0.326 0.322 1.236 43.31 7.89 0.182
Anomaly MOG - v2 (%) -11.9% +9.6% +20.8% -27.9% -4.7% -2.3% -9.6% -7.7%
PISCES-MOG-2LS 0.366 0.168 0.427 0.232 1.194 44.80 7.02 0.157
Anomaly MOG-2LS - v2 (%) -14.8% +6.3% +30.9% -27.8% -3.4% +3.4% -11.0% -13.7%

Table 4. Global biomass of the simulated living compartments and associated car-

bon export. All biomass values are computed over the top 200m. NPP100 is the Net Primary

Production over the top 100 m. EP100 is the particulate organic carbon export at 100 m. pe-

ratio is defined as EP100/NPP100.

The relative seasonal amplitude of mesozooplankton biomass is comparable between580

the model and observations at both stations, albeit with a consistently reduced mean581

amplitude at HOT compared to BATS. (Fig. 6(c,d)). Although PISCES-MOG exhibits582

a clear bell-shaped size structure in relative seasonal amplitude, with lower seasonal am-583

plitudes for the smallest and largest size classes, the inter-annual variability of the ob-584

servations is too high to delineate differences in seasonality across size classes (Fig. 6(c,d)).585

The comparison of the observed and modelled mesozooplankton temporal dynam-586

ics is limited by the inter-annual variability in the observations. PISCES-MOG predicts587

a bloom that occurs between one and two months later than the ones reported at BATS588

(April-July vs. March-May, Fig. 6(e)). It also predicts a marked shift in the timing of589

maximum biomass with increasing size that is consistent with a cohort process (Fig. 6(e),590

see section 3.1.2). A similar pattern appears in the observations, but the high inter-annual591

variability makes it difficult to discern a significant pattern. At HOT also, a cohort pat-592

tern is observed in the model, with bloom peaks occurring between February and April593

(Fig. 6(f)). However, analysing the seasonality in observations at HOT is even more chal-594

lenging than at BATS due to the high inter-annual variability and the low seasonal vari-595

ability (Fig. 6(g)).596

In summary, while the evaluation of mesozooplankton size structure and season-597

ality showed that PISCES-MOG performs reasonably well, evaluating the size structure598

of the seasonal signal remains challenging. Yet, we note that both BATS and HOT are599

stations located in oligotrophic gyres, where both productivity and seasonality are known600

to be low all year long. This could explain why observations have a low seasonal signal601

versus inter-annual variability ratio.602

3.3 Biogeochemical impacts of the representation of mesozooplankton603

ontogenetic growth and reproduction604

In order to quantify the impacts of mesozooplankton ontogenetic growth and re-605

production, in this section we compare PISCES-MOG and PISCES-v2. We first com-606

pare the ecosystem structure and phenology between the two models, and then show how607

these differences between models induce different carbon fluxes.608

3.3.1 Impacts on the ecosystem structure609

The simulated total living epipelagic biomass is similar in both PISCES-v2 and PISCES-610

MOG, with an estimated amount of 1.18 and 1.24 GtC, respectively, over the top 200611

m (Table 4). The inclusion of mesozooplankton ontogenetic growth in PISCES-MOG re-612

sults in juvenile metazoans biomass redistribution from the mesozooplankton biomass613

pool to the microzooplankton pool. Consequently, total mesozooplankton biomass is 28%614

lower and total microzooplankton 21% higher in PISCES-MOG compared to PISCES-615

–19–



manuscript submitted to Global Biogeochemical Cycles

Figure 7. Global particulate organic carbon (POC) flux estimates, particle compo-

sition and biological drivers in PISCES-MOG and PISCES-v2. (a) Global distribution

of POC export at 100 m (gC m−2 yr−1) simulated in PISCES-MOG and (d) relative anomaly

compared to PISCES-v2 (b) Zonal mean POC export at 100 m (gC m−2 yr−1) and (e) relative

anomaly compared to PISCES-v2. The dashed line shows the total POC. The fill colours show

the contribution of the different components of the POC: small particles in light grey, large par-

ticles in dark gray. (c) Zonal mean community composition (mmol C m−3) in PISCES-MOG and

(f) relative anomaly compared to PISCES-v2. The dashed line shows the total simulated living

concentration. The fill colours show the different groups of organisms: nanophytoplankton in

light green, diatoms in dark green, microzooplankton in orange and mesozooplankton in pink.

v2 (Table 4). Thus, while total zooplankton (i.e., micro- and mesozooplankton together)616

biomass is only slightly affected by the inclusion of a more complex mesozooplankton617

representation (-3.4% in PISCES-MOG compared to PISCES-v2, Table 4), the repar-618

tition within size-based compartments is different (i.e., mesozooplankton represents 50%619

of total zooplankton in PISCES-v2, 38% in PISCES-MOG, Table 4).620

These changes in biomass distribution impact the overall ecosystem structure sig-621

nificantly. As zooplankton exert a top-down control on primary producers through graz-622

ing, changes in zooplankton composition modify predation pressure and thus impact phy-623

toplankton composition. Indeed, PISCES includes an explicit representation of two phy-624

toplankton groups: nanophytoplankton that are mainly grazed by microzooplankton, and625

diatoms that are mainly grazed by mesozooplankton. As a consequence of this top-down626

control by zooplankton, a decrease of 12% of nanophytoplankton biomass is simulated627

in PISCES-MOG compared to PISCES-v2 due to an increase in predation pressure me-628

diated by an increase in microzooplankton (Table 4). Similarly, an increase of 10% in629

diatom biomass is simulated in PISCES-MOG due to a relaxation of predation pressure630

by mesozooplankton (Table 4). These effects on the epipelagic ecosystem structure are631

qualitatively similar across latitudes (Fig. 7(f))632
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Phytoplankton Microzoo. Mesozoo.

Relative seasonal amplitude (%)
PISCES-MOG 121% 107% 93%
PISCES-v2 115% 132% 111%
Anomaly MOG - v2 6% -25% -18%

Bloom apex (day)
PISCES-MOG 133 133 159
PISCES-v2 133 129 161
Anomaly MOG - v2 0 4 -2

Bloom climax (day)
PISCES-MOG 117 124 130
PISCES-v2 116 124 133
Anomaly MOG - v2 1 0 -3

Bloom duration (days)
PISCES-MOG 64 70 86
PISCES-v2 62 60 80
Anomaly MOG - v2 2 10 6

Table 5. Global seasonality metrics of the simulated living compartments. Vari-

ables are defined in section 2.2.3 of the methods. All values are computed over the top 200m.

Global averages are weighted by the corresponding plankton biomass distribution simulated in

PISCES-MOG (the same weights are applied to PISCES-v2 and PISCES-MOG for consistency in

the anomaly computation. Note that applying weights from PISCES-v2 would result in similar

averages).

3.3.2 Impacts on plankton phenology633

We evaluate the differences in seasonal patterns between PISCES-v2 and PISCES-634

MOG for latitudes beyond 20 degrees based on 5-day-average time series (Table 5).635

Differences in seasonality are small between PISCES-MOG in PISCES-v2 (Table636

5). The timing of the bloom apex and bloom climax varies by a few days in the two mod-637

els for micro- and mesozooplankton (Table 5, Fig. 5). The impacts on phytoplankton638

phenology are even smaller (i.e., ¡ 2 days). However, annual absolute amplitudes are af-639

fected consistently with the change in absolute biomass: mesozooplankton seasonal am-640

plitude is reduced by 39%, while it is increased by 6% for microzooplankton (Table 5).641

More interestingly, while absolute amplitudes show opposite patterns for meso- and mi-642

crozooplankton, relative amplitudes are reduced by more than a quarter in both groups643

(Table 5). This can be explained by the subdivision into classes that have differential644

seasonality (cohort pattern, see section 3.1.2), which flattens the seasonal signal of the645

whole group. This is confirmed by the bloom duration, which increases by 17% for mi-646

crozooplankton and 8% for mesozooplankton in PISCES-MOG compared to PISCES-647

v2 (Table 5).648

Therefore, while the introduction of ontogenetic growth in PISCES-MOG modi-649

fies the ecosystem structure and the seasonal amplitude of total mesozooplankton sig-650

nificantly, its impact on total mesozooplankton biomass seasonality remains limited, even651

if there are large intra-compartment variations in biomass seasonality due to cohort dy-652

namics (see section 3.1).653

3.3.3 Impacts on the carbon cycle654

The efficiency of carbon transfer to the deeper layers strongly relies on the sink-655

ing speed of particles which is highly size-dependent (Cael et al., 2021). In both PISCES656

versions, POC is split into two groups: small organic carbon particles, which sink at a657

speed of 2 m d−1, and large particles, which sink at a speed of 50 m d−1. Consequently,658

for an identical remineralisation rate, carbon contained in large particles will be exported659

25 times more efficiently than carbon contained in small POC. Moreover, while meso-660

zooplankton particle production is mainly directed towards large POC, microzooplankton-661
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produced particles are considered small particles. As a direct consequence of simulated662

changes in zooplankton composition in PISCES-MOG compared to PISCES-v2, POC663

flux at 100 m is reduced by 10% in PISCES-MOG . This change is mainly driven by the664

decrease in the flux associated to large particles (97%) caused by the decrease in meso-665

zooplankton biomass. The net primary production being similar in PISCES-v2 (43.3 PgC666

yr−1) and PISCES-MOG (42.3 PgC yr−1), this reduced export in PISCES-MOG is as-667

sociated to a 8% lower pe-ratio.668

Spatially, the changes in export are driven by changes in mesozooplankton biomass669

in the productive regions, since maxima in mesozooplankton decline at around 40° lat-670

itude and at the Equator (7(f)) correlate with peaks in large particles’ decline at the same671

latitudes (7(e)). As a result, the equatorial upwelling and the sub-polar productive zones672

contribute the most to the decline in 100 m export when accounting for mesozooplank-673

ton reproduction and ontogenetic growth (7(d)).674

While the introduction of mesozooplankton ontogenetic growth and reproduction675

into PISCES significantly reduces the mean annual export of particulate organic carbon676

(POC) at 100 meters depth in the ocean, its impact on the seasonality of this flux is lim-677

ited. Changes of less than 5 days in the global average for particles bloom apexes and678

climaxes, not presented here, indicate this limited effect. This expected behaviour re-679

sults from the limited influence of mesozooplankton ontogenetic growth and reproduc-680

tion on the seasonal timing of various organism groups (3.3.2).681

3.3.4 Relative contributions: the relative role of reproduction and on-682

togenetic growth versus that of the representation of size683

The addition of explicit reproduction and ontogenetic growth versus the addition684

of a full size spectrum could have differential effects on the behaviour of PISCES-MOG.685

To disentangle their relative importance, we compare PISCES-MOG vs PISCES-v2 anoma-686

lies to PISCES-MOG-2LS vs PISCES-v2 anomalies (Table 4, models defined in section687

2.2.2). We identified three possible scenarios: i) If PISCES-MOG anomalies are similar688

to PISCES-MOG-2LS anomalies, the size spectrum representation has little impact on689

the behaviour of PISCES-MOG. In this case, the simulated differences between PISCES-690

MOG and PISCES-v2 are driven by the introduction of ontogenetic growth and repro-691

duction. ii) If there is a lower absolute anomalies in PISCES-MOG-2LS compared to PISCES-692

MOG, the impact of reproduction and ontogenetic growth on the model behaviour is am-693

plified when representing the size spectrum. iii) If there is a higher absolute anomaly in694

PISCES-MOG-2LS compared to PISCES-MOG, the size spectrum representation actu-695

ally dampens the effect of representing ontogenetic growth and reproduction.696

Based on these scenarios, we disentangle the relative effect of reproduction and on-697

togenetic growth versus that of the representation of size. PISCES-MOG-2LS and PISCES-698

MOG show consistent biomass anomaly signs across all plankton groups (Table 4). How-699

ever, micro- and nanophytoplankton anomalies are 30-50% higher, while diatom anoma-700

lies are 30% lower in PISCES-MOG-2LS compared to PISCES-MOG (Table 4). Con-701

sequently, diatoms and mesozooplankton are less abundant in PISCES-MOG-2LS, lead-702

ing to a 20% higher absolute export flux anomaly (Table 4). In PISCES-MOG-2LS, NPP703

shows an opposite anomaly compared to PISCES-MOG, resulting in a doubling of the704

PE-ratio anomaly. Thus, the effect of metazoan ontogenetic growth and reproduction705

representation on the intensity and efficiency of the BCP is dampened by the represen-706

tation of a size spectrum. Spatially, both models show similar anomaly distributions for707

most plankton groups, except for diatoms in the Southern Ocean (Fig. S1). Despite this708

difference, the resulting export flux anomaly distribution is similar in both models for709

most ocean regions (Fig. S2). Thus, in PISCES-MOG, metazoan reproduction and on-710

togenetic growth representation primarily drive differences with PISCES-v2 behaviour.711
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4 Discussion712

4.1 Changes in plankton biomasses and carbon export estimates713

Incorporating a detailed representation of mesozooplankton ontogenetic growth and714

reproduction into a biogeochemical component of an earth system model did not alter715

the realism of PISCES biogeochemical global properties. Indeed, in PISCES-MOG, spa-716

tial patterns are primarily related to the global gradient in primary productivity. This717

results in high biomasses in high-latitude regions and low biomasses in oligotrophic gyres,718

consistent with observations (Hatton et al., 2021). Net primary production (NPP, 42 PgC719

yr−1) and carbon export estimates at 100 m (EP100, 7.1 PgC yr−1), fall within the range720

of the literature (EP100: 5.8 PgC yr1 in Clements et al. (2023), 6.6 PgC yr−1 in (Siegel721

et al., 2014) and 9.1 PgC yr−1 in (DeVries & Weber, 2017), NPP: 35-77 PgC yr−1; Field722

et al. (1998); Westberry et al. (2023)).723

However, incorporating mesozooplankton ontogenetic growth and reproduction led724

to significant changes in annual biomass distribution within plankton compartments rel-725

ative to the standard version of the model. As anticipated in Clerc et al. (2021), zoo-726

plankton biomass was partly redistributed toward microzooplankton because adult meta-727

zoans allocate a portion of their energy towards reproduction. This behaviour enhances728

the realism of PISCES. Indeed, Copepoda, recognised as the most abundant mesozoo-729

plankton group (Moriarty & O’Brien, 2013; Drago et al., 2022), can represent a signif-730

icant portion of microzooplankton at their nauplii stages (up to 30%; Quevedo and Anadón731

(2000); Safi et al. (2007)). In addition, PISCES-MOG simulated mesozooplankton biomass732

distributions are closer to our present BDMs-based biomass estimates compared to the733

distributions simulated by PISCES-v2 (Fig. 6), suggesting that PISCES-MOG simula-734

tions are closer to field observations. Thus, PISCES-MOG simulates zooplankton more735

accurately than PISCES-v2, which may lead to increased realism in biogeochemical fluxes.736

As a consequence of the changes in zooplankton structure, the particle size distri-737

bution shifted toward smaller particles (section 3.3.3). Consequently, the export at 100738

meters was 10% lower in PISCES-MOG compared to PISCES-v2. This finding suggests739

that zooplankton-driven carbon export may be overestimated in many biogeochemical740

components of Earth System Models, as these often represent mesozooplankton as a sin-741

gle and constant size class (Kearney et al., 2021). However, adding a more complex rep-742

resentation of the mesozooplankton would increase the computational cost by a factor743

of 2 or even more in fully coupled Earth System Models experiments, where physical and744

biogeochemical processes interact in both ways (such as in the Climate Model Intercom-745

parison Project (CMIP) exercises; Eyring et al. (2016); Taylor et al. (2012)). In paral-746

lel, the sensitivity experiment based on PISCES-MOG-2LS, where the representation of747

metazoan zooplankton is limited to two size classes instead of 20 (one juvenile compart-748

ment and one mature organism compartment, section 2.2.2) resulted in similar changes749

in biomass distribution and changes in carbon export compared to the changes observed750

when comparing PISCES-MOG to PISCES-v2 (section 3.3.4). Therefore, mesozooplank-751

ton ontogenetic growth and reproduction could be included in biogeochemical models752

without inducing a significant increase in computational cost by simply including a ju-753

venile metazoan compartment in the microzooplankton. This simple addition would likely754

suffice to influence the dynamics of carbon export in a manner similar to adding a com-755

plete representation of mesozooplankton ontogenetic growth and reproduction.756

4.2 Cohort-driven impacts on plankton and carbon cycling757

To our knowledge, this is the first study to specifically diagnose potential shifts in758

zooplankton phenology induced by incorporating of full size spectrum representation in759

a global biogeochemical model. By representing metazoan size classes the same way as760

in the 0D chemostat model of Clerc et al. (2021), we successfully introduced cohort dy-761

namics for metazoans in PISCES-MOG. Indeed, the seasonal behaviour of each size class762
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showed a globally consistent pattern: larger metazoans peak later and their blooms last763

longer. These cohort dynamics is consistent with patterns previously evidenced in the764

field (Mackas et al., 2012) and in models (McCauley & Murdoch, 1987; Persson et al.,765

1998; Pope et al., 1994; Maury et al., 2007; Zhou et al., 2010). They emerge because ju-766

veniles display a competitive advantage over adults right after a phytoplankton bloom767

thanks to their higher mass-specific ingestion rates (Persson et al., 1998; De Roos & Pers-768

son, 2003; De Roos et al., 2008; Persson & de Roos, 2013).769

We expected cohort dynamics to induce a temporal delay in the peak of mesozoo-770

plankton biomass within the year, compared to the peak simulated by a model without771

cohorts (Clerc et al., 2021). Surprisingly, the inclusion of mesozooplankton ontogenetic772

growth and reproduction did not significantly modify the temporal dynamics of meso-773

zooplankton biomass in the 3-D implementation of the Clerc et al. (2021) model (Ta-774

ble 5). To explain this, we argue that the metazoan population size structure right be-775

fore the phytoplankton bloom (i.e., pre-bloom conditions) plays a determining role in776

the simulated temporal dynamics. In Clerc et al. (2021) the pre-bloom metazoan pop-777

ulation consisted of mature adult stages only. Due to the lower growth rate of mature778

adults compared to other smaller metazoan size classes, this population structure resulted779

in a slow formation of the first cohort, significantly contributing to the simulated delay780

in the peak of mesozooplankton compared to the model without ontogenic growth and781

reproduction. In PISCES-MOG, pre-bloom metazoan size classes are more evenly dis-782

tributed among juveniles and adults (Fig. 4). This structure led to a faster cohort for-783

mation than in Clerc et al. (2021) and eliminated the delay in the peak of mesozooplank-784

ton biomass between PISCES-MOG and PISCES-v2 (Table 5).785

Including mesozooplankton ontogenetic growth also had limited impact on the sea-786

sonality of carbon export (section 3.3.3). However, we argue that the effects on carbon787

flux seasonality are underestimated because the particles produced by any mesozooplank-788

ton size class are all directed to the same particle pool. We hypothesise that represent-789

ing a particle size spectrum in PISCES-MOG would delay the annual peak in carbon ex-790

port, because particles produced by each mesozooplankton size class would be allocated791

to distinct particle size classes. Small metazoans, that peak earlier (section 3.1.2), would792

produce small particles that sink slowly (Cael et al., 2021). Large metazoans, that peak793

later (section 3.1.2), would produce large particles, that sink fast. Thus, by introducing794

a particle size spectrum, the particle export efficiency would increase over time after the795

phytoplankton bloom, and consequently POC flux export peak would be delayed. Us-796

ing a numerical model representing a particle size spectrum, Serra-Pompei et al. (2022)797

showed that size-spectrum slope and trophic levels of copepods (that can be linked to798

the size) are important drivers of carbon export and carbon export efficiency (pe-ratio),799

respectively. This supports our hypothesis that including particles size spectrum in PISCES-800

MOG would result in changes in POC flux seasonality when accounting for mesozooplank-801

ton ontogenetic growth.802

4.3 Evaluating mesozooplankton phenology and size structure in ma-803

rine biogeochemical models804

We emphasise that new observation-based BDMs provide valuable insights into the805

seasonal patterns of global zooplankton biomass, as they unlock spatial and temporal806

scales that are not covered by the previous observations. Observations-based biomass807

products from MAREDAT (Moriarty & O’Brien, 2013) (or subset, such as COPEPOD,808

O’Brien (2005)) are often used to evaluate the predictions made by marine ecosystem809

models for various plankton functional types in point-by-point comparisons (Le Quéré810

et al., 2005; Aumont et al., 2015; Stock et al., 2014; Clerc, Bopp, et al., 2023). This eval-811

uation is limited by the restricted spatiotemporal scales covered by these observational812

data. Here, we benefit from novel approaches established to develop distribution mod-813

els based on continuous abundance and derived biomass observations (Drago et al., 2022;814
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Waldock et al., 2022; Knecht et al., 2023). Indeed, for the first time to our knowledge,815

we were able to evaluate the skill of a global biogeochemical model in predicting the phe-816

nology and the seasonal production patterns of zooplankton against an observation-based817

product. BDMs can thus successfully extract and extrapolate biomass patterns in space818

and time, and substantially reduce the noise levels in biological data, enabling their com-819

parizon with biogeochemical model outputs. Our work represents a key step towards im-820

proving the assessment of zooplankton functional groups in Earth System Models, as we821

anticipate that further versions of such data-driven extrapolated biomass distribution822

products will emerge for multiple plankton functional types (PFT), like those developed823

for crustaceans and radiozoa based on imaging data (Drago et al., 2022) and those for824

pteropods and foraminifers based on traditional net data Knecht et al. (2023).825

Unlike previous versions of PISCES, a new feature requiring evaluation against field826

observations is the mesozooplankton size spectrum. However, we identified only two open-827

ocean time series that provided sufficient information to assess both the zooplankton size828

spectrum and its seasonality. While modeled and observed zooplankton size spectra ex-829

hibited similarities, both time series displayed significant inter-annual variation in sea-830

sonality, precluding the identification of size-dependent seasonal patterns. In this con-831

text, zooplankton community monitoring using imaging methodology (e.g., Lombard et832

al. (2019)) paired with machine learning and BDM techniques are promising tools to (a)833

increase the number of observations, and (b) extrapolate between measurements at a global834

scale. Specifically, Under Vision Profiler 6 (UVP6) images are expected to significantly835

contribute to constraining zooplankton size spectrum dynamics globally (Picheral et al.,836

2022). Indeed, particle size distribution can be extracted from the images with novel ma-837

chine learning tools that enable the quantification and monitoring of zooplankton func-838

tional traits from a wealth of in situ imaging observations (Irisson et al., 2022; Orenstein839

et al., 2022). Thus, the integration of imaging-derived in situ zooplankton size observa-840

tions with machine learning and BDM techniques would enable the evaluation of size-841

structured zooplankton global dynamics simulated by our model.842

4.4 Model caveats843

The extraordinary diversity of zooplankton life histories leads to complex responses844

to environmental conditions and seasonal successions between different organisms (Romagnan845

et al., 2015; Kenitz et al., 2017). In contrast, the way we incorporated mesozooplank-846

ton ontogenetic growth and reproduction remains simplified due to computational con-847

straints and does not account for all sources of intra- and interspecific variability within848

the mesozooplankton life histories (Mauchline, 1998). First, we assumed that all adult849

metazoans can reproduce. However, large species can reach a size considered as adult850

in PISCES-MOG before reaching sexual maturity (Hartvig et al., 2011). A consequence851

of that assumption is that the biomass and pool of reproductory organisms is overesti-852

mated, leading to a likely overestimate of simulated reproduction rates. A more realis-853

tic representation of reproduction would necessitate multiple size spectra organized based854

on maximum size (Hartvig et al., 2011) or to make coarse assumptions about the max-855

imum reproduction rates (Baird & Suthers, 2007), and this would likely reduce the dif-856

ferences in annual biomass and POC fluxes between PISCES-MOG and PISCES-v2.857

Second, zooplankton are assumed to be ”income breeders” (Sainmont et al., 2014)858

in PISCES-MOG, meaning that a portion of the grazing flux is instantaneously allocated859

to reproduction (section 2.2.2). However, some organisms adopt an alternative repro-860

duction strategy called ”capital breeding” (Varpe et al., 2009), according to which an861

individual may allocate energy to reserves which are used later in the year for reproduc-862

tion. For example, certain copepod species undergo one or more diapause stages through-863

out their life cycle to overcome unfavourable conditions (Hirche, 1996; Baumgartner &864

Tarrant, 2017). This pause in biological development can occur at various life stages, in-865

cluding eggs, embryos, juveniles, and adults and lead to synchronous metazoan life cy-866
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cles (Brun et al., 2016). Consequently, representing this additional process in PISCES-867

MOG could affect the pre-bloom metazoan population size structure by delaying the peak868

of mesozooplankton biomass between PISCES-MOG and PISCES-v2, in an even further869

fashion than presently modelled (see section 4.2). Capital breeding being the dominant870

reproductive strategy for marine copepods Sainmont et al. (2014) in regions characterised871

by strong seasonality, implementing this strategy in PISCES-MOG would alter our re-872

sults. In this case, the impact of reproduction and ontogenetic growth on mesozooplank-873

ton seasonality and on metazoan-driven carbon export seasonal dynamics would be higher874

than currently simulated in high latitude regions.875

Another caveat is that our model misses part of the complex processes through which876

mesozooplankton interact with the BCP (Steinberg & Landry, 2017). In particular, (Boyd877

et al., 2019) estimated the contribution of five additional mechanisms to the gravitational878

carbon pump, referred to as ”particle injection pumps”. Two of these mechanisms are879

directly linked to zooplankton: (i) the mortality of specific zooplankton groups under-880

taking seasonal migration to hibernate in the deep ocean (the ”seasonal lipid pump” (Jónasdóttir881

et al., 2015; Pinti, DeVries, et al., 2023)), and (ii) the active transport of organic car-882

bon by organisms that feed in surface layers and excrete in deeper layers by perform-883

ing diel vertical migration (DVM) (the ”mesopelagic-migrant pump”). As a result, the884

gravitational pump alone exports between 4 to 9 PgC yr−1, whereas incorporating the885

”particle injection pumps” would increase this export flux up to 5 to 16 PgC yr−1 (Boyd886

et al., 2019). Notably, DVM alone would contribute several petagrams of carbon per year887

(Boyd et al., 2019; Pinti, Jónasdóttir, et al., 2023; Aumont et al., 2018). Thus, in a model888

also accounting for both migration (i.e., DVM and hibernation) and reproduction pro-889

cesses, representing DVM and hibernation would increase the export of particles whereas890

reproduction would decrease it (see section 3.3.3). Yet, it remains difficult to hypoth-891

esise how the combination of these two processes would impact total export, since they892

have opposing effects on these fluxes. So far, these processes have been evaluated inde-893

pendently in different models (Jónasdóttir et al., 2015; Aumont et al., 2018), including894

ours, but no global biogeochemical model currently integrates all these processes in its895

representation of zooplankton. The ongoing developments in zooplankton observation896

systems (Lombard et al., 2019; Irisson et al., 2022) and the emergence of more spatially897

explicit data products of group-specific plankton biomass (Drago et al., 2022; Knecht et898

al., 2023) will facilitate the development of such integrative models and they will help899

to better constrain BCP estimates in a context of climate change.900

5 Conclusions901

Our study provides new insights into the impact of a more realistic representation902

of mesozooplankton biology on community structure, plankton functional type dynam-903

ics, and the export of organic carbon to depth in a global model. The inclusion of on-904

togenetic growth and reproduction shifts the structure of the zooplankton community905

toward smaller organisms (more mesozooplankton, less microzooplankton) and thus to-906

ward smaller organic particles, compared to that simulated by a model with a single and907

nonvarying size representation (as in PISCES-v2). This shift increases the grazing pres-908

sure on the nanophytoplankton while relaxing it for larger phytoplankton (diatoms), thus909

influencing the structure of the phytoplankton community size inversely to that of zoo-910

plankton. The net effect of mesozooplankton ontogeny and reproduction on total par-911

ticles is a shift towards smaller particles, significantly reducing organic carbon export912

below 100 meters depth compared to a previous version of PISCES. This suggests that913

the contribution of zooplankton to the Biological Carbon Pump (BCP) export may be914

overestimated in many biogeochemical components of Earth System Models (ESMs).915

Surprisingly, despite the partial representation of zooplankton life histories in our916

model that induced cohort dynamics, the emergent impact of this representation on the917

phenology of living ecosystem and non-living particle components is limited, even though918
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it was important for their mean annual distribution. However, we could benefit from the919

cohort behaviour that emerges in PISCES-MOG to improve the understanding of zooplankton-920

driven carbon flux dynamics and BCP seasonality. This would require new model de-921

velopments, such as incorporating mesozooplankton capital breeding at high latitude or922

representing the size spectrum of non-living particles and could be the subject of fur-923

ther studies.924

We emphasise that the observations-based mesozooplankton biomass climatology925

provide valuable insights into the seasonal patterns of global zooplankton biomass as they926

unlock spatial and temporal scales that were not covered by the previous observations.927

New model development and data-based product presented in this study contribute to928

improve model-observation synergies to understand the role of mesozooplankton on the929

biological carbon pump, and to characterize the level of abstraction necessary to accu-930

rately estimate its contribution to carbon fluxes.931

Finally, here, we focused of the biogeochemical impacts of the mesozooplankton re-932

production and ontogenetic growth. Given that mesozooplankton serve as food for many933

predators, understanding their life cycles and ontogenetic growth could also regulate the934

dynamics of higher trophic levels. Therefore, it would be relevant to study the effects935

of these characteristics in a model explicitly representing the top of the trophic chain,936

e.g. APECOSM (Maury, 2010; Dupont et al., 2023). In particular, the size structure of937

zooplanktivorous predators could be influenced by the cohort pattern. Smaller preda-938

tors would be favoured at the beginning of the cohort when smaller metazoans dominate,939

while larger ones would emerge later along with larger metazoans.940
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(2023). High trophic level feedbacks on global ocean carbon uptake and marine1055

ecosystem dynamics under climate change. Global Change Biology , 29 (6),1056

1545–1556.1057

Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range-shifting1058

species. Methods in ecology and evolution, 1 (4), 330–342.1059

Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological ex-1060

planation and prediction across space and time. Annual Review of Ecology,1061

Evolution, and Systematics, 40 , 677–697. doi: 10.1146/annurev.ecolsys.1103081062

.1201591063

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., &1064

Taylor, K. E. (2016). Overview of the coupled model intercomparison project1065

phase 6 (cmip6) experimental design and organization. Geoscientific Model1066

Development , 9 (5), 1937–1958.1067

Field, C. B., Behrenfeld, M. J., Randerson, J. T., & Falkowski, P. (1998). Primary1068

production of the biosphere: integrating terrestrial and oceanic components.1069

science, 281 (5374), 237–240.1070

Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in1071

–29–



manuscript submitted to Global Biogeochemical Cycles

ecology. Ecological Modelling , 135 (2-3), 147–186. doi: 10.1016/S0304-3800(00)1072

00354-91073

Hansen, P. J., Bjørnsen, P. K., & Hansen, B. W. (1997). Zooplankton grazing1074

and growth : Scaling within the 2-2,000-µm body size range. Limnology and1075

oceanography , 42 (4), 687–704.1076

Hartvig, M., Andersen, K. H., & Beyer, J. E. (2011). Food web framework for size-1077

structured populations. Journal of Theoretical Biology , 272 (1), 113–122. doi:1078

10.1016/j.jtbi.2010.12.0061079

Hatton, I. A., Heneghan, R. F., Bar-On, Y. M., & Galbraith, E. D. (2021). The1080

global ocean size spectrum from bacteria to whales. Science advances, 7 (46),1081

eabh3732.1082
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Model RMSETrain RMSETest r2Train r2Test NSETrain NSETest

GLM 0.26 0.35 0.38 -0.09 0.38 0.38

GAM 0.26 0.27 0.36 0.36 0.36 0.36

RF 0.23 0.23 0.51 0.52 0.82 0.52

GBM 0.18 0.24 0.70 0.48 0.64 0.48

DL 0.25 0.26 0.41 0.40 0.41 0.40
Table S1. Performance for the mesozooplankton biomass distribution models (BDMs-MAREDAT). Each model metric was calculated

on both the training set (Xtrain) and the testing set (Xtest). r2 ranges from -∞ to +1, with a perfect fit of the model and full variance explained

indicated by a value of +1. The root mean squared error (RMSE) is an error measure, hence smaller values show higher accuracy. The Nash-

Sutcliffe-efficiency (NSE) indicates improvement of the model predictions over using the observation mean, with perfect model performance

indicated by a value of +1 and a value of 0 indicating that the models perform no better than the observation mean.
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Random forest

Hyperparameter Parameter values tested Final parameter

ntree 100, 300, 1000 100

mtry 1, 7 7

minrows 1, 10 1

max depth 10, 20 20

sample 1 1

Gradient Boosting Machine

Hyperparameter Parameter values tested Final parameter

max depth 1, 3, 5 1

minrows 1, 10 10

rlearn 0.01, 0.1 0.01

rsample 1 1

rsamplecolumns 1 1

Deep Learning

Hyperparameter Parameter values tested Final parameter

activation function tanh tanh

hidden layer structure (5;5), (20;20) (20;20)

λ (L1) 0, 1e-3, 1e-5 1e-5

λ (L2) 0, 1e-3, 1e-5 1e-3
Table S2. Hyperparameter options for the Random Forest (RF), the Gradient Boosting Machine (GBM) and the Deep Learning

(DL) models. For each algorithm, the final hyperparameter choices for the BDM-MAREDAT field was determined via a grid search by

assessing all hyperparameter options for those that would minimise the root mean squared error (RMSE). For the RF: ntree denotes the

number of bootstrap samples created from the original dataset, using a fraction of rsample of the entire data for each bootstrap. mtry refers

to the number of predictors evaluated at each node for their ability to discriminate the data most clearly. minrows describes the minimum

number of observations in each terminal node and maxdepth the maximum size of the tree. For the GBM: maxdepth describes the maximum

size of each individual tree and minrows denotes the minimum number of observations in each terminal node. The model’s learning rate is

determined by rlearn. Each of the individual trees that together make up the GBM is trained on a a random fraction rsample of the data, using

a fraction rsamplecolumns of the predictors. For the DL: The activation function describes the non-linear transformation applied at each

neuron. The hidden layer structure determines the number of layers and the number of neurons per layer, e.g. (10, 10) denotes a network with

two hidden layers of ten neurons each. λ (L1) and λ (L2) are weight parameters used to penalise complexity. To avoid overfitting, L1 (Lasso

regression) or L2 (Ridge regression) can be employed to add a penalty term based on the network weights. The strength of this penalising

factor is determined by the respective parameter λ. For an extensive description of all hyperparameters, refer to Boehmke and Greenwell

(2019).
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Figure A1. Phyto- and zooplankton biomasses as simulated by PISCES-v2 and anomalies with PISCES-MOG, PISCES-MOG-2LS

and PISCES-MOG-CM. A complete description of the different model versions in available in section 2.2.2 of the methods
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Figure A2. Small, large and total particulate carbon export as simulated by PISCES-v2 and anomalies with PISCES-MOG, PISCES-

MOG-2LS and PISCES-MOG-CM. A complete description of the different model versions in available in section 2.2.2 of the methods.

POC refers to small POC, GOC refers to large POC and POC+GOC refers to the total particulate carbon fluxes.

5



Figure A3. Mean annual mesozooplankton biomass predictions as calculated by the five different models. Values are shown as log10(x

+ 1). Stippled areas indicate grid points where the environmental conditions were outside the training dataset for more than six months of the

year as calculated with the Multivariate Environmental Similarity Surfaces (MESS) analysis.
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Figure A4. Seasonal mean mesozooplankton biomass predictions as mean over the five models (DJF = December - February, MAM =

March - May, JJA = June - August, SON = September - November). Values are shown as log10(x + 1). Stippled areas indicate grid points

where the environmental conditions were outside the training dataset for more than one month of the respective season as calculated with the

Multivariate Environmental Similarity Surfaces (MESS) analysis.
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Figure A5. Partial dependence plots (PDP) for the environmental predictors biomass distribution models (BDMs). The curves indicate

the relations learned by the different BDMs and the rug on the x- and y-axis represents the distribution of the training data. MLD refers to

the mixed layer depth, EKE to the eddy kinetic energy. The different model types are the Generalized Linear Model (GLM), Generalized

Additive Model (GAM), Random Forest (RF), Boosted Regression Tree (GBM) and Neural Network (DL).
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Figure A6. Global and zonally averaged mesozooplankton bloom duration and climax(a) Global average of simulated (by PISCES-

MOG) epipelagic (0-200m) mesozooplankton bloom duration (days spent within the 75th quantile of the yearly seasonal cycle) . (b) Zonal

mean of adult (red) and juvenile (pink) metazoans, unicellular protists (light blue), and total phytoplankton (green) bloom duration (days).

(c) Mean zonal bloom duration for the 10 adult metazoans size-classes simulated in PISCES-MOG. (d) Global average of simulated (by

PISCES-MOG) epipelagic (0-200m) mesozooplankton bloom climax (day of maximal population growth) . (b) Zonal mean of adult (red)

and juvenile (pink) metazoans, unicellular protists (light blue), and total phytoplankton (green) bloom climax (day of year). (f) Mean zonal

delay (days) between bloom climax for the 10 adult metazoans size-classes and bloom climax for phytoplankton as simulated in PISCES-

MOG.
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Figure A7. Global and zonally averaged juvenile metazoans bloom duration and climax (a) Global average of simulated (by PISCES-

MOG) epipelagic (0-200m) juvenile metazoans bloom duration (days spent within the 75th quantile of the yearly seasonal cycle) . (b) Zonal

mean of adult (red) and juvenile (pink) metazoans, unicellular protists (light blue), and total phytoplankton (green) bloom duration (days).

(c) Mean zonal bloom duration for the 10 juvenile metazoans size-classes simulated in PISCES-MOG. (d) Global average of simulated (by

PISCES-MOG) epipelagic (0-200m) juvenile metazoans bloom climax (day of maximal population growth) . (b) Zonal mean of adult (red)

and juvenile (pink) metazoans, unicellular protists (light blue), and total phytoplankton (green) bloom climax (day of year). (f) Mean zonal

delay (days) between bloom climax for the 10 juvenile metazoans size-classes and bloom climax for phytoplankton as simulated in PISCES-

MOG.
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Figure A8. Global and zonally averaged epipelagic (0-200 m) plankton biomass and seasonality simulated by PISCES-MOG (a)

Global average of epipelagic juvenile metazoan concentration (mmol C m−3). (b) Zonal mean of adult (red) and juvenile (pink) metazoans,

unicellular protists (light blue), and total phytoplankton (green) concentrations (mmol C m−3). (c) Mean zonal size spectra (biomass over

size class width, mmol C m−3 mm−1) for the 10 juvenile metazoans size-classes. (d) Global average of epipelagic juvenile metazoans bloom

apex (day of maximal abundance). (e) Zonal mean plankton groups bloom apexes (days, same colors as above) (f) Mean zonal delay (days)

between the bloom apex of the 10 juvenile metazoans size classes and the bloom apex of phytoplankton. (g) Global average of epipelagic

juvenile metazoans relative seasonal amplitude (%) (h) Zonal mean plankton groups relative seasonal amplitude (%, same colors as above).

(i) Mean zonal relative seasonal amplitude (%) for the 10 juvenile metazoans size-classes.
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Figure A9. Seasonal dynamics of the epipelagic (0-200 m) ecosystem simulated by PISCES-MOG at BATS location. The coordinates

are chosen to match the location of the BATS time-series (see section 2.3.2). Time evolution of (a) the phytoplankton and (b) the zooplankton

concentrations (mmol C m−3) over one year. Triangles indicate the bloom apexes of the plankton groups. (c) Change in size-class composition

of metazoans over the year. The y-axis represent the 20 size classes ordered by increasing size. The grey levels correspond to the proportion

of total metazoans (juvenile + adults) in each size classes for each time-step. Thus, for each time step, the proportions of the 20 size classes

sums to 100. The arrows indicate cohorts, namely the propagation of successive waves of biomass from small to large organisms.
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Figure A10. Seasonal dynamics of the epipelagic (0-200 m) ecosystem simulated by PISCES-MOG at HOT location. The coordinates

are chosen to match the location of the HOT time-series (see section 2.3.2). Time evolution of (a) the phytoplankton and (b) the zooplankton

concentrations (mmol C m−3) over one year. Triangles indicate the bloom apexes of the plankton groups. (c) Change in size-class composition

of metazoans over the year. The y-axis represent the 20 size classes ordered by increasing size. The grey levels correspond to the proportion

of total metazoans (juvenile + adults) in each size classes for each time-step. Thus, for each time step, the proportions of the 20 size classes

sums to 100. The arrows indicate cohorts, namely the propagation of successive waves of biomass from small to large organisms.
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Figure A11. Comparison between modeled and observed annual average surface nitrates (a, b), surface chlorophyll (c, d) NO3 surface

fields from the World Ocean Atlas (Garcia et al., 2019) are used to evaluate our modeled nutrient distributions. The long-term multi-sensor

time series OC-CCI (Ocean Colour project of the ESA Climate Change Initiative; Sathyendranath et al., 2019) for satellite phytoplankton

chlorophyll a sea surface concentration converted into mg Chl m-3 is used to evaluate our modeled total chlorophyll distribution. The

model performs particularly well for surface nitrates, with absolute values and simulated spatial patterns very consistent with observations

(rspearman = 0.75). The correspondence between the observed and simulated surface chlorophyll is rather satisfactory (rspearman = 0.65).

The average value is similar (0.35 vs. 0.33 mg Chl m-3), and the spatial structure is respected overall. The overall variability is of the same

order of magnitude in the model and the observations (standard deviation of 0.97 mg Chl m−3 for the observations and 0.37 mg Chl m−3

for the model). However, there are some differences. At high latitudes, particularly in the Southern Ocean, the model tends to overestimate

chlorophyll compared to the satellite product. However, satellite chlorophyll may be underestimated by a factor of about 2 to 2.5 by the

algorithms deducing chlorophyll concentrations from reflectance, as discussed in Aumont et al. (2015).
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Figure A12. Model-data comparison of the chlorophyll-a concentrations and seasonality. For each of the five evaluated metrics, we

compare the zonal mean of the metric computed on the chlorophyll distribution simulated by PISCES-MOG (plain line) and from satellite

observation (dotted line). The five metrics evaluated are (a) concentration (mg Chl m−3), (b) relative seasonal amplitude (%), (c) bloom apex

(day of the year), (d) bloom climax (day of the year) and (e) bloom duration (days). The metrics are defined is the methods section ??
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Figure A13. Model-observation comparison for five mesozooplankton metrics. The ordinate represents the metric value computed from

the observation-based BDMs-MAREDAT field, while the abscissa represents the metric value computed from the PISCES-MOG simulations.

The compared metric is indicated at the top of each subplot. Note that for bloom apex, climax, and duration, uniform noise was added to

each (x, y) value to prevent overlapping of multiple points. Thus, each rectangle corresponds to a single point.
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Figure A14. Interpolated global averaged mesozooplankton biomass and bloom apex from field observations (a) Global average of

BDMs-MAREDAT epipelagic (0-200m) epipelagic (0-200m) mesozooplankton concentration (mmol C m−3) (d) Global average of BDMs-

MAREDAT epipelagic (0-200m) mesozooplankton bloom apex (day of maximal population growth)
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Figure A15. Interpolated global averaged mesozooplankton bloom duration and climax from field observations (a) Global average of

BDMs-MAREDAT epipelagic (0-200m) mesozooplankton bloom duration (days spent within the 75th quantile of the yearly seasonal cycle)

(d) Global average of BDMs-MAREDAT epipelagic (0-200m) mesozooplankton bloom climax (day of maximal population growth)
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Figure A16. Interpolated global averaged mesozooplankton relative seasonal amplitude from field observations Global average of

BDMs-MAREDAT epipelagic (0-200m) epipelagic (0-200m) mesozooplankton relative seasonal amplitude (%)
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Figure A17. Metazoans Normalized Biomass Size Spectrum (NBSS) slope distribution. To compute the NBSS slope in each grid cell,

we fitted a linear model between the log-transformed normalized biomasses of the 20 metazoan sizes classes (concentration over the top 200

m divided by the width of the size class) and the log transformed geometrical mean size of the size classes. The resulting slope of the linear

regression is the NBSS slope.
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