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Abstract

The CNRM-Cerfacs Climate Prediction System (C3PS) is a new research modeling tool for performing climate reanalyses and

seasonal-to-multiannual predictions for a wide array of earth system variables. C3PS is based on the CNRM-ESM2-1 model

including interactive aerosols and stratospheric chemistry schemes as well as terrestrial and marine biogeochemistry enabling

a comprehensive representation of the global carbon cycle. C3PS operates through a seamless coupled initialization for the

atmosphere, land, ocean, sea ice and biogeochemistry components that allows a continuum of predictions across seasonal to

interannual time-scales. C3PS has also contributed to the Decadal Climate Prediction Project (DCPP-A) as part of the sixth

Coupled Model Intercomparison Project (CMIP6). Here we describe the main characteristics of this novel earth system-based

prediction platform, including the methodological steps for obtaining initial states to produce forecasts. We evaluate the entire

C3PS initialisation procedure with the most up-to-date observations and reanalysis over 1960-2021, and we discuss the overall

performance of the system in the light of the lessons learnt from previous and actual prediction platforms. Regarding the

forecast skill, C3PS exhibits comparable seasonal predictive skill to other systems. At the decadal scale, C3PS shows significant

predictive skill in surface temperature during the first two years after initialisation in several regions of the world. C3PS

also exhibits potential predictive skill in net primary production and carbon fluxes several years in advance. This expands

the possibility of applications of forecasting systems, such as the possibility of performing multi-annual predictions of marine

ecosystems and carbon cycle.
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Abstract 22 

The CNRM-Cerfacs Climate Prediction System (C3PS) is a new research modeling tool for 23 

performing climate reanalyses and seasonal-to-multiannual predictions for a wide array of earth 24 

system variables. C3PS is based on the CNRM-ESM2-1 model including interactive aerosols and 25 

stratospheric chemistry schemes as well as terrestrial and marine biogeochemistry enabling a 26 

comprehensive representation of the global carbon cycle. C3PS operates through a seamless 27 

coupled initialization for the atmosphere, land, ocean, sea ice and biogeochemistry components 28 

that allows a continuum of predictions across seasonal to interannual time-scales. C3PS has also 29 

contributed to the Decadal Climate Prediction Project (DCPP-A) as part of the sixth Coupled 30 

Model Intercomparison Project (CMIP6). 31 

 32 

Here we describe the main characteristics of this novel earth system-based prediction platform, 33 

including the methodological steps for obtaining initial states to produce forecasts. We evaluate 34 

the entire C3PS initialisation procedure with the most up-to-date observations and reanalysis 35 

over 1960-2021, and we discuss the overall performance of the system in the light of the lessons 36 

learnt from previous and actual prediction platforms. Regarding the forecast skill, C3PS exhibits 37 

comparable seasonal predictive skill to other systems. At the decadal scale, C3PS shows 38 

significant predictive skill in surface temperature during the first two years after initialisation in 39 

several regions of the world. C3PS also exhibits potential predictive skill in net primary 40 

production and carbon fluxes several years in advance. This expands the possibility of 41 

applications of forecasting systems, such as the possibility of performing multi-annual 42 

predictions of marine ecosystems and carbon cycle. 43 

 44 

Plain Language Summary 45 

The study introduces and assesses the new climate prediction platform C3PS developed by the 46 

CNRM-Cerfacs modelling group in the framework of the H2020 TRIATLAS project. This 47 

prediction system is based on the last version of the CNRM earth system model, CNRM-48 

ESM2.1, and was designed to produce predictions from seasonal to multi-annual scales. C3PS is 49 

the result of the joint long-term effort of experts in seasonal and decadal forecasting and 50 

modellers of ocean physics and biogeochemistry within the CNRM-Cerfacs research group. 51 

An innovative aspect of our study is that it focuses on validating the initialization procedure, 52 

which is not often done in other studies presenting forecasting systems. We believe that the study 53 

of the reconstructions created to initialize the climate prediction systems is relevant, and even 54 

more so in the context of the new applications offered in the prediction of marine 55 

biogeochemistry and carbon fluxes. 56 

Regarding forecast skill, C3PS exhibits comparable seasonal predictive skill to other systems. On 57 

a multi-year scale, C3PS shows potential skill not only in physics, but also in net primary 58 
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production and carbon fluxes up to three years in advance, which extends the possibilities of 59 

application to marine ecosystems and multi-year carbon cycle forecasts. 60 

1 Introduction 61 

 62 

The field of near-term climate prediction has grown rapidly since the pioneering studies of Smith 63 

et al. (2007), Keenlyside et al. (2008), Pohlmann et al. (2009) and the very first attempt of 64 

decadal prediction coordinated experiments as conducted under the umbrella of the Fifth Phase 65 

of the Coupled Model Intercomparison Project (CMIP5). The analysis of CMIP5 decadal 66 

prediction experiments revealed a wide range of skill for different variables and across various 67 

prediction systems (Doblas-Reyes et al., 2013, Garcia-Serrano et al., 2015; Bellucci et al., 2015 68 

amongst others). Recently, CMIP6 has proposed a new decadal prediction coordinated exercise 69 

with improvements with respect to CMIP5 (Boer et al., 2016). These improvements include not 70 

only model improvements, but also the increase of the number of starting dates and ensemble 71 

members in the decadal forecast archive, in order to ensure a robust assessment of decadal 72 

predictive skill. Results from CMIP6 show a substantial improvement of the Sea Surface 73 

Temperature (SST) prediction in the North Atlantic, in particular over the subpolar gyre 74 

(Borchert et al., 2021, Delgado-Torres et al., 2022). Over land, a significant increase in 75 

prediction skill of surface air temperature (SAT) is also reported (Monerie et al., 2018 ; Wu et 76 

al., 2019 ; Smith et al., 2019). Moreover, by the use of large ensembles, skillful predictions have 77 

been achieved for atmospheric patterns such as blocking (Schuster et al., 2019; Athanasiadis et 78 

al., 2020) and the North Atlantic Oscillation (Smith et al., 2020).         79 

 80 

While the potential for useful applications has been  demonstrated, the CMIP5/CMIP6 81 

experiments have also highlighted a number of outstanding research questions and challenges in 82 

the climate prediction field (Kirtman et al., 2013; Meehl et al., 2014; Cassou et al., 2018; Bojovic 83 

et al., 2019). Previous decadal prediction exercises highlight the need for a better understanding 84 

of three key aspects for better exploiting the climate predictive potential and improving estimates 85 

of climate predictability at different timescales (Keenlyside and Ba, 2010; Cassou et al., 2018; 86 

Verfaillie et al., 2021) : i) the physical mechanisms of climate predictability, ii) initialization, and 87 

response to external forcing; iii) and an improvement of the forecast quality evaluation process. 88 

 89 

One of the outstanding challenges is to identify the extent to which model prediction skill across 90 

a continuum of time-scales may benefit from initialization. Indeed, by establishing a framework 91 

for testing the added value of model initialisation, as well as prescribing external forcings, 92 

decadal prediction systems have bridged the gap between well-established seasonal prediction 93 

and near-term projections (Meehl et al. 2009). In this sense, decadal predictions can provide 94 

seamless climate information from one  month to several years ahead, offering the opportunity of 95 

exploring predictability at different timescales (Choi et Sun, 2023). This is relevant as it provides 96 
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climate information addressing a growing demand from policy makers and stakeholders in the 97 

context of climate risk management. 98 

 99 

Moreover, the required reduction of human-induced CO2 emissions and the need for adaptation 100 

of several sectors have, over the recent years, widened the range of application of climate 101 

predictions, with the inclusion of new Earth System components. Earth System Models (ESMs) 102 

have been recently implemented in climate prediction systems, allowing to explore the 103 

predictability of marine biogeochemistry and marine ecosystems (Séférian et al., 2014, Park et 104 

al., 2019, Yeager et al., 2022), terrestrial carbon fluxes (Seferian et al., 2018) and air-sea carbon 105 

fluxes and carbon budgets (Lovenduski et al., 2019, Ilyna et al., 2021). Following this path and 106 

in order to provide seamless seasonal to interannual predictions for relevant physical and earth 107 

system variables, the CNRM-Cerfacs modelling group has developed a new prediction platform, 108 

called C3PS, which is based on the CNRM-ESM2.1 model (Seferian et al., 2019). The birth of 109 

C3PS was possible by bringing together the expertise of the CNRM-Cerfacs modelling group in 110 

terms of seasonal and multi-annual climate predictions and the latest developments in earth 111 

system modelling made in the context of CMIP6 (Séférian et al., 2020). 112 

 113 

In the present study, we introduce the C3PS system, by highlighting its main characteristics, and 114 

the seamless/coupled initialization method used for the atmosphere, ocean and marine 115 

biogeochemistry components. This coupled initialization has been achieved to enable the 116 

investigation of predictability across a continuum of time-scales, from seasons to years. 117 

Conversely to other studies presenting climate prediction systems, we perform an exhaustive 118 

evaluation of the initialization procedure, assessing its strengths and weaknesses. Finally, we 119 

also evaluate the performance of the C3PS system based on a variety of diagnostics and metrics. 120 

 121 

Section 2 describes the main characteristics of C3PS, the initialization procedure and the 122 

experimental protocol used to perform the seasonal to interannual predictions. Section 3 presents 123 

the reference datasets and metrics used. Section 4 provides a basic evaluation of the assimilation 124 

experiments used in the C3PS initialization. Section 5 assesses the skill of essential physical and 125 

biogeochemical fields at different time scales, and the concluding remarks are presented in 126 

section 6. 127 

 128 

2  Earth system-based prediction platform 129 

 130 

2.1 Model description 131 

 132 

The backbone of the C3PS platform is CNRM-ESM2-1 which is the Earth System model of 133 

second generation developed by CNRM-Cerfacs modelling group for CMIP6 (Séférian et al., 134 

2019). 135 

 136 
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The atmosphere component of CNRM-ESM2-1 is based on the global spectral model ARPEGE-137 

Climat version 6.3 (Roehrig et al., 2020). ARPEGE-Climat resolves atmospheric dynamics using 138 

a T127 linear truncation, the physics is resolved on the corresponding reduced grid which offers 139 

a spatial resolution of about 150 km in both longitude and latitude. CNRM-ESM2-1 employs a 140 

‘‘high-top’’ configuration with 91 vertical levels that extend from the surface to 0.01 hPa in the 141 

mesosphere; 15 hybrid σ-pressure levels are available below 1500 m. 142 

 143 

The atmospheric chemistry scheme of CNRM-ESM2-1 is Reactive Processes Ruling the Ozone 144 

Budget in the Stratosphere version 2 (REPROBUS-C_v2). This scheme resolves the spatial 145 

distribution of 63 chemistry species but does not represent the low troposphere ozone non-146 

methane hydrocarbon chemistry. CNRM-ESM2-1 also activates an interactive tropospheric 147 

aerosol scheme included in the atmospheric component ARPEGE-Climat. This aerosol scheme, 148 

named Tropospheric Aerosols for ClimaTe In CNRM (TACTIC_v2), represents the main 149 

anthropogenic and natural aerosol species of the troposphere. 150 

 151 

The surface state variables and fluxes at the surface-atmosphere interface are simulated by the 152 

SURFEX modeling platform version 8.0 over the same grid and with the same time-step as the 153 

atmosphere model. Over the land surface, CNRM-ESM2-1 uses the ISBA-CTRIP land surface 154 

modeling system to solve energy, carbon and water budgets at the land surface (Decharme et al., 155 

2019 ; Delire et al., 2019). Its physical core explicitly solves the one-dimensional Fourier and 156 

Darcy laws throughout the soil, accounting for the hydraulic and thermal properties of soil 157 

organic carbon. It uses a 12-layer snow model of intermediate complexity that allows to separate 158 

water and energy budgets for the soil and the snowpack. CTRIP is a dynamic river flooding 159 

scheme in which floodplains interact with the soil and the atmosphere through free-water 160 

evaporation, infiltration and precipitation interception. The ISBA-CTRIP land surface scheme 161 

also embeds a  two-dimensional diffusive groundwater scheme to represent unconfined aquifers 162 

and upward capillarity fluxes into the superficial soil. More details on these physical aspects can 163 

be found in (Decharme et al., 2019). ISBA-CTRIP captures the land carbon cycle and 164 

vegetation-climate interactions with the representation of plant physiology, carbon allocation and 165 

turnover, and carbon cycling through litter and soil. It includes a module for wildfires, land use 166 

and land cover changes, and carbon leaching through the soil and transport of dissolved organic 167 

carbon to the ocean. A detailed description of the terrestrial carbon cycle can be found in Delire 168 

et al. (2019). 169 

 170 

The ocean component of CNRM-ESM2-1 is the Nucleus for European Models of the Ocean 171 

(NEMO) version 3.6 (Madec et al., 2017) which is coupled to both the Global Experimental 172 

Leads and ice for ATmosphere and Ocean (GELATO) sea-ice model (Salas Mélia, 2002) version 173 

6, and also the marine biogeochemical model Pelagic Interaction Scheme for Carbon and 174 

Ecosystem Studies version 2-gas (PISCESv2-gas). NEMOv3.6 operates on the eORCA1L75 grid 175 

(Mathiot et al., 2017) which offers a nominal resolution of 1° to which a latitudinal grid 176 
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refinement of 1/3° is added in the tropics; this grid describes 75 ocean vertical layers using a 177 

vertical z*-coordinate with partial step bathymetry formulation (Bernard et al., 2006). 178 

 179 

The ocean biogeochemical component of CNRM-ESM2-1 uses the Pelagic Interaction Scheme 180 

for Carbon and Ecosystem Studies model version 2 coupled with trace gases module 181 

(PISCESv2-gas), which derives from PISCESv2 as described in Aumont et al. (2015). 182 

PISCESv2-gas simulates the distribution of five nutrients (from macronutrients: nitrate, 183 

ammonium, phosphate, and silicate to micronutrient: iron), which regulate the growth of two 184 

explicit phytoplankton classes (nanophytoplankton and diatoms). PISCESv2-gas also simulates 185 

the ocean carbon cycle with the ocean carbonate chemistry, that is the dissolved inorganic carbon 186 

(DIC) and the alkalinity (Alk) and two organic carbon pools. The dissolved oxygen is 187 

prognostically simulated using two different oxygen-to-carbon ratios, one when ammonium is 188 

converted to or mineralized from organic matter, the other when oxygen is consumed during 189 

nitrification. Their values have been set respectively to 131/122 and 32/122.  At the ocean 190 

surface, PISCESv2-gas exchanges carbon, oxygen, dimethylsulfide (DMS) and nitrous oxide 191 

(N2O) tracers with the atmosphere using the revised air-sea exchange bulk formulation as in 192 

Wanninkhof (2014). PISCESv2-gas uses several boundary conditions which represent the supply 193 

of nutrients from five different sources: atmospheric deposition, rivers, sediment mobilization, 194 

sea-ice and hydrothermal vents. 195 

 196 

2.2 Forcings 197 

 198 

This section details the CMIP6 external forcing implementation into the C3PS platform. We 199 

align as much as possible to requirements of the CMIP6 Decadal Prediction Project (DCPP) 200 

protocol (Boer et al. 2016). For all the experiments whose simulated period lies within the 201 

historical period as labelled by CMIP6, i.e. from 1850 to 2014, we apply a conservative approach 202 

by using the exact set-up that was used for the contribution to the CMIP6/DECK historical 203 

experiment (Eyring et al., 2016). Greenhouse gases concentrations, except stratospheric ozone, 204 

are implemented as recommended in Meinshausen et al. (2017). The reader is referred to 205 

Séférian et al. (2019) and Michou et al. (2020) for details on the implementation of the forcings 206 

for CMIP6. 207 

 208 

For simulated years after 2014 and in accordance with the DCPP protocol, the Shared 209 

Socioeconomic Pathway (SSP) 2-4.5 scenario forcing is prescribed (O’Neill et al., 2016). This is 210 

the “middle-of-the-road” scenario of the SSP2 socioeconomic pathways, with an intermediate 211 

4.5 W/m
2
 radiative forcing level by 2100 (Gidden et al., 2019).  212 

 213 

The major difference between the implementation of the external forcing in the C3PS platform 214 

and the usual CMIP6 simulation set-up for CNRM-ESM2-1 is the volcanic forcing. The CMIP6 215 

experimental protocol now requires the use of a stratospheric volcanic background forcing 216 
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(monthly climatology computed from years 1850–2000 volcanic forcing) during pre-industrial 217 

and future eras. However, over the 1850-2014, the volcanic forcing can be lower than the 218 

background forcing as used for the future period (beyond 2015). In consequence, we applied a 219 

linear ramp-up from the 2014 level to the background level over the 2015-2025 period, as 220 

suggested in Gillett et al. (2016).  221 

 222 

2.3 Workflow and Data production 223 

 224 

Currently, the C3PS platform provides for both, seasonal and multiannual timescales the 225 

variables requested in the DCPP/CMIP6 tables (Boer et al., 2016), which are those variables 226 

relevant for forecast evaluation against observational datasets. Besides, we have included 227 

additional biogeochemical and ocean physics variables that are necessary to force marine 228 

ecosystem models. Most of these variables are already requested by the FishMIP initiative 229 

(Tittensor et al., 2019). Higher frequency variables, such as daily ocean potential temperature 230 

and oxygen are also provided. Concerning the atmosphere, C3PS also provides daily low-level 231 

winds (~100m) and solar radiation variables as requested for renewable energy applications.  232 

 233 

The C3PS platform follows the DCPP/CMIP6 experimental protocol with regard to the multi-234 

annual predictions, although additional members have been performed to increase the ensemble 235 

size from 10 to 15 members. 236 

 237 

All the C3PS related simulations were performed on the Belenos supercomputer, hosted at 238 

Météo-France site in Toulouse from June 2021 to February 2022. The work-flow is handled by 239 

the ECLIS (Environment for CLImate Simulations) package tool that was developed by the 240 

CNRM  241 

(https://www.umr-cnrm.fr/cm/spip.php?article14).  242 

ECLIS is an ensemble of scripts and tools that allow for setting up and running all the 243 

experimental protocols performed by the CNRM-Cerfacs modelling group within CMIP and 244 

beyond. In particular, C3PS required additional ECLIS developments, such as dedicated scripts 245 

for the perturbation of initial atmospheric conditions and the management and launching of the 246 

members for all the starting dates (see section 2.4).  247 

 248 

The C3PS diagnostics production is managed by the XIOS output server (Meurdesoif  2018). 249 

XIOS has been implemented in all the models developed by the CNRM-Cerfacs group, in 250 

particular to facilitate the huge CMIP6 data production. XIOS allows for declaring a priori the 251 

requested variables to be saved in the output files for a given experiment. Moreover, XIOS 252 

performs online operations on fields, such as spatial and vertical interpolations, vertical, spatial 253 

and time averages, vertical level extraction, thus saving a lot of post-processing time. XIOS has 254 

also been adapted to produce netCDF “CMOR” (Climate Model Output Rewriter) format files 255 

https://www.umr-cnrm.fr/cm/spip.php?article14
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compliant with the CMIP6 Data Request specificities. More information about XIOS functioning 256 

can be found in Voldoire et al. (2019). 257 

 258 

 259 

2.4 Seamless prediction procedure and simulations 260 

 261 

Most of the efforts involved in the development of the C3PS platform were oriented to achieve a 262 

satisfactory initialization procedure. In this regard, several challenges needed to be tackled. The 263 

first challenge was to participate in the DCPP/CMIP6, for which the required hindcast period 264 

starts in 1960, when biogeochemical observations required to initialize the biogeochemistry 265 

model are practically non-existent. A second challenge is how to robustly initialize a seamless 266 

climate prediction platform in which a continuum of timescales need to be considered. For 267 

seasonal prediction, atmospheric initialization is relevant for climate prediction (Materia et al., 268 

2014). For longer timescales, atmospheric initialization is less relevant as the predictability 269 

mostly lies on the ocean and sea ice persistence and memory. A third challenge is to minimize 270 

the climate drifts that occur when the model is initialized from a state away from the climate 271 

model attractor. Besides, physical coherence amongst the initial states of all the model 272 

components of CNRM-ESM2-1 is necessary in order to avoid incompatibilities that could lead to 273 

abrupt initial shocks right after the initialization (Sanchez-Gomez et al., 2016, Pohlmann et al., 274 

2017, Bilbao et al., 2021). Although model drifts in climate prediction systems  are partly 275 

corrected before skill assessment, it is preferable to minimize them as much as possible to better 276 

distinguish the predictable signals (Meehl et al., 2022).  277 

 278 

 279 

 280 
 281 

Figure 1. Schematics of the initialization procedure of the C3PS platform. 282 

 283 

 284 

In order to overcome the three main challenges mentioned above, in the development of C3PS 285 

we have implemented an experimental protocol which is carried out in three main steps (Figure 286 

1). 287 

  288 
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 Step 1: pseudo-observations are obtained through an ocean forced simulation in which 289 

the NEMO-PISCESv2gas model is forced by atmospheric fields from the JRA55do 290 

reanalysis (Tsujino et al., 2018) over the period 1960-2021 (Figure 1). This simulation 291 

(referred to as FORCED hereinafter) has been performed under the framework of the 292 

Global Carbon Project (GCP) (Hauck et al., 2020; Friedlingstein et al., 2022). The 293 

FORCED experiment was launched after a spin-up of 300 years in which the NEMO-294 

PISCESv2gas model was forced by repeated cycles of 5 years corresponding to the 1958-295 

1962 period. The analysis of this spin-up reveals that surface physical fields such as sea 296 

surface temperature (SST) and salinity (SSS), or in integrated fields such as ocean heat 297 

content (OHC) and Atlantic Meridional Overturning Circulation (AMOC) are almost 298 

stabilized after the spin-up.  299 

 Step 2: the 3D potential temperature and salinity fields issued from the FORCED 300 

simulation were used to constrain the ocean component of CNRM-ESM2.1 through a 301 

Newtonian damping procedure (Figure 1). This nudging simulation is performed over the 302 

period 1960-2021, and serves to generate the so-called dcppA-assim experiment 303 

according to the DCPP/CMIP6 experiment-id (Boer et al., 2016). The dcppA-assim 304 

(referred to ASSIM hereafter) can be considered as an in-house zero-order reanalysis 305 

product from which the initial conditions for all the components of CNRM-ESM2.1 are 306 

issued. The methodology of the nudging was previously implemented and used in 307 

Sanchez-Gomez et al. 2016 for generating initial conditions for the decadal predictions in 308 

CMIP5. It was shown to be beneficial to: i) produce initial states physically consistent 309 

amongst all the components of CNRM-ESM2.1, ii) to get initial states for the 310 

components with non-available observations and iii) to minimize the initial shock and 311 

drift in the prediction experiments. Here we use the same nudging strategy which consists 312 

in 1) a sea surface restoring of temperature and salinity of the NEMO component towards 313 

SST and SSS from the FORCED simulation; 2) a 3D Newtonian damping in temperature 314 

and salinity below the mixed layer to constraint the ocean subsurface towards FORCED. 315 

The sea surface restoring is applied globally in terms of heat and freshwater fluxes. The 316 

values of the restoring coefficients are -40 Wm
-2

K
-1

 and -864 mmd
-1

 for the heat and 317 

freshwater fluxes respectively. Note that the value of the coefficient for freshwater flux 318 

significantly differs for those used in previous studies (Servonnat et al., 2015, Sanchez-319 

Gomez et al., 2016, Bilbao et al., 2021). The rationale of this is to have the same 320 

restoring time scale for SST and SSS, that is 60 days for a mixed layer of 50m (Barnier et 321 

al., 1995). The 3D Newtonian damping is applied as follows: On the vertical, there is no 322 

damping above the mixed layer to allow for physical coherence between the mixed layer 323 

and the surface processes. Below the thermocline down to 800 m depth, the damping 324 

term is set to 10 days and for the deep ocean below, a weak damping is used (~one year). 325 

Horizontally, subsurface nudging is only applied outside the 15°S–15°N latitudinal band 326 

and from 300 km off the coast to avoid spurious vertical currents at the equator and 327 

coastal effects respectively (Sanchez-Gomez et al., 2016). A buffer zone of 5
o
 is 328 
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considered between the nudged zones and the rest of the ocean. Similar nudging 329 

methodologies are also adopted in Bilbao et al. (2021) in order to obtain initial states for 330 

seasonal and decadal predictions. The ASSIM simulation has been duplicated with a set 331 

of perturbed parameters in order to obtain an ensemble of 3 members. For this, the ocean 332 

and atmosphere diffusivity have been slightly perturbed separately to produce additional 333 

ASSIM members (see Figure 1).  334 

 Step 3: the ASSIM ensemble will be used as initial conditions for all the CNRM-ESM2.1 335 

components for both seasonal and interannual predictions. Only the atmospheric restarts 336 

provided by ASSIM are modified in order to adapt C3PS to seasonal forecasting. For this 337 

purpose, the dynamical fields contained in the restarts of ARPEGE in the ASSIM 338 

ensemble are replaced by the dynamical fields provided by the ERA5 reanalysis 339 

(Hersbach et al., 2020). Finally, the prediction procedure is performed as follows: For the 340 

seasonal timescale, two initializations per year are considered, that is, 1
st
 May and 1

st
 341 

November. For each start date, an ensemble of 30 members is generated. The atmosphere 342 

is perturbed by using a small increment of the atmospheric dynamical fields provided by 343 

ERA5. This increment, introduced only at the initialization time, is drawn randomly from 344 

a set of increments computed during a previous historical atmospheric nudging 345 

simulation where the ARPEGE model is weakly constrained towards the ERA5 346 

reanalysis (Batté and Déqué 2012). Ten increments were used for each ASSIM member, 347 

thus building a 30-member ensemble. Seasonal predictions starting 1
st
 May are run for 6 348 

months. For the multi-annual timescale, the perturbation procedure is identical to that of 349 

the seasonal scale, except that only the forecast starting on 1st November is continued up 350 

to 5 years, and with only 15 members. Hereinafter the set of seasonal to multiannual 351 

predictions will be referred to as PRED. 352 

 353 

 354 

3 Datasets and methods to assess C3PS performances 355 

 356 

3.1 Reference datasets for verification 357 

  358 

Several observational and pseudo-observational products have been used to evaluate the ASSIM 359 

reconstruction (section 4) and to compute the forecast skill scores for PRED (section 5).  360 

 361 

The physical variables we have considered are: air temperature at 2m (SAT), ocean temperature 362 

and salinity, Ocean Heat Content (OHC), Arctic sea ice concentration (SIC) and extent (SIE) and 363 

Atlantic Meridional Overturning Circulation (AMOC). To evaluate ASSIM sea surface 364 

temperature, we use a blended product consisting  of an average of the Hadley Centre Sea Ice 365 

and Sea Surface temperature version 1 (HadISST1, Rayner, 2003) and ERSST v5 (Huang et al., 366 

2017) over ice‐free sea water. Over land and over sea-ice we average BEST (Muller, Curry, et 367 

al., 2013; Muller, Rohde, et al., 2013), CRU‐TS4‐00 (Harris et al., 2014), and GHCN‐CAMS 368 
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(Fan and van den Dool, 2008). Note that to compute skill scores for SAT we have used the 2m 369 

temperature from JRA55do reanalysis from 1960-onwards (Tsujino et al., 2018).  370 

 371 

The latest EN4 objective analysis product is used as a reference for 3D ocean temperature and 372 

salinity (Good et al., 2013) and for OHC computation. This is a 1
o
x1

o
 gridded dataset derived 373 

from ocean and temperature profiles with quality checks, which runs from 1900 to present. Here 374 

we have considered the EN4 analyses with the Gouretski and Reseghetti (2010) bias correction. 375 

SST and SIC reference data are issued from Hadley Centre Sea Ice and Sea Surface temperature 376 

v4 dataset (HadISSTv4, Kennedy et al., 2017), which combines satellite and in-situ data to 377 

provide global picture of the ocean surface over a regular 0.25
o
 grid for the period 1850 onwards. 378 

We use the RAPID time series of the AMOC measured at 26
o
N as reference data (Moat et al., 379 

2022), which are available from 2004 to 2022.  380 

  381 

To analyse biogeochemistry, we focus on surface chlorophyll, integrated net primary production 382 

and global (land and ocean) carbon fluxes. Monthly means of chlorophyll-a concentration with a 383 

spatial resolution of 1° were issued from the ESA Ocean Colour Climate Change Initiative 384 

(ESA-OC-CCIv3.1) project (Valente et al., 2022, https://climate.esa.int/en/projects/ocean-385 

colour/). Net primary production (NPP) was obtained using a spectrally resolved model to 386 

simulate changes in photosynthesis as a function of irradiance (Kulk et al., 2020). This model 387 

incorporates vertical structure in chlorophyll-a concentration from OC-CCIv4.1. NPP data are 1° 388 

gridded and are available for the period 1998-2021. Carbon fluxes are evaluated by using the 389 

Global Carbon Project (GCP) reconstruction between 1959 and 2021 (Friedlingstein et al., 390 

2022).  This reconstruction currently represents the best estimates of the global carbon sink over 391 

the industrial era since 1959. For the ocean carbon sink (fCO2) we use the Surface Ocean CO2 392 

Atlas version 2022 (SOCATv2022; Bakker et al., 2022) for the period 1990–2021. 393 

 394 

To evaluate ASSIM reconstruction, besides the observational and analysis products described 395 

above, we consider the FORCED simulation, and the historical experiment performed with 396 

CNRM-ESM2.1 for CMIP6/DECK (Séférian et al., 2019) and referred here as FREE, which 397 

represents the free model (no data assimilation) run.  398 

 399 

3.2 Metrics for skill assessment 400 

 401 

The pseudo full-field initialization strategy used in C3PS requires to remove the forecast drift 402 

that inevitably occurs in any climate prediction system before performing the verification with 403 

observations and the skill estimate. We use the standard approach of transforming the raw model 404 

data into anomalies relative to the climatological forecast for each lead time.  405 

         406 

      X’ j,l = X j,l - Xl                                                                                                        (1) 407 

  408 
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Where Xj,l represents the ensemble-mean forecast from starting date j at lead time l and Xl  is the 409 

average over these forecasts over all starting dates for a given lead time. This is the so-called 410 

mean drift correction method, which assumes that forecast drift does not depend on the 411 

background climate state, i.e. the drift is not considered to change between two different climate 412 

states from the point of view of global warming (Garcia Serrano and Doblas-Reyes 2012, Meehl 413 

et al., 2014). Note that for the forecast period 1960-2021, the number of starting dates is 62 x 2 414 

for the seasonal, and 62 for the interannual timescales. In the case of interannual forecasts, 415 

starting on 1
st
 November each year, we focus our analysis on the following 5 years beginning in 416 

January (2 months after the initialization). 417 

  418 

For both seasonal and interannual timescales we use the standard verification framework as 419 

outlined in Goddard et al. (2013). We rely on the anomaly correlation coefficient (ACC), root 420 

mean square error (RMSE) and the Mean Square Skill Score (MSSS). The MSSS is especially 421 

used to assess the added value of the initialization and it is computed following equations 4-6 422 

from Goddard et al. 2013. A MSSS score greater than 0 means that PRED is more accurate than 423 

FREE. For the seasonal forecast, persistence scores are used as a benchmark of C3PS scores and 424 

a t-test for assessing the statistical significance of the correlation. 425 

 426 

According to Goddard et al. (2013), for the skill maps and in order to remove small-scale 427 

unpredictable noise, all model and observational data are interpolated to a common 5-degree 428 

regular grid using the ESMF patch interpolation included in the NCAR command language –429 

NCL.  430 

 431 

We assess the added value of the initialization in C3PS by comparing the hindcasts PRED and 432 

the non-initialized historical ensemble (FREE) against FORCED or JRA55do for atmospheric 433 

variables. To properly evaluate skill differences between PRED and FREE, either through ACC 434 

or MSSS, a non-parametric bootstrap technique ia used to assess the statistical significance of the 435 

skill scores (Goddard et al., 2013; Yeager et al., 2018). A block-bootstrap distribution of the 436 

scores is constructed at each location (grid point or time series) by resampling (with 437 

replacement) pairs of observations and hindcasts across the time dimension, and in addition, the 438 

PRED and FREE ensembles across the ensemble member dimension. Following these previous 439 

papers, we use a block size of 6 years as a trade-off between autocorrelation of the physical 440 

variables and the number of blocks (results are very similar to those based on 5 or 7-year blocks). 441 

The derived p-values are estimated as in Yeager et al. (2018).  442 

 443 

Finally, the hindcast performance is evaluated by considering the so-called “potential 444 

predictability”, which consists in using as reference dataset the ASSIM experiment (Yeager et 445 

al., 2022). The skill calculated with respect to ASSIM is the maximum that C3PS can achieve. 446 

The notion of “potential predictability” is also interesting to assess forecast performance for 447 

biogeochemistry, since observations are available over a short period of time. We will compare 448 
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“potential predictability” versus “effective predictability”, the latter being estimated considering 449 

FORCED or JRA55do reanalysis as reference. 450 

 451 

4 Basic evaluation of the C3PS initialization procedure 452 

 453 

The assessment of the C3PS initialization strategy aims to determine how far the nudging of the 454 

ocean physics has affected the performance of CNRM-ESM2.1 at simulating relevant physical 455 

and biogeochemistry fields. 456 

 457 

Figure 2 shows that FREE exhibits common coupled model biases in the North Atlantic Ocean - 458 

the so-called “blue spot” - the southeastern Tropical Atlantic along the Benguela coast and the 459 

equatorial Pacific cold tongue. Those biases are reduced in ASSIM, as expected. Over land, 460 

ASSIM and FREE do not differ much in terms of biases, though over some regions like North 461 

America, Northern Africa temperature biases are slightly reduced. This fact indicates that ocean 462 

nudging does not have much impact over the continental areas.  463 

 464 

 465 

 466 
Figure 2.  Departure in blended surface temperature of FREE (a) and ASSIM (b) simulations from observations 467 
over 1960–2014. Blended surface temperature combines surface-air temperature over land and sea ice and sea 468 
surface temperature over ice-free sea water. Observations average several data sets: HadISST1 (Rayner, 2003) and 469 
ERSST v5 (Huang et al., 2017) over ice‐free sea water; BEST (Muller, Curry, et al., 2013; Muller, Rohde, et al., 470 
2013), CRU‐TS4‐00 (Harris et al., 2014), and GHCN‐CAMS (Fan & van den Dool, 2008) over land and sea ice. 471 
Units are in degrees Celsius. 472 
 473 

Ocean temperature and salinity fields were used to nudge the ocean component of CNRM-474 

ESM2.1 in order to generate ASSIM as explained above. Therefore, it is essential to evaluate 475 

both the performance of FORCED to simulate the mean state of the subsurface ocean as 476 

informed by observations, and then to evaluate the bias reduction of the ASSIM simulation with 477 

respect to the FREE simulation. Figure 3 displays thus the departure in ocean temperature and 478 

salinity at 100 m depth of FORCED with respect to observations, and of FREE and ASSIM with 479 

respect to FORCED. The FORCED simulation captures the main distribution of ocean 480 

temperature at the subsurface as depicted from observations. Nonetheless, FORCED 481 
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overestimates temperature in the tropical Atlantic and across the North Pacific and the Southern 482 

Oceans, while it underestimates it East of New-Zealand and in the tropical Pacific. In addition, 483 

the FORCED simulation strongly underestimates temperature in the North Atlantic where a well-484 

documented “warming hole” has been related to a persistent slowdown of the Atlantic 485 

meridional overturning circulation (Drijfhout et al., 2012; Menary et al., 2028; Swingedow et al., 486 

2021). By contrast, salinity is underestimated in this region, over the polar region and  most 487 

regions of the Pacific Ocean, as reported in Voldoire et al. (2019). 488 

 489 

   490 

 491 
 492 
Figure 3. (a, d) Difference of ocean temperature and salinity at 100 m depth between FORCED with respect to EN4 493 
observations over 1960-2014. Differences between FREE (b, e) and ASSIM (c, f) with respect to FORCED over the 494 
same period. Spatial correlations  and RMSE of the time average over the whole period are shown on the top of each 495 
figure. Correlations and RMSE are computed against EN4 for (a, d) and against FORCED simulation for (b, c, e, f). 496 
Observations are extracted from the quality-controlled EN4 dataset (Good et al., 2013). Units are in degrees Celsius 497 
for temperature and psu for salinity. 498 

 499 

As mentioned above, the nudging in subsurface waters is only applied in latitudes higher than ± 500 

15º. Accordingly, as seen in Figure 3, main differences of the ASSIM simulation with respect to 501 

the FORCED simulation occur in tropical regions, where the ASSIM tends to underestimate both 502 

temperature and salinity. In contrast, the underestimation of temperature expands to the Atlantic 503 

and Pacific Oceans in the FREE simulation, while it overestimates temperature in the Southern 504 

Ocean and the California Current. The FREE simulation also underestimates salinity across most 505 

of the Atlantic and Pacific oceans, while it overestimates it across the North Pacific and the 506 

Indian oceans.  507 

 508 

In conclusion, as expected, in both FORCED and ASSIM, the biases in surface and subsurface 509 

are strongly reduced compared to the FREE run, which confirms the validity of the methodology 510 

to generate oceanic initial conditions. 511 
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 512 

4.1  Drivers of seasonal climate variability 513 

 514 

In order to evaluate the realism of ASSIM in accounting for ENSO variability, we focus on how 515 

the nudging procedure impacts the ENSO diversity considering that this is a fundamental ENSO 516 

property that determines its seasonal evolution and teleconnections (Capotondi et al., 2020). The 517 

ENSO diversity or complexity (Timmerman et al., 2018) refers to the existence of warm and 518 

cold events with different SST patterns and amplitudes, with the extreme warm events being of 519 

Eastern Pacific type, while moderate warm and cold events being of Central Pacific type. 520 

Although the CNRM-ESM2.1 model (FREE) has some skill in simulating ENSO feedback 521 

strength (Lee et al., 2021), it has difficulty in simulating ENSO amplitude diversity, which 522 

manifests as a negative skewness of SST anomaly in the eastern equatorial Pacific.  523 

 524 

 525 

 526 
 527 

Figure 4. Phase space of the first and second principal components (PC) of monthly SST anomalies in the tropical 528 
Pacific (120°E-80°W; 11°S-11°N) with fitted quadratic curves to measure nonlinearity for observations (blue dots, 529 
from HadISST 1960-2020) and the ASSIM runs (orange and red dots). Nonlinearity is measured by fitted quadratic 530 
curves between PC time series (blue: observations, red: ASSIM, black: FORCED, red: FREE). The PC time series 531 
have been rotated by 45° to infer the E and C indices. Three different types of observed El Niño events are 532 
highlighted with light blue circles (December): 1997: Extreme Eastern Pacific El Niño, 2009: Central Pacific El 533 
Niño and 2015 mixed-type. 534 

 535 

Here as a compact measure of ENSO diversity (or nonlinearity), we use the value of the first 536 

coefficient of a quadratic fit in the phase plane of the first and second principal components 537 

(PCs) of SST anomalies in the tropical Pacific (Karamperidou et al., 2017; Cai et al., 2018), 538 

hereafter referred to as . For HadISSTv4 data, the two branches of this quadratic fit tend to 539 



manuscript submitted to JAMES 

 

align along axis that correspond to the PC1 and PC2 axes rotated by 45° (Figure 4). The rotation 540 

of the PC time series defines the E and C indices, with E=(PC1-PC2)/√2 and C=(PC1+PC2)/√2, 541 

that account for the variability of Eastern Pacific events and Central Pacific events (Figure 5, 542 

top), respectively (Takahashi et al., 2011). While  = -0.33 for observations,  = 0.10  0.06 for 543 

FREE (the error corresponds to the standard deviation amongst the 10 members), which results 544 

from the negative ENSO asymmetry of the CNRM-ESM2.1 model (Lee et al., 2021). ASSIM has 545 

a more realistic ENSO non-linearity ( = -0.29), almost identical to FORCED ( = -0.28), 546 

indicating that the nudging procedure succeeds in restoring positive ENSO asymmetry to the 547 

observed value, along with improving ENSO diversity (see the blue curve paralleling the red 548 

curve in Figure 4). Still, ASSIM tends to have a larger ENSO variability than in the observations 549 

as evidenced by the larger amplitude of the E and C mode patterns compared to observations 550 

(Figure 5 middle), which is due to FORCED overestimating ENSO variability. 551 

 552 

 553 

 554 
 555 

Figure 5. C (left) and E (right) mode patterns for observations (top), FORCED and ASSIM (middle panels) and 556 
FREE (bottom). Dispersion (rms amongst the ensemble) is indicated for FREE  in white contours. 557 

 558 

4.2  Drivers of interannual to decadal climate variability 559 



manuscript submitted to JAMES 

 

 560 

To examine the drivers of interannual to decadal Pacific variability simulated by ASSIM, we 561 

focus on the Tripole Pacific Index (TPI) as defined by Henley et al. (2015). The TPI is a proxy of 562 

the Interdecadal Pacific Variability (IPV) and it is based on the difference between the SST 563 

anomalies averaged over the central equatorial Pacific minus the average of the SST anomalies 564 

in the Northwest and Southwest Pacific (see Henley et al., 2015 and Bilbao et al., 2021 for more 565 

details). Here, we do not consider SST anomalies as we are interested not only in the phase of the 566 

low frequency variability, but also in the model mean state. ASSIM and FORCED are coherent 567 

with HadISSTv4 SSTs evolution (Figure 6a), which is expected due to the sea surface restoring. 568 

The temporal correlation of ASSIM ensembles mean and FORCED with respect to HadISSTv4 569 

is 0.92 (see Table 1). Interannual variability of TPI is underestimated by the FREE ensemble as 570 

shown by Figure 6a and the variance ratio in Table 1. The smaller amplitude of Pacific decadal 571 

variability in the CNRM-Cerfacs models was also reported in Voldoire et al. (2019), which 572 

suggests a lack of the ENSO teleconnection at decadal timescales. In terms of RMSE, ASSIM 573 

presents an improvement with respect to FREE (Table 1). Interannual variability of OHC 574 

integrated over the first 300 meters (OHC300) indicates  that ASSIM is quite in phase with EN4, 575 

with a correlation value of 0.79 (Figure 6b, Table 1). ASSIM also improves the amplitude of the 576 

interannual variability with respect to FREE (see Table 1).  577 

 578 

 579 
Figure 6.  (a) Tripole Pacific Index (TPI) annual time series from 1960 to 2021 for the SST and (b) OHC integrated 580 
over the first 300m for the FREE ensemble (green), ASSIM ensemble (red), FORCED (black solid) and 581 
HadISSTv4/EN4 (blue). (c) Subpolar North Atlantic (SPNA) index annual time series from 1960 to 2021 for the 582 
SST and (d) OHC integrated over the first 700m for the same experiments. For the Ocean Heat Content the 583 
observational reference is EN4. The TPI index is computed from raw data according to Henley et al. 2015. The 584 
SPNA index from raw data is obtained according to Bilbao et al. 2021 (SPNA: 50–65◦N, 60–10◦W). For FREE and 585 
ASSIM the ensemble means (thick line) and plus/minus one standard inter-members deviation is shown (red and 586 
green shading). 587 
 588 
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 589 
 590 
 591 
 592 
 593 
 594 

 TPI (SST) 
FORCED  ASSIM  FREE 

TPI(OHC300)  
FORCED  ASSIM  FREE 

SPNA(SST) 
FORCED  ASSIM  FREE 

SPNA(OHC700) 
FORCED  ASSIM  FREE 

Correlation 0.92    0.92    0.01   0.95   0.79    0.14    0.93   0.90   0.16  0.93    0.91    0.16 

Variance 

ratio 

1.17    1.06    0.83   0.96   0.83    0.71  0.91   0.84   1.30 0.95    0.90    1.57 

RMSE 0.39    0.25    0.79 0.37   0.37    0.57 0.58   0.52   0.99      0.01    0.01    0.01 

 595 
Table 1.  Performance  metrics (correlation, variance ratio and RMSE) computed with respect to the observational 596 
references and the different experiments: FORCED, ASSIM and FREE. The time series used to compute the metrics 597 
are displayed in Figure 6.  The values shown for ASSIM and FREE are the ensemble mean of the values computed 598 
for each individual member. 599 

 600 
 601 

Regarding the OHC300 mean state, ASSIM and FORCED exhibit a cold bias which is weaker 602 

than in FREE (Table 1, RMSE). This cold bias of CNRM-ESM2.1 is also present in the coupled 603 

ocean-atmosphere climate model CNRM-CM6.1 (Voldoire et al. 2019). In general, like most 604 

coupled models, CNRM-Cerfacs models show a cold temperature bias in the Pacific Ocean from 605 

the surface to around 300m depth. This cold bias is suggested to be caused by too strong surface 606 

winds curl exerting a pronounced wind curl into the ocean (see also Figure 3c). From Figure 6b, 607 

ASSIM mean state lies in between the reference data EN4 and FREE, indicating that initializing 608 

the ocean component of CNRM-ESM2.1 from ASSIM could potentially reduce the model drift 609 

in the predictions, which is actually the scope of our initialization procedure.  610 

 611 

Another driver of interannual to decadal ocean variability is the Atlantic Multidecadal Variability 612 

(AMV). It was shown that CNRM-Cerfacs models simulate quite well the AMV spatial pattern 613 

with regards to observations (Voldoire et al., 2019). Here we analyze the Subpolar Gyre in the 614 

North Atlantic (SPNA), which is closely correlated to the AMV. The SPNA SST time series 615 

(Figure 6c) exhibits a high temporal correlation in ASSIM and FORCED versus HadISSTv4, 616 

which is 0.90 and 0.93 respectively (see Table 1). Moreover, observations lie within the FREE 617 

multi-member spread, indicating that in terms of mean state, the free model performs quite well 618 

for this area. Note that the members of FREE show a pronounced variability, as also indicated in 619 

the variance ratio in Table 1. Indeed, the models CNRM-CM6.1 and CNRM-ESM2.1 are 620 

characterized by a large SST variance over the SPNA at decadal timescales, which is strongly 621 

correlated to AMOC variations, Arctic freshwater flux balance and northward salt transports 622 

from the tropical area (Voldoire et al., 2019). The marked decadal variability in FREE is also 623 

visible in the OHC integrated over the first 700m (Figure 6d and Table 1). Once again, the 624 

correlation of ASSIM with regards to EN4 (0.91) indicates a good temporal coherency in the 625 

ocean subsurface.  626 
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As mentioned above, AMOC variations simulated by CNRM-ESM2.1 are highly correlated to 627 

decadal variability over the SPNA and Northern Seas (Voldoire et al., 2019). Time series of 628 

maximum AMOC at 26
o
N show a large low frequency variability in the members of FREE 629 

(Figure 7a), previously documented in Séférian et al. (2019) and Waldman et al. (2021). The 630 

mean AMOC value at 26
o
N of FREE is 16.4 ± 2.3 Sv for the period 1960-2014. The uncertainty 631 

in the latter value is estimated by considering one standard deviation amongst the members of 632 

the ensemble. The FREE ensemble AMOC is in good agreement with the RAPID mean value of 633 

16.8 Sv for the observed period. Moreover, the depth of maximum observed AMOC is well 634 

simulated by FREE (Figure 7b). FORCED and ASSIM show a weaker AMOC (Figure 7a-b), 635 

with mean values of 12.2 ± 0.7 and 12.6 ± 0.8 respectively. The GCP experimental protocol used 636 

to perform FORCED is quite similar to those proposed in OMIP2/CMIP6 (Tsujino et al., 2020). 637 

The latter study documents that, in general, the forced ocean simulations show a lower AMOC 638 

intensity compared to RAPID. This underestimation of the AMOC is even more pronounced in 639 

the NEMO3.6/GELATO forced model configurations, suggesting that coupling with the 640 

atmosphere plays an important role in this high variability and intensity of the AMOC in the 641 

CNRM-Cerfacs models. The nudging of the temperature and salinity constraints to some extent 642 

the AMOC in ASSIM, whose correlation is 0.60 with respect to FORCED. 643 

 644 

Figure 7. (a) Time series of the maximum AMOC at 26oN for the FREE ensemble (green), ASSIM ensemble (red), 645 
FORCED (black solid) and RAPID data (blue). Units in Sv. (b) Vertical profile of AMOC at 26awaoN for the FREE 646 
ensemble (green), ASSIM ensemble (red), FORCED (black solid) and RAPID data (blue). Units in Sv. For (a) and 647 
(b) the FREE and ASSIM the ensemble means are shown (thick line) together with plus/minus one standard inter-648 
members deviation (shading). (c) Temperature-Salinity diagram over the Labrador Sea area (70oW-45oW, 50oN-649 
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68oN) at 700m depth for the FREE ensemble (green), ASSIM ensemble (red), FORCED (black solid) and EN4 data 650 
(blue). (d) The same as (c) but for the GIN-Sea area (25oW-10oE, 65oN-80oN). Only ensemble means are shown for 651 
FREE and ASSIM. Potential density is computed from the NCL function “rho_mwjf”.  652 

 653 

The reason of the AMOC underestimation of ASSIM and FORCED can be partially explained by 654 

less dense subsurface waters of ASSIM and FORCED compared with FREE over the deep 655 

convection areas, i.e. Labrador and GIN seas (Figure 7cd). These differences of density are 656 

mainly explained by warmer and less salty waters in FORCED and ASSIM, which are less 657 

realistic than those of FREE. The impact of the T/S nudging of CNRM-ESM2.1 towards 658 

FORCED seems to affect freshwater fluxes over the Labrador and GIN-Sea regions, since 659 

ASSIM is less salty than FORCED. The AMOC and related ocean deep convection 660 

characteristics in the ASSIM simulations are consistent with regional features of the Arctic Sea 661 

Ice Concentration (SIC) climatology (not shown). Indeed, FREE presents a more extended sea 662 

ice area with regards ASSIM over the marginal seas in winter, which is coherent with colder and 663 

saltier waters over the Labrador and GIN-Seas. 664 

 665 

Figure 8. Seasonal cycles of the Arctic Sea Ice Extension (SIE) (a) and Volume (b) computed in the period 1960 to 666 
2021 for the FREE (green), ASSIM (red), FORCED (black solid) and HadISSTv4 (blue). For FREE and ASSIM the 667 
ensemble means (thick line) and plus/minus one standard inter-members deviation is shown (shading).  668 

 669 

Annual cycle of SIE and SIV shows that ASSIM is comparable to the FREE ensemble (Figure 670 

8ab), except from October to December where ASSIM performs better than FREE. In general, 671 

FORCED, ASSIM and FREE overestimates the maximum Arctic SIE which is connected to a 672 

too cold mean state with respect to HadISSTv4 (Figure 8a). The SIV simulated by ASSIM 673 

overlaps the FREE climatology, indicating a weak control of the nudging on the volume. The 674 

correlations between ASSIM and FORCED interannual time-series of SIE are 0.82 and 0.36 for 675 

March and September respectively (not shown). The high correlation indicates that the nudging 676 

largely constrains the SIE in the ASSIM ensemble. Less control of nudging is shown for SIV, as 677 
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indicated by the correlation coefficient of 0.45 and 0.26 between ASSIM and FORCED for the 678 

climatological maximum and minimum. Our results show that CNRM-ESM2.1 will be initialized 679 

from sea ice conditions close to FREE, which could be beneficial for sea ice drift, which may 680 

exert detrimental effects on predictability in the SPNA zone (Huang et al., 2015, Bilbao et al., 681 

2021).  682 

 683 

4.3  Biogeochemistry 684 

 685 

The biases of both ocean surface chlorophyll maximum and minimum show that the FORCED 686 

simulation has difficulties in representing surface chlorophyll patterns (Figure 9a-d). In general, 687 

the FORCED simulation underestimates the maximum chlorophyll values in the North Atlantic 688 

and North Pacific oceans, while it overestimates both maximum and minimum chlorophyll 689 

observations in both the Pacific and Southern oceans. The FORCED simulation also 690 

overestimates observations in the North Atlantic. The FREE biases with respect to the FORCED 691 

simulation are stronger over the western boundaries in the northern oceans and over the Southern 692 

Ocean for chlorophyll minimum (Figure 9b-e). The difficulties of CNRM-ESM2.1 to represent 693 

surface chlorophyll over the Southern Ocean were documented in Séférian et al. (2019), and 694 

related to erroneous phytoplankton growth representation over the high-nutrients areas. Coastal 695 

chlorophyll biases were explained by deficiencies in remote-sensing products to represent coastal 696 

concentrations of surface chlorophyll (e.g. Gregg and Casey, 2004).  697 

 698 

 699 
 700 
Figure 9. (a, d) Difference of ocean surface chlorophyll maximum (top panels) and minimum (bottom panels) 701 
between FORCED with respect to ESA-OC-CCIv3.1 observations over the period 1998 to 2017. Differences 702 
between FREE (b, e) and ASSIM (c, f) with respect to FORCED over the same period. Global average spatial 703 
correlations and RMSE are shown on the top of each figure. Correlations and RMSE are computed against 704 
WOA2018 for (a, d) and against FORCED simulation for (b, c, e, f). Surface chlorophyll maximum corresponds to 705 
the average over the months March, April, and May. Surface chlorophyll maximum corresponds to the average over 706 
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the months August, September, and October. Observations correspond to monthly climatological data extracted 707 
from the quality-controlled 1º resolution ESA-OC-CCIv3.1 dataset (Valente et al., 2022). 708 

 709 

ASSIM biases with respect to the FORCED simulation are still similar to those shown for the 710 

FREE simulation (Figure 9c-f). A lower RMSE and higher pattern correlation quantitatively 711 

indicate that ASSIM deviations from FORCED are smaller, pointing at a marginal impact of the 712 

sea surface restoring and 3D nudging. However, the nudging applied to temperature and salinity 713 

does not  improve chlorophyll concentrations because it fails at improving distribution of 714 

nutrients in most regions. Indeed, an analysis on the biases of both surface nitrate (NO3) 715 

concentrations and mixed layer depth (MLD) between FREE and ASSIM with respect to 716 

WOA2018 climatology (Supplementary Figure S1), suggests that the biases in NO3 are too 717 

strong to be compensated by the nudging on ocean physics. Moreover, in both the Southern 718 

Ocean and the North Atlantic, an underestimation of the MLD together with an overestimation of 719 

NO3 may explain the consistent overestimation of surface chlorophyll minimum in those 720 

regions. Nutrient-rich waters that concentrate within a shallow MLD will strengthen the 721 

excessive development of phytoplankton. Phytoplankton growth in these regions will become 722 

limited by light availability, which explains why the overestimation of surface chlorophyll 723 

maximum is not as high as for surface chlorophyll minimum, especially over the North Atlantic. 724 

 725 

 726 
 727 
Figure 10. Scatterplot of the variance ratio experiment/observation versus temporal correlation 728 
(experiment/observations) for the integrated primary productivity averaged over the (a) whole tropical regions (30S-729 
30N), (b) the tropical Pacific, (c) the tropical Atlantic  and (d) the Indian Ocean for the FREE ensemble (green), 730 
ASSIM ensemble (red), FORCED (black solid). Blue dashed line indicates a perfect match (=1) for the variance 731 
ratio. The observational reference is issued from Kulk et al., 2016 dataset for the available period 1998-2018. 732 
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 733 

The impact of the nudging on NPP is diagnosed over the Tropical oceans in terms of interannual 734 

variability and temporal coherence with respect to observational estimates. Figure 10a shows that 735 

the nudging leads to an improvement of simulated interannual variance and temporal coherence 736 

with observations for ASSIM with respect to FREE in the tropical band. This improvement 737 

comes from the Tropical Pacific (figure 10b), for which the correlation between ASSIM and 738 

observations is high (around 0.6). The fact that the sea surface restoring improves the phasing of 739 

the NPP interannual variability of CNRM-ESM2.1 with respect to NPP observational estimates 740 

over the Pacific Ocean was also documented by Séférian et al. (2014). The SST restoring induces 741 

an improvement of SST gradients and short-term dynamical adjustment of winds, which 742 

combined with a good representation of nutrients over the area by CNRM-ESM2.1 can lead to a 743 

better simulated NPP. Contrary to the Pacific, oceanic nudging does not induce a clear impact in 744 

the NPP representation in the other tropical basins. In the Atlantic and the Indian oceans, ASSIM 745 

and FREE results are very similar. 746 

 747 

The impact of the nudging on the ocean carbon sink is assessed in terms of trends and variability 748 

in Figure 11. Figure 11a shows that FREE and ASSIM simulations capture the long‐term 749 

increase of the global carbon sink as shown by the Global Carbon Project (GCP) reconstruction 750 

between 1990 and 2021 (Friedlingstein et al., 2022). Interestingly, both FREE and ASSIM 751 

capture the strengthening of the ocean carbon sink over the recent years, whereas GCP models 752 

do not. Nonetheless, it is difficult to identify an impact of the nudging on the simulated trends in 753 

ocean carbon sink in ASSIM with respect to FREE. In particular, the nudging does not improve 754 

the representation of the decadal swing of the ocean carbon sink observed before and after the 755 

2000s. Indeed, all models' configurations fail at capturing the slowdown of the ocean carbon sink 756 

in the 2000s, including ASSIM. Yet, models display a better agreement with the data-product 757 

displaying  a weaker variability. 758 

 759 

 760 
 761 
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Figure 11. a) Annual time-series of the ocean carbon sink from 1990 to 2021 for FREE and ASSIM ensembles and 762 
GCP data product (Friedlingstein et al. 2022). The ocean carbon sink is represented in anomaly with respect to the 763 
long-term mean over the 1990-2021 period.. The ensemble mean of available  GCP ocean biogeochemical models 764 
and observational data products are given in gray and dark blue. For the sake of discussion, the ensemble of the 8 765 
available data-products is splitted in two sub-ensemble characterized by either a stronger (GCP data Strong Var, +) 766 
and lower (GCP data Low Var, ~) variability than the ensemble mean. b) Scatter plot comparing model properties in 767 
terms of variability of the ocean carbon sink (y-axis) and the chronology of the ocean CO2 fugacity (fCO2) over the 768 
1990-2021 period is provided for individual realization of FREE (green), ASSIM (red) and GCP models (gray). The 769 
ensemble average is given by the green, red and black crosses for FREE, ASSIM and GCP models. 770 
 771 
 772 

Figure 11b helps to identify the added value of the nudging by scrutinizing its impact on the 773 

simulated variability in terms of magnitude and chronology. The nudging improves the 774 

consistency between modelled and observed chronology in ocean fugacity, and slightly 775 

reinforces the magnitude of the ocean carbon sink variability. This improvement is due to the 776 

fact that fCO2 is driven by changes in  temperature and  salinity in the ocean, which are directly 777 

impacted by the nudging approach. Although small, the improvement in the modelled 778 

chronology of the ocean carbon sink variability has the potential to improve the capability of the 779 

model to predict year-to-year variation in ocean carbon sink. 780 

 781 

5 Skill assessment of key climate and biogeochemical fields 782 

5.1  Seasonal timescale 783 

 784 

ENSO diversity is considered to assess forecast performance of C3PS considering that central 785 

and eastern equatorial Pacific variability modes convey different tropical teleconnections outside 786 

the tropical Pacific. For that, the forecast members are projected on the spatial patterns of the two 787 

ENSO modes shown in Figure 5 to obtain the E and C indices. As a reminder the E and C indices 788 

are uncorrelated by construction. ACC values for the start date of 1
st
 November show very high 789 

and significant scores for all leadtimes (Figure 12a,b). C3PS performs better than persistence for 790 

leadtimes greater than 6 months (i.e summer after the initialization) for the E-mode and for all 791 

leadtimes for the C-mode. C3PS is more skillful at predicting central Pacific ENSO variability  792 

than eastern Pacific ENSO variability, which results from difficulty in predicting strong El Nino 793 

events that are of E type, a common feature of seasonal prediction systems (L’Heureux et al., 794 

2020). In general, the central equatorial Pacific is more predictable than the eastern edge, where 795 

ENSO-related phenomena involve a sharp change in convective regime and non-linear oceanic 796 

processes, resulting in a strong positive skewness of the E index (Takahashi et al., 2011). Most 797 

coupled models, like CNRM-ESM2.1, have also a warm bias in the far eastern Pacific that is 798 

influential on the forecasts (L’Heureux et al., 2022). 799 

 800 

C3PS is rather effective since the predictive skill levels remain high for almost one year after 801 

initialization. Potential predictability is slightly higher, the difference with ACC computed from 802 
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observations increases at longer leadtimes. We have checked that the C3PS performances at 803 

predicting ENSO during the period 1960-2021 are comparable to the current seasonal predictions 804 

systems such as SEAS5-20C (Weisheimer et al., 2021; Sharmila et al., 2022) (not shown). 805 

RMSE scores, which take into account the prediction of the ENSO amplitude, beat persistence 806 

scores for longer leadtimes (Figure 12cd). Again, potential predictability is above, in particular 807 

for ENSO-C.  808 

 809 
 810 

Figure 12. ENSO seasonal forecast skill: (a, b) ACC skill and (c, d) rms error for the ensemble-mean as a function 811 
of leadtime for the E and C indices over the period 1960-2021 for the initialization in 1st November and compared to 812 
persistence forecasts (dotted line). Red is for ASSIM as the benchmark data (i.e. potential predictability) and the 813 
blue is for HadISST data as the reference. Dots indicate where the correlation is significant at the 95% level based 814 
on a t test. 815 

 816 

ENSO skill for 1
st
 May starting date presents ACC values above persistence from 2 months 817 

onwards leadtimes. Again C3PS achieves better performance for ENSO-C mode. Since boreal 818 

spring (the season of initialization) corresponds to that of the ENSO onset and the usually 819 

enhanced Madden-Julian oscillation variance, we may expect that the system has also good 820 

performance in predicting the tropical Pacific teleconnection at that season. Potential 821 

predictability is higher than “effective” predictability by about 0.1 correlation value on average 822 

for all leadtimes.  823 

 824 

5.2 Multi-annual timescale 825 
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Skill maps of ACC computed between PRED and FORCED for surface temperature show high 826 

and significant skill over large portions of the globe for lead times Y1, Y2 and Y1-5 (Figure 14, 827 

left column). ACC scores are usually higher in the tropics than in the extra-tropics. For Y2, the 828 

skill rapidly decreases over the Eastern Pacific and the Southern Ocean but remains high and 829 

significant over the North Atlantic and Indian Oceans, Europe, Northern Asia, Northern Africa, 830 

North America and some areas in South America. Considering the temporal average over the 831 

five forecast times, the ACC skill is considerably high and significant over a great portion of the 832 

Northern Hemisphere and the Indian Ocean. Potential predictability, measured by the ACC 833 

between PRED and ASSIM, is clearly higher (middle column) in many regions of the globe, 834 

including most of the continental areas, except India.  835 

 836 

 837 
Figure 13. Same as Figure 12 but for the initialization in May (30 members, period: 1960-2018). 838 
 839 

When we compare PRED and FREE skills in terms of potential predictability (Figure 14, right 840 

column), results show that some regions exhibit larger skill scores in PRED at Y1, indicating that 841 

initialization largely improves ACC scores in most of the Pacific Ocean, SPNA, western tropical 842 

Atlantic and northern South-America, central Indian Ocean and eastern Australia. In general, 843 

from Y2 onwards much of the skill is provided by the large externally-forced trend as shown by 844 

the similarity between PRED and FREE skill scores. The regions where initialization still plays 845 

an important role are the SPNA, Equatorial Pacific, Southern Pacific and Indian Oceans, as well 846 

as over North America and Brazil. At longer timescales, the added value of initialisation remains 847 

over the SPNA and Southern Pacific. The fact that one of the areas of clear benefits of the ocean 848 

initialisation is the SPNA is consistent with the results reported by current decadal prediction 849 

systems (IPCC, 2023). 850 
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 851 

The fact that the predictive skill is high in the mid-latitudes over the Pacific at Y1 may indicate a 852 

good predictability of the IPV mode. Indeed, as indicated by MSSS scores of TPI, PRED is more 853 

accurate than FREE at Y1 (Figure 15a), with both “effective” and potential predictability 854 

showing similar scores. Comparison with observational estimates are also shown in Figure 15. 855 

After Y1, PRED and FREE performances become indifferentiable (Figure 14, Figure 15a). 856 

Similarly, focusing  on the SST skill over the SPNA area, MSSS indicates that PRED performs 857 

better than FREE (Figure 15b) for leadtimes up to 3 years. If we focus on potential predictability, 858 

PRED is always more accurate than FREE up to Y4 over the SPNA (Figure 14 and Figure 15c).  859 

 860 

 861 

 862 
Figure 14.  Left column: ACC skill scores for SST over the ocean and SAT over land  computed between PRED 863 
and JRA55do reanalysis for lead times of 1 year (top), 2 years (middle) and 1–5 years (bottom). Middle column: the 864 
same but the ACC is computed between PRED and ASSIM (potential predictability). Right column: Differences 865 
between the ACC the PRED versus FREE when ASSIM is used as reference. All the data were interpolated to a 866 
regular 5-degree grid before the analysis. Stippling with gray dots indicates skill scores that are not significant at the 867 
10% level based on block-bootstrapping as explained in the text. Stippling with light brown dots indicates ACC 868 
differences that are not significant at the 10% level based on block-bootstrapping as explained in the text.  869 
 870 
 871 
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 872 
Figure 15. (a) MSSS skill scores for the SSTs for the TPI. To compute MSSS PRED and FREE are compared with 873 
respect to the same reference: observations (HadISSTv4, blue line), FORCED (black line)  and ASSIM (red line). 874 
Positive MSSS indicates that PRED performs better than FREE. The dots indicate where MSSS is statistically 875 
significant at the 10% level based on block-bootstrapping as explained in the text. (b) The same as (a) but for SSTs 876 
over the SPNA box. The TPI index is computed from raw data according to Henley et al. 2015. The SPNA index 877 
from raw data is obtained according to Bilbao et al. 2022 (SPNA: 50–65◦N, 60–10◦W). 878 

 879 

Forecasting skills of C3PS for biogeochemical variables such as NPP and ocean carbon 880 

fluxes  are also assessed using the concept of “effective” and potential predictability. NPP skill 881 

scores show in general a high level of predictability over midlatitudes at Y1, Y2 and the average 882 

Y1-5 (Figure 16, left column). In contrast, the predictability of NPP in most of the tropics is very 883 

low and even the skill can be even negative when the variability of the NPP is opposite in phase 884 

with that of the target (FORCED or ASSIM). Such  global features of the C3PS predictive skill 885 

for NPP contrast with the results of Séférian et al. (2014) using the IPSL-CM5A-LR model and 886 

SST anomaly initialization scheme but are in line with the findings of Frölicher et al. (2020) 887 

using GFDL-ESM2-M. 888 

 889 
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 890 
 891 

Figure 16.  Left column: ACC skill scores for NPP computed between PRED and FORCED for lead times of 1 year 892 
(top), 2 years (middle) and 1–5 years (bottom). Middle column: the same but the ACC is computed between PRED 893 
and ASSIM (potential predictability). Right column: Differences between the ACC the PRED versus FREE when 894 
ASSIM is used as reference. All the data were interpolated to a regular 5-degree grid before the analysis. Stippling 895 
with gray dots indicates skill scores that are not significant at the 10% level based on block-bootstrapping as 896 
explained in the text. Stippling with light brown dots indicates ACC differences that are not significant at the 10% 897 
level based on block-bootstrapping as explained in the text.  898 

 899 

Potential predictability of NPP shows good skill scores worldwide for Y1 (Figure 17, middle 900 

column). At Y2 NPP skill decreases over some areas in the Equatorial Pacific, western Atlantic, 901 

Northern Indian and Southern Oceans, but in general it remains high and statistically significant 902 

over most of the ocean for Y1-5. Most importantly, NPP skill is high in the areas of highest 903 

marine productivity, such as the equatorial and eastern boundary upwelling systems, in particular 904 

the Canary Upwelling System. The impact of model initialisation is more important on the NPP 905 

than on the SST beyond the second year of forecasting, indicating that the initialisation of the 906 

BGC undoubtedly leads to benefits in predictive ability. PRED performs better than FREE 907 

practically everywhere at Y1 (Figure 17, right column). At longer horizons, ACC differences 908 

show that PRED is more accurate than FREE over the Eastern North Atlantic, including the 909 

Canary Upwelling area,  Tropical Atlantic, North Pacific and Central Equatorial Pacific and most 910 

of the Indian Ocean.  911 

 912 

ACC skill of ocean carbon fluxes with  FORCED as the reference is relatively high and 913 

significant over the tropical band and Southern Oceans during the first 2 years after the 914 
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initialization (Figure 17, first and second column). Such result is consistent with the first multi-915 

model assessment of the ocean carbon sink prediction skills (Ilyina et al. 2021). 916 

 917 

 918 
 919 

Figure 17.  Left column: ACC skill scores for ocean carbon fluxes computed between PRED and FORCED for lead 920 
times of 1 year (top), 2 years (middle) and 1–5 years (bottom). Middle column: the same but the ACC is computed 921 
between PRED and ASSIM (potential predictability). Right column: Differences between the ACC the PRED versus 922 
FREE when ASSIM is used as reference. All the data were interpolated to a regular 5-degree grid before the 923 
analysis. Stippling with red dots indicates skill scores that are not significant at the 10% level based on block-924 
bootstrapping as explained in the text. Stippling with gray dots indicates skill scores that are not significant at the 925 
10% level based on block-bootstrapping as explained in the text. Stippling with light brown dots indicates ACC 926 
differences that are not significant at the 10% level based on block-bootstrapping as explained in the text.  927 

 928 

 929 

C3PS provides skillful predictions of ocean carbon uptake at multiannual scale over the high 930 

latitude oceans and the tropics. Potential predictability is even higher and indicates the important 931 

fact that ocean carbon fluxes can be predictable several years in advance over the areas of large 932 

carbon uptake variability such as North Atlantic and North Pacific oceans and Southern Ocean. 933 

These results support previous predictability studies based on perfect model frameworks or 934 

decadal predictions with ESMs (Lovenduski et al., 2019, Séférian et al., 2019). More 935 

importantly, this potential predictability exceeds that inferred by the knowledge of the external 936 

forcing for the first two years after the initialization (Figure 17, right column). After that time 937 

horizon most of the predictive skill comes from the increase of atmospheric CO2 as the primary 938 

driver of the ocean carbon sink. Within the lead years 1, 2 and 1-5, the predictable fraction of the 939 

ocean carbon sink is 37%,  19%,  16%. At Y1, predictable regions include the North Atlantic and 940 
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the Southern Ocean, the two major ocean carbon sink locations, as well as the Equatorial Pacific. 941 

After Y2, only the Southern ocean carbon sink remains predictable as well as a smaller fraction 942 

of the Equatorial Pacific domain. This result is in line with previous work made with other 943 

modelling prediction platforms (Lovenduski et al., 2019, Séférian et al., 2019). 944 

 945 

6 Conclusions 946 

 947 

In this study, the new climate prediction prototype of the CNRM-Cerfacs modelling group, C3PS 948 

is presented and evaluated. The two main novelties are that C3PS is based on an earth system 949 

model, CNRM-ESM2.1, and has been designed to produce predictions from seasonal to 950 

multiannual scales. C3PS is the result of the joint work of experts in seasonal and decadal 951 

forecasting and modellers of ocean physics and biogeochemistry within the CNRM-Cerfacs 952 

research group. In addition, for interannual predictions, C3PS has participated in the 953 

international DCPP-A exercise, and a subset of the variables produced are published in the 954 

ESGF.  955 

 956 

The initialisation procedure of C3PS consists of a full-field initialisation in which all the model 957 

components are initialised from an in-home reanalysis product obtained in two steps. The first 958 

step is a forced experiment in which ocean and biogeochemistry models are driven by JRA55do 959 

reanalysis following the GCP protocol. In the second step, the T and S of this forced experiment 960 

from step1 are used to constrain only the ocean physics of CNRM-ESM2.1 through sea surface 961 

restoring and a Newtonian damping in the ocean subsurface, as described in Sanchez-Gomez et 962 

al. (2016). This method has been implemented in other climate prediction systems as in Bilbao et 963 

al. (2021). The reconstruction obtained is called dcppA-assim according to the nomenclature 964 

used in the DCPP protocol.  965 

 966 

In this paper we have performed a basic validation of the dcppA-assim (ASSIM) experiment, 967 

which is not often done in other studies presenting forecasting systems. For us it is important to 968 

evaluate and to document the quality of our initial conditions and to investigate how the nudging 969 

of T and S affects the behaviour of other variables, such as AMOC and biogeochemistry. We 970 

believe that the study of the reconstructions created to initialize the climate prediction systems is 971 

relevant, and even more so in the context of the new applications offered in the prediction of 972 

marine biogeochemistry and carbon fluxes. 973 

 974 

ASSIM shows improvements with respect to the historical ensemble FREE in the modes of 975 

variability at the seasonal and decadal scales. The improvements are notable in the Pacific, with 976 

better representation of ENSO diversity by ASSIM and of Pacific decadal variability associated 977 

with the IPV. For other variables and other regions such as in the SPNA, ASSIM shows 978 

consistency with the time phase of observations in both ocean surface and heat content. 979 
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 980 

Regarding the initialisation of biogeochemistry, we found an interesting result. The nudging of T 981 

and S is not sufficient to constrain the biogeochemistry, as seen in the biases presented by 982 

ASSIM in chlorophyll. We suggest that biases in nutrients, such as NO3, and an underestimation 983 

of MLD can consistently explain the misrepresentation of chlorophyll in ASSIM. This result 984 

offers perspectives for improving the reconstruction of biogeochemical variables, indicating that 985 

we should pay special attention to nutrients, which leads us to think of a nutrient nudging 986 

complementary to the nudging of physical variables. 987 

 988 

Nevertheless we show that the T/S nudging leads to a significant improvement in the amplitude 989 

of the variability and temporal chronology of the NPP in the Tropical Pacific, coherent with 990 

previous studies (Seferian et al. 2014). Moreover, our results also show an added value of 991 

nudging in representing carbon sink variability in terms of magnitude and timing. This 992 

improvement is due to the fact that the fugacity is controlled by changes in T and S in the ocean, 993 

which are directly affected by the nudging. 994 

 995 

In terms of skill at seasonal scale, C3PS shows a very similar ENSO prediction skill to other 996 

seasonal forecasting systems. Considering the diversity of ENSO, the C-ENSO mode exhibits 997 

higher and significant skill levels compared to the E-ENSO mode. This is somewhat expected 998 

since the E-ENSO mode is associated with the variability of extreme El Niño events which 999 

onsets are difficult to predict due to their nonlinear dynamics. Seasonal prediction systems also 1000 

exhibit a persistent mean temperature bias in the far eastern Pacific, which alters key ENSO 1001 

processes (e.g. thermocline feedback and atmospheric convection) in this region explaining the 1002 

lower skill in terms of the E-ENSO mode. However the C3PS skill at seasonal timescales in the 1003 

tropical Pacific is encouraging for addressing seasonal forecast skill over other regions assuming 1004 

a realistic simulation of ENSO atmospheric teleconnections. Such an estimation may however 1005 

suffer from the limitation of using only 30 members for the first prototype of C3PS. We have 1006 

considered extending the ensemble size for future applications and evaluation. 1007 

 1008 

On an interannual scale, the C3PS results are consistent with those found in other decadal 1009 

forecasting systems (IPCC 2023), i.e. C3PS shows a clear added value of ocean initialisation in 1010 

the prediction of SST and SAT in the first two years. The novelty is a significant prediction skill 1011 

of SSTs in the equatorial Pacific at Y1. On longer time scales, the added value of initialisation is 1012 

only detectable in the SPNA area. 1013 

 1014 

The most innovative aspect of the C3PS results is the potential predictive skill displayed for NPP 1015 

and carbon fluxes at different leadtimes. The high levels of NPP potential predictability at multi-1016 

annual timescales were already reported in Seferian et al. (2014) and recently addressed in 1017 

Yeager et al. 2022. These results corroborate previous findings and confirm the potential benefits 1018 

for marine ecosystem prediction based on integrated physical-biogeochemical forecasting 1019 
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platforms such as C3PS (Tommasi et al. 2017). The fact that the evolution of carbon fluxes is 1020 

potentially predictable over the regions of major carbon sink locations is also promising for 1021 

improving our estimations of the future global carbon budget in the climate system. 1022 

 1023 

To finish, although C3PS is designed with an improved initialization scheme, the C3PS multi-1024 

annual predictions still suffer from initial shocks and drifts after the initialisation. In particular 1025 

the ENSO drift documented in Sanchez-Gomez et al. (2016) is still present in the C3PS 1026 

predictions. As shown in this study, the first year after the initialization is characterized by a 1027 

quasi-systematic excitation of ENSO warm events that trigger teleconnection patterns over the 1028 

midlatitudes, potentially polluting the signals to be predicted. The drift problem is one of the 1029 

major challenges in decadal prediction. Although some progress has been achieved since the 1030 

early 2000s, drifts are still present in decadal prediction systems. In addition to improving 1031 

climate models to reduce errors, another essential aspect is the improvement of the data 1032 

assimilation technique to obtain initial states compatible with the climate model that will be used 1033 

to make the prediction. On this line, some decadal forecasting centers are opting for “in-home 1034 

reanalysis” built from the coupled models used to make the forecasts to maintain physical 1035 

consistency amongst all  model components. This idea involves using more complex data 1036 

assimilation methods, such as the use of the Ensemble Kalman Filter or the particle filter 1037 

approaches (Counillon et al., 2014; Zunz et al., 2015; Dai et al., 2020) which have been 1038 

successfully applied in the context of decadal prediction. This offers interesting perspectives for 1039 

improving initialization and for these reasons the implementation of a particle filter in C3PS is 1040 

one of the perspectives to improve the initialisation procedure. 1041 

 1042 
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Observational data used in this study:  1060 

 1061 

- The merged SST/TAS dataset would be available upon request. 1062 

- The HadISST data are available on https://www.metoffice.gov.uk/hadobs/hadisst/. 1063 

- The EN4 ocean temperature data are available on 1064 

https://www.metoffice.gov.uk/hadobs/en4/. 1065 

- The RAPID array data are available on https://rapid.ac.uk/data.php. 1066 

- The ESA-OC-CC data are available on https://climate.esa.int/en/projects/ocean-colour/. 1067 

- Others datasets, NPP, fCO2 are available upon request. 1068 

 1069 

Software Availability Statement: All of the CNRM-ESM2-1 model outputs are available for 1070 

download on ESGF under CMIP6 projects. The SURFEX-CTRIP code is available (Open-1071 

SURFEX) using a CECILL-C Licence (http://www.cecill.info/licences/Licence_CeCILL-C_V1-1072 

en.txt) at the SURFEX website (http://www.umr-cnrm.fr/surfex). NEMO-GELATO-PISCESv2-1073 

gas is also available at https://opensource.umr-cnrm.fr/; the access to the Git repository is 1074 

granted upon request to the corresponding author. OASIS3-MCT can be downloaded at this 1075 

website (https://verc.enes.org/oasis/download). XIOS can be downloaded at the XIOS website 1076 

(https://forge.ipsl.jussieu.fr/ioserver). For the ARPEGE-Climat_v6.3 code and exact version 1077 

applied to each component, please contact the authors. Finally, a number of analyzing tools 1078 

developed at CNRM, or in collaboration with CNRM scientists, is available on as Open Source 1079 

code (see https://opensource.cnrm-game-meteo.fr/). 1080 
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