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Abstract13

Accurately characterizing rock microstructures in three dimensions (3D) is crucial14

for modeling various physical phenomena and estimating rock properties. Despite ad-15

vancements in 3D imaging, limitations arise from the trade-off between sample size and16

resolution, particularly in heterogeneous rocks with multi-scale features where both high17

resolution and a large field of view (FOV) are essential. These challenges have prompted18

interest in accurate 3D reconstructions from high-resolution two-dimensional (2D) im-19

ages using advanced generative models like generative adversarial networks (GANs). In20

this study, using scanning electron microscopy (SEM) and optical microscopy, we acquired21

2D images from three orthogonal sections of a Berea sandstone sample. These images22

were employed to train a modified SliceGAN model, a variant of GANs, for 3D recon-23

struction. Unlike previous studies utilizing SliceGAN or similar methods for 2D-to-3D24

reconstructions that incorporated 3D images in their training, our approach is unique25

in that it relies exclusively on 2D images. Our results show that the proposed workflow26

and modifications in the architecture and training of SliceGAN enable us to produce 3D27

reconstructions that closely mirror real 3D X-ray tomography in terms of structural and28

morphological characteristics. Additionally, we highlight our model’s ability to gener-29

ate diverse reconstructions with transport properties that align with previous studies on30

Berea sandstone. This underscores the potential of 2D-to-3D reconstructions as an ef-31

fective alternative to multiple X-ray tomographies, integral for assessing variability in32

heterogeneous rocks.33

Plain Language Summary34

Describing rock microstructures in 3D is crucial for modeling rock properties, such35

as permeability, and physical transport processes, like fluid flow through a rock. One method36

to estimate such rock properties is digital rock physics which involves first imaging and37

digitizing the microstructures and then numerically simulating different physical processes.38

To capture both fine-scale features and overall variability within a sample, detailed im-39

ages alongside large sample areas are necessary. However, 3D imaging techniques like X-40

ray tomography struggle with a trade-off between sample size and image resolution. 2D41

imaging techniques, like electron and optical microscopy, offer a solution providing large42

fields of view and high-resolution images. New ways of creating realistic 3D rock volumes43

have recently emerged using deep learning-based generative models such as Generative44

Adversarial Networks (GANs). We employ a variant of GANs to train on purely 2D im-45

ages, rapidly generating realistic 3D volumes of Berea sandstone. Our analysis shows that46

the adjusted model can generate diverse 3D reconstructions displaying properties con-47

sistent with established knowledge of Berea sandstone. Our findings highlight the use-48

fulness of true-2D-to-3D rock reconstructions as a rapid and reliable means of generat-49

ing large and diverse sample pools for assessing complex rock properties.50

1 Introduction51

The macroscopic transport properties and physical processes of porous media are52

intricately governed by their three-dimensional (3D) microstructure. Therefore, achiev-53

ing an accurate characterization of microstructures is paramount for estimating desired54

properties and simulating diverse physical phenomena (Al-Raoush & Willson, 2005; Blunt55

et al., 2013; Bakke & Øren, 1997). Key properties such as porosity, pore size distribu-56

tion, pore connectivity, and permeability play a pivotal role in the reliable modeling of57

transport-related phenomena (Bear, 2013; Blunt, 2017; Singh et al., 2017; Sahimi, 2011).58

These properties are crucial for understanding and simulating processes such as ground-59

water transport (Bear, 2010), storage of CO2 (Krevor et al., 2015; Tang et al., 2021) and60

hydrogen (Heinemann et al., 2021), geothermal energy utilization (K.-Q. Li et al., 2020;61
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Lichtner & Karra, 2014), and reservoir characterization (Wu, Tahmasebi, Lin, Zahid, et62

al., 2019; Blunt & Lin, 2022; C. F. Berg et al., 2017).63

Recent technological strides in imaging techniques, including non-destructive X-64

ray (micro)-Computed Tomography (µCT) (Blunt et al., 2013) and focused ion beam65

scanning electron microscope (FIB-SEM) (Hemes et al., 2015), have empowered researchers66

with robust tools to capture intricate representations of complex microstructures. The67

enhancement in hardware capabilities, coupled with the ever-increasing computational68

power and ongoing improvements in model complexity and efficiency, has facilitated the69

generation of increasingly realistic 3D models of porous media (Liu et al., 2019; Wilden-70

schild & Sheppard, 2013; Cnudde & Boone, 2013).71

Despite remarkable technological advances, a persistent challenge in imaging porous72

media is the inherent trade-off between image resolution and sample size. High-resolution73

images are often acquired by scanning smaller samples, which may not be representa-74

tive of the entire rock. This compromise introduces a dilemma: opting for high resolu-75

tion may result in localized observations that fail to capture the overall heterogeneity,76

long-range patterns, and variability present in natural samples. On the other hand, scan-77

ning larger samples for a more holistic representation leads to a lower resolution, poten-78

tially limiting the ability to resolve finer-scale features. An extra layer of complexity may79

be added in heterogeneous media such as carbonates (Dehghan Khalili et al., 2013; Menke80

et al., 2018) and shales (Wu, Tahmasebi, Lin, Ren, & Dong, 2019), where a hierarchi-81

cal microstructure at varying length scales is often present, necessitating the use and in-82

tegration of different imaging techniques (Brandon & Kaplan, 2013; X.-Y. Yang et al.,83

2017). In addition, due to randomness and stochasticity present in natural samples, sev-84

eral realizations are required to evaluate variability and provide an uncertainty estima-85

tion of the rock properties. Furthermore, 3D imaging techniques are time-consuming and86

rely on highly specialized equipment, which can be expensive and not always readily ac-87

cessible (Valsecchi et al., 2020; Bodla et al., 2014; Wu et al., 2018; Hajizadeh et al., 2011).88

In comparison, two-dimensional (2D) imaging techniques, such as scanning elec-89

tron microscopy (SEM) and especially optical light microscopy, offer several significant90

advantages, including higher achievable resolutions, larger fields of view (FoV), rapid scan-91

ning speeds, and often reduced associated costs. Leveraging their high-resolution imag-92

ing capabilities, 2D imaging techniques excel in the detection of intricate features at the93

micron to sub-micron scale across more expansive and consequently more representative94

areas. This proficiency makes 2D methods a viable alternative to 3D imaging techniques95

in effectively capturing both essential fine-scale features and the inherent heterogeneity96

within the sample (Fu et al., 2022; Dahari et al., 2023). Moreover, 2D images are more97

easily obtained and can be promptly utilized to quantify statistical spatial morphologies98

and microstructural characteristics (e.g., porosity, specific surface area, and pore sizes)99

within porous media (Torquato & Stell, 1982; Torquato & Haslach Jr, 2002). Nonethe-100

less, a conspicuous limitation persists – 2D images can only provide 2D information about101

heterogeneous pore microstructures. This limitation proves problematic since various ma-102

terial behaviors, such as fluid flow, are intrinsically volumetric in nature (Gayon-Lombardo103

et al., 2020).104

Addressing this, 3D reconstruction of heterogeneous media via high-resolution 2D105

images has become an active research area in digital rock physics. The 2D-to-3D image106

reconstruction is an inverse problem in which limited microstructural data (e.g., 2D im-107

ages) are used to generate statistically equivalent microstructures with larger sizes and/or108

additional dimensions. This provides representative 3D microstructural information at109

resolutions sufficient for detecting multi-scale features within the samples (Jiao et al.,110

2007; Yeong & Torquato, 1998; Amiri et al., 2023; Sahimi & Tahmasebi, 2021).111

Currently, the methods proposed for these 2D-to-3D reconstructions can be largely112

grouped into two categories: stochastic and deep learning-based methods. The stochas-113
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tic methods are mainly founded on microstructure characterization and approach the re-114

construction as an optimization problem. The characterization entails the initial imag-115

ing of material followed by statistical quantification of microstructures using spatial cor-116

relation functions, also recognized as statistical microstructure descriptors (SMDs) (Bostanabad117

et al., 2018). These SMDs then serve as target functions in an optimization technique,118

most commonly simulated annealing, to generate 3D microstructures whose SMDs align119

closely with those observed in the original 2D images, thereby ensuring a faithful rep-120

resentation of the material’s inherent characteristics. The most common and basic SMD121

is the two-point correlation function (S2) that has been used successfully for 3D recon-122

struction (Jiao et al., 2007, 2008; Sheehan & Torquato, 2001; Karsanina & Gerke, 2018).123

However, the statistical information captured by S2 alone is not sufficient in the124

case of heterogeneous microstructures with complex structure and morphology (Jiao et125

al., 2010; Gommes et al., 2012; Amiri et al., 2023). To overcome the limitations, other126

studies (Hajizadeh et al., 2011; Tahmasebi & Sahimi, 2012) have turned to high-order127

n-point correlation functions (n ≥ 3) to more precisely quantify higher-order spatial128

patterns in complex microstructures, thus enhancing reconstruction accuracy. However,129

the computation of these n-point correlations and their specific subsets, termed n-point130

polytope functions (Chen et al., 2019), incurs significant computational costs. Moreover,131

the process of generating microstructures is notably slow, and the resulting microstruc-132

tures lack diversity. The latter is because all generated structures are required to match133

the real ones in terms of the target functions (i.e., SMDs). This limitation restricts the134

method’s ability to provide insights into the variability of rock properties.135

In recent years, the realm of deep learning (DL), especially deep generative mod-136

els, has witnessed remarkable progress, becoming key in overcoming the limitations of137

stochastic methods. The core aim of these models is to grasp the underlying probabil-138

ity distribution of a dataset by drawing samples from it (i.e., training dataset), aiming139

to generate new samples with the same distribution. Training these models typically in-140

volves sampling from a simple, known (prior) distribution like the Gaussian distribution.141

The model is then trained to map this prior distribution to that of the training data, of-142

ten using a deep neural network (I. Goodfellow, 2016; Bond-Taylor et al., 2021). Among143

various generative models used in microstructure reconstruction, variational autoencoders144

(VAEs) (Kingma & Welling, 2013; Shams et al., 2020; Laloy et al., 2017), normalizing145

flows (NFs) (Kingma & Dhariwal, 2018; Guan et al., 2021), and GANs (You et al., 2021;146

Liu et al., 2019; J. Li et al., 2023; Feng et al., 2019; T. Zhang et al., 2023; Y. Yang et147

al., 2022) are the most prevalent. Here, we particularly focus on studies pertaining to148

2D-to-3D reconstruction using GANs. For more details on microstructure reconstruc-149

tion using other methods, the reader can refer to the comprehensive review by Mirzaee150

et al. (2023).151

GANs have garnered considerable attention in research, primarily for their success152

in generating high-quality images. Opposed to VAEs and NFs, which are explicit gen-153

erative models, GANs are implicit models that do not explicitly estimate the data dis-154

tribution but learn to generate data in an adversarial training process. This process in-155

volves two neural networks competing against each other to improve the realism and de-156

tails of generated images without the constraints of likelihood computation that are in-157

herent in VAEs and NFs. Furthermore, GANs’s generator has fewer limitations compared158

to other methods, enhancing its versatility and adaptability for diverse applications and159

integration with other generative models (I. Goodfellow, 2016; Bond-Taylor et al., 2021).160

Due to the above-mentioned attractions of 2D images and the advantages of GANs,161

several studies have tried to reconstruct 3D microstructures using 2D images. Volkhonskiy162

et al. (2019) used a hybrid VAE-GAN in which a conditional GAN (cGAN) was com-163

bined with an encoder to reconstruct 3D images from 2D slices. The encoder learns to164

map the slices of a 3D image into a latent space which then feeds with noise (i.e., sam-165

ples from random normal distribution) into a 3D generator. In another hybrid method,166
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Feng et al. (2020) redesigned BicycleGAN (Zhu et al., 2017), initially introduced for 2D167

to 2D image translation, by combining it with an encoder in an end-to-end framework.168

Their results show that, given a target 3D image, their model can reconstruct statisti-169

cally equivalent 3D images with similar characteristics. You et al. (2021) performed the170

2D to 3D reconstruction via interpolation in latent space of progressive growing GAN171

(PG-GAN)(Karras et al., 2017). The latent space refers to a lower dimensional space in172

which there exists a compact representation of the generated data called latent code. How-173

ever, since GANs are not invertible by default, it takes a further step of optimization or174

training an encoder to obtain the latent vectors corresponding to generated images by175

GAN, a process known as GAN inversion (Xia et al., 2021). In this work, a PG-GAN176

was first trained with 2D grayscale images of carbonate slices of a 3D image. Then, the177

latent codes corresponding to sparse slices along one axis were obtained through a gra-178

dient descent optimization. Finally, by interpolation between sparse latent codes and feed-179

ing them to the trained generator, a 3D image was reconstructed.180

Another novel 2D-to-3D reconstruction method, called SliceGAN, was demonstrated181

by Kench and Cooper (2021). In this method, a 3D generator is trained against three182

2D discriminators, each for a distinct axis. During the training, the generated 3D im-183

ages are sliced and along with real slices of the same orientations are fed into the respec-184

tive discriminators, ensuring that the synthesized 3D image closely resembles 2D images185

in each orientation. Inspired by StyleGAN (Karras et al., 2019), Chung and Ye (2021)186

further adapted this method by incorporating adaptive instance normalization (AdaIN)187

for better attribute control on the generated images. Other studies, such as Sciazko et188

al. (2021) and Valsecchi et al. (2020), applied similar methodologies with a single 2D dis-189

criminator, which is particularly suitable for isotropic systems. While showing promis-190

ing results, these studies still rely on 3D volumes and /or the slices taken from a 3D vol-191

ume during the training, making them pseudo-2D-to-3D reconstruction methods.192

In this study, we design a novel workflow for true 2D-to-3D reconstruction. We adapt193

the sampling process in the original SliceGAN to enable the reconstruction of 3D im-194

ages exclusively from 2D inputs. Additionally, we propose an efficient performance met-195

ric for the model based on the correlation functions in 2D and 3D. As training data, we196

specifically utilize 2D SEM and optical images obtained from three orthogonal thin sec-197

tions of Berea Sandstone. Scanned at different pixel sizes (3.8 µm for SEM and 0.44 µm198

for optical images), these 2D images cover a large area of sample faces. This allows us199

to capture a broader range of heterogeneities in the training images and therefore in the200

3D reconstructions. To validate our reconstructions, we compare them with a 3D X-ray201

tomography of the same sample, as well as previously reported results on the transport202

properties of Berea sandstone. Our findings show that 3D reconstructions from repre-203

sentative 2D images not only resemble the actual sample in terms of visual and quan-204

titative measures but also provide valuable insights into the variability of rock proper-205

ties. The ability to generate diverse microstructure is particularly significant, indicat-206

ing that rather than performing multiple, costly, and time-consuming X-ray tomogra-207

phies, we can employ 2D images to reconstruct numerous 3D realizations for quantify-208

ing the uncertainty of rock properties.209

2 Methods210

The goal of the present work is to propose a workflow for 3D microstructure re-211

construction using 2D images. Specifically, we modify SliceGAN and investigate its ac-212

curacy in synthesizing realistic volumes of Berea sandstone. Our model is trained exclu-213

sively on representative 2D binary images derived from two distinct 2D imaging tech-214

niques: SEM and optical light microscopy. For validation purposes, a µCT image of the215

same sample is acquired but is used to verify the accuracy of our model, not for its train-216

ing. To conduct a comprehensive comparative analysis, we evaluate the statistical and217
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morphological properties, including the two-point correlation function, and distribution218

of pore characteristics such as volume, area, and orientation, as well as permeability.219

2.1 Sample Material, Image Acquisition & Processing220

Berea sandstone, hailing from the Berea Quarry in Ohio (USA), is a well-studied221

and widely accepted standard reservoir material used by the petroleum industry for many222

years in laboratory flow experiments (eg., core flooding), flow models, and core analy-223

sis research (Pepper et al., 1954; Hazlett, 1995; Øren & Bakke, 2003; Bera et al., 2011;224

S. Berg et al., 2014; Leu et al., 2014; Sharqawy, 2016). The Berea sandstone is chosen225

for its accessibility, cost-effectiveness, and well-studied nature, which enables compar-226

ison of our results with those of previous studies. The porosity and permeability typ-227

ically measured ranges from approximately 12% to 26% and from 2×10−13 to 2×10−12
228

m2 respectively (Churcher et al., 1991; Mostaghimi et al., 2013; Peng et al., 2014; Soulaine229

et al., 2016; Mosser et al., 2017).230

2.1.1 X-ray Microtomography231

A 3D volume, used for ground truthing, was obtained from an 8mm drill-core of232

Berea sandstone, imaged using a Zeiss Xradia 610 Versa high-resolution 3D X-ray µCT233

with a 0.4× objective lens, 70.0kV accelerating voltage, and 123µA current. A low-energy234

filter (LE4) was used to increase the average beam energy and subsequently improve the235

transmission of X-rays through the sample. A pixel size of 11.41 µm (11.4 × 11.4 × 11.4236

µm voxels3) is determined by the objective lens strength and relative position of the source,237

sample, and detector. In total, 2,001 radiograph projections of size 1024 by 1024 pix-238

els (11.67 mm by 11.67 mm) were digitized and represented by an array of greyscale val-239

ues reflecting differences in absorption contrast.240

2.1.2 SEM Images241

The first set of 2D images consists of three orthogonal thin sections imaged in backscat-242

tered electron (BSE) mode using the Atlas software installed on a Zeiss Gemini 450 SEM243

which allows for automated large-area imaging of up to several centimeters. During ac-244

quisition, a beam intensity of 10kV, probe current of 1.0nA, and pixel size of 3.8 µm was245

used resulting in three large grayscale BSE images of dimensions 2048 by 2048 pixels (7.78246

mm by 7.78 mm), 2048 by 3584 pixels (7.78 mm by 13.62 mm), and 4096 by 4096 pix-247

els (15.56 mm by 15.56 mm) for the x, y, and z directions, respectively. These images248

are herein referred to as BSE images.249

2.1.3 Optical Images250

For the second set of 2D images a drill core, impregnated with blue epoxy to high-251

light the pore spaces and aid in the segmentation process, was cut into three orthogo-252

nal sections. The sections were imaged with a Zeiss Axioscan 7 Microscope Slide Scan-253

ner, an optical polarizing light microscope combined with high-speed slide digitization254

capabilities. Each section was scanned in full color (3 channels: RGB) under plane-polarized255

light (PPL) at 10× magnification with a pixel size of 0.44µm producing three large im-256

ages of dimensions 50704 by 32005 pixels (22.23 mm by 14.04 mm), 50573 by 27240 pix-257

els (22.20 mm by 11.95 mm), and 41164 by 41164 pixels (18.05 mm by 18.049 mm) for258

the x, y, and z directions respectively.259

2.2 Image Processing260

To remove noise and artifacts common in raw images, the acquired grayscale µCT261

projections and BSE maps underwent the application of edge-preserving denoising al-262
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gorithms: the anisotropic diffusion filter (Perona et al., 1994) for µCT projections and263

the bilateral filter (Tomasi & Manduchi, 1998) for BSE maps. These edge-preserving de-264

noising algorithms promote smoothing within a desired region, facilitating high-resolution265

edge detection while ensuring the preservation of original object boundaries.266

Subsequently, all three datasets—referred to herein as µCT, BSE, and optical im-267

ages—were segmented into binary images. In these images, the phase of interest, namely268

pore space, was depicted in white with a pixel value of 1, while non-pores appeared in269

black with a pixel value of 0. Segmentation was conducted using the pixel-classification270

workflow in ilastik, a free and open-source interactive image processing toolkit utilized271

for supervised ML random forest-based image analysis (S. Berg et al., 2019; Sommer et272

al., 2011).273

2.3 Representative Elementary Size (RES) Analysis274

Essential to the reconstruction of heterogeneous and complex microstructures is275

the determination of a representative image size (RES) that captures the structural el-276

ements of the system under consideration. Larger training images pose higher compu-277

tational demands, while overly small images fail to fully capture material behavior and278

heterogeneity, resulting in the generation of pore artifacts and unrealistic shapes (Amiri279

et al., 2023). Hence, a RES analysis should be conducted for heterogeneous and com-280

plex samples to best determine an appropriate image size for training the model (Volkhonskiy281

et al., 2019; Costanza-Robinson et al., 2011).282

RES analysis is a method used to determine the smallest size of an image that is283

large enough to effectively capture the whole system’s heterogeneity (Bargmann et al.,284

2018; Gusev, 1997). This is based on the concept of a representative elementary volume285

(REV), defined as the minimum volume of a material whose effective behavior is rep-286

resentative of that of the material as a whole (Bear & Braester, 1972; Bear, 2013; Aboudi287

et al., 2013). Typically, RES analysis is applied to individual rock properties, for instance,288

porosity or permeability (e.g., Mosser et al. (2017)), and serves in the upscaling process289

to assess macro-scale properties determined from a smaller yet representative sample.290

However, a RES obtained in this manner can vary significantly based on the specific prop-291

erty under consideration. The methodology involves plotting sample size against the cor-292

responding calculated property and it is commonly observed that the property exhibits293

significant fluctuations at small sizes but becomes size-insensitive at a certain point, in-294

dicating the representative size and marking the transition from micro- to macro-scale295

(Al-Raoush & Papadopoulos, 2010).296

To determine the RES of our sample, we adopted the approach employed by Amiri297

et al. (2023) which relies on the widely popular two-point correlation function, S2(r) (Torquato298

& Haslach Jr, 2002; Jiao et al., 2007, 2008), defined as the probability, P , that two ran-299

domly selected points with a distance, r, fall within the same phase of interest (i), Vi,300

in a d-dimensional space, Rd (Yeong & Torquato, 1998):301

S
(i)
2 (r) = P (x ∈ Vi , x+ r ∈ Vi) for x and Vi ∈ Rd (1)

where x is an index of pixel locations within the image. This radial form of two-302

point correlation is calculated by averaging the probabilities in the x, y, and z axes. Ac-303

cording to this definition, at r = 0 , S2 gives its maximum value, equal to the phase304

fraction, ϕ, because the definition reduces to the probability of one random point being305

within the same phase. Then, with increasing the distance, the probability decreases ex-306

ponentially, ultimately reaching its asymptotic value of ϕ2 (Jiao et al., 2007).307

This method utilizes the two-point correlation function to enable a multifaceted308

analysis of the pore space within the sample. It goes beyond mere porosity quantifica-309
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tion (as denoted by S2(r = 0)) by also encompassing the average pore size. More cru-310

cially, it examines the long-range correlations between pores, offering a deeper insight311

into the spatial distribution and interaction within the pore network. This comprehen-312

sive approach integrates both the structural and morphological characteristics of the pore313

space, culminating in an enriched RES analysis. Such a detailed evaluation is crucial for314

various post-reconstruction tasks, including fluid flow simulation, where an accurate un-315

derstanding of the pore structure is essential. However, a scaled version of S2, known316

as scaled autocovariance, is used here for RES analysis. This function is calculated as317

follows:318

F2(r) =
S2(r)− ϕ2

ϕ− ϕ2
(2)

where ϕ is the phase fraction (aka porosity). Note that, due to the asymptotic be-319

havior of the two-point correlation function, F2(r = 0) = 1 and F2(r → ∞) = 0. Us-320

ing the scaled function is a more convenient method for comparing the spatial correla-321

tion of pores across images of varying sizes. This is because after this scaling, at a given322

distance, a zero value indicates no correlation, whereas positive and negative values mean323

positive correlation and anticorrelation, respectively.324

Here, we calculate the average F2 curve from 50 random subvolumes of the entire325

µCT volume. We then compare these curves with that of the whole µCT volume. In par-326

ticular, we compute the mean square error (MSE) between the F2 function of the entire327

image with those of subvolumes within their overlapping ranges. The underlying ration-328

ale is that as the size of the image increases, the correlation function of microstructures329

tends to increasingly resemble that of the whole volume. We identify the REV as the330

point beyond which further increases in image size result in only negligible reductions331

in MSE. Subsequently, the calculated REV in the µCT data is utilized to determine the332

representative image size (i.e., RES) for BSE and optical images, taking into account their333

respective pixel sizes.334

2.4 SliceGAN335

First introduced by I. J. Goodfellow et al. (2014), GANs have emerged as a cor-336

nerstone in the field of deep generative modeling, revolutionizing various aspects of ma-337

chine learning, particularly in image processing. GANs have been instrumental in the338

development of numerous advanced applications, including image-to-image translation339

(Isola et al., 2017), super-resolution enhancement (Ledig et al., 2017), text-to-image con-340

version (H. Zhang et al., 2017), semantic image editing (Shen et al., 2020), among oth-341

ers.342

The central concept of GANs lies in pitting two players, typically convolutional neu-343

ral networks (CNNs), against each other in an adversarial setup. One player, known as344

generator G, is tasked with creating new data that mimics the real data. On the other345

side, there is a discriminator D which functions as a classifier with the role of distinguish-346

ing real images from the generated ones. During the training, the generator learns to pro-347

duce increasingly realistic fake images, G(z) by mapping a random noise vector z, sam-348

pled from Gaussian distribution, to match the distribution of the training data. How-349

ever, G is not exposed to the real images x; its learning is solely guided by the feedback350

received from the D’s predictions on fake images i.e., D(G(z)). Training GANs is fun-351

damentally about achieving a Nash equilibrium within a minimax optimization problem.352

This process culminates at a saddle point, which represents a minimum with respect to353

the generator G and a maximum with respect to the discriminator D. Ideally, at this354

equilibrium, G should be adept enough to ’fool’ D by generating images so realistic that355

D misclassifies them as real (I. J. Goodfellow et al., 2014; I. Goodfellow, 2016). Despite356

their remarkable capability in image generation and a wide array of applications, GANs357
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encounter several technical challenges. These include training instability, mode collapse,358

non-convergence, and diminished gradient. These challenges have spurred a significant359

amount of research aimed at addressing these issues, resulting in the development of nu-360

merous GAN variants. Each of these variants is tailored to enhance the training process361

or to modify the architecture for specific applications. For a comprehensive overview of362

these topics, the reader is referred to the reviews by Gui et al. (2023) and Ferreira et al.363

(2022).364

SliceGAN is one of these variants utilizing Wasserstein loss with gradient penalty365

(WGAN-GP) (Gulrajani et al., 2017) to stabilize the training and mitigate the issue of366

mode collapse. In the context of reconstructing 3D images from 2D slices, SliceGAN em-367

ploys a unique architecture comprising a 3D generator with 3D transpose convolution368

layers, alongside three 2D discriminators, each consisting of 2D convolutional layers and369

corresponding to a specific plane. During training, the generator creates 3D images. Ran-370

dom slices from these generated images, representing different planes, are then fed into371

the respective discriminators. The real inputs for the discriminators, however, are de-372

rived from a real 3D image. These are randomly sliced along the same planes as those373

used for the generated images. This approach, while innovative, still necessitates reliance374

on real 3D inputs for training.375

In this study, we modify the training process so that real 2D images to the discrim-376

inator are randomly extracted from large BSE and optical images acquired from differ-377

ent planes of the sample, as described before. Furthermore, to evaluate the generator’s378

performance, we compute the MSE between the two-point correlation function for gen-379

erated volumes and those of 2D images across different orientations during training. This380

microstructure-based metric serves as a computationally efficient and interpretable tool381

for assessing the efficacy of the generator in capturing the structural and morphologi-382

cal information in the 2D images. Additionally, we have made alterations to the network383

architecture of both the generator and discriminator to accommodate larger training im-384

ages and to decrease the checkerboard artifacts in the generated volumes.385

Figure 1 illustrates the modified workflow implemented in this study. After the prepa-386

ration of thin sections, we acquire large-area BSE and optical images, which are then seg-387

mented into pore and solid phases. Subsequently, we extract random crops with RES388

size from these 2D images, taken from different orientations. Since we use different imag-389

ing techniques with varying pixel sizes, calculating RES for each is a crucial step in en-390

suring that input data for our SliceGAN reflects the pore space characteristics of the Berea391

sandstone. These crops are then resized on-the-fly to 2562 pixels using the Lancsoz fil-392

ter and supplied to the corresponding discriminator throughout the training process. This393

size represents the maximum capacity feasible within our GPU memory constraints. Each394

discriminator, Di, also receives slices from the corresponding plane of generated volumes,395

G(z)i. Finally, the loss functions for D and G are calculated as :396

LDi
= −Ex∼p(data)(Di(xi)) + Ez∼p(z)Di(G(z)i) + λEx̂i

[(
∥∥∇x̂i

D(x̂i)
∥∥
2
− 1)

2
] (3)

397

LG =

3∑
i=1

−Ez∼p(z)Di(G(z)i) (4)

where i = 1,2,3 corresponds to x, y, z planes, respectively. The coefficient λ con-398

trols the degree of penalization on the gradients of D, and x̂i represents a mixture of real399

and the generated slices in each plane. From Equation 4, it is apparent that no infor-400

mation about the real images, xi, is used for training the generator. Instead, it learns401

from feedback from the discriminators on the different planes i.e., Di(G(z)i).402
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Figure 1. Our modified SliceGAN training workflow for BSE images. A similar workflow is

used for optical images. See the text for a detailed explanation.

3 Results403

In this section, we assess the performance of our adapted SliceGAN model. Two404

separate models are trained following the identical workflow outlined in Figure 1: one405

using BSE images, and the other using optical images. To compare the results of recon-406

structions with real µCT image, we generate 100 three-dimensional images using the trained407

SliceGAN model for each BSE and optical data. These synthetic images are then com-408

pared to an equivalent number of random subvolumes with REV size from the whole µCT409

volume. Our comparative analysis employs various metrics, ranging from the distribu-410

tion of pore characteristics to two-point correlation functions and permeability estimates.411

3.1 RES Analysis412

Figure 2a presents the results of the REV analysis performed on the entire µCT413

image, with each curve representing the average F2 calculated from 50 random subvol-414

umes of specific sizes. These curves are characterized by sharp initial declines followed415

by a bump at r ≈ 20, which is approximately equal to the average pore size. Subse-416

quently, most curves exhibit damped oscillations over relatively small ranges, indicat-417

ing positive correlations between clusters of pores beyond the average pore size. How-418

ever, the F2 curves for subvolume sizes 32 and 64 reveal that these sizes are not suffi-419

ciently large to capture the average pore size and the interaction between clusters of pores,420

respectively.421

Figure 2b illustrates the normalized mean squared error (MSE) between each curve422

with that of the whole sample (denoted by the black curve in Figure 2a) within their over-423

lapping ranges. The MSE values have been normalized by the maximum distance (r) for424

each size. This normalization is important for ensuring that the MSE values are com-425

parable across different sizes, as larger images inherently have more pixels over which426

errors can accumulate. The graph reveals that the MSE curve levels off at an image size427

of 1283 voxels, signifying that further increases in size do not correspond to a notable428

decrease in MSE.429

Based on the interpretation of F2 curves and MSE analysis, the REV for the µCT430

data is determined to be 1283 voxels. This corresponds to a cubic volume with a linear431

length of 1459.2 µm, calculated as 128 × 11.4 µm. Using this REV as a benchmark, and432

considering the pixel sizes for BSE (3.8 µm ) and optical images (0.44 µm ), we calcu-433

late the RESs to be 3842 pixels for the BSE images and 33242 pixels for the optical im-434

ages. While we utilized a µCT image here, the same approach and interpretation can435
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Figure 2. Representative Elementary Volume (REV) analysis on µCT data. a) The average

F2 curves for 50 random subvolumes extracted from our original µCT volume (black curve). The

inset of the plot offers a magnified view of the curves at small correlations, b) the normalized

MSE calculated between the average F2 curve of the original image and smaller ones.

be applied to 2D images from various planes to determine the RES when a 3D volume436

is not available.437

However, as previously noted, the training images at the determined RES sizes were438

downscaled to 2562 pixels, resulting in a uniform pixel size of 5.7 µm for both BSE and439

optical imaging modalities. Additionally, all random subvolumes with the size of REV440

(1283) were upscaled to 2563 using trilinear interpolation. Such standardization ensured441

that the original and reconstructed 3D images shared identical dimensions and voxel sizes,442

thereby allowing for direct and consistent comparison.443

3.2 3D Reconstructions from 2D Images of Porous Media444

Two SliceGANs were trained using three orthogonal BSE and optical images. Train-445

ing time for each model was approximately 24 hours on an NVIDIA RTX A6000 GPU446

with 48GB memory. This duration included the time taken to evaluate the generator.447

Our approach for evaluation was to calculate the average S2 for 100 random images from448

the large training images in each x, y, and z planes before the training. This average value449

served as a target S2 for evaluating the generator performance. During the training, we450

calculated the average radial 3D S2 derived from generated images. A mean square er-451

ror of 1×10−5 between these two correlation functions was used as a criterion to save452

the best model.453

During the inference phase, we generated one hundred 3D images for both BSE and454

optical images. Subsequently, these 3D reconstructions underwent a post-processing step,455

where we applied a morphological closing operation. This operation was performed us-456

ing a spherical structuring element with a radius of 3 pixels. The closing operation is es-457

sentially a two-step process: initially, it dilates the image, and then it is followed by an458

erosion step. This sequence effectively removes small isolated pores and fills in small holes459

within the pores.460

3.2.1 Visual & Statiscial Analysis461

Figure 3 illustrates a random subvolume of µCT data and examples of 3D recon-462

structions from BSE and optical images, as well as 2D slices across orthogonal orienta-463

tions. All displayed 3D images are of the same dimensions of 2563 voxels with the same464
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Figure 3. Visual comparison of original µCT (a) with 3D reconstructions from BSE (b) and

optical images (c), along with two slices in x, y, and z-planes.

voxel size of 5.7µm, as mentioned previously. It can be seen that the reconstructed 3D465

images from BSE and optical images exhibit a general resemblance to the original µCT466

image in terms of structure and spatial distribution of pores. Nevertheless, a closer in-467

spection of 2D slices reveals distinct differences in porosity and pore sizes within the op-468

tical image reconstructions when compared to those from BSE and original µCT data.469

In addition to visual comparison, three-dimensional S2 was calculated for the hun-470

dred images of µCT subvolumes and 3D-reconstructed images of BSE and optical im-471

ages. Figure 4 presents the curves for each imaging technique, with solid lines indicat-472

ing the average values and shaded regions representing the range of the S2 curves. What473

stands out in this figure is the close agreement between the average curve of the orig-474
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Figure 4. Comparison of the three-dimensional S2 curves. The solid lines show average values

for the original µCT (blue) and generated BSE (red) and optical (green) images. The shaded

color surrounding the average curves indicates the variability within each data.

inal µCT and BSE-reconstructed volumes at all ranges. Specifically, the average poros-475

ity (i.e., the probability at r = 0) is 0.232 for µCT and 0.226 for BSE-reconstructed476

volumes. Nevertheless, a slightly higher probability is observed in the average curve of477

µCT images at short ranges (i.e., at r < 20 pixels), indicating larger pores on the whole.478

However, the average S2 curve obtained from optical images shows a lower average poros-479

ity of 0.15. Despite this difference, the general trend is similar to µCT and BSE images,480

indicating similar spatial distribution of pores in three dimensions.481

Figure 5 presents the probability distributions of pore area, volume, and orienta-482

tion in the original and reconstructed images, calculated using the label analysis tool in483

Thermo Fisher Scientific AVIZO software (2020 – version 3.1). The results are reported484

as probability densities in which each bin’s height will be the count divided by the to-485

tal number of observations (i.e., pores) times the bin width. This normalization enables486

a straightforward comparison of the distributions without being skewed by the number487

of pores. Overall, the results indicate a similar trend in the distributions of original and488

reconstructed volumes. Figure 5a-b indicates a power law distribution of pores’ surface489

area and volume towards small values for all images. However, the µCT volumes tend490

to have greater numbers of large pores than BSE and optical images in which the ma-491

jority of pores are small.492

Figure5d-c compares the distributions of the orientation of the major axis of pores493

represented by θ and ϕ. The orientation θ, known as azimuth angle, is the angle in the494

xy-plane counted in the positive direction from the x-axis and ranges from −180◦ to +180◦.495

The orientation ϕ is the altitude angle measured from the positive z-axis (vertical axes496

in Figure3) and ranges from 0◦ to 90◦. From these distributions, we can see that the ma-497

jority of the pores in all images exhibit a concentration around an altitude angle of 90◦498

(Figure5c), and azimuth angles of 0◦ and 100◦ (Figure5d). However, 3D reconstructions499

from BSE and optical images show a larger number of pores oriented around azimuth500

of 0◦ and altitude angle of 90◦ than pores in µCT images.501
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Figure 5. Distributions of pore characteristics a) area, b) pore size distribution (pore vol-

ume), c) altitude angle (ϕ), and d) azimuth angle (θ) for optical (Opt), backscattered (BSE), and

X-ray tomography (XCT) images.

3.2.2 Permeability502

To further assess the accuracy of the reconstructed pore microstructures and their503

impact on macroscopic transport properties, we estimated the effective permeability of504

the original µCT images and the reconstructions using a voxel-based Finite Element Method505

(FEM) introduced by P. C. Lopes et al. (2023). In particular, the GPU implementation506

of this method (P. C. F. Lopes et al., 2022) allows for efficient permeability computa-507

tion of hundreds of volumes for each set of µCT images, as well as reconstructions from508

BSE and optical images. Figure6 illustrates a box plot comparing the permeability val-509

ues averaged along the x, y, and z axes. The plot reveals that the µCT images hold the510

highest average permeability, followed by BSE reconstructions, while optical images main-511

tain the lowest. Additionally, the µCT volumes demonstrate less variability, as evidenced512

by the shorter ’whiskers’ on the box plots, compared to the reconstructions. This reduced513

variability in the µCT volumes is consistent with expectations, considering that the per-514

meability estimates are derived from REVs.515

4 Discussion516

The primary objective of our research is to assess the accuracy and feasibility of517

generating authentic 3D digital reconstructions of porous media samples using only 2D518

images. While numerous studies have explored the realm of 2D-to-3D reconstructions,519

our review of the literature indicates that these investigations typically utilize 3D ground-520

truth volumes for training their models. This inherently incorporates the three-dimensional521

spatial characteristics of the pore space into the models. In contrast, our methodology522

relies solely on large 2D images in different orientations from which representative im-523

ages are sampled and used for training. To capture these images, we employed two dis-524

tinct imaging techniques: BSE with a pixel size of 3.8 µm, and optical microscopy with525
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Figure 6. The statistical analysis of permeability estimates derived from subvolumes of REV

size of the original µCT, and reconstructed BSE and optical volumes.

a pixel size of 0.44 µm. This dual-modality approach allows for a detailed and varied rep-526

resentation of the sandstone’s microstructure across scales.527

In general, our findings show that high-fidelity 3D microstructures with similar mor-528

phological and transport properties to those of original 3D images can be reconstructed529

from only 2D images. In particular, a close agreement is found between BSE-reconstructed530

and real µCT volumes in terms of different metrics. However, from Figure5a-b, it can531

be seen that the BSE-reconstructed volumes possess smaller pores than the µCT data.532

This can be explained by the higher resolution of BSE images which allows for detect-533

ing smaller pores in 2D images which have been subsequently reproduced in 3D recon-534

structions. These finer pores, which can be similarly seen in the results of optical im-535

ages, typically tend to have spherical shapes whose estimated major axes using inertia536

moments are likely to be in the xy-plane with a ϕ close to 90◦, as shown in Figure5c.537

The average S2 curves, as depicted by solid lines in Figure4, demonstrate a notable538

alignment between BSE and µCT images across both short and long ranges. Interest-539

ingly, our findings indicate that the BSE images cover a wider range of values than those540

of the µCT images. For instance, the porosity derived from BSE images ranges from 0.17541

to 0.29 while this range is between 0.21 and 0.25 for the µCT subvolumes. This diver-542

sity in the generated images is an important attribute of our model, which can be par-543

tially attributed to the loss function employed. Specifically, the use of Wasserstein loss,544

combined with the gradient penalty, helps to prevent mode collapse, thereby encourag-545

ing diversity. Another contributing factor to this diversity could be the large sizes of orig-546

inal 2D images, scanned from three distinct planes of the sample. This latter point will547

be elaborated upon in greater detail later in the text. On the other hand, the low vari-548

ability in µCT images, illustrated by the narrower shaded blue region, aligns with the549

expectations, as the subvolumes are of REV size. Consequently, the properties within550

these subvolumes are expected to exhibit minimal variation.551
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Similarly, the model trained with optical images has successfully reconstructed a552

diverse array of images, as evidenced by the broad green shading in Figure 4. Despite553

this diversity, a noticeable discrepancy is observed between the optical reconstructions554

and the other modalities, characterized by consistently lower probabilities across all ranges.555

This divergence can be explained by lower porosity in the large optical images used for556

training, ranging from 0.08 to 0.15 across different planes. This contradicts the expec-557

tation of higher porosity detection at greater image resolutions. The segmentation chal-558

lenges of RGB optical images, even with blue epoxy impregnation, may contribute to this559

discrepancy. Difficulties in distinguishing pore spaces from grain boundaries during man-560

ual labeling of optical images have likely resulted in an underestimation of pores by our561

ML-based segmentation tool.562

The statistical analysis of permeability, as illustrated in Figure6, also indicates a563

higher variability in permeability of the BSE and optical than µCT images. Despite this564

variability, the median permeability value of µCT images remains higher than that of565

BSE reconstructions, which in turn is higher than the permeability of optical images. Con-566

sistent with previous results, this suggests that the increased porosity in some of the BSE-567

reconstructed images is due to the detection of the smaller pores in higher-resolution im-568

ages that do not typically enhance the flow path and therefore permeability. Compared569

to the permeability results from BSE and µCT images, which are in the same order of570

magnitude, the optical reconstructions exhibit the lowest values. This difference can be571

attributed to a 7 percent reduction in average porosity obtained from the optical recon-572

structions relative to the other modalities, as shown in Figure4.573

Figure7 compares our porosity and permeability estimates with those from prior574

research on Berea sandstone, specifically focusing on studies using X-ray tomography to575

investigate the impact of voxel and sample sizes on permeability. Our results indicate576

that the estimates derived from our BSE and optical reconstructions align closely with577

previous studies for both porosity and permeability. In contrast, the permeability ap-578

pears to be slightly overestimated in our µCT images, likely due to the lower resolution579

(11.4 µm in the original µCT volume) in our study. Such a resolution can cause an over-580

estimation of pore sizes due to the partial volume effect (PVE), as discussed by Wildenschild581

and Sheppard (2013), posing challenges in accurate pore identification. The marker sizes582

in this plot represent the relative linear length of the samples analyzed, as reported in583

Table 1. In the case of Mosser et al. (2017), this linear length, calculated as the edge-584

length multiplied by voxel size, is 1.2 mm for the whole sample (the larger orange marker)585

and 0.192 mm for REVs which is too small to be representative. Therefore, this discrep-586

ancy can be attributed to the non-representative samples used in this study.587

A prominent finding of our study is the great variability observed in the reconstructed588

volumes. This is important as the limited generalization is a major challenge of GANs589

(and generative models in general) where models struggle to extrapolate to unseen data.590

This aspect is particularly crucial in studying heterogeneous rocks whose properties can591

vary significantly from one sample to another. Our results demonstrate the model’s abil-592

ity to generate not only realistic but also diverse 3D microstructures from 2D images.593

A key factor underpinning this diversity, as previously discussed, is the utilization of large594

2D images from which training images are randomly sampled during the training. This595

enables the model to encompass a wider array of variations within the sample, effectively596

capturing the intricate details and heterogeneity present. For example, the linear length597

for our entire µCT image, calculated as the edge-length multiplied by the voxel size (i.e.,598

512×11.4µm), is 5.84 mm, while for the REV volumes, it stands at 1.46 mm. In con-599

trast, the linear lengths of the large 2D images obtained from different planes range from600

7.78 mm to 15.56 mm for BSE images and between 11.95 mm and 23 mm for optical im-601

ages.602

In summary, our findings are significant in two major respects. First, our results603

show that we can use only 2D images to reconstruct realistic 3D microstructures with604
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Figure 7. Comparison of our estimation of porosity and permeability with previous studies on

Berea sandstone. The VS in the legend stands for the voxel size used in the study.

similar characteristics to real ones. This is crucial in cases where the maximum resolu-605

tion of common X-ray tomography machines (≈ 500nm) is insufficient to capture the606

finer features within the sample. Second, the great variation in our 3D reconstructed im-607

ages, i,e., the range of estimated porosity and permeability, is particularly promising as608

our results closely match the values reported in previous studies. In essence, our results609

indicate that instead of performing several X-ray tomographies, it is possible to gener-610

ate diverse 3D images from sufficiently large 2D images. This notable diversity in recon-611

struction offers a critical advantage, facilitating comprehensive assessments of variabil-612

ity and uncertainty in various sample properties. Such evaluations are particularly cru-613

cial for anisotropic and heterogeneous rocks, where quantifying these variations is inte-614

gral to accurately characterizing the sample.615

Table 1. Comparison of sample size and the voxel size of our study with previous research on

Berea sandstone. For our µCT images, the values in the parentheses are from the whole µCT

image. For BSE and optical images, these values report the pixel size and the linear length of the

original 2D images scanned.

Reference Voxel size (µm) Volume (mm3) Linear length (mm)

Our µCT 5.7 (11.4) 3.11 (199) 1.46 (5.84)
Our BSE 5.7 (3.80) 3.11 1.46 (7.78 -15.56)

Our optical 5.7 (0.439) 3.11 1.46 (11.95 -23)
Soulaine et al. (2016) 3.16 0.85 , 1.35 0.95, 1.11

Mostaghimi et al. (2013) 5.3 0.5 0.8
Peng et al. (2014) 1.85, 5.92 0.31 0.68
Mosser et al. (2017) 3 0.007, 1.73 0.192, 1.2
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5 Conclusion616

This study embarked on an exploration of the potential to accurately reconstruct617

3D porous structures using pure 2D electron (SEM) and optical microscopy images at618

three orientations. Our findings show that when trained well with representative 2D im-619

ages, our adapted SliceGAN can generate 3D microstructures that closely emulate real620

ones in terms of structural, morphological, and transport properties. Berea sandstone621

served as an ideal benchmark, enabling direct comparison with actual 3D images and622

previous works. However, the most compelling application of our 2D-to-3D reconstruc-623

tion approach is in analyzing rocks where the features of interest are finer than the max-624

imum resolution achievable with common µCT imaging, and display a level of hetero-625

geneity and variability that cannot be captured by the limited field of view of, e.g., fo-626

cused ion beam (FIB)-SEM tomography. In such scenarios, our approach can sidestep627

3D imaging constraints, harnessing the extensive coverage and high resolution of SEM628

and optical imaging techniques. These modalities, with their broad FOV in varying ori-629

entations, provide a comprehensive assessment of property variability offering a reliable630

time- and resource-efficient means of generating diverse yet statistically equivalent 3D631

volumes from readily available 2D images.632

6 Open Research633
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