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Abstract

Predicting the future contribution of the ice sheets to sea level rise over the next decades presents several challenges due to a poor

understanding of critical boundary conditions, such as basal sliding. Traditional numerical models often rely on data assimilation

methods to infer spatially variable friction coefficients by solving an inverse problem, given an empirical friction law. However,

these approaches are not versatile, as they sometimes demand extensive code development efforts when integrating new physics

into the model. Furthermore, this approach makes it difficult to handle sparse data effectively. To tackle these challenges, we

propose a novel approach utilizing Physics-Informed Neural Networks (PINNs) to seamlessly integrate observational data and

governing equations of ice flow into a unified loss function, facilitating the solution of both forward and inverse problems within

the same framework. We illustrate the versatility of this approach by applying the framework to two-dimensional problems on

the Helheim Glacier in southeast Greenland. By systematically concealing one variable (e.g. ice speed, ice thickness, etc.), we

demonstrate the ability of PINNs to accurately reconstruct hidden information. Furthermore, we extend this application to

address a challenging mixed inversion problem. We show how PINNs are capable of inferring the basal friction coefficient while

simultaneously filling gaps in the sparsely observed ice thickness. This unified framework offers a promising avenue to enhance

the predictive capabilities of ice sheet models, reducing uncertainties, and advancing our understanding of poorly constrained

physical processes.
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Figure 3. MSE of the (a) velocity, (b) surface elevation, and (c) ice thickness versus the PDE

residual " 
 . (d) The mean test error of the PINNs predictions using di�erent weights w
 .

193:75 m/yr. This represents approximately less than 10% of the average 
ow velocity242

over the entire domain (2; 028:69 m/yr) and about 2 :7% of the highest velocity (7; 152:93243

m/yr).244

3.3 Inverse problem245

We change the training dataset to use ice velocityû , ice thicknessĤ , and surface246

elevation ŝ. In this con�guration, the PINN serves as an inverse solver to infer the basal247

friction coe�cient C. Again, because we don't expose the PINN to the \true" friction248

coe�cient from the ISSM model inversion, the PINN is inferring C solely based on the249

PDE constraint that is linking the friction coe�cient to the other variables that the PINN250

is exposed to. The predictions and mis�ts are presented in Figure 5, and the RMSE of251

the mis�t is provided in Table 2. Similar to the forward problem in section 3.2, the pre-252

dictions of PINN align well with the \true" solution. Particularly for those learning from253

the reference data, the relative errors are all below 3% (the average ice thickness is 716:61254

m, and the average surface elevation is 987:66 m).255

The RMSE of the mis�t in C is 589:61 Pa1=2 m� 1=6 s1=6. However, as shown in Fig-256

ure 5(f), the pattern of large errors is located primarily in the slow-moving region (ve-257

{9{
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illustrates all available 
ight tracks around Helheim Glacier, with dots representing re-332

sampled points at 200 m intervals along the tracks. These 
ight track data are notably333

sparse, even along the main branch of Helheim Glacier, where only one 
ight track is present334

in the center of the ice stream. Various numerical methods have been developed to lever-335

age 
ight track data along with other observations to �ll gaps in regions lacking direct336

measurements. Some examples include the BedMachine Greenland and Antarctica mod-337

els (Morlighem et al., 2017, 2020), which use mass conservation principles to constrain338

ice thickness.

Figure 7. Available ice thickness data in the region of interest. The dots are resampled at 200

m intervals, overlaid with an image map from MEaSUREs MODIS Mosaic of Greenland (Haran

et al., 2018).

339

Given the 
exibility of the PINN, we perform one more test here to assess its abil-340

ity to address a dual inversion problem. Here we would like to test the ability of the PINN341

to infer the basal friction coe�cient, C, while simultaneously �lling gaps in sparsely ob-342

served ice thickness,H . Following the same procedure as the ones described above, we343

expose the model to ice velocity,̂u , surface elevation,ŝ, and ice thickness only along 
ight344

tracks, �H , as shown in Figure 7. The predictions from the PINN and their correspond-345

ing mis�ts are presented in Figure 8. Notably, the PINN predictions for ice velocity and346

surface elevation align well with the true solutions (shown in Figure 2), and the RMSE347

of the mis�ts are 126:83 m/yr for the velocity and 22 :08 m for the surface elevation. Both348

are below those obtained in the forward problem (193:75 m/yr and 26:99 m). The pre-349

dicted ice thickness closely reproduces the shape and magnitude observed in the true so-350

lution as well. While the predicted friction coe�cient shows a high mis�t in slow-moving351

regions, as expected given the limitations of SSA in slow-moving regions discussed above,352

it aligns well with the true solution in fast-
ow regions. The RMSE values for both C353

and H are comparable to those obtained in the individual inversions discussed in sec-354

tions 3.3 and 3.4 (see Table 2).355

–13–
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It is important to note that only the ice velocity, surface elevation, and ice thick-356

ness along 
ight lines are incorporated into the training procedure and exposed to the357

PINN. The governing equation in the PINN is based on momentum conservation rather358

than mass conservation, which is the principle employed by BedMachine for inferring ice359

thickness. Consequently, discrepancies between the PINN predictions and the reference360

ice thickness from BedMachine are expected, constituting the likely primary reason for361

the observed mis�t in Figure 8 (g). Furthermore, considering that the reference friction362

coe�cient is inferred from ISSM using the ice thickness from BedMachine, di�erences363

are expected, particularly in regions where the two ice thickness datasets diverge.364

101 103 0 5000 0 500 1000 1500 0 1000 2000

1000 0 1000 2000 0 2000 250 0 250 200 0 200

(a) (b) (c) (d)

(e) (f) (g) (h)

|u| (m/yr) C (Pa1/2 m−1/6 s1/6) H (m) s (m)

PI
NN

pr
ed

ict
ion

M
isfi

t

Figure 8. (a)-(d) Predictions of the PINN inferring ice thickness and basal friction coefficient

using ice velocity û, surface elevation ŝ, and flight track data H̄ (as in Figure 7) in the train-

ing procedure. (e)-(h) Corresponding misfits between the predictions and their corresponding

reference data in Figure 2.

4.4 Limitations365

While our study highlights the capabilities of PINNs in ice sheet modeling, certain366

limitations should be acknowledged. For the forward model, which is mathematically well-367

posed, traditional grid-based solvers clearly outperform PINNs (Karniadakis et al., 2021).368

For instance, while training the PINN for a forward problem (section 3.2) requires ap-369

proximately 10 hours on one GPU, the same problem can be solved within minutes us-370

ing established solvers like ISSM with 40 CPUs for a mesh of approximately 20; 000 el-371

ements. Another challenge is that the governing equations are imposed as soft constraints372

in the loss function and compete with the data mis�t during the optimization, causing373

occasional non-convergence. Furthermore, it is well known that SSA serves as a reliable374

approximation for ice dynamics in fast-
owing regions but its assumptions break down375

in the interior of the ice sheet. Generalizing this approach to the entire Greenland Ice376

Sheet may necessitate the use of alternative physics or a combination of di�erent physics377

to infer ice thickness, for example.378

Future research directions will need to address the identi�ed limitations and fur-379

ther enhance the application of PINNs in ice sheet modeling. To enhance its e�ciency,380

the training process could be optimized and potentially integrate parallel computing strate-381

–14–
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gies for faster execution. The handling of PDEs as soft constraints in the PINN frame-382

work could be revised in order to mitigate convergence issues. Finally, improving the ac-383

curacy of the ice sheet interior will involve alternative physics or hybrid approaches that384

better capture the complexities of ice dynamics in slow-moving regions. These steps will385

collectively contribute to advancing the robustness, accuracy, and computational e�ciency386

of PINNs for comprehensive ice sheet modeling.387

5 Conclusion388

This study explores several applications of PINNs in typical problems of ice sheet389

modeling. In contrast to traditional numerical methods, we utilize PINNs to construct390

a uni�ed framework for both forward and inverse modeling. The inherent adaptability391

of PINNs is particularly easy to use and expand, enabling the inclusion of new physi-392

cal parameters into the numerical model. This approach o�ers a promising avenue for393

enhancing the 
exibility of ice sheet models and data assimilation, beyond the traditional394

categories of forward or inverse problems.395

The dual inversion case presented in this study further demonstrates the ability of396

PINNs to simultaneously infer the basal friction coe�cient and �ll in gaps in partially397

sparse ice thickness observations. PINNs, with their capacity to integrate data mis�t and398

physical principles, contribute to advancing numerical ice sheet modeling. This study399

suggests the potential of PINNs in improving our understanding of ice dynamics, con-400

tributing to more accurate predictions of future sea-level rise in glaciology and climate401

science.402
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