Extreme Rainfall Trends in the United States of America

Zuhayr Shahid Ishmam ${ }^{1}$, Robert V Rohli ${ }^{2,3}$, Rubayet Bin Mostafiz ${ }^{4}$, and Carol J Friedland ${ }^{3,4}$
${ }^{1}$ Affiliation not available
${ }^{2}$ Department of Oceanography \& Coastal Sciences, Louisiana State University
${ }^{3}$ Coastal Studies Institute, Louisiana State University
${ }^{4}$ Department of Biological \& Agricultural Engineering, LaHouse Research \& Education
Center, LSU AgCenter, Louisiana State University

March 05, 2024

Abstract

The European Centre for Medium Range Weather Forecast (ECMWF) fifth-generation reanalysis of the global climate (ERA5) and the Climate Hazards Croup InfraRed Precipitation with Station (CHIPPS) daily measurements are used to examine extreme rainfall (1981-2022) in the contiguous U.S.A. Linear spatiotemporal trends in indicators of extreme rainfall frequency, magnitude, and duration recommended by WMO, as identified by the TheiI-Sen slope estimate and its Mann Kendall significance (p $<$ 0.05), are calculated. Temporal trends in the annual number of days with rainfall 20 mm (R20) are most significant in the Ohio Valley and in parts of Florida (increasing), and isolated parts of Texas, Oklahoma, elsewhere in the Southwest and West (decreasing). Annual frequency of days having 10 mm (R1O) shows similar spatiotemporal patterns, but with broader areas of decreasing trends in the southern Great Plains and Southwest. Annual trends in total rainfall on the 5% of the most precipitating days (R95P) increased significantly in parts of Florida and from Louisiana to Maine and decreased significantly across much of the Southwest. Annual trends in maximum five-day rainfall (Rx5day) increased significantly in parts of the Appalachians and other isolated pockets and decreased significantly in parts of the Southwest. Annual maximum number of consecutive dry days (CDD) increased significantly in parts of California and adjacent western U.S. and decreased significantly in much of the south-central U.S. Trends in annual maximum number of consecutive wet days (CWD) changed significantly only in isolated areas, with Colorado having the most significantly decreasing trends. The area having $>2.5 \mathrm{~mm}^{\mathrm{m}}$ day ${ }^{-1}$ of rainfall over a given meteorological season expanded for DJF and MAM but shrunk for SON, from the 1981-1990 to 2011-2022 periods. If such trends continue, floods, landslides, and droughts may intensify.

Extreme Rainfall Trends in the United States of America

Zuhayr Shahid Ishmam ${ }^{1,2,3}$, Robert V. Rohli¹,2, Rubayet Bin Mostafiz ${ }^{3}$, Carol J. Friedland ${ }^{2,3}$

Introduction

To characterize the spatiotemporal trends of extreme rainfall in the continental United States, 6 out of the 27 extreme Climatic indices defined by the joint CCl
were derived, analyzed, and visualized.
Gridded daily rainfall values from the fifth generation ECMWF atmospheric reanalysis of the global climate (ERA5; Hersbach et al., 2020) and the Climate Hazards Group nifraRed Precipitation with Station Data (CHIRPS; Funk et al.
2015) were used to calculate the indices. CHIRPS and ERA outperform other satellite and reanalysis rainfall data in 2015) were used to calculate the indices. CHIIPP and ERAS outperform other satelitite and reanallsis
capturing extreme rainfall upon validation with gauge-based measurements (Bhattacharyya et al.,
2022). Moreover, the areal extents of mean daily rainfall above a specific threshold have been compared for the current and
the past decade, clasified by meteorological seasons, following a similar approach to Safdar et al. (2023).

Data and Methods

Number of Global Historical Climatology Network daily (GHCNd) meteorological stations having at
 least 95% (Crossett et al., 2020) of daily observations (1981-2022): 2643

Analyzed daily rainfall data downloaded from ERA5, CHIRPS, and GHCNd; 1/1/1981-12/31/2022
Study area: continental United States; spatial resolution of both gridded rainfall data sets: $0.25^{\circ} \times 0.25^{\circ}$
GHCNd data were used for validation of the two gridded rainfall datasets.

Index	Index name	Description	Unit	Type of index
R20mm	Number of 20 mm or more rainfall days	Annual count of days when daily rainfall $\geq 20 \mathrm{~mm}$	day	Frequency
R10mm	Number of 10 mm or more rainfall days	Annual count of days when daily rainfall $\geq 10 \mathrm{~mm}$		
R95	Very wet days	Annual rainfall above long-term 95 ${ }^{\text {th }}$ percentile	mm	Intensity
Rx5day	Maximum 5-day rainfall	Annual 5 -day maximum rainfall		
CDD	Maximum length of consecutive dry days	Maximum number of consecutive days with daily rainfall $<1 \mathrm{~mm}$	days	Duration
cwD	Maximum length of consecutive wet days	Maximum number of consecutive days with daily rainfall $\geq 1 \mathrm{~mm}$		

1968).
A comparison (1981-1990 vs. 2011-2022)
$\mathrm{mm} /$ /day for the meterological seasons

Results

The performance of the ERA5 and CHIRPS data sets in terms of the mean annual values of the calculated extreme
rainfall indices with respect to $G H C N d$ data is compared in the table below. Green shading indicates better eerformance (higher correlation coefficient and lower bias and RMSE).

	ERA5 vs GHCNd			CHIRPS vs GHCNd		
Index	Correlation	Bias	RMSE	Orrelation	Bias	RMSE
R20mm	0.87	-26.68	5.36	0.91	-13.62	3.83
R10mm	0.85	-4.92	7.76	0.83	-4.34	8.72
R95P	0.89	-17.76	135.58	0.90	-11.70	104.33
Rx5day	0.86	-19.37	30.85	0.89	-19.82	28.25
CDD	0.96	-23.23	10.34	0.931	-16.97	10.59
cwD	0.70	39.96	3.33	0.513	-9.86	2.26

Results

Mississippi, Louisiana, Alabama, and Tenness,
Wyoming show the minimum R20 <1.5 days).
Significant positive temporal trends in Ohio Valley and in isolated parts of the Southeast, Northeast, and upper Midwest
Significant negative temporal trends in discrete regions of the Southwest and the West
Heavy Rainfall Days (R10)

In addition to Missisispi, Louisiana, Alabama, and Tennessee, West Virginia and Kentucky show the maximum R10
(>40 days), while Utah, Nevada, and Arizona have the minimum R10
(<8 days) >40 days), while Utah, Nevada, and Arizona have the minimum R10 (<8 days). Similar spatial patterns compared to R20 for increasing temporal trends, but with broader areas of significantly decreasing trends in the southern Great Plains and Southwest

Wet Days Precipitation (R95P)

$\underset{\substack{\text { Mississippi } \\(<180 \mathrm{~mm})}}{ }$
R95P increased significantly in parts of the South, Ohio Valley, upper Midwest, and the East Coass. Significant negative temporal trends across much of the Southwest
Annual Maximum 5-Day Rainfall (Rx5day)

Misissippi, Louisiana, Alabama, and Florida
Wyoming have the minimum Rx5day (40 mm)
Annual trends in $\mathrm{Rx5}$ day increased significantly in parts of the Appalachians and other isolated pockets. Decreased significantly in small segments of the Southwest and the upper Midwest
Consecutive Dry Days (CDD)

California, Arizona, and Nevada
the minimum CDD (<14 days). CDD shows positive statistically significant trends per year over all of Utah and in considerable parts of the
Southwest and the western states, while not demonstrating negative temporal trend in any part of the continent.

forida ad tovis CWD (~4 days).
Temporal trends in CWD changed significantly only in isolated areas (both increasing and decreasing).
Change in Heavy Rainfall Extent by Season (1981-2022 vs. 2011-2022)

A general increase in the area affected by rainfall $>2.5 \mathrm{~mm} /$ day from 1981-1990 to $2011-2022$ for DJF and MAM
For SoN, this areal extent decreased sigigifican

Areal extent of average rainfall $22.5 \mathrm{~mm} /$ day for the winter (DJF), spring (MAM), summer (JAA), and autumn (SON)野-1990 (blue) Vs. $2011-2022$ (red); ERA5 (left), \& CHIRPS (right)

For DJF and MAM, the areal extent of mean rainfall $22.5 \mathrm{~mm} /$ day increased in the Northeast and the upper

Conclusions

 Temporal trends in the frequency indices
northeastern, southeastern, and southern States and decreased significantly in the Southwest. R10 shows a broader
spatial pattern of significant annual decrease spatial pattern of significant annual decrease
The intensity indices (R95P and RX5day) have similar spatial patterns to the frequency indices in terms of annual
The duration indices (CDD \& CWD) show considerably less spatial clusters of significant annual change except for increasing CDD along much of the Southwest and the West. The general trend that can be inferred from our analysis is that ded faster rate than the wet statese are becoming wetter. Some areas of the wet states are becoming drier drier at a a relatively extent, but
the e everse has not teen observed.
tomparison of seasonal shitt of areal rainfall patterns between $2011-2022$ and $1981-1990$ averaging periods suggests
that general increases in hydroclimatological extremes have occurred. If such trends continue, floods, landslides, and droughts may intensify.

